Mirror with some correction
Dependencies: mbed FastIO FastPWM USBDevice
main.cpp@75:677892300e7a, 2017-01-29 (annotated)
- Committer:
- mjr
- Date:
- Sun Jan 29 19:04:47 2017 +0000
- Revision:
- 75:677892300e7a
- Parent:
- 74:822a92bc11d2
- Child:
- 76:7f5912b6340e
Added SBX/PBX-is-supported flag to configuration report
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
mjr | 51:57eb311faafa | 1 | /* Copyright 2014, 2016 M J Roberts, MIT License |
mjr | 5:a70c0bce770d | 2 | * |
mjr | 5:a70c0bce770d | 3 | * Permission is hereby granted, free of charge, to any person obtaining a copy of this software |
mjr | 5:a70c0bce770d | 4 | * and associated documentation files (the "Software"), to deal in the Software without |
mjr | 5:a70c0bce770d | 5 | * restriction, including without limitation the rights to use, copy, modify, merge, publish, |
mjr | 5:a70c0bce770d | 6 | * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the |
mjr | 5:a70c0bce770d | 7 | * Software is furnished to do so, subject to the following conditions: |
mjr | 5:a70c0bce770d | 8 | * |
mjr | 5:a70c0bce770d | 9 | * The above copyright notice and this permission notice shall be included in all copies or |
mjr | 5:a70c0bce770d | 10 | * substantial portions of the Software. |
mjr | 5:a70c0bce770d | 11 | * |
mjr | 5:a70c0bce770d | 12 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING |
mjr | 48:058ace2aed1d | 13 | * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND |
mjr | 5:a70c0bce770d | 14 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, |
mjr | 5:a70c0bce770d | 15 | * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
mjr | 5:a70c0bce770d | 16 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
mjr | 5:a70c0bce770d | 17 | */ |
mjr | 5:a70c0bce770d | 18 | |
mjr | 5:a70c0bce770d | 19 | // |
mjr | 35:e959ffba78fd | 20 | // The Pinscape Controller |
mjr | 35:e959ffba78fd | 21 | // A comprehensive input/output controller for virtual pinball machines |
mjr | 5:a70c0bce770d | 22 | // |
mjr | 48:058ace2aed1d | 23 | // This project implements an I/O controller for virtual pinball cabinets. The |
mjr | 48:058ace2aed1d | 24 | // controller's function is to connect Visual Pinball (and other Windows pinball |
mjr | 48:058ace2aed1d | 25 | // emulators) with physical devices in the cabinet: buttons, sensors, and |
mjr | 48:058ace2aed1d | 26 | // feedback devices that create visual or mechanical effects during play. |
mjr | 38:091e511ce8a0 | 27 | // |
mjr | 48:058ace2aed1d | 28 | // The controller can perform several different functions, which can be used |
mjr | 38:091e511ce8a0 | 29 | // individually or in any combination: |
mjr | 5:a70c0bce770d | 30 | // |
mjr | 38:091e511ce8a0 | 31 | // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the |
mjr | 38:091e511ce8a0 | 32 | // motion of the cabinet when you nudge it. Visual Pinball and other pinball |
mjr | 38:091e511ce8a0 | 33 | // emulators on the PC have native handling for this type of input, so that |
mjr | 38:091e511ce8a0 | 34 | // physical nudges on the cabinet turn into simulated effects on the virtual |
mjr | 38:091e511ce8a0 | 35 | // ball. The KL25Z measures accelerations as analog readings and is quite |
mjr | 38:091e511ce8a0 | 36 | // sensitive, so the effect of a nudge on the simulation is proportional |
mjr | 38:091e511ce8a0 | 37 | // to the strength of the nudge. Accelerations are reported to the PC via a |
mjr | 38:091e511ce8a0 | 38 | // simulated joystick (using the X and Y axes); you just have to set some |
mjr | 38:091e511ce8a0 | 39 | // preferences in your pinball software to tell it that an accelerometer |
mjr | 38:091e511ce8a0 | 40 | // is attached. |
mjr | 5:a70c0bce770d | 41 | // |
mjr | 74:822a92bc11d2 | 42 | // - Plunger position sensing, with multiple sensor options. To use this feature, |
mjr | 35:e959ffba78fd | 43 | // you need to choose a sensor and set it up, connect the sensor electrically to |
mjr | 35:e959ffba78fd | 44 | // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how |
mjr | 35:e959ffba78fd | 45 | // the sensor is hooked up. The Pinscape software monitors the sensor and sends |
mjr | 35:e959ffba78fd | 46 | // readings to Visual Pinball via the joystick Z axis. VP and other PC software |
mjr | 38:091e511ce8a0 | 47 | // have native support for this type of input; as with the nudge setup, you just |
mjr | 38:091e511ce8a0 | 48 | // have to set some options in VP to activate the plunger. |
mjr | 17:ab3cec0c8bf4 | 49 | // |
mjr | 35:e959ffba78fd | 50 | // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R |
mjr | 35:e959ffba78fd | 51 | // linear sensor arrays) as well as slide potentiometers. The specific equipment |
mjr | 35:e959ffba78fd | 52 | // that's supported, along with physical mounting and wiring details, can be found |
mjr | 35:e959ffba78fd | 53 | // in the Build Guide. |
mjr | 35:e959ffba78fd | 54 | // |
mjr | 38:091e511ce8a0 | 55 | // Note VP has built-in support for plunger devices like this one, but some VP |
mjr | 38:091e511ce8a0 | 56 | // tables can't use it without some additional scripting work. The Build Guide has |
mjr | 38:091e511ce8a0 | 57 | // advice on adjusting tables to add plunger support when necessary. |
mjr | 5:a70c0bce770d | 58 | // |
mjr | 6:cc35eb643e8f | 59 | // For best results, the plunger sensor should be calibrated. The calibration |
mjr | 6:cc35eb643e8f | 60 | // is stored in non-volatile memory on board the KL25Z, so it's only necessary |
mjr | 6:cc35eb643e8f | 61 | // to do the calibration once, when you first install everything. (You might |
mjr | 6:cc35eb643e8f | 62 | // also want to re-calibrate if you physically remove and reinstall the CCD |
mjr | 17:ab3cec0c8bf4 | 63 | // sensor or the mechanical plunger, since their alignment shift change slightly |
mjr | 17:ab3cec0c8bf4 | 64 | // when you put everything back together.) You can optionally install a |
mjr | 17:ab3cec0c8bf4 | 65 | // dedicated momentary switch or pushbutton to activate the calibration mode; |
mjr | 17:ab3cec0c8bf4 | 66 | // this is describe in the project documentation. If you don't want to bother |
mjr | 17:ab3cec0c8bf4 | 67 | // with the extra button, you can also trigger calibration using the Windows |
mjr | 17:ab3cec0c8bf4 | 68 | // setup software, which you can find on the Pinscape project page. |
mjr | 6:cc35eb643e8f | 69 | // |
mjr | 17:ab3cec0c8bf4 | 70 | // The calibration procedure is described in the project documentation. Briefly, |
mjr | 17:ab3cec0c8bf4 | 71 | // when you trigger calibration mode, the software will scan the CCD for about |
mjr | 17:ab3cec0c8bf4 | 72 | // 15 seconds, during which you should simply pull the physical plunger back |
mjr | 17:ab3cec0c8bf4 | 73 | // all the way, hold it for a moment, and then slowly return it to the rest |
mjr | 17:ab3cec0c8bf4 | 74 | // position. (DON'T just release it from the retracted position, since that |
mjr | 17:ab3cec0c8bf4 | 75 | // let it shoot forward too far. We want to measure the range from the park |
mjr | 17:ab3cec0c8bf4 | 76 | // position to the fully retracted position only.) |
mjr | 5:a70c0bce770d | 77 | // |
mjr | 13:72dda449c3c0 | 78 | // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs |
mjr | 38:091e511ce8a0 | 79 | // for buttons and switches. You can wire each input to a physical pinball-style |
mjr | 38:091e511ce8a0 | 80 | // button or switch, such as flipper buttons, Start buttons, coin chute switches, |
mjr | 38:091e511ce8a0 | 81 | // tilt bobs, and service buttons. Each button can be configured to be reported |
mjr | 38:091e511ce8a0 | 82 | // to the PC as a joystick button or as a keyboard key (you can select which key |
mjr | 38:091e511ce8a0 | 83 | // is used for each button). |
mjr | 13:72dda449c3c0 | 84 | // |
mjr | 53:9b2611964afc | 85 | // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets |
mjr | 53:9b2611964afc | 86 | // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the |
mjr | 53:9b2611964afc | 87 | // KL25Z, and lets PC software (such as Visual Pinball) control them during game |
mjr | 53:9b2611964afc | 88 | // play to create a more immersive playing experience. The Pinscape software |
mjr | 53:9b2611964afc | 89 | // presents itself to the host as an LedWiz device and accepts the full LedWiz |
mjr | 53:9b2611964afc | 90 | // command set, so software on the PC designed for real LedWiz'es can control |
mjr | 53:9b2611964afc | 91 | // attached devices without any modifications. |
mjr | 5:a70c0bce770d | 92 | // |
mjr | 53:9b2611964afc | 93 | // Even though the software provides a very thorough LedWiz emulation, the KL25Z |
mjr | 53:9b2611964afc | 94 | // GPIO hardware design imposes some serious limitations. The big one is that |
mjr | 53:9b2611964afc | 95 | // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have |
mjr | 53:9b2611964afc | 96 | // varying-intensity outputs (e.g., for controlling the brightness level of an |
mjr | 53:9b2611964afc | 97 | // LED or the speed or a motor). You can control more than 10 output ports, but |
mjr | 53:9b2611964afc | 98 | // only 10 can have PWM control; the rest are simple "digital" ports that can only |
mjr | 53:9b2611964afc | 99 | // be switched fully on or fully off. The second limitation is that the KL25Z |
mjr | 53:9b2611964afc | 100 | // just doesn't have that many GPIO ports overall. There are enough to populate |
mjr | 53:9b2611964afc | 101 | // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is |
mjr | 53:9b2611964afc | 102 | // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade |
mjr | 53:9b2611964afc | 103 | // off more outputs for fewer inputs, or vice versa. The third limitation is that |
mjr | 53:9b2611964afc | 104 | // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't |
mjr | 53:9b2611964afc | 105 | // even enough to control a small LED. So in order to connect any kind of feedback |
mjr | 53:9b2611964afc | 106 | // device to an output, you *must* build some external circuitry to boost the |
mjr | 53:9b2611964afc | 107 | // current handing. The Build Guide has a reference circuit design for this |
mjr | 53:9b2611964afc | 108 | // purpose that's simple and inexpensive to build. |
mjr | 6:cc35eb643e8f | 109 | // |
mjr | 26:cb71c4af2912 | 110 | // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach |
mjr | 26:cb71c4af2912 | 111 | // external PWM controller chips for controlling device outputs, instead of using |
mjr | 53:9b2611964afc | 112 | // the on-board GPIO ports as described above. The software can control a set of |
mjr | 53:9b2611964afc | 113 | // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just |
mjr | 53:9b2611964afc | 114 | // need two of them to get the full complement of 32 output ports of a real LedWiz. |
mjr | 53:9b2611964afc | 115 | // You can hook up even more, though. Four chips gives you 64 ports, which should |
mjr | 53:9b2611964afc | 116 | // be plenty for nearly any virtual pinball project. To accommodate the larger |
mjr | 53:9b2611964afc | 117 | // supply of ports possible with the PWM chips, the controller software provides |
mjr | 53:9b2611964afc | 118 | // a custom, extended version of the LedWiz protocol that can handle up to 128 |
mjr | 53:9b2611964afc | 119 | // ports. PC software designed only for the real LedWiz obviously won't know |
mjr | 53:9b2611964afc | 120 | // about the extended protocol and won't be able to take advantage of its extra |
mjr | 53:9b2611964afc | 121 | // capabilities, but the latest version of DOF (DirectOutput Framework) *does* |
mjr | 53:9b2611964afc | 122 | // know the new language and can take full advantage. Older software will still |
mjr | 53:9b2611964afc | 123 | // work, though - the new extensions are all backward compatible, so old software |
mjr | 53:9b2611964afc | 124 | // that only knows about the original LedWiz protocol will still work, with the |
mjr | 53:9b2611964afc | 125 | // obvious limitation that it can only access the first 32 ports. |
mjr | 53:9b2611964afc | 126 | // |
mjr | 53:9b2611964afc | 127 | // The Pinscape Expansion Board project (which appeared in early 2016) provides |
mjr | 53:9b2611964afc | 128 | // a reference hardware design, with EAGLE circuit board layouts, that takes full |
mjr | 53:9b2611964afc | 129 | // advantage of the TLC5940 capability. It lets you create a customized set of |
mjr | 53:9b2611964afc | 130 | // outputs with full PWM control and power handling for high-current devices |
mjr | 53:9b2611964afc | 131 | // built in to the boards. |
mjr | 26:cb71c4af2912 | 132 | // |
mjr | 38:091e511ce8a0 | 133 | // - Night Mode control for output devices. You can connect a switch or button |
mjr | 38:091e511ce8a0 | 134 | // to the controller to activate "Night Mode", which disables feedback devices |
mjr | 38:091e511ce8a0 | 135 | // that you designate as noisy. You can designate outputs individually as being |
mjr | 38:091e511ce8a0 | 136 | // included in this set or not. This is useful if you want to play a game on |
mjr | 38:091e511ce8a0 | 137 | // your cabinet late at night without waking the kids and annoying the neighbors. |
mjr | 38:091e511ce8a0 | 138 | // |
mjr | 38:091e511ce8a0 | 139 | // - TV ON switch. The controller can pulse a relay to turn on your TVs after |
mjr | 38:091e511ce8a0 | 140 | // power to the cabinet comes on, with a configurable delay timer. This feature |
mjr | 38:091e511ce8a0 | 141 | // is for TVs that don't turn themselves on automatically when first plugged in. |
mjr | 38:091e511ce8a0 | 142 | // To use this feature, you have to build some external circuitry to allow the |
mjr | 38:091e511ce8a0 | 143 | // software to sense the power supply status, and you have to run wires to your |
mjr | 38:091e511ce8a0 | 144 | // TV's on/off button, which requires opening the case on your TV. The Build |
mjr | 38:091e511ce8a0 | 145 | // Guide has details on the necessary circuitry and connections to the TV. |
mjr | 38:091e511ce8a0 | 146 | // |
mjr | 35:e959ffba78fd | 147 | // |
mjr | 35:e959ffba78fd | 148 | // |
mjr | 33:d832bcab089e | 149 | // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current |
mjr | 33:d832bcab089e | 150 | // device status. The flash patterns are: |
mjr | 6:cc35eb643e8f | 151 | // |
mjr | 48:058ace2aed1d | 152 | // short yellow flash = waiting to connect |
mjr | 6:cc35eb643e8f | 153 | // |
mjr | 48:058ace2aed1d | 154 | // short red flash = the connection is suspended (the host is in sleep |
mjr | 48:058ace2aed1d | 155 | // or suspend mode, the USB cable is unplugged after a connection |
mjr | 48:058ace2aed1d | 156 | // has been established) |
mjr | 48:058ace2aed1d | 157 | // |
mjr | 48:058ace2aed1d | 158 | // two short red flashes = connection lost (the device should immediately |
mjr | 48:058ace2aed1d | 159 | // go back to short-yellow "waiting to reconnect" mode when a connection |
mjr | 48:058ace2aed1d | 160 | // is lost, so this display shouldn't normally appear) |
mjr | 6:cc35eb643e8f | 161 | // |
mjr | 38:091e511ce8a0 | 162 | // long red/yellow = USB connection problem. The device still has a USB |
mjr | 48:058ace2aed1d | 163 | // connection to the host (or so it appears to the device), but data |
mjr | 48:058ace2aed1d | 164 | // transmissions are failing. |
mjr | 38:091e511ce8a0 | 165 | // |
mjr | 73:4e8ce0b18915 | 166 | // medium blue flash = TV ON delay timer running. This means that the |
mjr | 73:4e8ce0b18915 | 167 | // power to the secondary PSU has just been turned on, and the TV ON |
mjr | 73:4e8ce0b18915 | 168 | // timer is waiting for the configured delay time before pulsing the |
mjr | 73:4e8ce0b18915 | 169 | // TV power button relay. This is only shown if the TV ON feature is |
mjr | 73:4e8ce0b18915 | 170 | // enabled. |
mjr | 73:4e8ce0b18915 | 171 | // |
mjr | 6:cc35eb643e8f | 172 | // long yellow/green = everything's working, but the plunger hasn't |
mjr | 38:091e511ce8a0 | 173 | // been calibrated. Follow the calibration procedure described in |
mjr | 38:091e511ce8a0 | 174 | // the project documentation. This flash mode won't appear if there's |
mjr | 38:091e511ce8a0 | 175 | // no plunger sensor configured. |
mjr | 6:cc35eb643e8f | 176 | // |
mjr | 38:091e511ce8a0 | 177 | // alternating blue/green = everything's working normally, and plunger |
mjr | 38:091e511ce8a0 | 178 | // calibration has been completed (or there's no plunger attached) |
mjr | 10:976666ffa4ef | 179 | // |
mjr | 48:058ace2aed1d | 180 | // fast red/purple = out of memory. The controller halts and displays |
mjr | 48:058ace2aed1d | 181 | // this diagnostic code until you manually reset it. If this happens, |
mjr | 48:058ace2aed1d | 182 | // it's probably because the configuration is too complex, in which |
mjr | 48:058ace2aed1d | 183 | // case the same error will occur after the reset. If it's stuck |
mjr | 48:058ace2aed1d | 184 | // in this cycle, you'll have to restore the default configuration |
mjr | 48:058ace2aed1d | 185 | // by re-installing the controller software (the Pinscape .bin file). |
mjr | 10:976666ffa4ef | 186 | // |
mjr | 48:058ace2aed1d | 187 | // |
mjr | 48:058ace2aed1d | 188 | // USB PROTOCOL: Most of our USB messaging is through standard USB HID |
mjr | 48:058ace2aed1d | 189 | // classes (joystick, keyboard). We also accept control messages on our |
mjr | 48:058ace2aed1d | 190 | // primary HID interface "OUT endpoint" using a custom protocol that's |
mjr | 48:058ace2aed1d | 191 | // not defined in any USB standards (we do have to provide a USB HID |
mjr | 48:058ace2aed1d | 192 | // Report Descriptor for it, but this just describes the protocol as |
mjr | 48:058ace2aed1d | 193 | // opaque vendor-defined bytes). The control protocol incorporates the |
mjr | 48:058ace2aed1d | 194 | // LedWiz protocol as a subset, and adds our own private extensions. |
mjr | 48:058ace2aed1d | 195 | // For full details, see USBProtocol.h. |
mjr | 33:d832bcab089e | 196 | |
mjr | 33:d832bcab089e | 197 | |
mjr | 0:5acbbe3f4cf4 | 198 | #include "mbed.h" |
mjr | 6:cc35eb643e8f | 199 | #include "math.h" |
mjr | 74:822a92bc11d2 | 200 | #include "diags.h" |
mjr | 48:058ace2aed1d | 201 | #include "pinscape.h" |
mjr | 0:5acbbe3f4cf4 | 202 | #include "USBJoystick.h" |
mjr | 0:5acbbe3f4cf4 | 203 | #include "MMA8451Q.h" |
mjr | 1:d913e0afb2ac | 204 | #include "tsl1410r.h" |
mjr | 1:d913e0afb2ac | 205 | #include "FreescaleIAP.h" |
mjr | 2:c174f9ee414a | 206 | #include "crc32.h" |
mjr | 26:cb71c4af2912 | 207 | #include "TLC5940.h" |
mjr | 34:6b981a2afab7 | 208 | #include "74HC595.h" |
mjr | 35:e959ffba78fd | 209 | #include "nvm.h" |
mjr | 35:e959ffba78fd | 210 | #include "plunger.h" |
mjr | 35:e959ffba78fd | 211 | #include "ccdSensor.h" |
mjr | 35:e959ffba78fd | 212 | #include "potSensor.h" |
mjr | 35:e959ffba78fd | 213 | #include "nullSensor.h" |
mjr | 48:058ace2aed1d | 214 | #include "TinyDigitalIn.h" |
mjr | 74:822a92bc11d2 | 215 | |
mjr | 2:c174f9ee414a | 216 | |
mjr | 21:5048e16cc9ef | 217 | #define DECL_EXTERNS |
mjr | 17:ab3cec0c8bf4 | 218 | #include "config.h" |
mjr | 17:ab3cec0c8bf4 | 219 | |
mjr | 53:9b2611964afc | 220 | |
mjr | 53:9b2611964afc | 221 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 222 | // |
mjr | 53:9b2611964afc | 223 | // OpenSDA module identifier. This is for the benefit of the Windows |
mjr | 53:9b2611964afc | 224 | // configuration tool. When the config tool installs a .bin file onto |
mjr | 53:9b2611964afc | 225 | // the KL25Z, it will first find the sentinel string within the .bin file, |
mjr | 53:9b2611964afc | 226 | // and patch the "\0" bytes that follow the sentinel string with the |
mjr | 53:9b2611964afc | 227 | // OpenSDA module ID data. This allows us to report the OpenSDA |
mjr | 53:9b2611964afc | 228 | // identifiers back to the host system via USB, which in turn allows the |
mjr | 53:9b2611964afc | 229 | // config tool to figure out which OpenSDA MSD (mass storage device - a |
mjr | 53:9b2611964afc | 230 | // virtual disk drive) correlates to which Pinscape controller USB |
mjr | 53:9b2611964afc | 231 | // interface. |
mjr | 53:9b2611964afc | 232 | // |
mjr | 53:9b2611964afc | 233 | // This is only important if multiple Pinscape devices are attached to |
mjr | 53:9b2611964afc | 234 | // the same host. There doesn't seem to be any other way to figure out |
mjr | 53:9b2611964afc | 235 | // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA |
mjr | 53:9b2611964afc | 236 | // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't |
mjr | 53:9b2611964afc | 237 | // have any way to learn about the OpenSDA module it's connected to. The |
mjr | 53:9b2611964afc | 238 | // only way to pass this information to the KL25Z side that I can come up |
mjr | 53:9b2611964afc | 239 | // with is to have the Windows host embed it in the .bin file before |
mjr | 53:9b2611964afc | 240 | // downloading it to the OpenSDA MSD. |
mjr | 53:9b2611964afc | 241 | // |
mjr | 53:9b2611964afc | 242 | // We initialize the const data buffer (the part after the sentinel string) |
mjr | 53:9b2611964afc | 243 | // with all "\0" bytes, so that's what will be in the executable image that |
mjr | 53:9b2611964afc | 244 | // comes out of the mbed compiler. If you manually install the resulting |
mjr | 53:9b2611964afc | 245 | // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes |
mjr | 53:9b2611964afc | 246 | // will stay this way and read as all 0's at run-time. Since a real TUID |
mjr | 53:9b2611964afc | 247 | // would never be all 0's, that tells us that we were never patched and |
mjr | 53:9b2611964afc | 248 | // thus don't have any information on the OpenSDA module. |
mjr | 53:9b2611964afc | 249 | // |
mjr | 53:9b2611964afc | 250 | const char *getOpenSDAID() |
mjr | 53:9b2611964afc | 251 | { |
mjr | 53:9b2611964afc | 252 | #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///" |
mjr | 53:9b2611964afc | 253 | static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///"; |
mjr | 53:9b2611964afc | 254 | const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1; |
mjr | 53:9b2611964afc | 255 | |
mjr | 53:9b2611964afc | 256 | return OpenSDA + OpenSDA_prefix_length; |
mjr | 53:9b2611964afc | 257 | } |
mjr | 53:9b2611964afc | 258 | |
mjr | 53:9b2611964afc | 259 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 260 | // |
mjr | 53:9b2611964afc | 261 | // Build ID. We use the date and time of compiling the program as a build |
mjr | 53:9b2611964afc | 262 | // identifier. It would be a little nicer to use a simple serial number |
mjr | 53:9b2611964afc | 263 | // instead, but the mbed platform doesn't have a way to automate that. The |
mjr | 53:9b2611964afc | 264 | // timestamp is a pretty good proxy for a serial number in that it will |
mjr | 53:9b2611964afc | 265 | // naturally increase on each new build, which is the primary property we |
mjr | 53:9b2611964afc | 266 | // want from this. |
mjr | 53:9b2611964afc | 267 | // |
mjr | 53:9b2611964afc | 268 | // As with the embedded OpenSDA ID, we store the build timestamp with a |
mjr | 53:9b2611964afc | 269 | // sentinel string prefix, to allow automated tools to find the static data |
mjr | 53:9b2611964afc | 270 | // in the .bin file by searching for the sentinel string. In contrast to |
mjr | 53:9b2611964afc | 271 | // the OpenSDA ID, the value we store here is for tools to extract rather |
mjr | 53:9b2611964afc | 272 | // than store, since we automatically populate it via the preprocessor |
mjr | 53:9b2611964afc | 273 | // macros. |
mjr | 53:9b2611964afc | 274 | // |
mjr | 53:9b2611964afc | 275 | const char *getBuildID() |
mjr | 53:9b2611964afc | 276 | { |
mjr | 53:9b2611964afc | 277 | #define BUILDID_PREFIX "///Pinscape.Build.ID///" |
mjr | 53:9b2611964afc | 278 | static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///"; |
mjr | 53:9b2611964afc | 279 | const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1; |
mjr | 53:9b2611964afc | 280 | |
mjr | 53:9b2611964afc | 281 | return BuildID + BuildID_prefix_length; |
mjr | 53:9b2611964afc | 282 | } |
mjr | 53:9b2611964afc | 283 | |
mjr | 74:822a92bc11d2 | 284 | // -------------------------------------------------------------------------- |
mjr | 74:822a92bc11d2 | 285 | // Main loop iteration timing statistics. Collected only if |
mjr | 74:822a92bc11d2 | 286 | // ENABLE_DIAGNOSTICS is set in diags.h. |
mjr | 74:822a92bc11d2 | 287 | float mainLoopIterTime, mainLoopIterCount; |
mjr | 74:822a92bc11d2 | 288 | float mainLoopMsgTime, mainLoopMsgCount; |
mjr | 53:9b2611964afc | 289 | |
mjr | 48:058ace2aed1d | 290 | // -------------------------------------------------------------------------- |
mjr | 48:058ace2aed1d | 291 | // |
mjr | 59:94eb9265b6d7 | 292 | // Custom memory allocator. We use our own version of malloc() for more |
mjr | 59:94eb9265b6d7 | 293 | // efficient memory usage, and to provide diagnostics if we run out of heap. |
mjr | 48:058ace2aed1d | 294 | // |
mjr | 59:94eb9265b6d7 | 295 | // We can implement a more efficient malloc than the library can because we |
mjr | 59:94eb9265b6d7 | 296 | // can make an assumption that the library can't: allocations are permanent. |
mjr | 59:94eb9265b6d7 | 297 | // The normal malloc has to assume that allocations can be freed, so it has |
mjr | 59:94eb9265b6d7 | 298 | // to track blocks individually. For the purposes of this program, though, |
mjr | 59:94eb9265b6d7 | 299 | // we don't have to do this because virtually all of our allocations are |
mjr | 59:94eb9265b6d7 | 300 | // de facto permanent. We only allocate dyanmic memory during setup, and |
mjr | 59:94eb9265b6d7 | 301 | // once we set things up, we never delete anything. This means that we can |
mjr | 59:94eb9265b6d7 | 302 | // allocate memory in bare blocks without any bookkeeping overhead. |
mjr | 59:94eb9265b6d7 | 303 | // |
mjr | 59:94eb9265b6d7 | 304 | // In addition, we can make a much larger overall pool of memory available |
mjr | 59:94eb9265b6d7 | 305 | // in a custom allocator. The mbed library malloc() seems to have a pool |
mjr | 59:94eb9265b6d7 | 306 | // of about 3K to work with, even though there's really about 9K of RAM |
mjr | 59:94eb9265b6d7 | 307 | // left over after counting the static writable data and reserving space |
mjr | 59:94eb9265b6d7 | 308 | // for a reasonable stack. I haven't looked at the mbed malloc to see why |
mjr | 59:94eb9265b6d7 | 309 | // they're so stingy, but it appears from empirical testing that we can |
mjr | 59:94eb9265b6d7 | 310 | // create a static array up to about 9K before things get crashy. |
mjr | 59:94eb9265b6d7 | 311 | |
mjr | 73:4e8ce0b18915 | 312 | // Dynamic memory pool. We'll reserve space for all dynamic |
mjr | 73:4e8ce0b18915 | 313 | // allocations by creating a simple C array of bytes. The size |
mjr | 73:4e8ce0b18915 | 314 | // of this array is the maximum number of bytes we can allocate |
mjr | 73:4e8ce0b18915 | 315 | // with malloc or operator 'new'. |
mjr | 73:4e8ce0b18915 | 316 | // |
mjr | 73:4e8ce0b18915 | 317 | // The maximum safe size for this array is, in essence, the |
mjr | 73:4e8ce0b18915 | 318 | // amount of physical KL25Z RAM left over after accounting for |
mjr | 73:4e8ce0b18915 | 319 | // static data throughout the rest of the program, the run-time |
mjr | 73:4e8ce0b18915 | 320 | // stack, and any other space reserved for compiler or MCU |
mjr | 73:4e8ce0b18915 | 321 | // overhead. Unfortunately, it's not straightforward to |
mjr | 73:4e8ce0b18915 | 322 | // determine this analytically. The big complication is that |
mjr | 73:4e8ce0b18915 | 323 | // the minimum stack size isn't easily predictable, as the stack |
mjr | 73:4e8ce0b18915 | 324 | // grows according to what the program does. In addition, the |
mjr | 73:4e8ce0b18915 | 325 | // mbed platform tools don't give us detailed data on the |
mjr | 73:4e8ce0b18915 | 326 | // compiler/linker memory map. All we get is a generic total |
mjr | 73:4e8ce0b18915 | 327 | // RAM requirement, which doesn't necessarily account for all |
mjr | 73:4e8ce0b18915 | 328 | // overhead (e.g., gaps inserted to get proper alignment for |
mjr | 73:4e8ce0b18915 | 329 | // particular memory blocks). |
mjr | 73:4e8ce0b18915 | 330 | // |
mjr | 73:4e8ce0b18915 | 331 | // A very rough estimate: the total RAM size reported by the |
mjr | 73:4e8ce0b18915 | 332 | // linker is about 3.5K (currently - that can obviously change |
mjr | 73:4e8ce0b18915 | 333 | // as the project evolves) out of 16K total. Assuming about a |
mjr | 73:4e8ce0b18915 | 334 | // 3K stack, that leaves in the ballpark of 10K. Empirically, |
mjr | 73:4e8ce0b18915 | 335 | // that seems pretty close. In testing, we start to see some |
mjr | 73:4e8ce0b18915 | 336 | // instability at 10K, while 9K seems safe. To be conservative, |
mjr | 73:4e8ce0b18915 | 337 | // we'll reduce this to 8K. |
mjr | 73:4e8ce0b18915 | 338 | // |
mjr | 73:4e8ce0b18915 | 339 | // Our measured total usage in the base configuration (22 GPIO |
mjr | 73:4e8ce0b18915 | 340 | // output ports, TSL1410R plunger sensor) is about 4000 bytes. |
mjr | 73:4e8ce0b18915 | 341 | // A pretty fully decked-out configuration (121 output ports, |
mjr | 73:4e8ce0b18915 | 342 | // with 8 TLC5940 chips and 3 74HC595 chips, plus the TSL1412R |
mjr | 73:4e8ce0b18915 | 343 | // sensor with the higher pixel count, and all expansion board |
mjr | 73:4e8ce0b18915 | 344 | // features enabled) comes to about 6700 bytes. That leaves |
mjr | 73:4e8ce0b18915 | 345 | // us with about 1.5K free out of our 8K, so we still have a |
mjr | 73:4e8ce0b18915 | 346 | // little more headroom for future expansion. |
mjr | 73:4e8ce0b18915 | 347 | // |
mjr | 73:4e8ce0b18915 | 348 | // For comparison, the standard mbed malloc() runs out of |
mjr | 73:4e8ce0b18915 | 349 | // memory at about 6K. That's what led to this custom malloc: |
mjr | 73:4e8ce0b18915 | 350 | // we can just fit the base configuration into that 4K, but |
mjr | 73:4e8ce0b18915 | 351 | // it's not enough space for more complex setups. There's |
mjr | 73:4e8ce0b18915 | 352 | // still a little room for squeezing out unnecessary space |
mjr | 73:4e8ce0b18915 | 353 | // from the mbed library code, but at this point I'd prefer |
mjr | 73:4e8ce0b18915 | 354 | // to treat that as a last resort, since it would mean having |
mjr | 73:4e8ce0b18915 | 355 | // to fork private copies of the libraries. |
mjr | 73:4e8ce0b18915 | 356 | static const size_t XMALLOC_POOL_SIZE = 8*1024; |
mjr | 73:4e8ce0b18915 | 357 | static char xmalloc_pool[XMALLOC_POOL_SIZE]; |
mjr | 73:4e8ce0b18915 | 358 | static char *xmalloc_nxt = xmalloc_pool; |
mjr | 73:4e8ce0b18915 | 359 | static size_t xmalloc_rem = XMALLOC_POOL_SIZE; |
mjr | 73:4e8ce0b18915 | 360 | |
mjr | 48:058ace2aed1d | 361 | void *xmalloc(size_t siz) |
mjr | 48:058ace2aed1d | 362 | { |
mjr | 59:94eb9265b6d7 | 363 | // align to a 4-byte increment |
mjr | 59:94eb9265b6d7 | 364 | siz = (siz + 3) & ~3; |
mjr | 59:94eb9265b6d7 | 365 | |
mjr | 59:94eb9265b6d7 | 366 | // If insufficient memory is available, halt and show a fast red/purple |
mjr | 59:94eb9265b6d7 | 367 | // diagnostic flash. We don't want to return, since we assume throughout |
mjr | 59:94eb9265b6d7 | 368 | // the program that all memory allocations must succeed. Note that this |
mjr | 59:94eb9265b6d7 | 369 | // is generally considered bad programming practice in applications on |
mjr | 59:94eb9265b6d7 | 370 | // "real" computers, but for the purposes of this microcontroller app, |
mjr | 59:94eb9265b6d7 | 371 | // there's no point in checking for failed allocations individually |
mjr | 59:94eb9265b6d7 | 372 | // because there's no way to recover from them. It's better in this |
mjr | 59:94eb9265b6d7 | 373 | // context to handle failed allocations as fatal errors centrally. We |
mjr | 59:94eb9265b6d7 | 374 | // can't recover from these automatically, so we have to resort to user |
mjr | 59:94eb9265b6d7 | 375 | // intervention, which we signal with the diagnostic LED flashes. |
mjr | 73:4e8ce0b18915 | 376 | if (siz > xmalloc_rem) |
mjr | 59:94eb9265b6d7 | 377 | { |
mjr | 59:94eb9265b6d7 | 378 | // halt with the diagnostic display (by looping forever) |
mjr | 59:94eb9265b6d7 | 379 | for (;;) |
mjr | 59:94eb9265b6d7 | 380 | { |
mjr | 59:94eb9265b6d7 | 381 | diagLED(1, 0, 0); |
mjr | 59:94eb9265b6d7 | 382 | wait_us(200000); |
mjr | 59:94eb9265b6d7 | 383 | diagLED(1, 0, 1); |
mjr | 59:94eb9265b6d7 | 384 | wait_us(200000); |
mjr | 59:94eb9265b6d7 | 385 | } |
mjr | 59:94eb9265b6d7 | 386 | } |
mjr | 48:058ace2aed1d | 387 | |
mjr | 59:94eb9265b6d7 | 388 | // get the next free location from the pool to return |
mjr | 73:4e8ce0b18915 | 389 | char *ret = xmalloc_nxt; |
mjr | 59:94eb9265b6d7 | 390 | |
mjr | 59:94eb9265b6d7 | 391 | // advance the pool pointer and decrement the remaining size counter |
mjr | 73:4e8ce0b18915 | 392 | xmalloc_nxt += siz; |
mjr | 73:4e8ce0b18915 | 393 | xmalloc_rem -= siz; |
mjr | 59:94eb9265b6d7 | 394 | |
mjr | 59:94eb9265b6d7 | 395 | // return the allocated block |
mjr | 59:94eb9265b6d7 | 396 | return ret; |
mjr | 73:4e8ce0b18915 | 397 | }; |
mjr | 73:4e8ce0b18915 | 398 | |
mjr | 73:4e8ce0b18915 | 399 | // our malloc() replacement |
mjr | 48:058ace2aed1d | 400 | |
mjr | 59:94eb9265b6d7 | 401 | // Overload operator new to call our custom malloc. This ensures that |
mjr | 59:94eb9265b6d7 | 402 | // all 'new' allocations throughout the program (including library code) |
mjr | 59:94eb9265b6d7 | 403 | // go through our private allocator. |
mjr | 48:058ace2aed1d | 404 | void *operator new(size_t siz) { return xmalloc(siz); } |
mjr | 48:058ace2aed1d | 405 | void *operator new[](size_t siz) { return xmalloc(siz); } |
mjr | 5:a70c0bce770d | 406 | |
mjr | 59:94eb9265b6d7 | 407 | // Since we don't do bookkeeping to track released memory, 'delete' does |
mjr | 59:94eb9265b6d7 | 408 | // nothing. In actual testing, this routine appears to never be called. |
mjr | 59:94eb9265b6d7 | 409 | // If it *is* ever called, it will simply leave the block in place, which |
mjr | 59:94eb9265b6d7 | 410 | // will make it unavailable for re-use but will otherwise be harmless. |
mjr | 59:94eb9265b6d7 | 411 | void operator delete(void *ptr) { } |
mjr | 59:94eb9265b6d7 | 412 | |
mjr | 59:94eb9265b6d7 | 413 | |
mjr | 5:a70c0bce770d | 414 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 415 | // |
mjr | 38:091e511ce8a0 | 416 | // Forward declarations |
mjr | 38:091e511ce8a0 | 417 | // |
mjr | 38:091e511ce8a0 | 418 | void setNightMode(bool on); |
mjr | 38:091e511ce8a0 | 419 | void toggleNightMode(); |
mjr | 38:091e511ce8a0 | 420 | |
mjr | 38:091e511ce8a0 | 421 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 422 | // utilities |
mjr | 17:ab3cec0c8bf4 | 423 | |
mjr | 26:cb71c4af2912 | 424 | // floating point square of a number |
mjr | 26:cb71c4af2912 | 425 | inline float square(float x) { return x*x; } |
mjr | 26:cb71c4af2912 | 426 | |
mjr | 26:cb71c4af2912 | 427 | // floating point rounding |
mjr | 26:cb71c4af2912 | 428 | inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); } |
mjr | 26:cb71c4af2912 | 429 | |
mjr | 17:ab3cec0c8bf4 | 430 | |
mjr | 33:d832bcab089e | 431 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 432 | // |
mjr | 40:cc0d9814522b | 433 | // Extended verison of Timer class. This adds the ability to interrogate |
mjr | 40:cc0d9814522b | 434 | // the running state. |
mjr | 40:cc0d9814522b | 435 | // |
mjr | 40:cc0d9814522b | 436 | class Timer2: public Timer |
mjr | 40:cc0d9814522b | 437 | { |
mjr | 40:cc0d9814522b | 438 | public: |
mjr | 40:cc0d9814522b | 439 | Timer2() : running(false) { } |
mjr | 40:cc0d9814522b | 440 | |
mjr | 40:cc0d9814522b | 441 | void start() { running = true; Timer::start(); } |
mjr | 40:cc0d9814522b | 442 | void stop() { running = false; Timer::stop(); } |
mjr | 40:cc0d9814522b | 443 | |
mjr | 40:cc0d9814522b | 444 | bool isRunning() const { return running; } |
mjr | 40:cc0d9814522b | 445 | |
mjr | 40:cc0d9814522b | 446 | private: |
mjr | 40:cc0d9814522b | 447 | bool running; |
mjr | 40:cc0d9814522b | 448 | }; |
mjr | 40:cc0d9814522b | 449 | |
mjr | 53:9b2611964afc | 450 | |
mjr | 53:9b2611964afc | 451 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 452 | // |
mjr | 53:9b2611964afc | 453 | // Reboot timer. When we have a deferred reboot operation pending, we |
mjr | 53:9b2611964afc | 454 | // set the target time and start the timer. |
mjr | 53:9b2611964afc | 455 | Timer2 rebootTimer; |
mjr | 53:9b2611964afc | 456 | long rebootTime_us; |
mjr | 53:9b2611964afc | 457 | |
mjr | 40:cc0d9814522b | 458 | // -------------------------------------------------------------------------- |
mjr | 40:cc0d9814522b | 459 | // |
mjr | 33:d832bcab089e | 460 | // USB product version number |
mjr | 5:a70c0bce770d | 461 | // |
mjr | 47:df7a88cd249c | 462 | const uint16_t USB_VERSION_NO = 0x000A; |
mjr | 33:d832bcab089e | 463 | |
mjr | 33:d832bcab089e | 464 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 465 | // |
mjr | 6:cc35eb643e8f | 466 | // Joystick axis report range - we report from -JOYMAX to +JOYMAX |
mjr | 33:d832bcab089e | 467 | // |
mjr | 6:cc35eb643e8f | 468 | #define JOYMAX 4096 |
mjr | 6:cc35eb643e8f | 469 | |
mjr | 9:fd65b0a94720 | 470 | |
mjr | 17:ab3cec0c8bf4 | 471 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 472 | // |
mjr | 40:cc0d9814522b | 473 | // Wire protocol value translations. These translate byte values to and |
mjr | 40:cc0d9814522b | 474 | // from the USB protocol to local native format. |
mjr | 35:e959ffba78fd | 475 | // |
mjr | 35:e959ffba78fd | 476 | |
mjr | 35:e959ffba78fd | 477 | // unsigned 16-bit integer |
mjr | 35:e959ffba78fd | 478 | inline uint16_t wireUI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 479 | { |
mjr | 35:e959ffba78fd | 480 | return b[0] | ((uint16_t)b[1] << 8); |
mjr | 35:e959ffba78fd | 481 | } |
mjr | 40:cc0d9814522b | 482 | inline void ui16Wire(uint8_t *b, uint16_t val) |
mjr | 40:cc0d9814522b | 483 | { |
mjr | 40:cc0d9814522b | 484 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 485 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 486 | } |
mjr | 35:e959ffba78fd | 487 | |
mjr | 35:e959ffba78fd | 488 | inline int16_t wireI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 489 | { |
mjr | 35:e959ffba78fd | 490 | return (int16_t)wireUI16(b); |
mjr | 35:e959ffba78fd | 491 | } |
mjr | 40:cc0d9814522b | 492 | inline void i16Wire(uint8_t *b, int16_t val) |
mjr | 40:cc0d9814522b | 493 | { |
mjr | 40:cc0d9814522b | 494 | ui16Wire(b, (uint16_t)val); |
mjr | 40:cc0d9814522b | 495 | } |
mjr | 35:e959ffba78fd | 496 | |
mjr | 35:e959ffba78fd | 497 | inline uint32_t wireUI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 498 | { |
mjr | 35:e959ffba78fd | 499 | return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24); |
mjr | 35:e959ffba78fd | 500 | } |
mjr | 40:cc0d9814522b | 501 | inline void ui32Wire(uint8_t *b, uint32_t val) |
mjr | 40:cc0d9814522b | 502 | { |
mjr | 40:cc0d9814522b | 503 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 504 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 505 | b[2] = (uint8_t)((val >> 16) & 0xff); |
mjr | 40:cc0d9814522b | 506 | b[3] = (uint8_t)((val >> 24) & 0xff); |
mjr | 40:cc0d9814522b | 507 | } |
mjr | 35:e959ffba78fd | 508 | |
mjr | 35:e959ffba78fd | 509 | inline int32_t wireI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 510 | { |
mjr | 35:e959ffba78fd | 511 | return (int32_t)wireUI32(b); |
mjr | 35:e959ffba78fd | 512 | } |
mjr | 35:e959ffba78fd | 513 | |
mjr | 53:9b2611964afc | 514 | // Convert "wire" (USB) pin codes to/from PinName values. |
mjr | 53:9b2611964afc | 515 | // |
mjr | 53:9b2611964afc | 516 | // The internal mbed PinName format is |
mjr | 53:9b2611964afc | 517 | // |
mjr | 53:9b2611964afc | 518 | // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT |
mjr | 53:9b2611964afc | 519 | // |
mjr | 53:9b2611964afc | 520 | // where 'port' is 0-4 for Port A to Port E, and 'pin' is |
mjr | 53:9b2611964afc | 521 | // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2). |
mjr | 53:9b2611964afc | 522 | // |
mjr | 53:9b2611964afc | 523 | // We remap this to our more compact wire format where each |
mjr | 53:9b2611964afc | 524 | // pin name fits in 8 bits: |
mjr | 53:9b2611964afc | 525 | // |
mjr | 53:9b2611964afc | 526 | // ((port) << 5) | pin) // WIRE FORMAT |
mjr | 53:9b2611964afc | 527 | // |
mjr | 53:9b2611964afc | 528 | // E.g., E31 is (4 << 5) | 31. |
mjr | 53:9b2611964afc | 529 | // |
mjr | 53:9b2611964afc | 530 | // Wire code FF corresponds to PinName NC (not connected). |
mjr | 53:9b2611964afc | 531 | // |
mjr | 53:9b2611964afc | 532 | inline PinName wirePinName(uint8_t c) |
mjr | 35:e959ffba78fd | 533 | { |
mjr | 53:9b2611964afc | 534 | if (c == 0xFF) |
mjr | 53:9b2611964afc | 535 | return NC; // 0xFF -> NC |
mjr | 53:9b2611964afc | 536 | else |
mjr | 53:9b2611964afc | 537 | return PinName( |
mjr | 53:9b2611964afc | 538 | (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port |
mjr | 53:9b2611964afc | 539 | | (int(c & 0x1F) << 2)); // bottom five bits are pin |
mjr | 40:cc0d9814522b | 540 | } |
mjr | 40:cc0d9814522b | 541 | inline void pinNameWire(uint8_t *b, PinName n) |
mjr | 40:cc0d9814522b | 542 | { |
mjr | 53:9b2611964afc | 543 | *b = PINNAME_TO_WIRE(n); |
mjr | 35:e959ffba78fd | 544 | } |
mjr | 35:e959ffba78fd | 545 | |
mjr | 35:e959ffba78fd | 546 | |
mjr | 35:e959ffba78fd | 547 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 548 | // |
mjr | 38:091e511ce8a0 | 549 | // On-board RGB LED elements - we use these for diagnostic displays. |
mjr | 38:091e511ce8a0 | 550 | // |
mjr | 38:091e511ce8a0 | 551 | // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1, |
mjr | 38:091e511ce8a0 | 552 | // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard |
mjr | 38:091e511ce8a0 | 553 | // input or a device output). This is kind of unfortunate in that it's |
mjr | 38:091e511ce8a0 | 554 | // one of only two ports exposed on the jumper pins that can be muxed to |
mjr | 38:091e511ce8a0 | 555 | // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the |
mjr | 38:091e511ce8a0 | 556 | // SPI capability. |
mjr | 38:091e511ce8a0 | 557 | // |
mjr | 38:091e511ce8a0 | 558 | DigitalOut *ledR, *ledG, *ledB; |
mjr | 38:091e511ce8a0 | 559 | |
mjr | 73:4e8ce0b18915 | 560 | // Power on timer state for diagnostics. We flash the blue LED when |
mjr | 73:4e8ce0b18915 | 561 | // nothing else is going on. State 0-1 = off, 2-3 = on |
mjr | 73:4e8ce0b18915 | 562 | uint8_t powerTimerDiagState = 0; |
mjr | 73:4e8ce0b18915 | 563 | |
mjr | 38:091e511ce8a0 | 564 | // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is |
mjr | 38:091e511ce8a0 | 565 | // on, and -1 is no change (leaves the current setting intact). |
mjr | 73:4e8ce0b18915 | 566 | static uint8_t diagLEDState = 0; |
mjr | 38:091e511ce8a0 | 567 | void diagLED(int r, int g, int b) |
mjr | 38:091e511ce8a0 | 568 | { |
mjr | 73:4e8ce0b18915 | 569 | // remember the new state |
mjr | 73:4e8ce0b18915 | 570 | diagLEDState = r | (g << 1) | (b << 2); |
mjr | 73:4e8ce0b18915 | 571 | |
mjr | 73:4e8ce0b18915 | 572 | // if turning everything off, use the power timer state instead, |
mjr | 73:4e8ce0b18915 | 573 | // applying it to the blue LED |
mjr | 73:4e8ce0b18915 | 574 | if (diagLEDState == 0) |
mjr | 73:4e8ce0b18915 | 575 | b = (powerTimerDiagState >= 2); |
mjr | 73:4e8ce0b18915 | 576 | |
mjr | 73:4e8ce0b18915 | 577 | // set the new state |
mjr | 38:091e511ce8a0 | 578 | if (ledR != 0 && r != -1) ledR->write(!r); |
mjr | 38:091e511ce8a0 | 579 | if (ledG != 0 && g != -1) ledG->write(!g); |
mjr | 38:091e511ce8a0 | 580 | if (ledB != 0 && b != -1) ledB->write(!b); |
mjr | 38:091e511ce8a0 | 581 | } |
mjr | 38:091e511ce8a0 | 582 | |
mjr | 73:4e8ce0b18915 | 583 | // update the LEDs with the current state |
mjr | 73:4e8ce0b18915 | 584 | void diagLED(void) |
mjr | 73:4e8ce0b18915 | 585 | { |
mjr | 73:4e8ce0b18915 | 586 | diagLED( |
mjr | 73:4e8ce0b18915 | 587 | diagLEDState & 0x01, |
mjr | 73:4e8ce0b18915 | 588 | (diagLEDState >> 1) & 0x01, |
mjr | 73:4e8ce0b18915 | 589 | (diagLEDState >> 1) & 0x02); |
mjr | 73:4e8ce0b18915 | 590 | } |
mjr | 73:4e8ce0b18915 | 591 | |
mjr | 38:091e511ce8a0 | 592 | // check an output port assignment to see if it conflicts with |
mjr | 38:091e511ce8a0 | 593 | // an on-board LED segment |
mjr | 38:091e511ce8a0 | 594 | struct LedSeg |
mjr | 38:091e511ce8a0 | 595 | { |
mjr | 38:091e511ce8a0 | 596 | bool r, g, b; |
mjr | 38:091e511ce8a0 | 597 | LedSeg() { r = g = b = false; } |
mjr | 38:091e511ce8a0 | 598 | |
mjr | 38:091e511ce8a0 | 599 | void check(LedWizPortCfg &pc) |
mjr | 38:091e511ce8a0 | 600 | { |
mjr | 38:091e511ce8a0 | 601 | // if it's a GPIO, check to see if it's assigned to one of |
mjr | 38:091e511ce8a0 | 602 | // our on-board LED segments |
mjr | 38:091e511ce8a0 | 603 | int t = pc.typ; |
mjr | 38:091e511ce8a0 | 604 | if (t == PortTypeGPIOPWM || t == PortTypeGPIODig) |
mjr | 38:091e511ce8a0 | 605 | { |
mjr | 38:091e511ce8a0 | 606 | // it's a GPIO port - check for a matching pin assignment |
mjr | 38:091e511ce8a0 | 607 | PinName pin = wirePinName(pc.pin); |
mjr | 38:091e511ce8a0 | 608 | if (pin == LED1) |
mjr | 38:091e511ce8a0 | 609 | r = true; |
mjr | 38:091e511ce8a0 | 610 | else if (pin == LED2) |
mjr | 38:091e511ce8a0 | 611 | g = true; |
mjr | 38:091e511ce8a0 | 612 | else if (pin == LED3) |
mjr | 38:091e511ce8a0 | 613 | b = true; |
mjr | 38:091e511ce8a0 | 614 | } |
mjr | 38:091e511ce8a0 | 615 | } |
mjr | 38:091e511ce8a0 | 616 | }; |
mjr | 38:091e511ce8a0 | 617 | |
mjr | 38:091e511ce8a0 | 618 | // Initialize the diagnostic LEDs. By default, we use the on-board |
mjr | 38:091e511ce8a0 | 619 | // RGB LED to display the microcontroller status. However, we allow |
mjr | 38:091e511ce8a0 | 620 | // the user to commandeer the on-board LED as an LedWiz output device, |
mjr | 38:091e511ce8a0 | 621 | // which can be useful for testing a new installation. So we'll check |
mjr | 38:091e511ce8a0 | 622 | // for LedWiz outputs assigned to the on-board LED segments, and turn |
mjr | 38:091e511ce8a0 | 623 | // off the diagnostic use for any so assigned. |
mjr | 38:091e511ce8a0 | 624 | void initDiagLEDs(Config &cfg) |
mjr | 38:091e511ce8a0 | 625 | { |
mjr | 38:091e511ce8a0 | 626 | // run through the configuration list and cross off any of the |
mjr | 38:091e511ce8a0 | 627 | // LED segments assigned to LedWiz ports |
mjr | 38:091e511ce8a0 | 628 | LedSeg l; |
mjr | 38:091e511ce8a0 | 629 | for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i) |
mjr | 38:091e511ce8a0 | 630 | l.check(cfg.outPort[i]); |
mjr | 38:091e511ce8a0 | 631 | |
mjr | 38:091e511ce8a0 | 632 | // We now know which segments are taken for LedWiz use and which |
mjr | 38:091e511ce8a0 | 633 | // are free. Create diagnostic ports for the ones not claimed for |
mjr | 38:091e511ce8a0 | 634 | // LedWiz use. |
mjr | 38:091e511ce8a0 | 635 | if (!l.r) ledR = new DigitalOut(LED1, 1); |
mjr | 38:091e511ce8a0 | 636 | if (!l.g) ledG = new DigitalOut(LED2, 1); |
mjr | 38:091e511ce8a0 | 637 | if (!l.b) ledB = new DigitalOut(LED3, 1); |
mjr | 38:091e511ce8a0 | 638 | } |
mjr | 38:091e511ce8a0 | 639 | |
mjr | 38:091e511ce8a0 | 640 | |
mjr | 38:091e511ce8a0 | 641 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 642 | // |
mjr | 29:582472d0bc57 | 643 | // LedWiz emulation, and enhanced TLC5940 output controller |
mjr | 5:a70c0bce770d | 644 | // |
mjr | 26:cb71c4af2912 | 645 | // There are two modes for this feature. The default mode uses the on-board |
mjr | 26:cb71c4af2912 | 646 | // GPIO ports to implement device outputs - each LedWiz software port is |
mjr | 26:cb71c4af2912 | 647 | // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10 |
mjr | 26:cb71c4af2912 | 648 | // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the |
mjr | 26:cb71c4af2912 | 649 | // rest are strictly on/off. The KL25Z also has a limited number of GPIO |
mjr | 26:cb71c4af2912 | 650 | // ports overall - not enough for the full complement of 32 LedWiz ports |
mjr | 26:cb71c4af2912 | 651 | // and 24 VP joystick inputs, so it's necessary to trade one against the |
mjr | 26:cb71c4af2912 | 652 | // other if both features are to be used. |
mjr | 26:cb71c4af2912 | 653 | // |
mjr | 26:cb71c4af2912 | 654 | // The alternative, enhanced mode uses external TLC5940 PWM controller |
mjr | 26:cb71c4af2912 | 655 | // chips to control device outputs. In this mode, each LedWiz software |
mjr | 26:cb71c4af2912 | 656 | // port is mapped to an output on one of the external TLC5940 chips. |
mjr | 26:cb71c4af2912 | 657 | // Two 5940s is enough for the full set of 32 LedWiz ports, and we can |
mjr | 26:cb71c4af2912 | 658 | // support even more chips for even more outputs (although doing so requires |
mjr | 26:cb71c4af2912 | 659 | // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired |
mjr | 26:cb71c4af2912 | 660 | // for 32 outputs). Every port in this mode has full PWM support. |
mjr | 26:cb71c4af2912 | 661 | // |
mjr | 5:a70c0bce770d | 662 | |
mjr | 29:582472d0bc57 | 663 | |
mjr | 26:cb71c4af2912 | 664 | // Current starting output index for "PBA" messages from the PC (using |
mjr | 26:cb71c4af2912 | 665 | // the LedWiz USB protocol). Each PBA message implicitly uses the |
mjr | 26:cb71c4af2912 | 666 | // current index as the starting point for the ports referenced in |
mjr | 26:cb71c4af2912 | 667 | // the message, and increases it (by 8) for the next call. |
mjr | 0:5acbbe3f4cf4 | 668 | static int pbaIdx = 0; |
mjr | 0:5acbbe3f4cf4 | 669 | |
mjr | 26:cb71c4af2912 | 670 | // Generic LedWiz output port interface. We create a cover class to |
mjr | 26:cb71c4af2912 | 671 | // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external |
mjr | 26:cb71c4af2912 | 672 | // TLC5940 outputs, and give them all a common interface. |
mjr | 6:cc35eb643e8f | 673 | class LwOut |
mjr | 6:cc35eb643e8f | 674 | { |
mjr | 6:cc35eb643e8f | 675 | public: |
mjr | 40:cc0d9814522b | 676 | // Set the output intensity. 'val' is 0 for fully off, 255 for |
mjr | 40:cc0d9814522b | 677 | // fully on, with values in between signifying lower intensity. |
mjr | 40:cc0d9814522b | 678 | virtual void set(uint8_t val) = 0; |
mjr | 6:cc35eb643e8f | 679 | }; |
mjr | 26:cb71c4af2912 | 680 | |
mjr | 35:e959ffba78fd | 681 | // LwOut class for virtual ports. This type of port is visible to |
mjr | 35:e959ffba78fd | 682 | // the host software, but isn't connected to any physical output. |
mjr | 35:e959ffba78fd | 683 | // This can be used for special software-only ports like the ZB |
mjr | 35:e959ffba78fd | 684 | // Launch Ball output, or simply for placeholders in the LedWiz port |
mjr | 35:e959ffba78fd | 685 | // numbering. |
mjr | 35:e959ffba78fd | 686 | class LwVirtualOut: public LwOut |
mjr | 33:d832bcab089e | 687 | { |
mjr | 33:d832bcab089e | 688 | public: |
mjr | 35:e959ffba78fd | 689 | LwVirtualOut() { } |
mjr | 40:cc0d9814522b | 690 | virtual void set(uint8_t ) { } |
mjr | 33:d832bcab089e | 691 | }; |
mjr | 26:cb71c4af2912 | 692 | |
mjr | 34:6b981a2afab7 | 693 | // Active Low out. For any output marked as active low, we layer this |
mjr | 34:6b981a2afab7 | 694 | // on top of the physical pin interface. This simply inverts the value of |
mjr | 40:cc0d9814522b | 695 | // the output value, so that 255 means fully off and 0 means fully on. |
mjr | 34:6b981a2afab7 | 696 | class LwInvertedOut: public LwOut |
mjr | 34:6b981a2afab7 | 697 | { |
mjr | 34:6b981a2afab7 | 698 | public: |
mjr | 34:6b981a2afab7 | 699 | LwInvertedOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 700 | virtual void set(uint8_t val) { out->set(255 - val); } |
mjr | 34:6b981a2afab7 | 701 | |
mjr | 34:6b981a2afab7 | 702 | private: |
mjr | 53:9b2611964afc | 703 | // underlying physical output |
mjr | 34:6b981a2afab7 | 704 | LwOut *out; |
mjr | 34:6b981a2afab7 | 705 | }; |
mjr | 34:6b981a2afab7 | 706 | |
mjr | 53:9b2611964afc | 707 | // Global ZB Launch Ball state |
mjr | 53:9b2611964afc | 708 | bool zbLaunchOn = false; |
mjr | 53:9b2611964afc | 709 | |
mjr | 53:9b2611964afc | 710 | // ZB Launch Ball output. This is layered on a port (physical or virtual) |
mjr | 53:9b2611964afc | 711 | // to track the ZB Launch Ball signal. |
mjr | 53:9b2611964afc | 712 | class LwZbLaunchOut: public LwOut |
mjr | 53:9b2611964afc | 713 | { |
mjr | 53:9b2611964afc | 714 | public: |
mjr | 53:9b2611964afc | 715 | LwZbLaunchOut(LwOut *o) : out(o) { } |
mjr | 53:9b2611964afc | 716 | virtual void set(uint8_t val) |
mjr | 53:9b2611964afc | 717 | { |
mjr | 53:9b2611964afc | 718 | // update the global ZB Launch Ball state |
mjr | 53:9b2611964afc | 719 | zbLaunchOn = (val != 0); |
mjr | 53:9b2611964afc | 720 | |
mjr | 53:9b2611964afc | 721 | // pass it along to the underlying port, in case it's a physical output |
mjr | 53:9b2611964afc | 722 | out->set(val); |
mjr | 53:9b2611964afc | 723 | } |
mjr | 53:9b2611964afc | 724 | |
mjr | 53:9b2611964afc | 725 | private: |
mjr | 53:9b2611964afc | 726 | // underlying physical or virtual output |
mjr | 53:9b2611964afc | 727 | LwOut *out; |
mjr | 53:9b2611964afc | 728 | }; |
mjr | 53:9b2611964afc | 729 | |
mjr | 53:9b2611964afc | 730 | |
mjr | 40:cc0d9814522b | 731 | // Gamma correction table for 8-bit input values |
mjr | 40:cc0d9814522b | 732 | static const uint8_t gamma[] = { |
mjr | 40:cc0d9814522b | 733 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
mjr | 40:cc0d9814522b | 734 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 735 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, |
mjr | 40:cc0d9814522b | 736 | 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, |
mjr | 40:cc0d9814522b | 737 | 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, |
mjr | 40:cc0d9814522b | 738 | 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, |
mjr | 40:cc0d9814522b | 739 | 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, |
mjr | 40:cc0d9814522b | 740 | 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, |
mjr | 40:cc0d9814522b | 741 | 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, |
mjr | 40:cc0d9814522b | 742 | 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, |
mjr | 40:cc0d9814522b | 743 | 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, |
mjr | 40:cc0d9814522b | 744 | 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114, |
mjr | 40:cc0d9814522b | 745 | 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142, |
mjr | 40:cc0d9814522b | 746 | 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175, |
mjr | 40:cc0d9814522b | 747 | 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, |
mjr | 40:cc0d9814522b | 748 | 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255 |
mjr | 40:cc0d9814522b | 749 | }; |
mjr | 40:cc0d9814522b | 750 | |
mjr | 40:cc0d9814522b | 751 | // Gamma-corrected out. This is a filter object that we layer on top |
mjr | 40:cc0d9814522b | 752 | // of a physical pin interface. This applies gamma correction to the |
mjr | 40:cc0d9814522b | 753 | // input value and then passes it along to the underlying pin object. |
mjr | 40:cc0d9814522b | 754 | class LwGammaOut: public LwOut |
mjr | 40:cc0d9814522b | 755 | { |
mjr | 40:cc0d9814522b | 756 | public: |
mjr | 40:cc0d9814522b | 757 | LwGammaOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 758 | virtual void set(uint8_t val) { out->set(gamma[val]); } |
mjr | 40:cc0d9814522b | 759 | |
mjr | 40:cc0d9814522b | 760 | private: |
mjr | 40:cc0d9814522b | 761 | LwOut *out; |
mjr | 40:cc0d9814522b | 762 | }; |
mjr | 40:cc0d9814522b | 763 | |
mjr | 53:9b2611964afc | 764 | // global night mode flag |
mjr | 53:9b2611964afc | 765 | static bool nightMode = false; |
mjr | 53:9b2611964afc | 766 | |
mjr | 40:cc0d9814522b | 767 | // Noisy output. This is a filter object that we layer on top of |
mjr | 40:cc0d9814522b | 768 | // a physical pin output. This filter disables the port when night |
mjr | 40:cc0d9814522b | 769 | // mode is engaged. |
mjr | 40:cc0d9814522b | 770 | class LwNoisyOut: public LwOut |
mjr | 40:cc0d9814522b | 771 | { |
mjr | 40:cc0d9814522b | 772 | public: |
mjr | 40:cc0d9814522b | 773 | LwNoisyOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 774 | virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); } |
mjr | 40:cc0d9814522b | 775 | |
mjr | 53:9b2611964afc | 776 | private: |
mjr | 53:9b2611964afc | 777 | LwOut *out; |
mjr | 53:9b2611964afc | 778 | }; |
mjr | 53:9b2611964afc | 779 | |
mjr | 53:9b2611964afc | 780 | // Night Mode indicator output. This is a filter object that we |
mjr | 53:9b2611964afc | 781 | // layer on top of a physical pin output. This filter ignores the |
mjr | 53:9b2611964afc | 782 | // host value and simply shows the night mode status. |
mjr | 53:9b2611964afc | 783 | class LwNightModeIndicatorOut: public LwOut |
mjr | 53:9b2611964afc | 784 | { |
mjr | 53:9b2611964afc | 785 | public: |
mjr | 53:9b2611964afc | 786 | LwNightModeIndicatorOut(LwOut *o) : out(o) { } |
mjr | 53:9b2611964afc | 787 | virtual void set(uint8_t) |
mjr | 53:9b2611964afc | 788 | { |
mjr | 53:9b2611964afc | 789 | // ignore the host value and simply show the current |
mjr | 53:9b2611964afc | 790 | // night mode setting |
mjr | 53:9b2611964afc | 791 | out->set(nightMode ? 255 : 0); |
mjr | 53:9b2611964afc | 792 | } |
mjr | 40:cc0d9814522b | 793 | |
mjr | 40:cc0d9814522b | 794 | private: |
mjr | 40:cc0d9814522b | 795 | LwOut *out; |
mjr | 40:cc0d9814522b | 796 | }; |
mjr | 40:cc0d9814522b | 797 | |
mjr | 26:cb71c4af2912 | 798 | |
mjr | 35:e959ffba78fd | 799 | // |
mjr | 35:e959ffba78fd | 800 | // The TLC5940 interface object. We'll set this up with the port |
mjr | 35:e959ffba78fd | 801 | // assignments set in config.h. |
mjr | 33:d832bcab089e | 802 | // |
mjr | 35:e959ffba78fd | 803 | TLC5940 *tlc5940 = 0; |
mjr | 35:e959ffba78fd | 804 | void init_tlc5940(Config &cfg) |
mjr | 35:e959ffba78fd | 805 | { |
mjr | 35:e959ffba78fd | 806 | if (cfg.tlc5940.nchips != 0) |
mjr | 35:e959ffba78fd | 807 | { |
mjr | 53:9b2611964afc | 808 | tlc5940 = new TLC5940( |
mjr | 53:9b2611964afc | 809 | wirePinName(cfg.tlc5940.sclk), |
mjr | 53:9b2611964afc | 810 | wirePinName(cfg.tlc5940.sin), |
mjr | 53:9b2611964afc | 811 | wirePinName(cfg.tlc5940.gsclk), |
mjr | 53:9b2611964afc | 812 | wirePinName(cfg.tlc5940.blank), |
mjr | 53:9b2611964afc | 813 | wirePinName(cfg.tlc5940.xlat), |
mjr | 53:9b2611964afc | 814 | cfg.tlc5940.nchips); |
mjr | 35:e959ffba78fd | 815 | } |
mjr | 35:e959ffba78fd | 816 | } |
mjr | 26:cb71c4af2912 | 817 | |
mjr | 40:cc0d9814522b | 818 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level |
mjr | 40:cc0d9814522b | 819 | static const uint16_t dof_to_tlc[] = { |
mjr | 40:cc0d9814522b | 820 | 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241, |
mjr | 40:cc0d9814522b | 821 | 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498, |
mjr | 40:cc0d9814522b | 822 | 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755, |
mjr | 40:cc0d9814522b | 823 | 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012, |
mjr | 40:cc0d9814522b | 824 | 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269, |
mjr | 40:cc0d9814522b | 825 | 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526, |
mjr | 40:cc0d9814522b | 826 | 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783, |
mjr | 40:cc0d9814522b | 827 | 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039, |
mjr | 40:cc0d9814522b | 828 | 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296, |
mjr | 40:cc0d9814522b | 829 | 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553, |
mjr | 40:cc0d9814522b | 830 | 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810, |
mjr | 40:cc0d9814522b | 831 | 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067, |
mjr | 40:cc0d9814522b | 832 | 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324, |
mjr | 40:cc0d9814522b | 833 | 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581, |
mjr | 40:cc0d9814522b | 834 | 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838, |
mjr | 40:cc0d9814522b | 835 | 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095 |
mjr | 40:cc0d9814522b | 836 | }; |
mjr | 40:cc0d9814522b | 837 | |
mjr | 40:cc0d9814522b | 838 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with |
mjr | 40:cc0d9814522b | 839 | // gamma correction. Note that the output layering scheme can handle |
mjr | 40:cc0d9814522b | 840 | // this without a separate table, by first applying gamma to the DOF |
mjr | 40:cc0d9814522b | 841 | // level to produce an 8-bit gamma-corrected value, then convert that |
mjr | 40:cc0d9814522b | 842 | // to the 12-bit TLC5940 value. But we get better precision by doing |
mjr | 40:cc0d9814522b | 843 | // the gamma correction in the 12-bit TLC5940 domain. We can only |
mjr | 40:cc0d9814522b | 844 | // get the 12-bit domain by combining both steps into one layering |
mjr | 40:cc0d9814522b | 845 | // object, though, since the intermediate values in the layering system |
mjr | 40:cc0d9814522b | 846 | // are always 8 bits. |
mjr | 40:cc0d9814522b | 847 | static const uint16_t dof_to_gamma_tlc[] = { |
mjr | 40:cc0d9814522b | 848 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 849 | 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11, |
mjr | 40:cc0d9814522b | 850 | 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36, |
mjr | 40:cc0d9814522b | 851 | 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82, |
mjr | 40:cc0d9814522b | 852 | 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154, |
mjr | 40:cc0d9814522b | 853 | 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258, |
mjr | 40:cc0d9814522b | 854 | 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399, |
mjr | 40:cc0d9814522b | 855 | 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582, |
mjr | 40:cc0d9814522b | 856 | 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811, |
mjr | 40:cc0d9814522b | 857 | 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091, |
mjr | 40:cc0d9814522b | 858 | 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427, |
mjr | 40:cc0d9814522b | 859 | 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823, |
mjr | 40:cc0d9814522b | 860 | 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284, |
mjr | 40:cc0d9814522b | 861 | 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813, |
mjr | 40:cc0d9814522b | 862 | 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416, |
mjr | 40:cc0d9814522b | 863 | 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095 |
mjr | 40:cc0d9814522b | 864 | }; |
mjr | 40:cc0d9814522b | 865 | |
mjr | 26:cb71c4af2912 | 866 | // LwOut class for TLC5940 outputs. These are fully PWM capable. |
mjr | 26:cb71c4af2912 | 867 | // The 'idx' value in the constructor is the output index in the |
mjr | 26:cb71c4af2912 | 868 | // daisy-chained TLC5940 array. 0 is output #0 on the first chip, |
mjr | 26:cb71c4af2912 | 869 | // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is |
mjr | 26:cb71c4af2912 | 870 | // #0 on the second chip, 32 is #0 on the third chip, etc. |
mjr | 26:cb71c4af2912 | 871 | class Lw5940Out: public LwOut |
mjr | 26:cb71c4af2912 | 872 | { |
mjr | 26:cb71c4af2912 | 873 | public: |
mjr | 60:f38da020aa13 | 874 | Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 875 | virtual void set(uint8_t val) |
mjr | 26:cb71c4af2912 | 876 | { |
mjr | 26:cb71c4af2912 | 877 | if (val != prv) |
mjr | 40:cc0d9814522b | 878 | tlc5940->set(idx, dof_to_tlc[prv = val]); |
mjr | 26:cb71c4af2912 | 879 | } |
mjr | 60:f38da020aa13 | 880 | uint8_t idx; |
mjr | 40:cc0d9814522b | 881 | uint8_t prv; |
mjr | 26:cb71c4af2912 | 882 | }; |
mjr | 26:cb71c4af2912 | 883 | |
mjr | 40:cc0d9814522b | 884 | // LwOut class for TLC5940 gamma-corrected outputs. |
mjr | 40:cc0d9814522b | 885 | class Lw5940GammaOut: public LwOut |
mjr | 40:cc0d9814522b | 886 | { |
mjr | 40:cc0d9814522b | 887 | public: |
mjr | 60:f38da020aa13 | 888 | Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 889 | virtual void set(uint8_t val) |
mjr | 40:cc0d9814522b | 890 | { |
mjr | 40:cc0d9814522b | 891 | if (val != prv) |
mjr | 40:cc0d9814522b | 892 | tlc5940->set(idx, dof_to_gamma_tlc[prv = val]); |
mjr | 40:cc0d9814522b | 893 | } |
mjr | 60:f38da020aa13 | 894 | uint8_t idx; |
mjr | 40:cc0d9814522b | 895 | uint8_t prv; |
mjr | 40:cc0d9814522b | 896 | }; |
mjr | 40:cc0d9814522b | 897 | |
mjr | 40:cc0d9814522b | 898 | |
mjr | 33:d832bcab089e | 899 | |
mjr | 34:6b981a2afab7 | 900 | // 74HC595 interface object. Set this up with the port assignments in |
mjr | 34:6b981a2afab7 | 901 | // config.h. |
mjr | 35:e959ffba78fd | 902 | HC595 *hc595 = 0; |
mjr | 35:e959ffba78fd | 903 | |
mjr | 35:e959ffba78fd | 904 | // initialize the 74HC595 interface |
mjr | 35:e959ffba78fd | 905 | void init_hc595(Config &cfg) |
mjr | 35:e959ffba78fd | 906 | { |
mjr | 35:e959ffba78fd | 907 | if (cfg.hc595.nchips != 0) |
mjr | 35:e959ffba78fd | 908 | { |
mjr | 53:9b2611964afc | 909 | hc595 = new HC595( |
mjr | 53:9b2611964afc | 910 | wirePinName(cfg.hc595.nchips), |
mjr | 53:9b2611964afc | 911 | wirePinName(cfg.hc595.sin), |
mjr | 53:9b2611964afc | 912 | wirePinName(cfg.hc595.sclk), |
mjr | 53:9b2611964afc | 913 | wirePinName(cfg.hc595.latch), |
mjr | 53:9b2611964afc | 914 | wirePinName(cfg.hc595.ena)); |
mjr | 35:e959ffba78fd | 915 | hc595->init(); |
mjr | 35:e959ffba78fd | 916 | hc595->update(); |
mjr | 35:e959ffba78fd | 917 | } |
mjr | 35:e959ffba78fd | 918 | } |
mjr | 34:6b981a2afab7 | 919 | |
mjr | 34:6b981a2afab7 | 920 | // LwOut class for 74HC595 outputs. These are simple digial outs. |
mjr | 34:6b981a2afab7 | 921 | // The 'idx' value in the constructor is the output index in the |
mjr | 34:6b981a2afab7 | 922 | // daisy-chained 74HC595 array. 0 is output #0 on the first chip, |
mjr | 34:6b981a2afab7 | 923 | // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is |
mjr | 34:6b981a2afab7 | 924 | // #0 on the second chip, etc. |
mjr | 34:6b981a2afab7 | 925 | class Lw595Out: public LwOut |
mjr | 33:d832bcab089e | 926 | { |
mjr | 33:d832bcab089e | 927 | public: |
mjr | 60:f38da020aa13 | 928 | Lw595Out(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 929 | virtual void set(uint8_t val) |
mjr | 34:6b981a2afab7 | 930 | { |
mjr | 34:6b981a2afab7 | 931 | if (val != prv) |
mjr | 40:cc0d9814522b | 932 | hc595->set(idx, (prv = val) == 0 ? 0 : 1); |
mjr | 34:6b981a2afab7 | 933 | } |
mjr | 60:f38da020aa13 | 934 | uint8_t idx; |
mjr | 40:cc0d9814522b | 935 | uint8_t prv; |
mjr | 33:d832bcab089e | 936 | }; |
mjr | 33:d832bcab089e | 937 | |
mjr | 26:cb71c4af2912 | 938 | |
mjr | 40:cc0d9814522b | 939 | |
mjr | 64:ef7ca92dff36 | 940 | // Conversion table - 8-bit DOF output level to PWM duty cycle, |
mjr | 64:ef7ca92dff36 | 941 | // normalized to 0.0 to 1.0 scale. |
mjr | 74:822a92bc11d2 | 942 | static const float dof_to_pwm[] = { |
mjr | 64:ef7ca92dff36 | 943 | 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f, |
mjr | 64:ef7ca92dff36 | 944 | 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f, |
mjr | 64:ef7ca92dff36 | 945 | 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f, |
mjr | 64:ef7ca92dff36 | 946 | 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f, |
mjr | 64:ef7ca92dff36 | 947 | 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f, |
mjr | 64:ef7ca92dff36 | 948 | 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f, |
mjr | 64:ef7ca92dff36 | 949 | 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f, |
mjr | 64:ef7ca92dff36 | 950 | 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f, |
mjr | 64:ef7ca92dff36 | 951 | 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f, |
mjr | 64:ef7ca92dff36 | 952 | 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f, |
mjr | 64:ef7ca92dff36 | 953 | 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f, |
mjr | 64:ef7ca92dff36 | 954 | 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f, |
mjr | 64:ef7ca92dff36 | 955 | 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f, |
mjr | 64:ef7ca92dff36 | 956 | 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f, |
mjr | 64:ef7ca92dff36 | 957 | 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f, |
mjr | 64:ef7ca92dff36 | 958 | 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f, |
mjr | 64:ef7ca92dff36 | 959 | 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f, |
mjr | 64:ef7ca92dff36 | 960 | 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f, |
mjr | 64:ef7ca92dff36 | 961 | 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f, |
mjr | 64:ef7ca92dff36 | 962 | 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f, |
mjr | 64:ef7ca92dff36 | 963 | 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f, |
mjr | 64:ef7ca92dff36 | 964 | 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f, |
mjr | 64:ef7ca92dff36 | 965 | 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f, |
mjr | 64:ef7ca92dff36 | 966 | 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f, |
mjr | 64:ef7ca92dff36 | 967 | 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f, |
mjr | 64:ef7ca92dff36 | 968 | 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f, |
mjr | 64:ef7ca92dff36 | 969 | 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f, |
mjr | 64:ef7ca92dff36 | 970 | 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f, |
mjr | 64:ef7ca92dff36 | 971 | 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f, |
mjr | 64:ef7ca92dff36 | 972 | 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f, |
mjr | 64:ef7ca92dff36 | 973 | 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f, |
mjr | 64:ef7ca92dff36 | 974 | 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f |
mjr | 40:cc0d9814522b | 975 | }; |
mjr | 26:cb71c4af2912 | 976 | |
mjr | 64:ef7ca92dff36 | 977 | |
mjr | 64:ef7ca92dff36 | 978 | // Conversion table for 8-bit DOF level to pulse width in microseconds, |
mjr | 64:ef7ca92dff36 | 979 | // with gamma correction. We could use the layered gamma output on top |
mjr | 64:ef7ca92dff36 | 980 | // of the regular LwPwmOut class for this, but we get better precision |
mjr | 64:ef7ca92dff36 | 981 | // with a dedicated table, because we apply gamma correction to the |
mjr | 64:ef7ca92dff36 | 982 | // 32-bit microsecond values rather than the 8-bit DOF levels. |
mjr | 64:ef7ca92dff36 | 983 | static const float dof_to_gamma_pwm[] = { |
mjr | 64:ef7ca92dff36 | 984 | 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f, |
mjr | 64:ef7ca92dff36 | 985 | 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f, |
mjr | 64:ef7ca92dff36 | 986 | 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f, |
mjr | 64:ef7ca92dff36 | 987 | 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f, |
mjr | 64:ef7ca92dff36 | 988 | 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f, |
mjr | 64:ef7ca92dff36 | 989 | 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f, |
mjr | 64:ef7ca92dff36 | 990 | 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f, |
mjr | 64:ef7ca92dff36 | 991 | 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f, |
mjr | 64:ef7ca92dff36 | 992 | 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f, |
mjr | 64:ef7ca92dff36 | 993 | 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f, |
mjr | 64:ef7ca92dff36 | 994 | 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f, |
mjr | 64:ef7ca92dff36 | 995 | 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f, |
mjr | 64:ef7ca92dff36 | 996 | 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f, |
mjr | 64:ef7ca92dff36 | 997 | 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f, |
mjr | 64:ef7ca92dff36 | 998 | 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f, |
mjr | 64:ef7ca92dff36 | 999 | 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f, |
mjr | 64:ef7ca92dff36 | 1000 | 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f, |
mjr | 64:ef7ca92dff36 | 1001 | 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f, |
mjr | 64:ef7ca92dff36 | 1002 | 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f, |
mjr | 64:ef7ca92dff36 | 1003 | 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f, |
mjr | 64:ef7ca92dff36 | 1004 | 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f, |
mjr | 64:ef7ca92dff36 | 1005 | 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f, |
mjr | 64:ef7ca92dff36 | 1006 | 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f, |
mjr | 64:ef7ca92dff36 | 1007 | 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f, |
mjr | 64:ef7ca92dff36 | 1008 | 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f, |
mjr | 64:ef7ca92dff36 | 1009 | 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f, |
mjr | 64:ef7ca92dff36 | 1010 | 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f, |
mjr | 64:ef7ca92dff36 | 1011 | 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f, |
mjr | 64:ef7ca92dff36 | 1012 | 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f, |
mjr | 64:ef7ca92dff36 | 1013 | 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f, |
mjr | 64:ef7ca92dff36 | 1014 | 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f, |
mjr | 64:ef7ca92dff36 | 1015 | 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f |
mjr | 64:ef7ca92dff36 | 1016 | }; |
mjr | 64:ef7ca92dff36 | 1017 | |
mjr | 74:822a92bc11d2 | 1018 | // MyPwmOut - a slight customization of the base mbed PwmOut class. The |
mjr | 74:822a92bc11d2 | 1019 | // mbed version of PwmOut.write() resets the PWM cycle counter on every |
mjr | 74:822a92bc11d2 | 1020 | // update. That's problematic, because the counter reset interrupts the |
mjr | 74:822a92bc11d2 | 1021 | // cycle in progress, causing a momentary drop in brightness that's visible |
mjr | 74:822a92bc11d2 | 1022 | // to the eye if the output is connected to an LED or other light source. |
mjr | 74:822a92bc11d2 | 1023 | // This is especially noticeable when making gradual changes consisting of |
mjr | 74:822a92bc11d2 | 1024 | // many updates in a short time, such as a slow fade, because the light |
mjr | 74:822a92bc11d2 | 1025 | // visibly flickers on every step of the transition. This customized |
mjr | 74:822a92bc11d2 | 1026 | // version removes the cycle reset, which makes for glitch-free updates |
mjr | 74:822a92bc11d2 | 1027 | // and nice smooth fades. |
mjr | 74:822a92bc11d2 | 1028 | // |
mjr | 74:822a92bc11d2 | 1029 | // Initially, I thought the counter reset in the mbed code was simply a |
mjr | 74:822a92bc11d2 | 1030 | // bug. According to the KL25Z hardware reference, you update the duty |
mjr | 74:822a92bc11d2 | 1031 | // cycle by writing to the "compare values" (CvN) register. There's no |
mjr | 74:822a92bc11d2 | 1032 | // hint that you should reset the cycle counter, and indeed, the hardware |
mjr | 74:822a92bc11d2 | 1033 | // goes out of its way to allow updates mid-cycle (as we'll see shortly). |
mjr | 74:822a92bc11d2 | 1034 | // They went to lengths specifically so that you *don't* have to reset |
mjr | 74:822a92bc11d2 | 1035 | // that counter. And there's no comment in the mbed code explaining the |
mjr | 74:822a92bc11d2 | 1036 | // cycle reset, so it looked to me like something that must have been |
mjr | 74:822a92bc11d2 | 1037 | // added by someone who didn't read the manual carefully enough and didn't |
mjr | 74:822a92bc11d2 | 1038 | // test the result thoroughly enough to find the glitch it causes. |
mjr | 74:822a92bc11d2 | 1039 | // |
mjr | 74:822a92bc11d2 | 1040 | // After some experimentation, though, I've come to think the code was |
mjr | 74:822a92bc11d2 | 1041 | // added intentionally, as a workaround for a rather nasty KL25Z hardware |
mjr | 74:822a92bc11d2 | 1042 | // bug. Whoever wrote the code didn't add any comments explaning why it's |
mjr | 74:822a92bc11d2 | 1043 | // there, so we can't know for sure, but it does happen to work around the |
mjr | 74:822a92bc11d2 | 1044 | // bug, so it's a good bet the original programmer found the same hardware |
mjr | 74:822a92bc11d2 | 1045 | // problem and came up with the counter reset as an imperfect solution. |
mjr | 74:822a92bc11d2 | 1046 | // |
mjr | 74:822a92bc11d2 | 1047 | // We'll get to the KL25Z hardware bug shortly, but first we need to look at |
mjr | 74:822a92bc11d2 | 1048 | // how the hardware is *supposed* to work. The KL25Z is *supposed* to make |
mjr | 74:822a92bc11d2 | 1049 | // it super easy for software to do glitch-free updates of the duty cycle of |
mjr | 74:822a92bc11d2 | 1050 | // a PWM channel. With PWM hardware in general, you have to be careful to |
mjr | 74:822a92bc11d2 | 1051 | // update the duty cycle counter between grayscale cycles, beacuse otherwise |
mjr | 74:822a92bc11d2 | 1052 | // you might interrupt the cycle in progress and cause a brightness glitch. |
mjr | 74:822a92bc11d2 | 1053 | // The KL25Z TPM simplifies this with a "staging" register for the duty |
mjr | 74:822a92bc11d2 | 1054 | // cycle counter. At the end of each cycle, the TPM moves the value from |
mjr | 74:822a92bc11d2 | 1055 | // the staging register into its internal register that actually controls |
mjr | 74:822a92bc11d2 | 1056 | // the duty cycle. The idea is that the software can write a new value to |
mjr | 74:822a92bc11d2 | 1057 | // the staging register at any time, and the hardware will take care of |
mjr | 74:822a92bc11d2 | 1058 | // synchronizing the actual internal update with the grayscale cycle. In |
mjr | 74:822a92bc11d2 | 1059 | // principle, this frees the software of any special timing considerations |
mjr | 74:822a92bc11d2 | 1060 | // for PWM updates. |
mjr | 74:822a92bc11d2 | 1061 | // |
mjr | 74:822a92bc11d2 | 1062 | // Now for the bug. The staging register works as advertised, except for |
mjr | 74:822a92bc11d2 | 1063 | // one little detail: it seems to be implemented as a one-element queue |
mjr | 74:822a92bc11d2 | 1064 | // that won't accept a new write until the existing value has been read. |
mjr | 74:822a92bc11d2 | 1065 | // The read only happens at the start of the new cycle. So the effect is |
mjr | 74:822a92bc11d2 | 1066 | // that we can only write one update per cycle. Any writes after the first |
mjr | 74:822a92bc11d2 | 1067 | // are simply dropped, lost forever. That causes even worse problems than |
mjr | 74:822a92bc11d2 | 1068 | // the original glitch. For example, if we're doing a fade-out, the last |
mjr | 74:822a92bc11d2 | 1069 | // couple of updates in the fade might get lost, leaving the output slightly |
mjr | 74:822a92bc11d2 | 1070 | // on at the end, when it's supposed to be completely off. |
mjr | 74:822a92bc11d2 | 1071 | // |
mjr | 74:822a92bc11d2 | 1072 | // The mbed workaround of resetting the cycle counter fixes the lost-update |
mjr | 74:822a92bc11d2 | 1073 | // problem, but it causes the constant glitching during fades. So we need |
mjr | 74:822a92bc11d2 | 1074 | // a third way that works around the hardware problem without causing |
mjr | 74:822a92bc11d2 | 1075 | // update glitches. |
mjr | 74:822a92bc11d2 | 1076 | // |
mjr | 74:822a92bc11d2 | 1077 | // Here's my solution: we basically implement our own staging register, |
mjr | 74:822a92bc11d2 | 1078 | // using the same principle as the hardware staging register, but hopefully |
mjr | 74:822a92bc11d2 | 1079 | // with an implementation that actually works! First, when we update a PWM |
mjr | 74:822a92bc11d2 | 1080 | // output, we won't actually write the value to the hardware register. |
mjr | 74:822a92bc11d2 | 1081 | // Instead, we'll just stash it internally, effectively in our own staging |
mjr | 74:822a92bc11d2 | 1082 | // register (but actually just a member variable of this object). Then |
mjr | 74:822a92bc11d2 | 1083 | // we'll periodically transfer these staged updates to the actual hardware |
mjr | 74:822a92bc11d2 | 1084 | // registers, being careful to do this no more than once per PWM cycle. |
mjr | 74:822a92bc11d2 | 1085 | // One way to do this would be to use an interrupt handler that fires at |
mjr | 74:822a92bc11d2 | 1086 | // the end of the PWM cycle, but that would be fairly complex because we |
mjr | 74:822a92bc11d2 | 1087 | // have many (up to 10) PWM channels. Instead, we'll just use polling: |
mjr | 74:822a92bc11d2 | 1088 | // we'll call a routine periodically in our main loop, and we'll transfer |
mjr | 74:822a92bc11d2 | 1089 | // updates for all of the channels that have been updated since the last |
mjr | 74:822a92bc11d2 | 1090 | // pass. We can get away with this simple polling approach because the |
mjr | 74:822a92bc11d2 | 1091 | // hardware design *partially* works: it does manage to free us from the |
mjr | 74:822a92bc11d2 | 1092 | // need to synchronize updates with the exact end of a PWM cycle. As long |
mjr | 74:822a92bc11d2 | 1093 | // as we do no more than one write per cycle, we're golden. That's easy |
mjr | 74:822a92bc11d2 | 1094 | // to accomplish, too: all we need to do is make sure that our polling |
mjr | 74:822a92bc11d2 | 1095 | // interval is slightly longer than the PWM period. That ensures that |
mjr | 74:822a92bc11d2 | 1096 | // we can never have two updates during one PWM cycle. It does mean that |
mjr | 74:822a92bc11d2 | 1097 | // we might have zero updates on some cycles, causing a one-cycle delay |
mjr | 74:822a92bc11d2 | 1098 | // before an update is actually put into effect, but that shouldn't ever |
mjr | 74:822a92bc11d2 | 1099 | // be noticeable since the cycles are so short. Specifically, we'll use |
mjr | 74:822a92bc11d2 | 1100 | // the mbed default 20ms PWM period, and we'll do our update polling |
mjr | 74:822a92bc11d2 | 1101 | // every 25ms. |
mjr | 74:822a92bc11d2 | 1102 | class LessGlitchyPwmOut: public PwmOut |
mjr | 74:822a92bc11d2 | 1103 | { |
mjr | 74:822a92bc11d2 | 1104 | public: |
mjr | 74:822a92bc11d2 | 1105 | LessGlitchyPwmOut(PinName pin) : PwmOut(pin) { } |
mjr | 74:822a92bc11d2 | 1106 | |
mjr | 74:822a92bc11d2 | 1107 | void write(float value) |
mjr | 74:822a92bc11d2 | 1108 | { |
mjr | 74:822a92bc11d2 | 1109 | // Update the counter without resetting the counter. |
mjr | 74:822a92bc11d2 | 1110 | // |
mjr | 74:822a92bc11d2 | 1111 | // NB: this causes problems if there are multiple writes in one |
mjr | 74:822a92bc11d2 | 1112 | // PWM cycle: the first write will be applied and later writes |
mjr | 74:822a92bc11d2 | 1113 | // during the same cycle will be lost. Callers must take care |
mjr | 74:822a92bc11d2 | 1114 | // to limit writes to one per cycle. |
mjr | 74:822a92bc11d2 | 1115 | *_pwm.CnV = uint32_t((*_pwm.MOD + 1) * value); |
mjr | 74:822a92bc11d2 | 1116 | } |
mjr | 74:822a92bc11d2 | 1117 | }; |
mjr | 74:822a92bc11d2 | 1118 | |
mjr | 74:822a92bc11d2 | 1119 | |
mjr | 74:822a92bc11d2 | 1120 | // Collection of PwmOut objects to update on each polling cycle. The |
mjr | 74:822a92bc11d2 | 1121 | // KL25Z has 10 physical PWM channels, so we need at most 10 polled outputs. |
mjr | 74:822a92bc11d2 | 1122 | static int numPolledPwm; |
mjr | 74:822a92bc11d2 | 1123 | static class LwPwmOut *polledPwm[10]; |
mjr | 74:822a92bc11d2 | 1124 | |
mjr | 74:822a92bc11d2 | 1125 | // LwOut class for a PWM-capable GPIO port. |
mjr | 6:cc35eb643e8f | 1126 | class LwPwmOut: public LwOut |
mjr | 6:cc35eb643e8f | 1127 | { |
mjr | 6:cc35eb643e8f | 1128 | public: |
mjr | 43:7a6364d82a41 | 1129 | LwPwmOut(PinName pin, uint8_t initVal) : p(pin) |
mjr | 43:7a6364d82a41 | 1130 | { |
mjr | 74:822a92bc11d2 | 1131 | // set the cycle time to 20ms |
mjr | 74:822a92bc11d2 | 1132 | p.period_ms(20); |
mjr | 74:822a92bc11d2 | 1133 | |
mjr | 74:822a92bc11d2 | 1134 | // add myself to the list of polled outputs for periodic updates |
mjr | 74:822a92bc11d2 | 1135 | if (numPolledPwm < countof(polledPwm)) |
mjr | 74:822a92bc11d2 | 1136 | polledPwm[numPolledPwm++] = this; |
mjr | 74:822a92bc11d2 | 1137 | |
mjr | 74:822a92bc11d2 | 1138 | // set the initial value, and an explicitly different previous value |
mjr | 74:822a92bc11d2 | 1139 | prv = ~initVal; |
mjr | 43:7a6364d82a41 | 1140 | set(initVal); |
mjr | 43:7a6364d82a41 | 1141 | } |
mjr | 74:822a92bc11d2 | 1142 | |
mjr | 40:cc0d9814522b | 1143 | virtual void set(uint8_t val) |
mjr | 74:822a92bc11d2 | 1144 | { |
mjr | 74:822a92bc11d2 | 1145 | // on set, just save the value for a later 'commit' |
mjr | 74:822a92bc11d2 | 1146 | this->val = val; |
mjr | 13:72dda449c3c0 | 1147 | } |
mjr | 74:822a92bc11d2 | 1148 | |
mjr | 74:822a92bc11d2 | 1149 | // handle periodic update polling |
mjr | 74:822a92bc11d2 | 1150 | void poll() |
mjr | 74:822a92bc11d2 | 1151 | { |
mjr | 74:822a92bc11d2 | 1152 | // if the value has changed, commit it |
mjr | 74:822a92bc11d2 | 1153 | if (val != prv) |
mjr | 74:822a92bc11d2 | 1154 | { |
mjr | 74:822a92bc11d2 | 1155 | prv = val; |
mjr | 74:822a92bc11d2 | 1156 | commit(val); |
mjr | 74:822a92bc11d2 | 1157 | } |
mjr | 74:822a92bc11d2 | 1158 | } |
mjr | 74:822a92bc11d2 | 1159 | |
mjr | 74:822a92bc11d2 | 1160 | protected: |
mjr | 74:822a92bc11d2 | 1161 | virtual void commit(uint8_t v) |
mjr | 74:822a92bc11d2 | 1162 | { |
mjr | 74:822a92bc11d2 | 1163 | // write the current value to the PWM controller if it's changed |
mjr | 74:822a92bc11d2 | 1164 | p.write(dof_to_pwm[v]); |
mjr | 74:822a92bc11d2 | 1165 | } |
mjr | 74:822a92bc11d2 | 1166 | |
mjr | 74:822a92bc11d2 | 1167 | LessGlitchyPwmOut p; |
mjr | 74:822a92bc11d2 | 1168 | uint8_t val, prv; |
mjr | 6:cc35eb643e8f | 1169 | }; |
mjr | 26:cb71c4af2912 | 1170 | |
mjr | 74:822a92bc11d2 | 1171 | // Gamma corrected PWM GPIO output. This works exactly like the regular |
mjr | 74:822a92bc11d2 | 1172 | // PWM output, but translates DOF values through the gamma-corrected |
mjr | 74:822a92bc11d2 | 1173 | // table instead of the regular linear table. |
mjr | 64:ef7ca92dff36 | 1174 | class LwPwmGammaOut: public LwPwmOut |
mjr | 64:ef7ca92dff36 | 1175 | { |
mjr | 64:ef7ca92dff36 | 1176 | public: |
mjr | 64:ef7ca92dff36 | 1177 | LwPwmGammaOut(PinName pin, uint8_t initVal) |
mjr | 64:ef7ca92dff36 | 1178 | : LwPwmOut(pin, initVal) |
mjr | 64:ef7ca92dff36 | 1179 | { |
mjr | 64:ef7ca92dff36 | 1180 | } |
mjr | 74:822a92bc11d2 | 1181 | |
mjr | 74:822a92bc11d2 | 1182 | protected: |
mjr | 74:822a92bc11d2 | 1183 | virtual void commit(uint8_t v) |
mjr | 64:ef7ca92dff36 | 1184 | { |
mjr | 74:822a92bc11d2 | 1185 | // write the current value to the PWM controller if it's changed |
mjr | 74:822a92bc11d2 | 1186 | p.write(dof_to_gamma_pwm[v]); |
mjr | 64:ef7ca92dff36 | 1187 | } |
mjr | 64:ef7ca92dff36 | 1188 | }; |
mjr | 64:ef7ca92dff36 | 1189 | |
mjr | 74:822a92bc11d2 | 1190 | // poll the PWM outputs |
mjr | 74:822a92bc11d2 | 1191 | Timer polledPwmTimer; |
mjr | 74:822a92bc11d2 | 1192 | float polledPwmTotalTime, polledPwmRunCount; |
mjr | 74:822a92bc11d2 | 1193 | void pollPwmUpdates() |
mjr | 74:822a92bc11d2 | 1194 | { |
mjr | 74:822a92bc11d2 | 1195 | // if it's been at least 25ms since the last update, do another update |
mjr | 74:822a92bc11d2 | 1196 | if (polledPwmTimer.read_us() >= 25000) |
mjr | 74:822a92bc11d2 | 1197 | { |
mjr | 74:822a92bc11d2 | 1198 | // time the run for statistics collection |
mjr | 74:822a92bc11d2 | 1199 | IF_DIAG( |
mjr | 74:822a92bc11d2 | 1200 | Timer t; |
mjr | 74:822a92bc11d2 | 1201 | t.start(); |
mjr | 74:822a92bc11d2 | 1202 | ) |
mjr | 74:822a92bc11d2 | 1203 | |
mjr | 74:822a92bc11d2 | 1204 | // poll each output |
mjr | 74:822a92bc11d2 | 1205 | for (int i = numPolledPwm ; i > 0 ; ) |
mjr | 74:822a92bc11d2 | 1206 | polledPwm[--i]->poll(); |
mjr | 74:822a92bc11d2 | 1207 | |
mjr | 74:822a92bc11d2 | 1208 | // reset the timer for the next cycle |
mjr | 74:822a92bc11d2 | 1209 | polledPwmTimer.reset(); |
mjr | 74:822a92bc11d2 | 1210 | |
mjr | 74:822a92bc11d2 | 1211 | // collect statistics |
mjr | 74:822a92bc11d2 | 1212 | IF_DIAG( |
mjr | 74:822a92bc11d2 | 1213 | polledPwmTotalTime += t.read(); |
mjr | 74:822a92bc11d2 | 1214 | polledPwmRunCount += 1; |
mjr | 74:822a92bc11d2 | 1215 | ) |
mjr | 74:822a92bc11d2 | 1216 | } |
mjr | 74:822a92bc11d2 | 1217 | } |
mjr | 64:ef7ca92dff36 | 1218 | |
mjr | 26:cb71c4af2912 | 1219 | // LwOut class for a Digital-Only (Non-PWM) GPIO port |
mjr | 6:cc35eb643e8f | 1220 | class LwDigOut: public LwOut |
mjr | 6:cc35eb643e8f | 1221 | { |
mjr | 6:cc35eb643e8f | 1222 | public: |
mjr | 43:7a6364d82a41 | 1223 | LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; } |
mjr | 40:cc0d9814522b | 1224 | virtual void set(uint8_t val) |
mjr | 13:72dda449c3c0 | 1225 | { |
mjr | 13:72dda449c3c0 | 1226 | if (val != prv) |
mjr | 40:cc0d9814522b | 1227 | p.write((prv = val) == 0 ? 0 : 1); |
mjr | 13:72dda449c3c0 | 1228 | } |
mjr | 6:cc35eb643e8f | 1229 | DigitalOut p; |
mjr | 40:cc0d9814522b | 1230 | uint8_t prv; |
mjr | 6:cc35eb643e8f | 1231 | }; |
mjr | 26:cb71c4af2912 | 1232 | |
mjr | 29:582472d0bc57 | 1233 | // Array of output physical pin assignments. This array is indexed |
mjr | 29:582472d0bc57 | 1234 | // by LedWiz logical port number - lwPin[n] is the maping for LedWiz |
mjr | 35:e959ffba78fd | 1235 | // port n (0-based). |
mjr | 35:e959ffba78fd | 1236 | // |
mjr | 35:e959ffba78fd | 1237 | // Each pin is handled by an interface object for the physical output |
mjr | 35:e959ffba78fd | 1238 | // type for the port, as set in the configuration. The interface |
mjr | 35:e959ffba78fd | 1239 | // objects handle the specifics of addressing the different hardware |
mjr | 35:e959ffba78fd | 1240 | // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and |
mjr | 35:e959ffba78fd | 1241 | // 74HC595 ports). |
mjr | 33:d832bcab089e | 1242 | static int numOutputs; |
mjr | 33:d832bcab089e | 1243 | static LwOut **lwPin; |
mjr | 33:d832bcab089e | 1244 | |
mjr | 73:4e8ce0b18915 | 1245 | // LedWiz output states. |
mjr | 73:4e8ce0b18915 | 1246 | // |
mjr | 73:4e8ce0b18915 | 1247 | // The LedWiz protocol has two separate control axes for each output. |
mjr | 73:4e8ce0b18915 | 1248 | // One axis is its on/off state; the other is its "profile" state, which |
mjr | 73:4e8ce0b18915 | 1249 | // is either a fixed brightness or a blinking pattern for the light. |
mjr | 73:4e8ce0b18915 | 1250 | // The two axes are independent. |
mjr | 73:4e8ce0b18915 | 1251 | // |
mjr | 73:4e8ce0b18915 | 1252 | // Even though the original LedWiz protocol can only access 32 ports, we |
mjr | 73:4e8ce0b18915 | 1253 | // maintain LedWiz state for every port, even if we have more than 32. Our |
mjr | 74:822a92bc11d2 | 1254 | // extended protocol allows the client to send LedWiz-style messages that |
mjr | 74:822a92bc11d2 | 1255 | // control any set of ports. A replacement LEDWIZ.DLL can make a single |
mjr | 74:822a92bc11d2 | 1256 | // Pinscape unit look like multiple virtual LedWiz units to legacy clients, |
mjr | 74:822a92bc11d2 | 1257 | // allowing them to control all of our ports. The clients will still be |
mjr | 74:822a92bc11d2 | 1258 | // using LedWiz-style states to control the ports, so we need to support |
mjr | 74:822a92bc11d2 | 1259 | // the LedWiz scheme with separate on/off and brightness control per port. |
mjr | 73:4e8ce0b18915 | 1260 | |
mjr | 73:4e8ce0b18915 | 1261 | // on/off state for each LedWiz output |
mjr | 73:4e8ce0b18915 | 1262 | static uint8_t *wizOn; |
mjr | 73:4e8ce0b18915 | 1263 | |
mjr | 73:4e8ce0b18915 | 1264 | // LedWiz "Profile State" (the LedWiz brightness level or blink mode) |
mjr | 73:4e8ce0b18915 | 1265 | // for each LedWiz output. If the output was last updated through an |
mjr | 73:4e8ce0b18915 | 1266 | // LedWiz protocol message, it will have one of these values: |
mjr | 73:4e8ce0b18915 | 1267 | // |
mjr | 73:4e8ce0b18915 | 1268 | // 0-48 = fixed brightness 0% to 100% |
mjr | 73:4e8ce0b18915 | 1269 | // 49 = fixed brightness 100% (equivalent to 48) |
mjr | 73:4e8ce0b18915 | 1270 | // 129 = ramp up / ramp down |
mjr | 73:4e8ce0b18915 | 1271 | // 130 = flash on / off |
mjr | 73:4e8ce0b18915 | 1272 | // 131 = on / ramp down |
mjr | 73:4e8ce0b18915 | 1273 | // 132 = ramp up / on |
mjr | 73:4e8ce0b18915 | 1274 | // |
mjr | 73:4e8ce0b18915 | 1275 | // (Note that value 49 isn't documented in the LedWiz spec, but real |
mjr | 73:4e8ce0b18915 | 1276 | // LedWiz units treat it as equivalent to 48, and some PC software uses |
mjr | 73:4e8ce0b18915 | 1277 | // it, so we need to accept it for compatibility.) |
mjr | 73:4e8ce0b18915 | 1278 | static uint8_t *wizVal; |
mjr | 73:4e8ce0b18915 | 1279 | |
mjr | 73:4e8ce0b18915 | 1280 | // LedWiz flash speed. This is a value from 1 to 7 giving the pulse |
mjr | 74:822a92bc11d2 | 1281 | // rate for lights in blinking states. The LedWiz API doesn't document |
mjr | 74:822a92bc11d2 | 1282 | // what the numbers mean in real time units, but by observation, the |
mjr | 74:822a92bc11d2 | 1283 | // "speed" setting represents the period of the flash cycle in 0.25s |
mjr | 74:822a92bc11d2 | 1284 | // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz. |
mjr | 74:822a92bc11d2 | 1285 | // The period is the full cycle time of the flash waveform. |
mjr | 74:822a92bc11d2 | 1286 | // |
mjr | 74:822a92bc11d2 | 1287 | // Each bank of 32 lights has its independent own pulse rate, so we need |
mjr | 74:822a92bc11d2 | 1288 | // one entry per bank. Each bank has 32 outputs, so we need a total of |
mjr | 74:822a92bc11d2 | 1289 | // ceil(number_of_physical_outputs/32) entries. Note that we could allocate |
mjr | 74:822a92bc11d2 | 1290 | // this dynamically once we know the number of actual outputs, but the |
mjr | 74:822a92bc11d2 | 1291 | // upper limit is low enough that it's more efficient to use a fixed array |
mjr | 74:822a92bc11d2 | 1292 | // at the maximum size. |
mjr | 73:4e8ce0b18915 | 1293 | static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32; |
mjr | 73:4e8ce0b18915 | 1294 | static uint8_t wizSpeed[MAX_LW_BANKS]; |
mjr | 73:4e8ce0b18915 | 1295 | |
mjr | 74:822a92bc11d2 | 1296 | // LedWiz cycle counters. These must be updated before calling wizState(). |
mjr | 73:4e8ce0b18915 | 1297 | static uint8_t wizFlashCounter[MAX_LW_BANKS]; |
mjr | 35:e959ffba78fd | 1298 | |
mjr | 74:822a92bc11d2 | 1299 | |
mjr | 63:5cd1a5f3a41b | 1300 | // Current absolute brightness levels for all outputs. These are |
mjr | 63:5cd1a5f3a41b | 1301 | // DOF brightness level value, from 0 for fully off to 255 for fully |
mjr | 63:5cd1a5f3a41b | 1302 | // on. These are always used for extended ports (33 and above), and |
mjr | 63:5cd1a5f3a41b | 1303 | // are used for LedWiz ports (1-32) when we're in extended protocol |
mjr | 63:5cd1a5f3a41b | 1304 | // mode (i.e., ledWizMode == false). |
mjr | 40:cc0d9814522b | 1305 | static uint8_t *outLevel; |
mjr | 38:091e511ce8a0 | 1306 | |
mjr | 38:091e511ce8a0 | 1307 | // create a single output pin |
mjr | 53:9b2611964afc | 1308 | LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg) |
mjr | 38:091e511ce8a0 | 1309 | { |
mjr | 38:091e511ce8a0 | 1310 | // get this item's values |
mjr | 38:091e511ce8a0 | 1311 | int typ = pc.typ; |
mjr | 38:091e511ce8a0 | 1312 | int pin = pc.pin; |
mjr | 38:091e511ce8a0 | 1313 | int flags = pc.flags; |
mjr | 40:cc0d9814522b | 1314 | int noisy = flags & PortFlagNoisemaker; |
mjr | 38:091e511ce8a0 | 1315 | int activeLow = flags & PortFlagActiveLow; |
mjr | 40:cc0d9814522b | 1316 | int gamma = flags & PortFlagGamma; |
mjr | 38:091e511ce8a0 | 1317 | |
mjr | 38:091e511ce8a0 | 1318 | // create the pin interface object according to the port type |
mjr | 38:091e511ce8a0 | 1319 | LwOut *lwp; |
mjr | 38:091e511ce8a0 | 1320 | switch (typ) |
mjr | 38:091e511ce8a0 | 1321 | { |
mjr | 38:091e511ce8a0 | 1322 | case PortTypeGPIOPWM: |
mjr | 48:058ace2aed1d | 1323 | // PWM GPIO port - assign if we have a valid pin |
mjr | 48:058ace2aed1d | 1324 | if (pin != 0) |
mjr | 64:ef7ca92dff36 | 1325 | { |
mjr | 64:ef7ca92dff36 | 1326 | // If gamma correction is to be used, and we're not inverting the output, |
mjr | 64:ef7ca92dff36 | 1327 | // use the combined Pwmout + Gamma output class; otherwise use the plain |
mjr | 64:ef7ca92dff36 | 1328 | // PwmOut class. We can't use the combined class for inverted outputs |
mjr | 64:ef7ca92dff36 | 1329 | // because we have to apply gamma correction before the inversion. |
mjr | 64:ef7ca92dff36 | 1330 | if (gamma && !activeLow) |
mjr | 64:ef7ca92dff36 | 1331 | { |
mjr | 64:ef7ca92dff36 | 1332 | // use the gamma-corrected PwmOut type |
mjr | 64:ef7ca92dff36 | 1333 | lwp = new LwPwmGammaOut(wirePinName(pin), 0); |
mjr | 64:ef7ca92dff36 | 1334 | |
mjr | 64:ef7ca92dff36 | 1335 | // don't apply further gamma correction to this output |
mjr | 64:ef7ca92dff36 | 1336 | gamma = false; |
mjr | 64:ef7ca92dff36 | 1337 | } |
mjr | 64:ef7ca92dff36 | 1338 | else |
mjr | 64:ef7ca92dff36 | 1339 | { |
mjr | 64:ef7ca92dff36 | 1340 | // no gamma correction - use the standard PwmOut class |
mjr | 64:ef7ca92dff36 | 1341 | lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 64:ef7ca92dff36 | 1342 | } |
mjr | 64:ef7ca92dff36 | 1343 | } |
mjr | 48:058ace2aed1d | 1344 | else |
mjr | 48:058ace2aed1d | 1345 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1346 | break; |
mjr | 38:091e511ce8a0 | 1347 | |
mjr | 38:091e511ce8a0 | 1348 | case PortTypeGPIODig: |
mjr | 38:091e511ce8a0 | 1349 | // Digital GPIO port |
mjr | 48:058ace2aed1d | 1350 | if (pin != 0) |
mjr | 48:058ace2aed1d | 1351 | lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 48:058ace2aed1d | 1352 | else |
mjr | 48:058ace2aed1d | 1353 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1354 | break; |
mjr | 38:091e511ce8a0 | 1355 | |
mjr | 38:091e511ce8a0 | 1356 | case PortTypeTLC5940: |
mjr | 38:091e511ce8a0 | 1357 | // TLC5940 port (if we don't have a TLC controller object, or it's not a valid |
mjr | 38:091e511ce8a0 | 1358 | // output port number on the chips we have, create a virtual port) |
mjr | 38:091e511ce8a0 | 1359 | if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16) |
mjr | 40:cc0d9814522b | 1360 | { |
mjr | 40:cc0d9814522b | 1361 | // If gamma correction is to be used, and we're not inverting the output, |
mjr | 40:cc0d9814522b | 1362 | // use the combined TLC4950 + Gamma output class. Otherwise use the plain |
mjr | 40:cc0d9814522b | 1363 | // TLC5940 output. We skip the combined class if the output is inverted |
mjr | 40:cc0d9814522b | 1364 | // because we need to apply gamma BEFORE the inversion to get the right |
mjr | 40:cc0d9814522b | 1365 | // results, but the combined class would apply it after because of the |
mjr | 40:cc0d9814522b | 1366 | // layering scheme - the combined class is a physical device output class, |
mjr | 40:cc0d9814522b | 1367 | // and a physical device output class is necessarily at the bottom of |
mjr | 40:cc0d9814522b | 1368 | // the stack. We don't have a combined inverted+gamma+TLC class, because |
mjr | 40:cc0d9814522b | 1369 | // inversion isn't recommended for TLC5940 chips in the first place, so |
mjr | 40:cc0d9814522b | 1370 | // it's not worth the extra memory footprint to have a dedicated table |
mjr | 40:cc0d9814522b | 1371 | // for this unlikely case. |
mjr | 40:cc0d9814522b | 1372 | if (gamma && !activeLow) |
mjr | 40:cc0d9814522b | 1373 | { |
mjr | 40:cc0d9814522b | 1374 | // use the gamma-corrected 5940 output mapper |
mjr | 40:cc0d9814522b | 1375 | lwp = new Lw5940GammaOut(pin); |
mjr | 40:cc0d9814522b | 1376 | |
mjr | 40:cc0d9814522b | 1377 | // DON'T apply further gamma correction to this output |
mjr | 40:cc0d9814522b | 1378 | gamma = false; |
mjr | 40:cc0d9814522b | 1379 | } |
mjr | 40:cc0d9814522b | 1380 | else |
mjr | 40:cc0d9814522b | 1381 | { |
mjr | 40:cc0d9814522b | 1382 | // no gamma - use the plain (linear) 5940 output class |
mjr | 40:cc0d9814522b | 1383 | lwp = new Lw5940Out(pin); |
mjr | 40:cc0d9814522b | 1384 | } |
mjr | 40:cc0d9814522b | 1385 | } |
mjr | 38:091e511ce8a0 | 1386 | else |
mjr | 40:cc0d9814522b | 1387 | { |
mjr | 40:cc0d9814522b | 1388 | // no TLC5940 chips, or invalid port number - use a virtual out |
mjr | 38:091e511ce8a0 | 1389 | lwp = new LwVirtualOut(); |
mjr | 40:cc0d9814522b | 1390 | } |
mjr | 38:091e511ce8a0 | 1391 | break; |
mjr | 38:091e511ce8a0 | 1392 | |
mjr | 38:091e511ce8a0 | 1393 | case PortType74HC595: |
mjr | 38:091e511ce8a0 | 1394 | // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid |
mjr | 38:091e511ce8a0 | 1395 | // output number, create a virtual port) |
mjr | 38:091e511ce8a0 | 1396 | if (hc595 != 0 && pin < cfg.hc595.nchips*8) |
mjr | 38:091e511ce8a0 | 1397 | lwp = new Lw595Out(pin); |
mjr | 38:091e511ce8a0 | 1398 | else |
mjr | 38:091e511ce8a0 | 1399 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1400 | break; |
mjr | 38:091e511ce8a0 | 1401 | |
mjr | 38:091e511ce8a0 | 1402 | case PortTypeVirtual: |
mjr | 43:7a6364d82a41 | 1403 | case PortTypeDisabled: |
mjr | 38:091e511ce8a0 | 1404 | default: |
mjr | 38:091e511ce8a0 | 1405 | // virtual or unknown |
mjr | 38:091e511ce8a0 | 1406 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1407 | break; |
mjr | 38:091e511ce8a0 | 1408 | } |
mjr | 38:091e511ce8a0 | 1409 | |
mjr | 40:cc0d9814522b | 1410 | // If it's Active Low, layer on an inverter. Note that an inverter |
mjr | 40:cc0d9814522b | 1411 | // needs to be the bottom-most layer, since all of the other filters |
mjr | 40:cc0d9814522b | 1412 | // assume that they're working with normal (non-inverted) values. |
mjr | 38:091e511ce8a0 | 1413 | if (activeLow) |
mjr | 38:091e511ce8a0 | 1414 | lwp = new LwInvertedOut(lwp); |
mjr | 40:cc0d9814522b | 1415 | |
mjr | 40:cc0d9814522b | 1416 | // If it's a noisemaker, layer on a night mode switch. Note that this |
mjr | 40:cc0d9814522b | 1417 | // needs to be |
mjr | 40:cc0d9814522b | 1418 | if (noisy) |
mjr | 40:cc0d9814522b | 1419 | lwp = new LwNoisyOut(lwp); |
mjr | 40:cc0d9814522b | 1420 | |
mjr | 40:cc0d9814522b | 1421 | // If it's gamma-corrected, layer on a gamma corrector |
mjr | 40:cc0d9814522b | 1422 | if (gamma) |
mjr | 40:cc0d9814522b | 1423 | lwp = new LwGammaOut(lwp); |
mjr | 53:9b2611964afc | 1424 | |
mjr | 53:9b2611964afc | 1425 | // If this is the ZB Launch Ball port, layer a monitor object. Note |
mjr | 64:ef7ca92dff36 | 1426 | // that the nominal port numbering in the config starts at 1, but we're |
mjr | 53:9b2611964afc | 1427 | // using an array index, so test against portno+1. |
mjr | 53:9b2611964afc | 1428 | if (portno + 1 == cfg.plunger.zbLaunchBall.port) |
mjr | 53:9b2611964afc | 1429 | lwp = new LwZbLaunchOut(lwp); |
mjr | 53:9b2611964afc | 1430 | |
mjr | 53:9b2611964afc | 1431 | // If this is the Night Mode indicator port, layer a night mode object. |
mjr | 53:9b2611964afc | 1432 | if (portno + 1 == cfg.nightMode.port) |
mjr | 53:9b2611964afc | 1433 | lwp = new LwNightModeIndicatorOut(lwp); |
mjr | 38:091e511ce8a0 | 1434 | |
mjr | 38:091e511ce8a0 | 1435 | // turn it off initially |
mjr | 38:091e511ce8a0 | 1436 | lwp->set(0); |
mjr | 38:091e511ce8a0 | 1437 | |
mjr | 38:091e511ce8a0 | 1438 | // return the pin |
mjr | 38:091e511ce8a0 | 1439 | return lwp; |
mjr | 38:091e511ce8a0 | 1440 | } |
mjr | 38:091e511ce8a0 | 1441 | |
mjr | 6:cc35eb643e8f | 1442 | // initialize the output pin array |
mjr | 35:e959ffba78fd | 1443 | void initLwOut(Config &cfg) |
mjr | 6:cc35eb643e8f | 1444 | { |
mjr | 35:e959ffba78fd | 1445 | // Count the outputs. The first disabled output determines the |
mjr | 35:e959ffba78fd | 1446 | // total number of ports. |
mjr | 35:e959ffba78fd | 1447 | numOutputs = MAX_OUT_PORTS; |
mjr | 33:d832bcab089e | 1448 | int i; |
mjr | 35:e959ffba78fd | 1449 | for (i = 0 ; i < MAX_OUT_PORTS ; ++i) |
mjr | 6:cc35eb643e8f | 1450 | { |
mjr | 35:e959ffba78fd | 1451 | if (cfg.outPort[i].typ == PortTypeDisabled) |
mjr | 34:6b981a2afab7 | 1452 | { |
mjr | 35:e959ffba78fd | 1453 | numOutputs = i; |
mjr | 34:6b981a2afab7 | 1454 | break; |
mjr | 34:6b981a2afab7 | 1455 | } |
mjr | 33:d832bcab089e | 1456 | } |
mjr | 33:d832bcab089e | 1457 | |
mjr | 73:4e8ce0b18915 | 1458 | // allocate the pin array |
mjr | 73:4e8ce0b18915 | 1459 | lwPin = new LwOut*[numOutputs]; |
mjr | 35:e959ffba78fd | 1460 | |
mjr | 73:4e8ce0b18915 | 1461 | // Allocate the current brightness array |
mjr | 73:4e8ce0b18915 | 1462 | outLevel = new uint8_t[numOutputs]; |
mjr | 33:d832bcab089e | 1463 | |
mjr | 73:4e8ce0b18915 | 1464 | // allocate the LedWiz output state arrays |
mjr | 73:4e8ce0b18915 | 1465 | wizOn = new uint8_t[numOutputs]; |
mjr | 73:4e8ce0b18915 | 1466 | wizVal = new uint8_t[numOutputs]; |
mjr | 73:4e8ce0b18915 | 1467 | |
mjr | 73:4e8ce0b18915 | 1468 | // initialize all LedWiz outputs to off and brightness 48 |
mjr | 73:4e8ce0b18915 | 1469 | memset(wizOn, 0, numOutputs); |
mjr | 73:4e8ce0b18915 | 1470 | memset(wizVal, 48, numOutputs); |
mjr | 73:4e8ce0b18915 | 1471 | |
mjr | 73:4e8ce0b18915 | 1472 | // set all LedWiz virtual unit flash speeds to 2 |
mjr | 73:4e8ce0b18915 | 1473 | for (i = 0 ; i < countof(wizSpeed) ; ++i) |
mjr | 73:4e8ce0b18915 | 1474 | wizSpeed[i] = 2; |
mjr | 33:d832bcab089e | 1475 | |
mjr | 35:e959ffba78fd | 1476 | // create the pin interface object for each port |
mjr | 35:e959ffba78fd | 1477 | for (i = 0 ; i < numOutputs ; ++i) |
mjr | 53:9b2611964afc | 1478 | lwPin[i] = createLwPin(i, cfg.outPort[i], cfg); |
mjr | 6:cc35eb643e8f | 1479 | } |
mjr | 6:cc35eb643e8f | 1480 | |
mjr | 63:5cd1a5f3a41b | 1481 | // LedWiz/Extended protocol mode. |
mjr | 63:5cd1a5f3a41b | 1482 | // |
mjr | 63:5cd1a5f3a41b | 1483 | // We implement output port control using both the legacy LedWiz |
mjr | 63:5cd1a5f3a41b | 1484 | // protocol and a private extended protocol (which is 100% backwards |
mjr | 63:5cd1a5f3a41b | 1485 | // compatible with the LedWiz protocol: we recognize all valid legacy |
mjr | 63:5cd1a5f3a41b | 1486 | // protocol commands and handle them the same way a real LedWiz does). |
mjr | 74:822a92bc11d2 | 1487 | // |
mjr | 74:822a92bc11d2 | 1488 | // The legacy LedWiz protocol has only two message types, which |
mjr | 74:822a92bc11d2 | 1489 | // set output port states for a fixed set of 32 outputs. One message |
mjr | 74:822a92bc11d2 | 1490 | // sets the "switch" state (on/off) of the ports, and the other sets |
mjr | 74:822a92bc11d2 | 1491 | // the "profile" state (brightness or flash pattern). The two states |
mjr | 74:822a92bc11d2 | 1492 | // are stored independently, so turning a port off via the switch state |
mjr | 74:822a92bc11d2 | 1493 | // doesn't forget or change its brightness: turning it back on will |
mjr | 74:822a92bc11d2 | 1494 | // restore the same brightness or flash pattern as before. The "profile" |
mjr | 74:822a92bc11d2 | 1495 | // state can be a brightness level from 1 to 49, or one of four flash |
mjr | 74:822a92bc11d2 | 1496 | // patterns, identified by a value from 129 to 132. The flash pattern |
mjr | 74:822a92bc11d2 | 1497 | // and brightness levels are mutually exclusive, since the single |
mjr | 74:822a92bc11d2 | 1498 | // "profile" setting per port selects which is used. |
mjr | 63:5cd1a5f3a41b | 1499 | // |
mjr | 74:822a92bc11d2 | 1500 | // The extended protocol discards the flash pattern options and instead |
mjr | 74:822a92bc11d2 | 1501 | // uses the full byte range 0..255 for brightness levels. Modern clients |
mjr | 74:822a92bc11d2 | 1502 | // based on DOF don't use the flash patterns, since DOF simply sends |
mjr | 74:822a92bc11d2 | 1503 | // the individual brightness updates when it wants to create fades or |
mjr | 74:822a92bc11d2 | 1504 | // flashes. What we gain by dropping the flash options is finer |
mjr | 74:822a92bc11d2 | 1505 | // gradations of brightness - 256 levels rather than the LedWiz's 48. |
mjr | 74:822a92bc11d2 | 1506 | // This makes for noticeably smoother fades and a wider gamut for RGB |
mjr | 74:822a92bc11d2 | 1507 | // color mixing. The extended protocol also drops the LedWiz notion of |
mjr | 74:822a92bc11d2 | 1508 | // separate "switch" and "profile" settings, and instead combines the |
mjr | 74:822a92bc11d2 | 1509 | // two into the single brightness setting, with brightness 0 meaning off. |
mjr | 74:822a92bc11d2 | 1510 | // This also is the way DOF thinks about the problem, so it's a better |
mjr | 74:822a92bc11d2 | 1511 | // match to modern clients. |
mjr | 63:5cd1a5f3a41b | 1512 | // |
mjr | 74:822a92bc11d2 | 1513 | // To reconcile the different approaches in the two protocols to setting |
mjr | 74:822a92bc11d2 | 1514 | // output port states, we use a global mode: LedWiz mode or Pinscape mode. |
mjr | 74:822a92bc11d2 | 1515 | // Whenever an output port message is received, we switch this flag to the |
mjr | 74:822a92bc11d2 | 1516 | // mode of the message. The assumption is that only one client at a time |
mjr | 74:822a92bc11d2 | 1517 | // will be manipulating output ports, and that any given client uses one |
mjr | 74:822a92bc11d2 | 1518 | // protocol exclusively. There's no reason a client should mix the |
mjr | 74:822a92bc11d2 | 1519 | // protocols; if a client is aware of the Pinscape protocol at all, it |
mjr | 74:822a92bc11d2 | 1520 | // should use it exclusively. |
mjr | 63:5cd1a5f3a41b | 1521 | static uint8_t ledWizMode = true; |
mjr | 63:5cd1a5f3a41b | 1522 | |
mjr | 40:cc0d9814522b | 1523 | // translate an LedWiz brightness level (0-49) to a DOF brightness |
mjr | 40:cc0d9814522b | 1524 | // level (0-255) |
mjr | 40:cc0d9814522b | 1525 | static const uint8_t lw_to_dof[] = { |
mjr | 40:cc0d9814522b | 1526 | 0, 5, 11, 16, 21, 27, 32, 37, |
mjr | 40:cc0d9814522b | 1527 | 43, 48, 53, 58, 64, 69, 74, 80, |
mjr | 40:cc0d9814522b | 1528 | 85, 90, 96, 101, 106, 112, 117, 122, |
mjr | 40:cc0d9814522b | 1529 | 128, 133, 138, 143, 149, 154, 159, 165, |
mjr | 40:cc0d9814522b | 1530 | 170, 175, 181, 186, 191, 197, 202, 207, |
mjr | 40:cc0d9814522b | 1531 | 213, 218, 223, 228, 234, 239, 244, 250, |
mjr | 40:cc0d9814522b | 1532 | 255, 255 |
mjr | 40:cc0d9814522b | 1533 | }; |
mjr | 40:cc0d9814522b | 1534 | |
mjr | 74:822a92bc11d2 | 1535 | // LedWiz flash cycle tables. For efficiency, we use a lookup table |
mjr | 74:822a92bc11d2 | 1536 | // rather than calculating these on the fly. The flash cycles are |
mjr | 74:822a92bc11d2 | 1537 | // generated by the following formulas, where 'c' is the current |
mjr | 74:822a92bc11d2 | 1538 | // cycle counter, from 0 to 255: |
mjr | 74:822a92bc11d2 | 1539 | // |
mjr | 74:822a92bc11d2 | 1540 | // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2) |
mjr | 74:822a92bc11d2 | 1541 | // mode 130 = flash on/off = (c < 128 ? 255 : 0) |
mjr | 74:822a92bc11d2 | 1542 | // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2) |
mjr | 74:822a92bc11d2 | 1543 | // mode 132 = ramp up/on = (c < 128 ? c*2 : 255) |
mjr | 74:822a92bc11d2 | 1544 | // |
mjr | 74:822a92bc11d2 | 1545 | // To look up the current output value for a given mode and a given |
mjr | 74:822a92bc11d2 | 1546 | // cycle counter 'c', index the table with ((mode-129)*256)+c. |
mjr | 74:822a92bc11d2 | 1547 | static const uint8_t wizFlashLookup[] = { |
mjr | 74:822a92bc11d2 | 1548 | // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2) |
mjr | 74:822a92bc11d2 | 1549 | 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f, |
mjr | 74:822a92bc11d2 | 1550 | 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f, |
mjr | 74:822a92bc11d2 | 1551 | 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f, |
mjr | 74:822a92bc11d2 | 1552 | 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f, |
mjr | 74:822a92bc11d2 | 1553 | 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f, |
mjr | 74:822a92bc11d2 | 1554 | 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf, |
mjr | 74:822a92bc11d2 | 1555 | 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf, |
mjr | 74:822a92bc11d2 | 1556 | 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff, |
mjr | 74:822a92bc11d2 | 1557 | 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0, |
mjr | 74:822a92bc11d2 | 1558 | 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0, |
mjr | 74:822a92bc11d2 | 1559 | 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0, |
mjr | 74:822a92bc11d2 | 1560 | 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80, |
mjr | 74:822a92bc11d2 | 1561 | 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60, |
mjr | 74:822a92bc11d2 | 1562 | 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40, |
mjr | 74:822a92bc11d2 | 1563 | 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20, |
mjr | 74:822a92bc11d2 | 1564 | 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00, |
mjr | 74:822a92bc11d2 | 1565 | |
mjr | 74:822a92bc11d2 | 1566 | // mode 130 = flash on/off = (c < 128 ? 255 : 0) |
mjr | 74:822a92bc11d2 | 1567 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1568 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1569 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1570 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1571 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1572 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1573 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1574 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1575 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1576 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1577 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1578 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1579 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1580 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1581 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1582 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1583 | |
mjr | 74:822a92bc11d2 | 1584 | // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2 |
mjr | 74:822a92bc11d2 | 1585 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1586 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1587 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1588 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1589 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1590 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1591 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1592 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1593 | 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0, |
mjr | 74:822a92bc11d2 | 1594 | 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0, |
mjr | 74:822a92bc11d2 | 1595 | 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0, |
mjr | 74:822a92bc11d2 | 1596 | 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80, |
mjr | 74:822a92bc11d2 | 1597 | 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60, |
mjr | 74:822a92bc11d2 | 1598 | 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40, |
mjr | 74:822a92bc11d2 | 1599 | 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20, |
mjr | 74:822a92bc11d2 | 1600 | 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00, |
mjr | 74:822a92bc11d2 | 1601 | |
mjr | 74:822a92bc11d2 | 1602 | // mode 132 = ramp up/on = c < 128 ? c*2 : 255 |
mjr | 74:822a92bc11d2 | 1603 | 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e, |
mjr | 74:822a92bc11d2 | 1604 | 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e, |
mjr | 74:822a92bc11d2 | 1605 | 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e, |
mjr | 74:822a92bc11d2 | 1606 | 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e, |
mjr | 74:822a92bc11d2 | 1607 | 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e, |
mjr | 74:822a92bc11d2 | 1608 | 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe, |
mjr | 74:822a92bc11d2 | 1609 | 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde, |
mjr | 74:822a92bc11d2 | 1610 | 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe, |
mjr | 74:822a92bc11d2 | 1611 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1612 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1613 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1614 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1615 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1616 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1617 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1618 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff |
mjr | 74:822a92bc11d2 | 1619 | }; |
mjr | 74:822a92bc11d2 | 1620 | |
mjr | 40:cc0d9814522b | 1621 | // Translate an LedWiz output (ports 1-32) to a DOF brightness level. |
mjr | 74:822a92bc11d2 | 1622 | // Note: update all wizFlashCounter[] entries before calling this to |
mjr | 74:822a92bc11d2 | 1623 | // ensure that we're at the right place in each flash cycle. |
mjr | 74:822a92bc11d2 | 1624 | // |
mjr | 74:822a92bc11d2 | 1625 | // Important: the caller must update the wizFlashCounter[] array before |
mjr | 74:822a92bc11d2 | 1626 | // calling this. We leave it to the caller to update the array rather |
mjr | 74:822a92bc11d2 | 1627 | // than doing it here, because each set of 32 outputs shares the same |
mjr | 74:822a92bc11d2 | 1628 | // counter entry. |
mjr | 40:cc0d9814522b | 1629 | static uint8_t wizState(int idx) |
mjr | 0:5acbbe3f4cf4 | 1630 | { |
mjr | 63:5cd1a5f3a41b | 1631 | // If we're in extended protocol mode, ignore the LedWiz setting |
mjr | 63:5cd1a5f3a41b | 1632 | // for the port and use the new protocol setting instead. |
mjr | 63:5cd1a5f3a41b | 1633 | if (!ledWizMode) |
mjr | 29:582472d0bc57 | 1634 | return outLevel[idx]; |
mjr | 29:582472d0bc57 | 1635 | |
mjr | 29:582472d0bc57 | 1636 | // if it's off, show at zero intensity |
mjr | 29:582472d0bc57 | 1637 | if (!wizOn[idx]) |
mjr | 29:582472d0bc57 | 1638 | return 0; |
mjr | 29:582472d0bc57 | 1639 | |
mjr | 29:582472d0bc57 | 1640 | // check the state |
mjr | 29:582472d0bc57 | 1641 | uint8_t val = wizVal[idx]; |
mjr | 40:cc0d9814522b | 1642 | if (val <= 49) |
mjr | 29:582472d0bc57 | 1643 | { |
mjr | 29:582472d0bc57 | 1644 | // PWM brightness/intensity level. Rescale from the LedWiz |
mjr | 29:582472d0bc57 | 1645 | // 0..48 integer range to our internal PwmOut 0..1 float range. |
mjr | 29:582472d0bc57 | 1646 | // Note that on the actual LedWiz, level 48 is actually about |
mjr | 29:582472d0bc57 | 1647 | // 98% on - contrary to the LedWiz documentation, level 49 is |
mjr | 29:582472d0bc57 | 1648 | // the true 100% level. (In the documentation, level 49 is |
mjr | 29:582472d0bc57 | 1649 | // simply not a valid setting.) Even so, we treat level 48 as |
mjr | 29:582472d0bc57 | 1650 | // 100% on to match the documentation. This won't be perfectly |
mjr | 73:4e8ce0b18915 | 1651 | // compatible with the actual LedWiz, but it makes for such a |
mjr | 29:582472d0bc57 | 1652 | // small difference in brightness (if the output device is an |
mjr | 29:582472d0bc57 | 1653 | // LED, say) that no one should notice. It seems better to |
mjr | 29:582472d0bc57 | 1654 | // err in this direction, because while the difference in |
mjr | 29:582472d0bc57 | 1655 | // brightness when attached to an LED won't be noticeable, the |
mjr | 29:582472d0bc57 | 1656 | // difference in duty cycle when attached to something like a |
mjr | 29:582472d0bc57 | 1657 | // contactor *can* be noticeable - anything less than 100% |
mjr | 29:582472d0bc57 | 1658 | // can cause a contactor or relay to chatter. There's almost |
mjr | 29:582472d0bc57 | 1659 | // never a situation where you'd want values other than 0% and |
mjr | 29:582472d0bc57 | 1660 | // 100% for a contactor or relay, so treating level 48 as 100% |
mjr | 29:582472d0bc57 | 1661 | // makes us work properly with software that's expecting the |
mjr | 29:582472d0bc57 | 1662 | // documented LedWiz behavior and therefore uses level 48 to |
mjr | 29:582472d0bc57 | 1663 | // turn a contactor or relay fully on. |
mjr | 40:cc0d9814522b | 1664 | // |
mjr | 40:cc0d9814522b | 1665 | // Note that value 49 is undefined in the LedWiz documentation, |
mjr | 40:cc0d9814522b | 1666 | // but real LedWiz units treat it as 100%, equivalent to 48. |
mjr | 40:cc0d9814522b | 1667 | // Some software on the PC side uses this, so we need to treat |
mjr | 40:cc0d9814522b | 1668 | // it the same way for compatibility. |
mjr | 40:cc0d9814522b | 1669 | return lw_to_dof[val]; |
mjr | 29:582472d0bc57 | 1670 | } |
mjr | 74:822a92bc11d2 | 1671 | else if (val >= 129 && val <= 132) |
mjr | 29:582472d0bc57 | 1672 | { |
mjr | 74:822a92bc11d2 | 1673 | // flash mode - get the current counter for the bank, and look |
mjr | 74:822a92bc11d2 | 1674 | // up the current position in the cycle for the mode |
mjr | 73:4e8ce0b18915 | 1675 | const int c = wizFlashCounter[idx/32]; |
mjr | 74:822a92bc11d2 | 1676 | return wizFlashLookup[((val-129)*256) + c]; |
mjr | 29:582472d0bc57 | 1677 | } |
mjr | 29:582472d0bc57 | 1678 | else |
mjr | 13:72dda449c3c0 | 1679 | { |
mjr | 29:582472d0bc57 | 1680 | // Other values are undefined in the LedWiz documentation. Hosts |
mjr | 29:582472d0bc57 | 1681 | // *should* never send undefined values, since whatever behavior an |
mjr | 29:582472d0bc57 | 1682 | // LedWiz unit exhibits in response is accidental and could change |
mjr | 29:582472d0bc57 | 1683 | // in a future version. We'll treat all undefined values as equivalent |
mjr | 29:582472d0bc57 | 1684 | // to 48 (fully on). |
mjr | 40:cc0d9814522b | 1685 | return 255; |
mjr | 0:5acbbe3f4cf4 | 1686 | } |
mjr | 0:5acbbe3f4cf4 | 1687 | } |
mjr | 0:5acbbe3f4cf4 | 1688 | |
mjr | 74:822a92bc11d2 | 1689 | // LedWiz flash cycle timer. This runs continuously. On each update, |
mjr | 74:822a92bc11d2 | 1690 | // we use this to figure out where we are on the cycle for each bank. |
mjr | 74:822a92bc11d2 | 1691 | Timer wizCycleTimer; |
mjr | 74:822a92bc11d2 | 1692 | |
mjr | 74:822a92bc11d2 | 1693 | // Update the LedWiz flash cycle counters |
mjr | 74:822a92bc11d2 | 1694 | static void updateWizCycleCounts() |
mjr | 74:822a92bc11d2 | 1695 | { |
mjr | 74:822a92bc11d2 | 1696 | // Update the LedWiz flash cycle positions. Each cycle is 2/N |
mjr | 74:822a92bc11d2 | 1697 | // seconds long, where N is the speed setting for the bank. N |
mjr | 74:822a92bc11d2 | 1698 | // ranges from 1 to 7. |
mjr | 74:822a92bc11d2 | 1699 | // |
mjr | 74:822a92bc11d2 | 1700 | // Note that we treat the microsecond clock as a 32-bit unsigned |
mjr | 74:822a92bc11d2 | 1701 | // int. This rolls over (i.e., exceeds 0xffffffff) every 71 minutes. |
mjr | 74:822a92bc11d2 | 1702 | // We only care about the phase of the current LedWiz cycle, so we |
mjr | 74:822a92bc11d2 | 1703 | // don't actually care about the absolute time - we only care about |
mjr | 74:822a92bc11d2 | 1704 | // the time relative to some arbitrary starting point. Whenever the |
mjr | 74:822a92bc11d2 | 1705 | // clock rolls over, it effectively sets a new starting point; since |
mjr | 74:822a92bc11d2 | 1706 | // we only need an arbitrary starting point, that's largely okay. |
mjr | 74:822a92bc11d2 | 1707 | // The one drawback is that these epoch resets can obviously occur |
mjr | 74:822a92bc11d2 | 1708 | // in the middle of a cycle. When this occurs, the update just before |
mjr | 74:822a92bc11d2 | 1709 | // the rollover and the update just after the rollover will use |
mjr | 74:822a92bc11d2 | 1710 | // different epochs, so their phases might be misaligned. That could |
mjr | 74:822a92bc11d2 | 1711 | // cause a sudden jump in brightness between the two updates and a |
mjr | 74:822a92bc11d2 | 1712 | // shorter-than-usual or longer-than-usual time for that cycle. To |
mjr | 74:822a92bc11d2 | 1713 | // avoid that, we'd have to use a higher-precision clock (say, a 64-bit |
mjr | 74:822a92bc11d2 | 1714 | // microsecond counter) and do all of the calculations at the higher |
mjr | 74:822a92bc11d2 | 1715 | // precision. Given that the rollover only happens once every 71 |
mjr | 74:822a92bc11d2 | 1716 | // minutes, and that the only problem it causes is a momentary glitch |
mjr | 74:822a92bc11d2 | 1717 | // in the flash pattern, I think it's an equitable trade for the slightly |
mjr | 74:822a92bc11d2 | 1718 | // faster processing in the 32-bit domain. This routine is called |
mjr | 74:822a92bc11d2 | 1719 | // frequently from the main loop, so it's critial to minimize execution |
mjr | 74:822a92bc11d2 | 1720 | // time. |
mjr | 74:822a92bc11d2 | 1721 | uint32_t tcur = wizCycleTimer.read_us(); |
mjr | 74:822a92bc11d2 | 1722 | for (int i = 0 ; i < MAX_LW_BANKS ; ++i) |
mjr | 74:822a92bc11d2 | 1723 | { |
mjr | 74:822a92bc11d2 | 1724 | // Figure the point in the cycle. The LedWiz "speed" setting is |
mjr | 74:822a92bc11d2 | 1725 | // waveform period in 0.25s units. (There's no official LedWiz |
mjr | 74:822a92bc11d2 | 1726 | // documentation of what the speed means in real units, so this is |
mjr | 74:822a92bc11d2 | 1727 | // based on observations.) |
mjr | 74:822a92bc11d2 | 1728 | // |
mjr | 74:822a92bc11d2 | 1729 | // We do this calculation frequently from the main loop, since we |
mjr | 74:822a92bc11d2 | 1730 | // have to do it every time we update the output flash cycles, |
mjr | 74:822a92bc11d2 | 1731 | // which in turn has to be done frequently to make the cycles |
mjr | 74:822a92bc11d2 | 1732 | // appear smooth to users. So we're going to get a bit tricky |
mjr | 74:822a92bc11d2 | 1733 | // with integer arithmetic to streamline it. The goal is to find |
mjr | 74:822a92bc11d2 | 1734 | // the current phase position in the output waveform; in abstract |
mjr | 74:822a92bc11d2 | 1735 | // terms, we're trying to find the angle, 0 to 2*pi, in the current |
mjr | 74:822a92bc11d2 | 1736 | // cycle. Floating point arithmetic is expensive on the KL25Z |
mjr | 74:822a92bc11d2 | 1737 | // since it's all done in software, so we'll do everything in |
mjr | 74:822a92bc11d2 | 1738 | // integers. To do that, rather than trying to find the phase |
mjr | 74:822a92bc11d2 | 1739 | // angle as a continuous quantity, we'll quantize it, into 256 |
mjr | 74:822a92bc11d2 | 1740 | // quanta per cycle. Each quantum is 1/256 of the cycle length, |
mjr | 74:822a92bc11d2 | 1741 | // so for a 1-second cycle (LedWiz speed 4), each quantum is |
mjr | 74:822a92bc11d2 | 1742 | // 1/256 of second or about 3.9ms. To find the phase, then, we |
mjr | 74:822a92bc11d2 | 1743 | // simply take the current time (as an elapsed time from an |
mjr | 74:822a92bc11d2 | 1744 | // arbitrary zero point aka epoch), quantize it into 3.9ms chunks, |
mjr | 74:822a92bc11d2 | 1745 | // and calculate the remainder mod 256. Remainder mod 256 is a |
mjr | 74:822a92bc11d2 | 1746 | // fast operation since it's equivalent to bit masking with 0xFF. |
mjr | 74:822a92bc11d2 | 1747 | // (That's why we chose a power of two for the number of quanta |
mjr | 74:822a92bc11d2 | 1748 | // per cycle.) Our timer gives us microseconds since it started, |
mjr | 74:822a92bc11d2 | 1749 | // so to convert to quanta, we divide by microseconds per quantum; |
mjr | 74:822a92bc11d2 | 1750 | // in the case of speed 1 with its 3.906ms quanta, we divide by |
mjr | 74:822a92bc11d2 | 1751 | // 3906. But we can take this one step further, getting really |
mjr | 74:822a92bc11d2 | 1752 | // tricky now. Dividing by N is the same as muliplying by X/N |
mjr | 74:822a92bc11d2 | 1753 | // for some X, and then dividing the result by X. Why, you ask, |
mjr | 74:822a92bc11d2 | 1754 | // would we want to do two operations where we could do one? |
mjr | 74:822a92bc11d2 | 1755 | // Because if we're clever, the two operations will be much |
mjr | 74:822a92bc11d2 | 1756 | // faster the the one. The M0+ has no DIVIDE instruction, so |
mjr | 74:822a92bc11d2 | 1757 | // integer division has to be done in software, at a cost of about |
mjr | 74:822a92bc11d2 | 1758 | // 100 clocks per operation. The KL25Z M0+ has a one-cycle |
mjr | 74:822a92bc11d2 | 1759 | // hardware multiplier, though. But doesn't that leave that |
mjr | 74:822a92bc11d2 | 1760 | // second division still to do? Yes, but if we choose a power |
mjr | 74:822a92bc11d2 | 1761 | // of 2 for X, we can do that division with a bit shift, another |
mjr | 74:822a92bc11d2 | 1762 | // single-cycle operation. So we can do the division in two |
mjr | 74:822a92bc11d2 | 1763 | // cycles by breaking it up into a multiply + shift. |
mjr | 74:822a92bc11d2 | 1764 | // |
mjr | 74:822a92bc11d2 | 1765 | // Each entry in this array represents X/N for the corresponding |
mjr | 74:822a92bc11d2 | 1766 | // LedWiz speed, where N is the number of time quanta per cycle |
mjr | 74:822a92bc11d2 | 1767 | // and X is 2^24. The time quanta are chosen such that 256 |
mjr | 74:822a92bc11d2 | 1768 | // quanta add up to approximately (LedWiz speed setting * 0.25s). |
mjr | 74:822a92bc11d2 | 1769 | // |
mjr | 74:822a92bc11d2 | 1770 | // Note that the calculation has an implicit bit mask (result & 0xFF) |
mjr | 74:822a92bc11d2 | 1771 | // to get the final result mod 256. But we don't have to actually |
mjr | 74:822a92bc11d2 | 1772 | // do that work because we're using 32-bit ints and a 2^24 fixed |
mjr | 74:822a92bc11d2 | 1773 | // point base (X in the narrative above). The final shift right by |
mjr | 74:822a92bc11d2 | 1774 | // 24 bits to divide out the base will leave us with only 8 bits in |
mjr | 74:822a92bc11d2 | 1775 | // the result, since we started with 32. |
mjr | 74:822a92bc11d2 | 1776 | static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed |
mjr | 74:822a92bc11d2 | 1777 | 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454 |
mjr | 74:822a92bc11d2 | 1778 | }; |
mjr | 74:822a92bc11d2 | 1779 | wizFlashCounter[i] = ((tcur * inv_us_per_quantum[wizSpeed[i]]) >> 24); |
mjr | 74:822a92bc11d2 | 1780 | } |
mjr | 74:822a92bc11d2 | 1781 | } |
mjr | 74:822a92bc11d2 | 1782 | |
mjr | 74:822a92bc11d2 | 1783 | // LedWiz flash timer pulse. The main loop calls this periodically |
mjr | 74:822a92bc11d2 | 1784 | // to update outputs set to LedWiz flash modes. |
mjr | 74:822a92bc11d2 | 1785 | Timer wizPulseTimer; |
mjr | 74:822a92bc11d2 | 1786 | float wizPulseTotalTime, wizPulseRunCount; |
mjr | 74:822a92bc11d2 | 1787 | const uint32_t WIZ_INTERVAL_US = 8000; |
mjr | 29:582472d0bc57 | 1788 | static void wizPulse() |
mjr | 29:582472d0bc57 | 1789 | { |
mjr | 74:822a92bc11d2 | 1790 | // if it's been long enough, update the LedWiz outputs |
mjr | 74:822a92bc11d2 | 1791 | if (wizPulseTimer.read_us() >= WIZ_INTERVAL_US) |
mjr | 73:4e8ce0b18915 | 1792 | { |
mjr | 74:822a92bc11d2 | 1793 | // reset the timer for the next round |
mjr | 74:822a92bc11d2 | 1794 | wizPulseTimer.reset(); |
mjr | 74:822a92bc11d2 | 1795 | |
mjr | 74:822a92bc11d2 | 1796 | // if we're in LedWiz mode, update flashing outputs |
mjr | 74:822a92bc11d2 | 1797 | if (ledWizMode) |
mjr | 29:582472d0bc57 | 1798 | { |
mjr | 74:822a92bc11d2 | 1799 | // start a timer for statistics collection |
mjr | 74:822a92bc11d2 | 1800 | IF_DIAG( |
mjr | 74:822a92bc11d2 | 1801 | Timer t; |
mjr | 74:822a92bc11d2 | 1802 | t.start(); |
mjr | 74:822a92bc11d2 | 1803 | ) |
mjr | 74:822a92bc11d2 | 1804 | |
mjr | 74:822a92bc11d2 | 1805 | // update the cycle counters |
mjr | 74:822a92bc11d2 | 1806 | updateWizCycleCounts(); |
mjr | 74:822a92bc11d2 | 1807 | |
mjr | 74:822a92bc11d2 | 1808 | // update all outputs set to flashing values |
mjr | 74:822a92bc11d2 | 1809 | for (int i = numOutputs ; i > 0 ; ) |
mjr | 29:582472d0bc57 | 1810 | { |
mjr | 74:822a92bc11d2 | 1811 | if (wizOn[--i]) |
mjr | 74:822a92bc11d2 | 1812 | { |
mjr | 74:822a92bc11d2 | 1813 | // If the "brightness" is in the range 129..132, it's a |
mjr | 74:822a92bc11d2 | 1814 | // flash mode. Note that we only have to check the high |
mjr | 74:822a92bc11d2 | 1815 | // bit here, because the protocol message handler validates |
mjr | 74:822a92bc11d2 | 1816 | // the wizVal[] entries when storing them: the only valid |
mjr | 74:822a92bc11d2 | 1817 | // values with the high bit set are 129..132. Skipping |
mjr | 74:822a92bc11d2 | 1818 | // validation here saves us a tiny bit of work, which we |
mjr | 74:822a92bc11d2 | 1819 | // care about because we have to loop over all outputs |
mjr | 74:822a92bc11d2 | 1820 | // here, and we invoke this frequently from the main loop. |
mjr | 74:822a92bc11d2 | 1821 | const uint8_t val = wizVal[i]; |
mjr | 74:822a92bc11d2 | 1822 | if ((val & 0x80) != 0) |
mjr | 74:822a92bc11d2 | 1823 | { |
mjr | 74:822a92bc11d2 | 1824 | // get the current cycle time, then look up the |
mjr | 74:822a92bc11d2 | 1825 | // value for the mode at the cycle time |
mjr | 74:822a92bc11d2 | 1826 | const int c = wizFlashCounter[i >> 5]; |
mjr | 74:822a92bc11d2 | 1827 | lwPin[i]->set(wizFlashLookup[((val-129) << 8) + c]); |
mjr | 74:822a92bc11d2 | 1828 | } |
mjr | 74:822a92bc11d2 | 1829 | } |
mjr | 29:582472d0bc57 | 1830 | } |
mjr | 74:822a92bc11d2 | 1831 | |
mjr | 74:822a92bc11d2 | 1832 | // flush changes to 74HC595 chips, if attached |
mjr | 74:822a92bc11d2 | 1833 | if (hc595 != 0) |
mjr | 74:822a92bc11d2 | 1834 | hc595->update(); |
mjr | 74:822a92bc11d2 | 1835 | |
mjr | 74:822a92bc11d2 | 1836 | // collect timing statistics |
mjr | 74:822a92bc11d2 | 1837 | IF_DIAG( |
mjr | 74:822a92bc11d2 | 1838 | wizPulseTotalTime += t.read(); |
mjr | 74:822a92bc11d2 | 1839 | wizPulseRunCount += 1; |
mjr | 74:822a92bc11d2 | 1840 | ) |
mjr | 29:582472d0bc57 | 1841 | } |
mjr | 29:582472d0bc57 | 1842 | } |
mjr | 29:582472d0bc57 | 1843 | } |
mjr | 29:582472d0bc57 | 1844 | |
mjr | 29:582472d0bc57 | 1845 | // Update the physical outputs connected to the LedWiz ports. This is |
mjr | 29:582472d0bc57 | 1846 | // called after any update from an LedWiz protocol message. |
mjr | 1:d913e0afb2ac | 1847 | static void updateWizOuts() |
mjr | 1:d913e0afb2ac | 1848 | { |
mjr | 74:822a92bc11d2 | 1849 | // update the cycle counters |
mjr | 74:822a92bc11d2 | 1850 | updateWizCycleCounts(); |
mjr | 74:822a92bc11d2 | 1851 | |
mjr | 29:582472d0bc57 | 1852 | // update each output |
mjr | 73:4e8ce0b18915 | 1853 | for (int i = 0 ; i < numOutputs ; ++i) |
mjr | 40:cc0d9814522b | 1854 | lwPin[i]->set(wizState(i)); |
mjr | 29:582472d0bc57 | 1855 | |
mjr | 34:6b981a2afab7 | 1856 | // flush changes to 74HC595 chips, if attached |
mjr | 35:e959ffba78fd | 1857 | if (hc595 != 0) |
mjr | 35:e959ffba78fd | 1858 | hc595->update(); |
mjr | 1:d913e0afb2ac | 1859 | } |
mjr | 38:091e511ce8a0 | 1860 | |
mjr | 38:091e511ce8a0 | 1861 | // Update all physical outputs. This is called after a change to a global |
mjr | 38:091e511ce8a0 | 1862 | // setting that affects all outputs, such as engaging or canceling Night Mode. |
mjr | 38:091e511ce8a0 | 1863 | static void updateAllOuts() |
mjr | 38:091e511ce8a0 | 1864 | { |
mjr | 74:822a92bc11d2 | 1865 | // update LedWiz states |
mjr | 74:822a92bc11d2 | 1866 | updateWizOuts(); |
mjr | 73:4e8ce0b18915 | 1867 | } |
mjr | 73:4e8ce0b18915 | 1868 | |
mjr | 73:4e8ce0b18915 | 1869 | // |
mjr | 73:4e8ce0b18915 | 1870 | // Turn off all outputs and restore everything to the default LedWiz |
mjr | 73:4e8ce0b18915 | 1871 | // state. This sets outputs #1-32 to LedWiz profile value 48 (full |
mjr | 73:4e8ce0b18915 | 1872 | // brightness) and switch state Off, sets all extended outputs (#33 |
mjr | 73:4e8ce0b18915 | 1873 | // and above) to zero brightness, and sets the LedWiz flash rate to 2. |
mjr | 73:4e8ce0b18915 | 1874 | // This effectively restores the power-on conditions. |
mjr | 73:4e8ce0b18915 | 1875 | // |
mjr | 73:4e8ce0b18915 | 1876 | void allOutputsOff() |
mjr | 73:4e8ce0b18915 | 1877 | { |
mjr | 73:4e8ce0b18915 | 1878 | // reset all LedWiz outputs to OFF/48 |
mjr | 73:4e8ce0b18915 | 1879 | for (int i = 0 ; i < numOutputs ; ++i) |
mjr | 73:4e8ce0b18915 | 1880 | { |
mjr | 73:4e8ce0b18915 | 1881 | outLevel[i] = 0; |
mjr | 73:4e8ce0b18915 | 1882 | wizOn[i] = 0; |
mjr | 73:4e8ce0b18915 | 1883 | wizVal[i] = 48; |
mjr | 73:4e8ce0b18915 | 1884 | lwPin[i]->set(0); |
mjr | 73:4e8ce0b18915 | 1885 | } |
mjr | 73:4e8ce0b18915 | 1886 | |
mjr | 73:4e8ce0b18915 | 1887 | // restore default LedWiz flash rate |
mjr | 73:4e8ce0b18915 | 1888 | for (int i = 0 ; i < countof(wizSpeed) ; ++i) |
mjr | 73:4e8ce0b18915 | 1889 | wizSpeed[i] = 2; |
mjr | 38:091e511ce8a0 | 1890 | |
mjr | 74:822a92bc11d2 | 1891 | // revert to LedWiz mode for output controls |
mjr | 74:822a92bc11d2 | 1892 | ledWizMode = true; |
mjr | 73:4e8ce0b18915 | 1893 | |
mjr | 73:4e8ce0b18915 | 1894 | // flush changes to hc595, if applicable |
mjr | 38:091e511ce8a0 | 1895 | if (hc595 != 0) |
mjr | 38:091e511ce8a0 | 1896 | hc595->update(); |
mjr | 38:091e511ce8a0 | 1897 | } |
mjr | 38:091e511ce8a0 | 1898 | |
mjr | 74:822a92bc11d2 | 1899 | // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32, |
mjr | 74:822a92bc11d2 | 1900 | // 1 for ports 33-64, etc. Original protocol SBA messages always |
mjr | 74:822a92bc11d2 | 1901 | // address port group 0; our private SBX extension messages can |
mjr | 74:822a92bc11d2 | 1902 | // address any port group. |
mjr | 74:822a92bc11d2 | 1903 | void sba_sbx(int portGroup, const uint8_t *data) |
mjr | 74:822a92bc11d2 | 1904 | { |
mjr | 74:822a92bc11d2 | 1905 | // switch to LedWiz protocol mode |
mjr | 74:822a92bc11d2 | 1906 | ledWizMode = true; |
mjr | 74:822a92bc11d2 | 1907 | |
mjr | 74:822a92bc11d2 | 1908 | // update all on/off states |
mjr | 74:822a92bc11d2 | 1909 | for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ; |
mjr | 74:822a92bc11d2 | 1910 | i < 32 && port < numOutputs ; |
mjr | 74:822a92bc11d2 | 1911 | ++i, bit <<= 1, ++port) |
mjr | 74:822a92bc11d2 | 1912 | { |
mjr | 74:822a92bc11d2 | 1913 | // figure the on/off state bit for this output |
mjr | 74:822a92bc11d2 | 1914 | if (bit == 0x100) { |
mjr | 74:822a92bc11d2 | 1915 | bit = 1; |
mjr | 74:822a92bc11d2 | 1916 | ++imsg; |
mjr | 74:822a92bc11d2 | 1917 | } |
mjr | 74:822a92bc11d2 | 1918 | |
mjr | 74:822a92bc11d2 | 1919 | // set the on/off state |
mjr | 74:822a92bc11d2 | 1920 | wizOn[port] = ((data[imsg] & bit) != 0); |
mjr | 74:822a92bc11d2 | 1921 | } |
mjr | 74:822a92bc11d2 | 1922 | |
mjr | 74:822a92bc11d2 | 1923 | // set the flash speed for the port group |
mjr | 74:822a92bc11d2 | 1924 | if (portGroup < countof(wizSpeed)) |
mjr | 74:822a92bc11d2 | 1925 | wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]); |
mjr | 74:822a92bc11d2 | 1926 | |
mjr | 74:822a92bc11d2 | 1927 | // update the physical outputs with the new LedWiz states |
mjr | 74:822a92bc11d2 | 1928 | updateWizOuts(); |
mjr | 74:822a92bc11d2 | 1929 | } |
mjr | 74:822a92bc11d2 | 1930 | |
mjr | 74:822a92bc11d2 | 1931 | // Carry out a PBA or PBX message. |
mjr | 74:822a92bc11d2 | 1932 | void pba_pbx(int basePort, const uint8_t *data) |
mjr | 74:822a92bc11d2 | 1933 | { |
mjr | 74:822a92bc11d2 | 1934 | // switch LedWiz protocol mode |
mjr | 74:822a92bc11d2 | 1935 | ledWizMode = true; |
mjr | 74:822a92bc11d2 | 1936 | |
mjr | 74:822a92bc11d2 | 1937 | // update each wizVal entry from the brightness data |
mjr | 74:822a92bc11d2 | 1938 | for (int i = 0, iwiz = basePort ; i < 8 && iwiz < numOutputs ; ++i, ++iwiz) |
mjr | 74:822a92bc11d2 | 1939 | { |
mjr | 74:822a92bc11d2 | 1940 | // get the value |
mjr | 74:822a92bc11d2 | 1941 | uint8_t v = data[i]; |
mjr | 74:822a92bc11d2 | 1942 | |
mjr | 74:822a92bc11d2 | 1943 | // Validate it. The legal values are 0..49 for brightness |
mjr | 74:822a92bc11d2 | 1944 | // levels, and 128..132 for flash modes. Set anything invalid |
mjr | 74:822a92bc11d2 | 1945 | // to full brightness (48) instead. Note that 49 isn't actually |
mjr | 74:822a92bc11d2 | 1946 | // a valid documented value, but in practice some clients send |
mjr | 74:822a92bc11d2 | 1947 | // this to mean 100% brightness, and the real LedWiz treats it |
mjr | 74:822a92bc11d2 | 1948 | // as such. |
mjr | 74:822a92bc11d2 | 1949 | if ((v > 49 && v < 129) || v > 132) |
mjr | 74:822a92bc11d2 | 1950 | v = 48; |
mjr | 74:822a92bc11d2 | 1951 | |
mjr | 74:822a92bc11d2 | 1952 | // store it |
mjr | 74:822a92bc11d2 | 1953 | wizVal[iwiz] = v; |
mjr | 74:822a92bc11d2 | 1954 | } |
mjr | 74:822a92bc11d2 | 1955 | |
mjr | 74:822a92bc11d2 | 1956 | // update the physical outputs |
mjr | 74:822a92bc11d2 | 1957 | updateWizOuts(); |
mjr | 74:822a92bc11d2 | 1958 | } |
mjr | 74:822a92bc11d2 | 1959 | |
mjr | 74:822a92bc11d2 | 1960 | |
mjr | 11:bd9da7088e6e | 1961 | // --------------------------------------------------------------------------- |
mjr | 11:bd9da7088e6e | 1962 | // |
mjr | 11:bd9da7088e6e | 1963 | // Button input |
mjr | 11:bd9da7088e6e | 1964 | // |
mjr | 11:bd9da7088e6e | 1965 | |
mjr | 18:5e890ebd0023 | 1966 | // button state |
mjr | 18:5e890ebd0023 | 1967 | struct ButtonState |
mjr | 18:5e890ebd0023 | 1968 | { |
mjr | 38:091e511ce8a0 | 1969 | ButtonState() |
mjr | 38:091e511ce8a0 | 1970 | { |
mjr | 53:9b2611964afc | 1971 | physState = logState = prevLogState = 0; |
mjr | 53:9b2611964afc | 1972 | virtState = 0; |
mjr | 53:9b2611964afc | 1973 | dbState = 0; |
mjr | 38:091e511ce8a0 | 1974 | pulseState = 0; |
mjr | 53:9b2611964afc | 1975 | pulseTime = 0; |
mjr | 38:091e511ce8a0 | 1976 | } |
mjr | 35:e959ffba78fd | 1977 | |
mjr | 53:9b2611964afc | 1978 | // "Virtually" press or un-press the button. This can be used to |
mjr | 53:9b2611964afc | 1979 | // control the button state via a software (virtual) source, such as |
mjr | 53:9b2611964afc | 1980 | // the ZB Launch Ball feature. |
mjr | 53:9b2611964afc | 1981 | // |
mjr | 53:9b2611964afc | 1982 | // To allow sharing of one button by multiple virtual sources, each |
mjr | 53:9b2611964afc | 1983 | // virtual source must keep track of its own state internally, and |
mjr | 53:9b2611964afc | 1984 | // only call this routine to CHANGE the state. This is because calls |
mjr | 53:9b2611964afc | 1985 | // to this routine are additive: turning the button ON twice will |
mjr | 53:9b2611964afc | 1986 | // require turning it OFF twice before it actually turns off. |
mjr | 53:9b2611964afc | 1987 | void virtPress(bool on) |
mjr | 53:9b2611964afc | 1988 | { |
mjr | 53:9b2611964afc | 1989 | // Increment or decrement the current state |
mjr | 53:9b2611964afc | 1990 | virtState += on ? 1 : -1; |
mjr | 53:9b2611964afc | 1991 | } |
mjr | 53:9b2611964afc | 1992 | |
mjr | 53:9b2611964afc | 1993 | // DigitalIn for the button, if connected to a physical input |
mjr | 73:4e8ce0b18915 | 1994 | TinyDigitalIn di; |
mjr | 38:091e511ce8a0 | 1995 | |
mjr | 65:739875521aae | 1996 | // Time of last pulse state transition. |
mjr | 65:739875521aae | 1997 | // |
mjr | 65:739875521aae | 1998 | // Each state change sticks for a minimum period; when the timer expires, |
mjr | 65:739875521aae | 1999 | // if the underlying physical switch is in a different state, we switch |
mjr | 65:739875521aae | 2000 | // to the next state and restart the timer. pulseTime is the time remaining |
mjr | 65:739875521aae | 2001 | // remaining before we can make another state transition, in microseconds. |
mjr | 65:739875521aae | 2002 | // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...; |
mjr | 65:739875521aae | 2003 | // this guarantees that the parity of the pulse count always matches the |
mjr | 65:739875521aae | 2004 | // current physical switch state when the latter is stable, which makes |
mjr | 65:739875521aae | 2005 | // it impossible to "trick" the host by rapidly toggling the switch state. |
mjr | 65:739875521aae | 2006 | // (On my original Pinscape cabinet, I had a hardware pulse generator |
mjr | 65:739875521aae | 2007 | // for coin door, and that *was* possible to trick by rapid toggling. |
mjr | 65:739875521aae | 2008 | // This software system can't be fooled that way.) |
mjr | 65:739875521aae | 2009 | uint32_t pulseTime; |
mjr | 18:5e890ebd0023 | 2010 | |
mjr | 65:739875521aae | 2011 | // Config key index. This points to the ButtonCfg structure in the |
mjr | 65:739875521aae | 2012 | // configuration that contains the PC key mapping for the button. |
mjr | 65:739875521aae | 2013 | uint8_t cfgIndex; |
mjr | 53:9b2611964afc | 2014 | |
mjr | 53:9b2611964afc | 2015 | // Virtual press state. This is used to simulate pressing the button via |
mjr | 53:9b2611964afc | 2016 | // software inputs rather than physical inputs. To allow one button to be |
mjr | 53:9b2611964afc | 2017 | // controlled by mulitple software sources, each source should keep track |
mjr | 53:9b2611964afc | 2018 | // of its own virtual state for the button independently, and then INCREMENT |
mjr | 53:9b2611964afc | 2019 | // this variable when the source's state transitions from off to on, and |
mjr | 53:9b2611964afc | 2020 | // DECREMENT it when the source's state transitions from on to off. That |
mjr | 53:9b2611964afc | 2021 | // will make the button's pressed state the logical OR of all of the virtual |
mjr | 53:9b2611964afc | 2022 | // and physical source states. |
mjr | 53:9b2611964afc | 2023 | uint8_t virtState; |
mjr | 38:091e511ce8a0 | 2024 | |
mjr | 38:091e511ce8a0 | 2025 | // Debounce history. On each scan, we shift in a 1 bit to the lsb if |
mjr | 38:091e511ce8a0 | 2026 | // the physical key is reporting ON, and shift in a 0 bit if the physical |
mjr | 38:091e511ce8a0 | 2027 | // key is reporting OFF. We consider the key to have a new stable state |
mjr | 38:091e511ce8a0 | 2028 | // if we have N consecutive 0's or 1's in the low N bits (where N is |
mjr | 38:091e511ce8a0 | 2029 | // a parameter that determines how long we wait for transients to settle). |
mjr | 53:9b2611964afc | 2030 | uint8_t dbState; |
mjr | 38:091e511ce8a0 | 2031 | |
mjr | 65:739875521aae | 2032 | // current PHYSICAL on/off state, after debouncing |
mjr | 65:739875521aae | 2033 | uint8_t physState : 1; |
mjr | 65:739875521aae | 2034 | |
mjr | 65:739875521aae | 2035 | // current LOGICAL on/off state as reported to the host. |
mjr | 65:739875521aae | 2036 | uint8_t logState : 1; |
mjr | 65:739875521aae | 2037 | |
mjr | 65:739875521aae | 2038 | // previous logical on/off state, when keys were last processed for USB |
mjr | 65:739875521aae | 2039 | // reports and local effects |
mjr | 65:739875521aae | 2040 | uint8_t prevLogState : 1; |
mjr | 65:739875521aae | 2041 | |
mjr | 65:739875521aae | 2042 | // Pulse state |
mjr | 65:739875521aae | 2043 | // |
mjr | 65:739875521aae | 2044 | // A button in pulse mode (selected via the config flags for the button) |
mjr | 65:739875521aae | 2045 | // transmits a brief logical button press and release each time the attached |
mjr | 65:739875521aae | 2046 | // physical switch changes state. This is useful for cases where the host |
mjr | 65:739875521aae | 2047 | // expects a key press for each change in the state of the physical switch. |
mjr | 65:739875521aae | 2048 | // The canonical example is the Coin Door switch in VPinMAME, which requires |
mjr | 65:739875521aae | 2049 | // pressing the END key to toggle the open/closed state. This software design |
mjr | 65:739875521aae | 2050 | // isn't easily implemented in a physical coin door, though; the simplest |
mjr | 65:739875521aae | 2051 | // physical sensor for the coin door state is a switch that's on when the |
mjr | 65:739875521aae | 2052 | // door is open and off when the door is closed (or vice versa, but in either |
mjr | 65:739875521aae | 2053 | // case, the switch state corresponds to the current state of the door at any |
mjr | 65:739875521aae | 2054 | // given time, rather than pulsing on state changes). The "pulse mode" |
mjr | 65:739875521aae | 2055 | // option brdiges this gap by generating a toggle key event each time |
mjr | 65:739875521aae | 2056 | // there's a change to the physical switch's state. |
mjr | 38:091e511ce8a0 | 2057 | // |
mjr | 38:091e511ce8a0 | 2058 | // Pulse state: |
mjr | 38:091e511ce8a0 | 2059 | // 0 -> not a pulse switch - logical key state equals physical switch state |
mjr | 38:091e511ce8a0 | 2060 | // 1 -> off |
mjr | 38:091e511ce8a0 | 2061 | // 2 -> transitioning off-on |
mjr | 38:091e511ce8a0 | 2062 | // 3 -> on |
mjr | 38:091e511ce8a0 | 2063 | // 4 -> transitioning on-off |
mjr | 65:739875521aae | 2064 | uint8_t pulseState : 3; // 5 states -> we need 3 bits |
mjr | 65:739875521aae | 2065 | |
mjr | 65:739875521aae | 2066 | } __attribute__((packed)); |
mjr | 65:739875521aae | 2067 | |
mjr | 65:739875521aae | 2068 | ButtonState *buttonState; // live button slots, allocated on startup |
mjr | 65:739875521aae | 2069 | int8_t nButtons; // number of live button slots allocated |
mjr | 65:739875521aae | 2070 | int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused |
mjr | 18:5e890ebd0023 | 2071 | |
mjr | 66:2e3583fbd2f4 | 2072 | // Shift button state |
mjr | 66:2e3583fbd2f4 | 2073 | struct |
mjr | 66:2e3583fbd2f4 | 2074 | { |
mjr | 66:2e3583fbd2f4 | 2075 | int8_t index; // buttonState[] index of shift button; -1 if none |
mjr | 66:2e3583fbd2f4 | 2076 | uint8_t state : 2; // current shift state: |
mjr | 66:2e3583fbd2f4 | 2077 | // 0 = not shifted |
mjr | 66:2e3583fbd2f4 | 2078 | // 1 = shift button down, no key pressed yet |
mjr | 66:2e3583fbd2f4 | 2079 | // 2 = shift button down, key pressed |
mjr | 66:2e3583fbd2f4 | 2080 | uint8_t pulse : 1; // sending pulsed keystroke on release |
mjr | 66:2e3583fbd2f4 | 2081 | uint32_t pulseTime; // time of start of pulsed keystroke |
mjr | 66:2e3583fbd2f4 | 2082 | } |
mjr | 66:2e3583fbd2f4 | 2083 | __attribute__((packed)) shiftButton; |
mjr | 38:091e511ce8a0 | 2084 | |
mjr | 38:091e511ce8a0 | 2085 | // Button data |
mjr | 38:091e511ce8a0 | 2086 | uint32_t jsButtons = 0; |
mjr | 38:091e511ce8a0 | 2087 | |
mjr | 38:091e511ce8a0 | 2088 | // Keyboard report state. This tracks the USB keyboard state. We can |
mjr | 38:091e511ce8a0 | 2089 | // report at most 6 simultaneous non-modifier keys here, plus the 8 |
mjr | 38:091e511ce8a0 | 2090 | // modifier keys. |
mjr | 38:091e511ce8a0 | 2091 | struct |
mjr | 38:091e511ce8a0 | 2092 | { |
mjr | 38:091e511ce8a0 | 2093 | bool changed; // flag: changed since last report sent |
mjr | 48:058ace2aed1d | 2094 | uint8_t nkeys; // number of active keys in the list |
mjr | 38:091e511ce8a0 | 2095 | uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask, |
mjr | 38:091e511ce8a0 | 2096 | // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes |
mjr | 38:091e511ce8a0 | 2097 | } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } }; |
mjr | 38:091e511ce8a0 | 2098 | |
mjr | 38:091e511ce8a0 | 2099 | // Media key state |
mjr | 38:091e511ce8a0 | 2100 | struct |
mjr | 38:091e511ce8a0 | 2101 | { |
mjr | 38:091e511ce8a0 | 2102 | bool changed; // flag: changed since last report sent |
mjr | 38:091e511ce8a0 | 2103 | uint8_t data; // key state byte for USB reports |
mjr | 38:091e511ce8a0 | 2104 | } mediaState = { false, 0 }; |
mjr | 38:091e511ce8a0 | 2105 | |
mjr | 38:091e511ce8a0 | 2106 | // button scan interrupt ticker |
mjr | 38:091e511ce8a0 | 2107 | Ticker buttonTicker; |
mjr | 38:091e511ce8a0 | 2108 | |
mjr | 38:091e511ce8a0 | 2109 | // Button scan interrupt handler. We call this periodically via |
mjr | 38:091e511ce8a0 | 2110 | // a timer interrupt to scan the physical button states. |
mjr | 38:091e511ce8a0 | 2111 | void scanButtons() |
mjr | 38:091e511ce8a0 | 2112 | { |
mjr | 38:091e511ce8a0 | 2113 | // scan all button input pins |
mjr | 73:4e8ce0b18915 | 2114 | ButtonState *bs = buttonState, *last = bs + nButtons; |
mjr | 73:4e8ce0b18915 | 2115 | for ( ; bs < last ; ++bs) |
mjr | 38:091e511ce8a0 | 2116 | { |
mjr | 73:4e8ce0b18915 | 2117 | // Shift the new state into the debounce history |
mjr | 73:4e8ce0b18915 | 2118 | uint8_t db = (bs->dbState << 1) | bs->di.read(); |
mjr | 73:4e8ce0b18915 | 2119 | bs->dbState = db; |
mjr | 73:4e8ce0b18915 | 2120 | |
mjr | 73:4e8ce0b18915 | 2121 | // If we have all 0's or 1's in the history for the required |
mjr | 73:4e8ce0b18915 | 2122 | // debounce period, the key state is stable, so apply the new |
mjr | 73:4e8ce0b18915 | 2123 | // physical state. Note that the pins are active low, so the |
mjr | 73:4e8ce0b18915 | 2124 | // new button on/off state is the inverse of the GPIO state. |
mjr | 73:4e8ce0b18915 | 2125 | const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings |
mjr | 73:4e8ce0b18915 | 2126 | db &= stable; |
mjr | 73:4e8ce0b18915 | 2127 | if (db == 0 || db == stable) |
mjr | 73:4e8ce0b18915 | 2128 | bs->physState = !db; |
mjr | 38:091e511ce8a0 | 2129 | } |
mjr | 38:091e511ce8a0 | 2130 | } |
mjr | 38:091e511ce8a0 | 2131 | |
mjr | 38:091e511ce8a0 | 2132 | // Button state transition timer. This is used for pulse buttons, to |
mjr | 38:091e511ce8a0 | 2133 | // control the timing of the logical key presses generated by transitions |
mjr | 38:091e511ce8a0 | 2134 | // in the physical button state. |
mjr | 38:091e511ce8a0 | 2135 | Timer buttonTimer; |
mjr | 12:669df364a565 | 2136 | |
mjr | 65:739875521aae | 2137 | // Count a button during the initial setup scan |
mjr | 72:884207c0aab0 | 2138 | void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys) |
mjr | 65:739875521aae | 2139 | { |
mjr | 65:739875521aae | 2140 | // count it |
mjr | 65:739875521aae | 2141 | ++nButtons; |
mjr | 65:739875521aae | 2142 | |
mjr | 67:c39e66c4e000 | 2143 | // if it's a keyboard key or media key, note that we need a USB |
mjr | 67:c39e66c4e000 | 2144 | // keyboard interface |
mjr | 72:884207c0aab0 | 2145 | if (typ == BtnTypeKey || typ == BtnTypeMedia |
mjr | 72:884207c0aab0 | 2146 | || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia) |
mjr | 65:739875521aae | 2147 | kbKeys = true; |
mjr | 65:739875521aae | 2148 | } |
mjr | 65:739875521aae | 2149 | |
mjr | 11:bd9da7088e6e | 2150 | // initialize the button inputs |
mjr | 35:e959ffba78fd | 2151 | void initButtons(Config &cfg, bool &kbKeys) |
mjr | 11:bd9da7088e6e | 2152 | { |
mjr | 35:e959ffba78fd | 2153 | // presume we'll find no keyboard keys |
mjr | 35:e959ffba78fd | 2154 | kbKeys = false; |
mjr | 35:e959ffba78fd | 2155 | |
mjr | 66:2e3583fbd2f4 | 2156 | // presume no shift key |
mjr | 66:2e3583fbd2f4 | 2157 | shiftButton.index = -1; |
mjr | 66:2e3583fbd2f4 | 2158 | |
mjr | 65:739875521aae | 2159 | // Count up how many button slots we'll need to allocate. Start |
mjr | 65:739875521aae | 2160 | // with assigned buttons from the configuration, noting that we |
mjr | 65:739875521aae | 2161 | // only need to create slots for buttons that are actually wired. |
mjr | 65:739875521aae | 2162 | nButtons = 0; |
mjr | 65:739875521aae | 2163 | for (int i = 0 ; i < MAX_BUTTONS ; ++i) |
mjr | 65:739875521aae | 2164 | { |
mjr | 65:739875521aae | 2165 | // it's valid if it's wired to a real input pin |
mjr | 65:739875521aae | 2166 | if (wirePinName(cfg.button[i].pin) != NC) |
mjr | 72:884207c0aab0 | 2167 | countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys); |
mjr | 65:739875521aae | 2168 | } |
mjr | 65:739875521aae | 2169 | |
mjr | 65:739875521aae | 2170 | // Count virtual buttons |
mjr | 65:739875521aae | 2171 | |
mjr | 65:739875521aae | 2172 | // ZB Launch |
mjr | 65:739875521aae | 2173 | if (cfg.plunger.zbLaunchBall.port != 0) |
mjr | 65:739875521aae | 2174 | { |
mjr | 65:739875521aae | 2175 | // valid - remember the live button index |
mjr | 65:739875521aae | 2176 | zblButtonIndex = nButtons; |
mjr | 65:739875521aae | 2177 | |
mjr | 65:739875521aae | 2178 | // count it |
mjr | 72:884207c0aab0 | 2179 | countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys); |
mjr | 65:739875521aae | 2180 | } |
mjr | 65:739875521aae | 2181 | |
mjr | 65:739875521aae | 2182 | // Allocate the live button slots |
mjr | 65:739875521aae | 2183 | ButtonState *bs = buttonState = new ButtonState[nButtons]; |
mjr | 65:739875521aae | 2184 | |
mjr | 65:739875521aae | 2185 | // Configure the physical inputs |
mjr | 65:739875521aae | 2186 | for (int i = 0 ; i < MAX_BUTTONS ; ++i) |
mjr | 65:739875521aae | 2187 | { |
mjr | 65:739875521aae | 2188 | PinName pin = wirePinName(cfg.button[i].pin); |
mjr | 65:739875521aae | 2189 | if (pin != NC) |
mjr | 65:739875521aae | 2190 | { |
mjr | 65:739875521aae | 2191 | // point back to the config slot for the keyboard data |
mjr | 65:739875521aae | 2192 | bs->cfgIndex = i; |
mjr | 65:739875521aae | 2193 | |
mjr | 65:739875521aae | 2194 | // set up the GPIO input pin for this button |
mjr | 73:4e8ce0b18915 | 2195 | bs->di.assignPin(pin); |
mjr | 65:739875521aae | 2196 | |
mjr | 65:739875521aae | 2197 | // if it's a pulse mode button, set the initial pulse state to Off |
mjr | 65:739875521aae | 2198 | if (cfg.button[i].flags & BtnFlagPulse) |
mjr | 65:739875521aae | 2199 | bs->pulseState = 1; |
mjr | 65:739875521aae | 2200 | |
mjr | 66:2e3583fbd2f4 | 2201 | // If this is the shift button, note its buttonState[] index. |
mjr | 66:2e3583fbd2f4 | 2202 | // We have to figure the buttonState[] index separately from |
mjr | 66:2e3583fbd2f4 | 2203 | // the config index, because the indices can differ if some |
mjr | 66:2e3583fbd2f4 | 2204 | // config slots are left unused. |
mjr | 66:2e3583fbd2f4 | 2205 | if (cfg.shiftButton == i+1) |
mjr | 66:2e3583fbd2f4 | 2206 | shiftButton.index = bs - buttonState; |
mjr | 66:2e3583fbd2f4 | 2207 | |
mjr | 65:739875521aae | 2208 | // advance to the next button |
mjr | 65:739875521aae | 2209 | ++bs; |
mjr | 65:739875521aae | 2210 | } |
mjr | 65:739875521aae | 2211 | } |
mjr | 65:739875521aae | 2212 | |
mjr | 53:9b2611964afc | 2213 | // Configure the virtual buttons. These are buttons controlled via |
mjr | 53:9b2611964afc | 2214 | // software triggers rather than physical GPIO inputs. The virtual |
mjr | 53:9b2611964afc | 2215 | // buttons have the same control structures as regular buttons, but |
mjr | 53:9b2611964afc | 2216 | // they get their configuration data from other config variables. |
mjr | 53:9b2611964afc | 2217 | |
mjr | 53:9b2611964afc | 2218 | // ZB Launch Ball button |
mjr | 65:739875521aae | 2219 | if (cfg.plunger.zbLaunchBall.port != 0) |
mjr | 11:bd9da7088e6e | 2220 | { |
mjr | 65:739875521aae | 2221 | // Point back to the config slot for the keyboard data. |
mjr | 66:2e3583fbd2f4 | 2222 | // We use a special extra slot for virtual buttons, |
mjr | 66:2e3583fbd2f4 | 2223 | // so we also need to set up the slot data by copying |
mjr | 66:2e3583fbd2f4 | 2224 | // the ZBL config data to our virtual button slot. |
mjr | 65:739875521aae | 2225 | bs->cfgIndex = ZBL_BUTTON_CFG; |
mjr | 65:739875521aae | 2226 | cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC); |
mjr | 65:739875521aae | 2227 | cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype; |
mjr | 65:739875521aae | 2228 | cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode; |
mjr | 65:739875521aae | 2229 | |
mjr | 66:2e3583fbd2f4 | 2230 | // advance to the next button |
mjr | 65:739875521aae | 2231 | ++bs; |
mjr | 11:bd9da7088e6e | 2232 | } |
mjr | 12:669df364a565 | 2233 | |
mjr | 38:091e511ce8a0 | 2234 | // start the button scan thread |
mjr | 38:091e511ce8a0 | 2235 | buttonTicker.attach_us(scanButtons, 1000); |
mjr | 38:091e511ce8a0 | 2236 | |
mjr | 38:091e511ce8a0 | 2237 | // start the button state transition timer |
mjr | 12:669df364a565 | 2238 | buttonTimer.start(); |
mjr | 11:bd9da7088e6e | 2239 | } |
mjr | 11:bd9da7088e6e | 2240 | |
mjr | 67:c39e66c4e000 | 2241 | // Media key mapping. This maps from an 8-bit USB media key |
mjr | 67:c39e66c4e000 | 2242 | // code to the corresponding bit in our USB report descriptor. |
mjr | 67:c39e66c4e000 | 2243 | // The USB key code is the index, and the value at the index |
mjr | 67:c39e66c4e000 | 2244 | // is the report descriptor bit. See joystick.cpp for the |
mjr | 67:c39e66c4e000 | 2245 | // media descriptor details. Our currently mapped keys are: |
mjr | 67:c39e66c4e000 | 2246 | // |
mjr | 67:c39e66c4e000 | 2247 | // 0xE2 -> Mute -> 0x01 |
mjr | 67:c39e66c4e000 | 2248 | // 0xE9 -> Volume Up -> 0x02 |
mjr | 67:c39e66c4e000 | 2249 | // 0xEA -> Volume Down -> 0x04 |
mjr | 67:c39e66c4e000 | 2250 | // 0xB5 -> Next Track -> 0x08 |
mjr | 67:c39e66c4e000 | 2251 | // 0xB6 -> Previous Track -> 0x10 |
mjr | 67:c39e66c4e000 | 2252 | // 0xB7 -> Stop -> 0x20 |
mjr | 67:c39e66c4e000 | 2253 | // 0xCD -> Play / Pause -> 0x40 |
mjr | 67:c39e66c4e000 | 2254 | // |
mjr | 67:c39e66c4e000 | 2255 | static const uint8_t mediaKeyMap[] = { |
mjr | 67:c39e66c4e000 | 2256 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F |
mjr | 67:c39e66c4e000 | 2257 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F |
mjr | 67:c39e66c4e000 | 2258 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F |
mjr | 67:c39e66c4e000 | 2259 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F |
mjr | 67:c39e66c4e000 | 2260 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F |
mjr | 67:c39e66c4e000 | 2261 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F |
mjr | 67:c39e66c4e000 | 2262 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F |
mjr | 67:c39e66c4e000 | 2263 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F |
mjr | 67:c39e66c4e000 | 2264 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F |
mjr | 67:c39e66c4e000 | 2265 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F |
mjr | 67:c39e66c4e000 | 2266 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF |
mjr | 67:c39e66c4e000 | 2267 | 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF |
mjr | 67:c39e66c4e000 | 2268 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF |
mjr | 67:c39e66c4e000 | 2269 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF |
mjr | 67:c39e66c4e000 | 2270 | 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF |
mjr | 67:c39e66c4e000 | 2271 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF |
mjr | 67:c39e66c4e000 | 2272 | }; |
mjr | 67:c39e66c4e000 | 2273 | |
mjr | 67:c39e66c4e000 | 2274 | |
mjr | 38:091e511ce8a0 | 2275 | // Process the button state. This sets up the joystick, keyboard, and |
mjr | 38:091e511ce8a0 | 2276 | // media control descriptors with the current state of keys mapped to |
mjr | 38:091e511ce8a0 | 2277 | // those HID interfaces, and executes the local effects for any keys |
mjr | 38:091e511ce8a0 | 2278 | // mapped to special device functions (e.g., Night Mode). |
mjr | 53:9b2611964afc | 2279 | void processButtons(Config &cfg) |
mjr | 35:e959ffba78fd | 2280 | { |
mjr | 35:e959ffba78fd | 2281 | // start with an empty list of USB key codes |
mjr | 35:e959ffba78fd | 2282 | uint8_t modkeys = 0; |
mjr | 35:e959ffba78fd | 2283 | uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 }; |
mjr | 35:e959ffba78fd | 2284 | int nkeys = 0; |
mjr | 11:bd9da7088e6e | 2285 | |
mjr | 35:e959ffba78fd | 2286 | // clear the joystick buttons |
mjr | 36:b9747461331e | 2287 | uint32_t newjs = 0; |
mjr | 35:e959ffba78fd | 2288 | |
mjr | 35:e959ffba78fd | 2289 | // start with no media keys pressed |
mjr | 35:e959ffba78fd | 2290 | uint8_t mediakeys = 0; |
mjr | 38:091e511ce8a0 | 2291 | |
mjr | 38:091e511ce8a0 | 2292 | // calculate the time since the last run |
mjr | 53:9b2611964afc | 2293 | uint32_t dt = buttonTimer.read_us(); |
mjr | 18:5e890ebd0023 | 2294 | buttonTimer.reset(); |
mjr | 66:2e3583fbd2f4 | 2295 | |
mjr | 66:2e3583fbd2f4 | 2296 | // check the shift button state |
mjr | 66:2e3583fbd2f4 | 2297 | if (shiftButton.index != -1) |
mjr | 66:2e3583fbd2f4 | 2298 | { |
mjr | 66:2e3583fbd2f4 | 2299 | ButtonState *sbs = &buttonState[shiftButton.index]; |
mjr | 66:2e3583fbd2f4 | 2300 | switch (shiftButton.state) |
mjr | 66:2e3583fbd2f4 | 2301 | { |
mjr | 66:2e3583fbd2f4 | 2302 | case 0: |
mjr | 66:2e3583fbd2f4 | 2303 | // Not shifted. Check if the button is now down: if so, |
mjr | 66:2e3583fbd2f4 | 2304 | // switch to state 1 (shift button down, no key pressed yet). |
mjr | 66:2e3583fbd2f4 | 2305 | if (sbs->physState) |
mjr | 66:2e3583fbd2f4 | 2306 | shiftButton.state = 1; |
mjr | 66:2e3583fbd2f4 | 2307 | break; |
mjr | 66:2e3583fbd2f4 | 2308 | |
mjr | 66:2e3583fbd2f4 | 2309 | case 1: |
mjr | 66:2e3583fbd2f4 | 2310 | // Shift button down, no key pressed yet. If the button is |
mjr | 66:2e3583fbd2f4 | 2311 | // now up, it counts as an ordinary button press instead of |
mjr | 66:2e3583fbd2f4 | 2312 | // a shift button press, since the shift function was never |
mjr | 66:2e3583fbd2f4 | 2313 | // used. Return to unshifted state and start a timed key |
mjr | 66:2e3583fbd2f4 | 2314 | // pulse event. |
mjr | 66:2e3583fbd2f4 | 2315 | if (!sbs->physState) |
mjr | 66:2e3583fbd2f4 | 2316 | { |
mjr | 66:2e3583fbd2f4 | 2317 | shiftButton.state = 0; |
mjr | 66:2e3583fbd2f4 | 2318 | shiftButton.pulse = 1; |
mjr | 66:2e3583fbd2f4 | 2319 | shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse |
mjr | 66:2e3583fbd2f4 | 2320 | } |
mjr | 66:2e3583fbd2f4 | 2321 | break; |
mjr | 66:2e3583fbd2f4 | 2322 | |
mjr | 66:2e3583fbd2f4 | 2323 | case 2: |
mjr | 66:2e3583fbd2f4 | 2324 | // Shift button down, other key was pressed. If the button is |
mjr | 66:2e3583fbd2f4 | 2325 | // now up, simply clear the shift state without sending a key |
mjr | 66:2e3583fbd2f4 | 2326 | // press for the shift button itself to the PC. The shift |
mjr | 66:2e3583fbd2f4 | 2327 | // function was used, so its ordinary key press function is |
mjr | 66:2e3583fbd2f4 | 2328 | // suppressed. |
mjr | 66:2e3583fbd2f4 | 2329 | if (!sbs->physState) |
mjr | 66:2e3583fbd2f4 | 2330 | shiftButton.state = 0; |
mjr | 66:2e3583fbd2f4 | 2331 | break; |
mjr | 66:2e3583fbd2f4 | 2332 | } |
mjr | 66:2e3583fbd2f4 | 2333 | } |
mjr | 38:091e511ce8a0 | 2334 | |
mjr | 11:bd9da7088e6e | 2335 | // scan the button list |
mjr | 18:5e890ebd0023 | 2336 | ButtonState *bs = buttonState; |
mjr | 65:739875521aae | 2337 | for (int i = 0 ; i < nButtons ; ++i, ++bs) |
mjr | 11:bd9da7088e6e | 2338 | { |
mjr | 66:2e3583fbd2f4 | 2339 | // Check the button type: |
mjr | 66:2e3583fbd2f4 | 2340 | // - shift button |
mjr | 66:2e3583fbd2f4 | 2341 | // - pulsed button |
mjr | 66:2e3583fbd2f4 | 2342 | // - regular button |
mjr | 66:2e3583fbd2f4 | 2343 | if (shiftButton.index == i) |
mjr | 66:2e3583fbd2f4 | 2344 | { |
mjr | 66:2e3583fbd2f4 | 2345 | // This is the shift button. Its logical state for key |
mjr | 66:2e3583fbd2f4 | 2346 | // reporting purposes is controlled by the shift buttton |
mjr | 66:2e3583fbd2f4 | 2347 | // pulse timer. If we're in a pulse, its logical state |
mjr | 66:2e3583fbd2f4 | 2348 | // is pressed. |
mjr | 66:2e3583fbd2f4 | 2349 | if (shiftButton.pulse) |
mjr | 66:2e3583fbd2f4 | 2350 | { |
mjr | 66:2e3583fbd2f4 | 2351 | // deduct the current interval from the pulse time, ending |
mjr | 66:2e3583fbd2f4 | 2352 | // the pulse if the time has expired |
mjr | 66:2e3583fbd2f4 | 2353 | if (shiftButton.pulseTime > dt) |
mjr | 66:2e3583fbd2f4 | 2354 | shiftButton.pulseTime -= dt; |
mjr | 66:2e3583fbd2f4 | 2355 | else |
mjr | 66:2e3583fbd2f4 | 2356 | shiftButton.pulse = 0; |
mjr | 66:2e3583fbd2f4 | 2357 | } |
mjr | 66:2e3583fbd2f4 | 2358 | |
mjr | 66:2e3583fbd2f4 | 2359 | // the button is logically pressed if we're in a pulse |
mjr | 66:2e3583fbd2f4 | 2360 | bs->logState = shiftButton.pulse; |
mjr | 66:2e3583fbd2f4 | 2361 | } |
mjr | 66:2e3583fbd2f4 | 2362 | else if (bs->pulseState != 0) |
mjr | 18:5e890ebd0023 | 2363 | { |
mjr | 38:091e511ce8a0 | 2364 | // if the timer has expired, check for state changes |
mjr | 53:9b2611964afc | 2365 | if (bs->pulseTime > dt) |
mjr | 18:5e890ebd0023 | 2366 | { |
mjr | 53:9b2611964afc | 2367 | // not expired yet - deduct the last interval |
mjr | 53:9b2611964afc | 2368 | bs->pulseTime -= dt; |
mjr | 53:9b2611964afc | 2369 | } |
mjr | 53:9b2611964afc | 2370 | else |
mjr | 53:9b2611964afc | 2371 | { |
mjr | 53:9b2611964afc | 2372 | // pulse time expired - check for a state change |
mjr | 53:9b2611964afc | 2373 | const uint32_t pulseLength = 200000UL; // 200 milliseconds |
mjr | 38:091e511ce8a0 | 2374 | switch (bs->pulseState) |
mjr | 18:5e890ebd0023 | 2375 | { |
mjr | 38:091e511ce8a0 | 2376 | case 1: |
mjr | 38:091e511ce8a0 | 2377 | // off - if the physical switch is now on, start a button pulse |
mjr | 53:9b2611964afc | 2378 | if (bs->physState) |
mjr | 53:9b2611964afc | 2379 | { |
mjr | 38:091e511ce8a0 | 2380 | bs->pulseTime = pulseLength; |
mjr | 38:091e511ce8a0 | 2381 | bs->pulseState = 2; |
mjr | 53:9b2611964afc | 2382 | bs->logState = 1; |
mjr | 38:091e511ce8a0 | 2383 | } |
mjr | 38:091e511ce8a0 | 2384 | break; |
mjr | 18:5e890ebd0023 | 2385 | |
mjr | 38:091e511ce8a0 | 2386 | case 2: |
mjr | 38:091e511ce8a0 | 2387 | // transitioning off to on - end the pulse, and start a gap |
mjr | 38:091e511ce8a0 | 2388 | // equal to the pulse time so that the host can observe the |
mjr | 38:091e511ce8a0 | 2389 | // change in state in the logical button |
mjr | 38:091e511ce8a0 | 2390 | bs->pulseState = 3; |
mjr | 38:091e511ce8a0 | 2391 | bs->pulseTime = pulseLength; |
mjr | 53:9b2611964afc | 2392 | bs->logState = 0; |
mjr | 38:091e511ce8a0 | 2393 | break; |
mjr | 38:091e511ce8a0 | 2394 | |
mjr | 38:091e511ce8a0 | 2395 | case 3: |
mjr | 38:091e511ce8a0 | 2396 | // on - if the physical switch is now off, start a button pulse |
mjr | 53:9b2611964afc | 2397 | if (!bs->physState) |
mjr | 53:9b2611964afc | 2398 | { |
mjr | 38:091e511ce8a0 | 2399 | bs->pulseTime = pulseLength; |
mjr | 38:091e511ce8a0 | 2400 | bs->pulseState = 4; |
mjr | 53:9b2611964afc | 2401 | bs->logState = 1; |
mjr | 38:091e511ce8a0 | 2402 | } |
mjr | 38:091e511ce8a0 | 2403 | break; |
mjr | 38:091e511ce8a0 | 2404 | |
mjr | 38:091e511ce8a0 | 2405 | case 4: |
mjr | 38:091e511ce8a0 | 2406 | // transitioning on to off - end the pulse, and start a gap |
mjr | 38:091e511ce8a0 | 2407 | bs->pulseState = 1; |
mjr | 38:091e511ce8a0 | 2408 | bs->pulseTime = pulseLength; |
mjr | 53:9b2611964afc | 2409 | bs->logState = 0; |
mjr | 38:091e511ce8a0 | 2410 | break; |
mjr | 18:5e890ebd0023 | 2411 | } |
mjr | 18:5e890ebd0023 | 2412 | } |
mjr | 38:091e511ce8a0 | 2413 | } |
mjr | 38:091e511ce8a0 | 2414 | else |
mjr | 38:091e511ce8a0 | 2415 | { |
mjr | 38:091e511ce8a0 | 2416 | // not a pulse switch - the logical state is the same as the physical state |
mjr | 53:9b2611964afc | 2417 | bs->logState = bs->physState; |
mjr | 38:091e511ce8a0 | 2418 | } |
mjr | 35:e959ffba78fd | 2419 | |
mjr | 38:091e511ce8a0 | 2420 | // carry out any edge effects from buttons changing states |
mjr | 53:9b2611964afc | 2421 | if (bs->logState != bs->prevLogState) |
mjr | 38:091e511ce8a0 | 2422 | { |
mjr | 38:091e511ce8a0 | 2423 | // check for special key transitions |
mjr | 53:9b2611964afc | 2424 | if (cfg.nightMode.btn == i + 1) |
mjr | 35:e959ffba78fd | 2425 | { |
mjr | 53:9b2611964afc | 2426 | // Check the switch type in the config flags. If flag 0x01 is set, |
mjr | 53:9b2611964afc | 2427 | // it's a persistent on/off switch, so the night mode state simply |
mjr | 53:9b2611964afc | 2428 | // follows the current state of the switch. Otherwise, it's a |
mjr | 53:9b2611964afc | 2429 | // momentary button, so each button push (i.e., each transition from |
mjr | 53:9b2611964afc | 2430 | // logical state OFF to ON) toggles the current night mode state. |
mjr | 53:9b2611964afc | 2431 | if (cfg.nightMode.flags & 0x01) |
mjr | 53:9b2611964afc | 2432 | { |
mjr | 69:cc5039284fac | 2433 | // on/off switch - when the button changes state, change |
mjr | 53:9b2611964afc | 2434 | // night mode to match the new state |
mjr | 53:9b2611964afc | 2435 | setNightMode(bs->logState); |
mjr | 53:9b2611964afc | 2436 | } |
mjr | 53:9b2611964afc | 2437 | else |
mjr | 53:9b2611964afc | 2438 | { |
mjr | 66:2e3583fbd2f4 | 2439 | // Momentary switch - toggle the night mode state when the |
mjr | 53:9b2611964afc | 2440 | // physical button is pushed (i.e., when its logical state |
mjr | 66:2e3583fbd2f4 | 2441 | // transitions from OFF to ON). |
mjr | 66:2e3583fbd2f4 | 2442 | // |
mjr | 66:2e3583fbd2f4 | 2443 | // In momentary mode, night mode flag 0x02 makes it the |
mjr | 66:2e3583fbd2f4 | 2444 | // shifted version of the button. In this case, only |
mjr | 66:2e3583fbd2f4 | 2445 | // proceed if the shift button is pressed. |
mjr | 66:2e3583fbd2f4 | 2446 | bool pressed = bs->logState; |
mjr | 66:2e3583fbd2f4 | 2447 | if ((cfg.nightMode.flags & 0x02) != 0) |
mjr | 66:2e3583fbd2f4 | 2448 | { |
mjr | 66:2e3583fbd2f4 | 2449 | // if the shift button is pressed but hasn't been used |
mjr | 66:2e3583fbd2f4 | 2450 | // as a shift yet, mark it as used, so that it doesn't |
mjr | 66:2e3583fbd2f4 | 2451 | // also generate its own key code on release |
mjr | 66:2e3583fbd2f4 | 2452 | if (shiftButton.state == 1) |
mjr | 66:2e3583fbd2f4 | 2453 | shiftButton.state = 2; |
mjr | 66:2e3583fbd2f4 | 2454 | |
mjr | 66:2e3583fbd2f4 | 2455 | // if the shift button isn't even pressed |
mjr | 66:2e3583fbd2f4 | 2456 | if (shiftButton.state == 0) |
mjr | 66:2e3583fbd2f4 | 2457 | pressed = false; |
mjr | 66:2e3583fbd2f4 | 2458 | } |
mjr | 66:2e3583fbd2f4 | 2459 | |
mjr | 66:2e3583fbd2f4 | 2460 | // if it's pressed (even after considering the shift mode), |
mjr | 66:2e3583fbd2f4 | 2461 | // toggle night mode |
mjr | 66:2e3583fbd2f4 | 2462 | if (pressed) |
mjr | 53:9b2611964afc | 2463 | toggleNightMode(); |
mjr | 53:9b2611964afc | 2464 | } |
mjr | 35:e959ffba78fd | 2465 | } |
mjr | 38:091e511ce8a0 | 2466 | |
mjr | 38:091e511ce8a0 | 2467 | // remember the new state for comparison on the next run |
mjr | 53:9b2611964afc | 2468 | bs->prevLogState = bs->logState; |
mjr | 38:091e511ce8a0 | 2469 | } |
mjr | 38:091e511ce8a0 | 2470 | |
mjr | 53:9b2611964afc | 2471 | // if it's pressed, physically or virtually, add it to the appropriate |
mjr | 53:9b2611964afc | 2472 | // key state list |
mjr | 53:9b2611964afc | 2473 | if (bs->logState || bs->virtState) |
mjr | 38:091e511ce8a0 | 2474 | { |
mjr | 70:9f58735a1732 | 2475 | // Get the key type and code. Start by assuming that we're |
mjr | 70:9f58735a1732 | 2476 | // going to use the normal unshifted meaning. |
mjr | 65:739875521aae | 2477 | ButtonCfg *bc = &cfg.button[bs->cfgIndex]; |
mjr | 70:9f58735a1732 | 2478 | uint8_t typ = bc->typ; |
mjr | 70:9f58735a1732 | 2479 | uint8_t val = bc->val; |
mjr | 70:9f58735a1732 | 2480 | |
mjr | 70:9f58735a1732 | 2481 | // If the shift button is down, check for a shifted meaning. |
mjr | 70:9f58735a1732 | 2482 | if (shiftButton.state) |
mjr | 66:2e3583fbd2f4 | 2483 | { |
mjr | 70:9f58735a1732 | 2484 | // assume there's no shifted meaning |
mjr | 70:9f58735a1732 | 2485 | bool useShift = false; |
mjr | 66:2e3583fbd2f4 | 2486 | |
mjr | 70:9f58735a1732 | 2487 | // If the button has a shifted meaning, use that. The |
mjr | 70:9f58735a1732 | 2488 | // meaning might be a keyboard key or joystick button, |
mjr | 70:9f58735a1732 | 2489 | // but it could also be as the Night Mode toggle. |
mjr | 70:9f58735a1732 | 2490 | // |
mjr | 70:9f58735a1732 | 2491 | // The condition to check if it's the Night Mode toggle |
mjr | 70:9f58735a1732 | 2492 | // is a little complicated. First, the easy part: our |
mjr | 70:9f58735a1732 | 2493 | // button index has to match the Night Mode button index. |
mjr | 70:9f58735a1732 | 2494 | // Now the hard part: the Night Mode button flags have |
mjr | 70:9f58735a1732 | 2495 | // to be set to 0x01 OFF and 0x02 ON: toggle mode (not |
mjr | 70:9f58735a1732 | 2496 | // switch mode, 0x01), and shift mode, 0x02. So AND the |
mjr | 70:9f58735a1732 | 2497 | // flags with 0x03 to get these two bits, and check that |
mjr | 70:9f58735a1732 | 2498 | // the result is 0x02, meaning that only shift mode is on. |
mjr | 70:9f58735a1732 | 2499 | if (bc->typ2 != BtnTypeNone) |
mjr | 70:9f58735a1732 | 2500 | { |
mjr | 70:9f58735a1732 | 2501 | // there's a shifted key assignment - use it |
mjr | 70:9f58735a1732 | 2502 | typ = bc->typ2; |
mjr | 70:9f58735a1732 | 2503 | val = bc->val2; |
mjr | 70:9f58735a1732 | 2504 | useShift = true; |
mjr | 70:9f58735a1732 | 2505 | } |
mjr | 70:9f58735a1732 | 2506 | else if (cfg.nightMode.btn == i+1 |
mjr | 70:9f58735a1732 | 2507 | && (cfg.nightMode.flags & 0x03) == 0x02) |
mjr | 70:9f58735a1732 | 2508 | { |
mjr | 70:9f58735a1732 | 2509 | // shift+button = night mode toggle |
mjr | 70:9f58735a1732 | 2510 | typ = BtnTypeNone; |
mjr | 70:9f58735a1732 | 2511 | val = 0; |
mjr | 70:9f58735a1732 | 2512 | useShift = true; |
mjr | 70:9f58735a1732 | 2513 | } |
mjr | 70:9f58735a1732 | 2514 | |
mjr | 70:9f58735a1732 | 2515 | // If there's a shifted meaning, advance the shift |
mjr | 70:9f58735a1732 | 2516 | // button state from 1 to 2 if applicable. This signals |
mjr | 70:9f58735a1732 | 2517 | // that we've "consumed" the shift button press as the |
mjr | 70:9f58735a1732 | 2518 | // shift button, so it shouldn't generate its own key |
mjr | 70:9f58735a1732 | 2519 | // code event when released. |
mjr | 70:9f58735a1732 | 2520 | if (useShift && shiftButton.state == 1) |
mjr | 66:2e3583fbd2f4 | 2521 | shiftButton.state = 2; |
mjr | 66:2e3583fbd2f4 | 2522 | } |
mjr | 66:2e3583fbd2f4 | 2523 | |
mjr | 70:9f58735a1732 | 2524 | // We've decided on the meaning of the button, so process |
mjr | 70:9f58735a1732 | 2525 | // the keyboard or joystick event. |
mjr | 66:2e3583fbd2f4 | 2526 | switch (typ) |
mjr | 53:9b2611964afc | 2527 | { |
mjr | 53:9b2611964afc | 2528 | case BtnTypeJoystick: |
mjr | 53:9b2611964afc | 2529 | // joystick button |
mjr | 53:9b2611964afc | 2530 | newjs |= (1 << (val - 1)); |
mjr | 53:9b2611964afc | 2531 | break; |
mjr | 53:9b2611964afc | 2532 | |
mjr | 53:9b2611964afc | 2533 | case BtnTypeKey: |
mjr | 67:c39e66c4e000 | 2534 | // Keyboard key. The USB keyboard report encodes regular |
mjr | 67:c39e66c4e000 | 2535 | // keys and modifier keys separately, so we need to check |
mjr | 67:c39e66c4e000 | 2536 | // which type we have. Note that past versions mapped the |
mjr | 67:c39e66c4e000 | 2537 | // Keyboard Volume Up, Keyboard Volume Down, and Keyboard |
mjr | 67:c39e66c4e000 | 2538 | // Mute keys to the corresponding Media keys. We no longer |
mjr | 67:c39e66c4e000 | 2539 | // do this; instead, we have the separate BtnTypeMedia for |
mjr | 67:c39e66c4e000 | 2540 | // explicitly using media keys if desired. |
mjr | 67:c39e66c4e000 | 2541 | if (val >= 0xE0 && val <= 0xE7) |
mjr | 53:9b2611964afc | 2542 | { |
mjr | 67:c39e66c4e000 | 2543 | // It's a modifier key. These are represented in the USB |
mjr | 67:c39e66c4e000 | 2544 | // reports with a bit mask. We arrange the mask bits in |
mjr | 67:c39e66c4e000 | 2545 | // the same order as the scan codes, so we can figure the |
mjr | 67:c39e66c4e000 | 2546 | // appropriate bit with a simple shift. |
mjr | 53:9b2611964afc | 2547 | modkeys |= (1 << (val - 0xE0)); |
mjr | 53:9b2611964afc | 2548 | } |
mjr | 53:9b2611964afc | 2549 | else |
mjr | 53:9b2611964afc | 2550 | { |
mjr | 67:c39e66c4e000 | 2551 | // It's a regular key. Make sure it's not already in the |
mjr | 67:c39e66c4e000 | 2552 | // list, and that the list isn't full. If neither of these |
mjr | 67:c39e66c4e000 | 2553 | // apply, add the key to the key array. |
mjr | 53:9b2611964afc | 2554 | if (nkeys < 7) |
mjr | 53:9b2611964afc | 2555 | { |
mjr | 57:cc03231f676b | 2556 | bool found = false; |
mjr | 53:9b2611964afc | 2557 | for (int j = 0 ; j < nkeys ; ++j) |
mjr | 53:9b2611964afc | 2558 | { |
mjr | 53:9b2611964afc | 2559 | if (keys[j] == val) |
mjr | 53:9b2611964afc | 2560 | { |
mjr | 53:9b2611964afc | 2561 | found = true; |
mjr | 53:9b2611964afc | 2562 | break; |
mjr | 53:9b2611964afc | 2563 | } |
mjr | 53:9b2611964afc | 2564 | } |
mjr | 53:9b2611964afc | 2565 | if (!found) |
mjr | 53:9b2611964afc | 2566 | keys[nkeys++] = val; |
mjr | 53:9b2611964afc | 2567 | } |
mjr | 53:9b2611964afc | 2568 | } |
mjr | 53:9b2611964afc | 2569 | break; |
mjr | 67:c39e66c4e000 | 2570 | |
mjr | 67:c39e66c4e000 | 2571 | case BtnTypeMedia: |
mjr | 67:c39e66c4e000 | 2572 | // Media control key. The media keys are mapped in the USB |
mjr | 67:c39e66c4e000 | 2573 | // report to bits, whereas the key codes are specified in the |
mjr | 67:c39e66c4e000 | 2574 | // config with their USB usage numbers. E.g., the config val |
mjr | 67:c39e66c4e000 | 2575 | // for Media Next Track is 0xB5, but we encode this in the USB |
mjr | 67:c39e66c4e000 | 2576 | // report as bit 0x08. The mediaKeyMap[] table translates |
mjr | 67:c39e66c4e000 | 2577 | // from the USB usage number to the mask bit. If the key isn't |
mjr | 67:c39e66c4e000 | 2578 | // among the subset we support, the mapped bit will be zero, so |
mjr | 67:c39e66c4e000 | 2579 | // the "|=" will have no effect and the key will be ignored. |
mjr | 67:c39e66c4e000 | 2580 | mediakeys |= mediaKeyMap[val]; |
mjr | 67:c39e66c4e000 | 2581 | break; |
mjr | 53:9b2611964afc | 2582 | } |
mjr | 18:5e890ebd0023 | 2583 | } |
mjr | 11:bd9da7088e6e | 2584 | } |
mjr | 36:b9747461331e | 2585 | |
mjr | 36:b9747461331e | 2586 | // check for joystick button changes |
mjr | 36:b9747461331e | 2587 | if (jsButtons != newjs) |
mjr | 36:b9747461331e | 2588 | jsButtons = newjs; |
mjr | 11:bd9da7088e6e | 2589 | |
mjr | 35:e959ffba78fd | 2590 | // Check for changes to the keyboard keys |
mjr | 35:e959ffba78fd | 2591 | if (kbState.data[0] != modkeys |
mjr | 35:e959ffba78fd | 2592 | || kbState.nkeys != nkeys |
mjr | 35:e959ffba78fd | 2593 | || memcmp(keys, &kbState.data[2], 6) != 0) |
mjr | 35:e959ffba78fd | 2594 | { |
mjr | 35:e959ffba78fd | 2595 | // we have changes - set the change flag and store the new key data |
mjr | 35:e959ffba78fd | 2596 | kbState.changed = true; |
mjr | 35:e959ffba78fd | 2597 | kbState.data[0] = modkeys; |
mjr | 35:e959ffba78fd | 2598 | if (nkeys <= 6) { |
mjr | 35:e959ffba78fd | 2599 | // 6 or fewer simultaneous keys - report the key codes |
mjr | 35:e959ffba78fd | 2600 | kbState.nkeys = nkeys; |
mjr | 35:e959ffba78fd | 2601 | memcpy(&kbState.data[2], keys, 6); |
mjr | 35:e959ffba78fd | 2602 | } |
mjr | 35:e959ffba78fd | 2603 | else { |
mjr | 35:e959ffba78fd | 2604 | // more than 6 simultaneous keys - report rollover (all '1' key codes) |
mjr | 35:e959ffba78fd | 2605 | kbState.nkeys = 6; |
mjr | 35:e959ffba78fd | 2606 | memset(&kbState.data[2], 1, 6); |
mjr | 35:e959ffba78fd | 2607 | } |
mjr | 35:e959ffba78fd | 2608 | } |
mjr | 35:e959ffba78fd | 2609 | |
mjr | 35:e959ffba78fd | 2610 | // Check for changes to media keys |
mjr | 35:e959ffba78fd | 2611 | if (mediaState.data != mediakeys) |
mjr | 35:e959ffba78fd | 2612 | { |
mjr | 35:e959ffba78fd | 2613 | mediaState.changed = true; |
mjr | 35:e959ffba78fd | 2614 | mediaState.data = mediakeys; |
mjr | 35:e959ffba78fd | 2615 | } |
mjr | 11:bd9da7088e6e | 2616 | } |
mjr | 11:bd9da7088e6e | 2617 | |
mjr | 73:4e8ce0b18915 | 2618 | // Send a button status report |
mjr | 73:4e8ce0b18915 | 2619 | void reportButtonStatus(USBJoystick &js) |
mjr | 73:4e8ce0b18915 | 2620 | { |
mjr | 73:4e8ce0b18915 | 2621 | // start with all buttons off |
mjr | 73:4e8ce0b18915 | 2622 | uint8_t state[(MAX_BUTTONS+7)/8]; |
mjr | 73:4e8ce0b18915 | 2623 | memset(state, 0, sizeof(state)); |
mjr | 73:4e8ce0b18915 | 2624 | |
mjr | 73:4e8ce0b18915 | 2625 | // pack the button states into bytes, one bit per button |
mjr | 73:4e8ce0b18915 | 2626 | ButtonState *bs = buttonState; |
mjr | 73:4e8ce0b18915 | 2627 | for (int i = 0 ; i < nButtons ; ++i, ++bs) |
mjr | 73:4e8ce0b18915 | 2628 | { |
mjr | 73:4e8ce0b18915 | 2629 | // get the physical state |
mjr | 73:4e8ce0b18915 | 2630 | int b = bs->physState; |
mjr | 73:4e8ce0b18915 | 2631 | |
mjr | 73:4e8ce0b18915 | 2632 | // pack it into the appropriate bit |
mjr | 73:4e8ce0b18915 | 2633 | int idx = bs->cfgIndex; |
mjr | 73:4e8ce0b18915 | 2634 | int si = idx / 8; |
mjr | 73:4e8ce0b18915 | 2635 | int shift = idx & 0x07; |
mjr | 73:4e8ce0b18915 | 2636 | state[si] |= b << shift; |
mjr | 73:4e8ce0b18915 | 2637 | } |
mjr | 73:4e8ce0b18915 | 2638 | |
mjr | 73:4e8ce0b18915 | 2639 | // send the report |
mjr | 73:4e8ce0b18915 | 2640 | js.reportButtonStatus(MAX_BUTTONS, state); |
mjr | 73:4e8ce0b18915 | 2641 | } |
mjr | 73:4e8ce0b18915 | 2642 | |
mjr | 5:a70c0bce770d | 2643 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 2644 | // |
mjr | 5:a70c0bce770d | 2645 | // Customization joystick subbclass |
mjr | 5:a70c0bce770d | 2646 | // |
mjr | 5:a70c0bce770d | 2647 | |
mjr | 5:a70c0bce770d | 2648 | class MyUSBJoystick: public USBJoystick |
mjr | 5:a70c0bce770d | 2649 | { |
mjr | 5:a70c0bce770d | 2650 | public: |
mjr | 35:e959ffba78fd | 2651 | MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release, |
mjr | 35:e959ffba78fd | 2652 | bool waitForConnect, bool enableJoystick, bool useKB) |
mjr | 35:e959ffba78fd | 2653 | : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB) |
mjr | 5:a70c0bce770d | 2654 | { |
mjr | 54:fd77a6b2f76c | 2655 | sleeping_ = false; |
mjr | 54:fd77a6b2f76c | 2656 | reconnectPending_ = false; |
mjr | 54:fd77a6b2f76c | 2657 | timer_.start(); |
mjr | 54:fd77a6b2f76c | 2658 | } |
mjr | 54:fd77a6b2f76c | 2659 | |
mjr | 54:fd77a6b2f76c | 2660 | // show diagnostic LED feedback for connect state |
mjr | 54:fd77a6b2f76c | 2661 | void diagFlash() |
mjr | 54:fd77a6b2f76c | 2662 | { |
mjr | 54:fd77a6b2f76c | 2663 | if (!configured() || sleeping_) |
mjr | 54:fd77a6b2f76c | 2664 | { |
mjr | 54:fd77a6b2f76c | 2665 | // flash once if sleeping or twice if disconnected |
mjr | 54:fd77a6b2f76c | 2666 | for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j) |
mjr | 54:fd77a6b2f76c | 2667 | { |
mjr | 54:fd77a6b2f76c | 2668 | // short red flash |
mjr | 54:fd77a6b2f76c | 2669 | diagLED(1, 0, 0); |
mjr | 54:fd77a6b2f76c | 2670 | wait_us(50000); |
mjr | 54:fd77a6b2f76c | 2671 | diagLED(0, 0, 0); |
mjr | 54:fd77a6b2f76c | 2672 | wait_us(50000); |
mjr | 54:fd77a6b2f76c | 2673 | } |
mjr | 54:fd77a6b2f76c | 2674 | } |
mjr | 5:a70c0bce770d | 2675 | } |
mjr | 5:a70c0bce770d | 2676 | |
mjr | 5:a70c0bce770d | 2677 | // are we connected? |
mjr | 5:a70c0bce770d | 2678 | int isConnected() { return configured(); } |
mjr | 5:a70c0bce770d | 2679 | |
mjr | 54:fd77a6b2f76c | 2680 | // Are we in sleep mode? If true, this means that the hardware has |
mjr | 54:fd77a6b2f76c | 2681 | // detected no activity on the bus for 3ms. This happens when the |
mjr | 54:fd77a6b2f76c | 2682 | // cable is physically disconnected, the computer is turned off, or |
mjr | 54:fd77a6b2f76c | 2683 | // the connection is otherwise disabled. |
mjr | 54:fd77a6b2f76c | 2684 | bool isSleeping() const { return sleeping_; } |
mjr | 54:fd77a6b2f76c | 2685 | |
mjr | 54:fd77a6b2f76c | 2686 | // If necessary, attempt to recover from a broken connection. |
mjr | 54:fd77a6b2f76c | 2687 | // |
mjr | 54:fd77a6b2f76c | 2688 | // This is a hack, to work around an apparent timing bug in the |
mjr | 54:fd77a6b2f76c | 2689 | // KL25Z USB implementation that I haven't been able to solve any |
mjr | 54:fd77a6b2f76c | 2690 | // other way. |
mjr | 54:fd77a6b2f76c | 2691 | // |
mjr | 54:fd77a6b2f76c | 2692 | // The issue: when we have an established connection, and the |
mjr | 54:fd77a6b2f76c | 2693 | // connection is broken by physically unplugging the cable or by |
mjr | 54:fd77a6b2f76c | 2694 | // rebooting the PC, the KL25Z sometimes fails to reconnect when |
mjr | 54:fd77a6b2f76c | 2695 | // the physical connection is re-established. The failure is |
mjr | 54:fd77a6b2f76c | 2696 | // sporadic; I'd guess it happens about 25% of the time, but I |
mjr | 54:fd77a6b2f76c | 2697 | // haven't collected any real statistics on it. |
mjr | 54:fd77a6b2f76c | 2698 | // |
mjr | 54:fd77a6b2f76c | 2699 | // The proximate cause of the failure is a deadlock in the SETUP |
mjr | 54:fd77a6b2f76c | 2700 | // protocol between the host and device that happens around the |
mjr | 54:fd77a6b2f76c | 2701 | // point where the PC is requesting the configuration descriptor. |
mjr | 54:fd77a6b2f76c | 2702 | // The exact point in the protocol where this occurs varies slightly; |
mjr | 54:fd77a6b2f76c | 2703 | // it can occur a message or two before or after the Get Config |
mjr | 54:fd77a6b2f76c | 2704 | // Descriptor packet. No matter where it happens, the nature of |
mjr | 54:fd77a6b2f76c | 2705 | // the deadlock is the same: the PC thinks it sees a STALL on EP0 |
mjr | 54:fd77a6b2f76c | 2706 | // from the device, so it terminates the connection attempt, which |
mjr | 54:fd77a6b2f76c | 2707 | // stops further traffic on the cable. The KL25Z USB hardware sees |
mjr | 54:fd77a6b2f76c | 2708 | // the lack of traffic and triggers a SLEEP interrupt (a misnomer |
mjr | 54:fd77a6b2f76c | 2709 | // for what should have been called a BROKEN CONNECTION interrupt). |
mjr | 54:fd77a6b2f76c | 2710 | // Both sides simply stop talking at this point, so the connection |
mjr | 54:fd77a6b2f76c | 2711 | // is effectively dead. |
mjr | 54:fd77a6b2f76c | 2712 | // |
mjr | 54:fd77a6b2f76c | 2713 | // The strange thing is that, as far as I can tell, the KL25Z isn't |
mjr | 54:fd77a6b2f76c | 2714 | // doing anything to trigger the STALL on its end. Both the PC |
mjr | 54:fd77a6b2f76c | 2715 | // and the KL25Z are happy up until the very point of the failure |
mjr | 54:fd77a6b2f76c | 2716 | // and show no signs of anything wrong in the protocol exchange. |
mjr | 54:fd77a6b2f76c | 2717 | // In fact, every detail of the protocol exchange up to this point |
mjr | 54:fd77a6b2f76c | 2718 | // is identical to every successful exchange that does finish the |
mjr | 54:fd77a6b2f76c | 2719 | // whole setup process successfully, on both the KL25Z and Windows |
mjr | 54:fd77a6b2f76c | 2720 | // sides of the connection. I can't find any point of difference |
mjr | 54:fd77a6b2f76c | 2721 | // between successful and unsuccessful sequences that suggests why |
mjr | 54:fd77a6b2f76c | 2722 | // the fateful message fails. This makes me suspect that whatever |
mjr | 54:fd77a6b2f76c | 2723 | // is going wrong is inside the KL25Z USB hardware module, which |
mjr | 54:fd77a6b2f76c | 2724 | // is a pretty substantial black box - it has a lot of internal |
mjr | 54:fd77a6b2f76c | 2725 | // state that's inaccessible to the software. Further bolstering |
mjr | 54:fd77a6b2f76c | 2726 | // this theory is a little experiment where I found that I could |
mjr | 54:fd77a6b2f76c | 2727 | // reproduce the exact sequence of events of a failed reconnect |
mjr | 54:fd77a6b2f76c | 2728 | // attempt in an *initial* connection, which is otherwise 100% |
mjr | 54:fd77a6b2f76c | 2729 | // reliable, by inserting a little bit of artifical time padding |
mjr | 54:fd77a6b2f76c | 2730 | // (200us per event) into the SETUP interrupt handler. My |
mjr | 54:fd77a6b2f76c | 2731 | // hypothesis is that the STALL event happens because the KL25Z |
mjr | 54:fd77a6b2f76c | 2732 | // USB hardware is too slow to respond to a message. I'm not |
mjr | 54:fd77a6b2f76c | 2733 | // sure why this would only happen after a disconnect and not |
mjr | 54:fd77a6b2f76c | 2734 | // during the initial connection; maybe there's some reset work |
mjr | 54:fd77a6b2f76c | 2735 | // in the hardware that takes a substantial amount of time after |
mjr | 54:fd77a6b2f76c | 2736 | // a disconnect. |
mjr | 54:fd77a6b2f76c | 2737 | // |
mjr | 54:fd77a6b2f76c | 2738 | // The solution: the problem happens during the SETUP exchange, |
mjr | 54:fd77a6b2f76c | 2739 | // after we've been assigned a bus address. It only happens on |
mjr | 54:fd77a6b2f76c | 2740 | // some percentage of connection requests, so if we can simply |
mjr | 54:fd77a6b2f76c | 2741 | // start over when the failure occurs, we'll eventually succeed |
mjr | 54:fd77a6b2f76c | 2742 | // simply because not every attempt fails. The ideal would be |
mjr | 54:fd77a6b2f76c | 2743 | // to get the success rate up to 100%, but I can't figure out how |
mjr | 54:fd77a6b2f76c | 2744 | // to fix the underlying problem, so this is the next best thing. |
mjr | 54:fd77a6b2f76c | 2745 | // |
mjr | 54:fd77a6b2f76c | 2746 | // We can detect when the failure occurs by noticing when a SLEEP |
mjr | 54:fd77a6b2f76c | 2747 | // interrupt happens while we have an assigned bus address. |
mjr | 54:fd77a6b2f76c | 2748 | // |
mjr | 54:fd77a6b2f76c | 2749 | // To start a new connection attempt, we have to make the *host* |
mjr | 54:fd77a6b2f76c | 2750 | // try again. The logical connection is initiated solely by the |
mjr | 54:fd77a6b2f76c | 2751 | // host. Fortunately, it's easy to get the host to initiate the |
mjr | 54:fd77a6b2f76c | 2752 | // process: if we disconnect on the device side, it effectively |
mjr | 54:fd77a6b2f76c | 2753 | // makes the device look to the PC like it's electrically unplugged. |
mjr | 54:fd77a6b2f76c | 2754 | // When we reconnect on the device side, the PC thinks a new device |
mjr | 54:fd77a6b2f76c | 2755 | // has been plugged in and initiates the logical connection setup. |
mjr | 74:822a92bc11d2 | 2756 | // We have to remain disconnected for some minimum interval before |
mjr | 74:822a92bc11d2 | 2757 | // the host notices; the exact minimum is unclear, but 5ms seems |
mjr | 74:822a92bc11d2 | 2758 | // reliable in practice. |
mjr | 54:fd77a6b2f76c | 2759 | // |
mjr | 54:fd77a6b2f76c | 2760 | // Here's the full algorithm: |
mjr | 54:fd77a6b2f76c | 2761 | // |
mjr | 54:fd77a6b2f76c | 2762 | // 1. In the SLEEP interrupt handler, if we have a bus address, |
mjr | 54:fd77a6b2f76c | 2763 | // we disconnect the device. This happens in ISR context, so we |
mjr | 54:fd77a6b2f76c | 2764 | // can't wait around for 5ms. Instead, we simply set a flag noting |
mjr | 54:fd77a6b2f76c | 2765 | // that the connection has been broken, and we note the time and |
mjr | 54:fd77a6b2f76c | 2766 | // return. |
mjr | 54:fd77a6b2f76c | 2767 | // |
mjr | 54:fd77a6b2f76c | 2768 | // 2. In our main loop, whenever we find that we're disconnected, |
mjr | 54:fd77a6b2f76c | 2769 | // we call recoverConnection(). The main loop's job is basically a |
mjr | 54:fd77a6b2f76c | 2770 | // bunch of device polling. We're just one more device to poll, so |
mjr | 54:fd77a6b2f76c | 2771 | // recoverConnection() will be called soon after a disconnect, and |
mjr | 54:fd77a6b2f76c | 2772 | // then will be called in a loop for as long as we're disconnected. |
mjr | 54:fd77a6b2f76c | 2773 | // |
mjr | 54:fd77a6b2f76c | 2774 | // 3. In recoverConnection(), we check the flag we set in the SLEEP |
mjr | 54:fd77a6b2f76c | 2775 | // handler. If set, we wait until 5ms has elapsed from the SLEEP |
mjr | 54:fd77a6b2f76c | 2776 | // event time that we noted, then we'll reconnect and clear the flag. |
mjr | 54:fd77a6b2f76c | 2777 | // This gives us the required 5ms (or longer) delay between the |
mjr | 54:fd77a6b2f76c | 2778 | // disconnect and reconnect, ensuring that the PC will notice and |
mjr | 54:fd77a6b2f76c | 2779 | // will start over with the connection protocol. |
mjr | 54:fd77a6b2f76c | 2780 | // |
mjr | 54:fd77a6b2f76c | 2781 | // 4. The main loop keeps calling recoverConnection() in a loop for |
mjr | 54:fd77a6b2f76c | 2782 | // as long as we're disconnected, so if the new connection attempt |
mjr | 54:fd77a6b2f76c | 2783 | // triggered in step 3 fails, the SLEEP interrupt will happen again, |
mjr | 54:fd77a6b2f76c | 2784 | // we'll disconnect again, the flag will get set again, and |
mjr | 54:fd77a6b2f76c | 2785 | // recoverConnection() will reconnect again after another suitable |
mjr | 54:fd77a6b2f76c | 2786 | // delay. This will repeat until the connection succeeds or hell |
mjr | 54:fd77a6b2f76c | 2787 | // freezes over. |
mjr | 54:fd77a6b2f76c | 2788 | // |
mjr | 54:fd77a6b2f76c | 2789 | // Each disconnect happens immediately when a reconnect attempt |
mjr | 54:fd77a6b2f76c | 2790 | // fails, and an entire successful connection only takes about 25ms, |
mjr | 54:fd77a6b2f76c | 2791 | // so our loop can retry at more than 30 attempts per second. |
mjr | 54:fd77a6b2f76c | 2792 | // In my testing, lost connections almost always reconnect in |
mjr | 54:fd77a6b2f76c | 2793 | // less than second with this code in place. |
mjr | 54:fd77a6b2f76c | 2794 | void recoverConnection() |
mjr | 54:fd77a6b2f76c | 2795 | { |
mjr | 54:fd77a6b2f76c | 2796 | // if a reconnect is pending, reconnect |
mjr | 54:fd77a6b2f76c | 2797 | if (reconnectPending_) |
mjr | 54:fd77a6b2f76c | 2798 | { |
mjr | 54:fd77a6b2f76c | 2799 | // Loop until we reach 5ms after the last sleep event. |
mjr | 54:fd77a6b2f76c | 2800 | for (bool done = false ; !done ; ) |
mjr | 54:fd77a6b2f76c | 2801 | { |
mjr | 54:fd77a6b2f76c | 2802 | // If we've reached the target time, reconnect. Do the |
mjr | 54:fd77a6b2f76c | 2803 | // time check and flag reset atomically, so that we can't |
mjr | 54:fd77a6b2f76c | 2804 | // have another sleep event sneak in after we've verified |
mjr | 54:fd77a6b2f76c | 2805 | // the time. If another event occurs, it has to happen |
mjr | 54:fd77a6b2f76c | 2806 | // before we check, in which case it'll update the time |
mjr | 54:fd77a6b2f76c | 2807 | // before we check it, or after we clear the flag, in |
mjr | 54:fd77a6b2f76c | 2808 | // which case it will reset the flag and we'll do another |
mjr | 54:fd77a6b2f76c | 2809 | // round the next time we call this routine. |
mjr | 54:fd77a6b2f76c | 2810 | __disable_irq(); |
mjr | 54:fd77a6b2f76c | 2811 | if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000) |
mjr | 54:fd77a6b2f76c | 2812 | { |
mjr | 54:fd77a6b2f76c | 2813 | connect(false); |
mjr | 54:fd77a6b2f76c | 2814 | reconnectPending_ = false; |
mjr | 54:fd77a6b2f76c | 2815 | done = true; |
mjr | 54:fd77a6b2f76c | 2816 | } |
mjr | 54:fd77a6b2f76c | 2817 | __enable_irq(); |
mjr | 54:fd77a6b2f76c | 2818 | } |
mjr | 54:fd77a6b2f76c | 2819 | } |
mjr | 54:fd77a6b2f76c | 2820 | } |
mjr | 5:a70c0bce770d | 2821 | |
mjr | 5:a70c0bce770d | 2822 | protected: |
mjr | 54:fd77a6b2f76c | 2823 | // Handle a USB SLEEP interrupt. This interrupt signifies that the |
mjr | 54:fd77a6b2f76c | 2824 | // USB hardware module hasn't seen any token traffic for 3ms, which |
mjr | 54:fd77a6b2f76c | 2825 | // means that we're either physically or logically disconnected. |
mjr | 54:fd77a6b2f76c | 2826 | // |
mjr | 54:fd77a6b2f76c | 2827 | // Important: this runs in ISR context. |
mjr | 54:fd77a6b2f76c | 2828 | // |
mjr | 54:fd77a6b2f76c | 2829 | // Note that this is a specialized sense of "sleep" that's unrelated |
mjr | 54:fd77a6b2f76c | 2830 | // to the similarly named power modes on the PC. This has nothing |
mjr | 54:fd77a6b2f76c | 2831 | // to do with suspend/sleep mode on the PC, and it's not a low-power |
mjr | 54:fd77a6b2f76c | 2832 | // mode on the KL25Z. They really should have called this interrupt |
mjr | 54:fd77a6b2f76c | 2833 | // DISCONNECT or BROKEN CONNECTION.) |
mjr | 54:fd77a6b2f76c | 2834 | virtual void sleepStateChanged(unsigned int sleeping) |
mjr | 54:fd77a6b2f76c | 2835 | { |
mjr | 54:fd77a6b2f76c | 2836 | // note the new state |
mjr | 54:fd77a6b2f76c | 2837 | sleeping_ = sleeping; |
mjr | 54:fd77a6b2f76c | 2838 | |
mjr | 54:fd77a6b2f76c | 2839 | // If we have a non-zero bus address, we have at least a partial |
mjr | 54:fd77a6b2f76c | 2840 | // connection to the host (we've made it at least as far as the |
mjr | 54:fd77a6b2f76c | 2841 | // SETUP stage). Explicitly disconnect, and the pending reconnect |
mjr | 54:fd77a6b2f76c | 2842 | // flag, and remember the time of the sleep event. |
mjr | 54:fd77a6b2f76c | 2843 | if (USB0->ADDR != 0x00) |
mjr | 54:fd77a6b2f76c | 2844 | { |
mjr | 54:fd77a6b2f76c | 2845 | disconnect(); |
mjr | 54:fd77a6b2f76c | 2846 | lastSleepTime_ = timer_.read_us(); |
mjr | 54:fd77a6b2f76c | 2847 | reconnectPending_ = true; |
mjr | 54:fd77a6b2f76c | 2848 | } |
mjr | 54:fd77a6b2f76c | 2849 | } |
mjr | 54:fd77a6b2f76c | 2850 | |
mjr | 54:fd77a6b2f76c | 2851 | // is the USB connection asleep? |
mjr | 54:fd77a6b2f76c | 2852 | volatile bool sleeping_; |
mjr | 54:fd77a6b2f76c | 2853 | |
mjr | 54:fd77a6b2f76c | 2854 | // flag: reconnect pending after sleep event |
mjr | 54:fd77a6b2f76c | 2855 | volatile bool reconnectPending_; |
mjr | 54:fd77a6b2f76c | 2856 | |
mjr | 54:fd77a6b2f76c | 2857 | // time of last sleep event while connected |
mjr | 54:fd77a6b2f76c | 2858 | volatile uint32_t lastSleepTime_; |
mjr | 54:fd77a6b2f76c | 2859 | |
mjr | 54:fd77a6b2f76c | 2860 | // timer to keep track of interval since last sleep event |
mjr | 54:fd77a6b2f76c | 2861 | Timer timer_; |
mjr | 5:a70c0bce770d | 2862 | }; |
mjr | 5:a70c0bce770d | 2863 | |
mjr | 5:a70c0bce770d | 2864 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 2865 | // |
mjr | 5:a70c0bce770d | 2866 | // Accelerometer (MMA8451Q) |
mjr | 5:a70c0bce770d | 2867 | // |
mjr | 5:a70c0bce770d | 2868 | |
mjr | 5:a70c0bce770d | 2869 | // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer. |
mjr | 5:a70c0bce770d | 2870 | // |
mjr | 5:a70c0bce770d | 2871 | // This is a custom wrapper for the library code to interface to the |
mjr | 6:cc35eb643e8f | 2872 | // MMA8451Q. This class encapsulates an interrupt handler and |
mjr | 6:cc35eb643e8f | 2873 | // automatic calibration. |
mjr | 5:a70c0bce770d | 2874 | // |
mjr | 5:a70c0bce770d | 2875 | // We install an interrupt handler on the accelerometer "data ready" |
mjr | 6:cc35eb643e8f | 2876 | // interrupt to ensure that we fetch each sample immediately when it |
mjr | 74:822a92bc11d2 | 2877 | // becomes available. The accelerometer data rate is fairly high |
mjr | 6:cc35eb643e8f | 2878 | // (800 Hz), so it's not practical to keep up with it by polling. |
mjr | 6:cc35eb643e8f | 2879 | // Using an interrupt handler lets us respond quickly and read |
mjr | 6:cc35eb643e8f | 2880 | // every sample. |
mjr | 5:a70c0bce770d | 2881 | // |
mjr | 6:cc35eb643e8f | 2882 | // We automatically calibrate the accelerometer so that it's not |
mjr | 6:cc35eb643e8f | 2883 | // necessary to get it exactly level when installing it, and so |
mjr | 6:cc35eb643e8f | 2884 | // that it's also not necessary to calibrate it manually. There's |
mjr | 6:cc35eb643e8f | 2885 | // lots of experience that tells us that manual calibration is a |
mjr | 6:cc35eb643e8f | 2886 | // terrible solution, mostly because cabinets tend to shift slightly |
mjr | 6:cc35eb643e8f | 2887 | // during use, requiring frequent recalibration. Instead, we |
mjr | 6:cc35eb643e8f | 2888 | // calibrate automatically. We continuously monitor the acceleration |
mjr | 6:cc35eb643e8f | 2889 | // data, watching for periods of constant (or nearly constant) values. |
mjr | 6:cc35eb643e8f | 2890 | // Any time it appears that the machine has been at rest for a while |
mjr | 6:cc35eb643e8f | 2891 | // (about 5 seconds), we'll average the readings during that rest |
mjr | 6:cc35eb643e8f | 2892 | // period and use the result as the level rest position. This is |
mjr | 6:cc35eb643e8f | 2893 | // is ongoing, so we'll quickly find the center point again if the |
mjr | 6:cc35eb643e8f | 2894 | // machine is moved during play (by an especially aggressive bout |
mjr | 6:cc35eb643e8f | 2895 | // of nudging, say). |
mjr | 5:a70c0bce770d | 2896 | // |
mjr | 5:a70c0bce770d | 2897 | |
mjr | 17:ab3cec0c8bf4 | 2898 | // I2C address of the accelerometer (this is a constant of the KL25Z) |
mjr | 17:ab3cec0c8bf4 | 2899 | const int MMA8451_I2C_ADDRESS = (0x1d<<1); |
mjr | 17:ab3cec0c8bf4 | 2900 | |
mjr | 17:ab3cec0c8bf4 | 2901 | // SCL and SDA pins for the accelerometer (constant for the KL25Z) |
mjr | 17:ab3cec0c8bf4 | 2902 | #define MMA8451_SCL_PIN PTE25 |
mjr | 17:ab3cec0c8bf4 | 2903 | #define MMA8451_SDA_PIN PTE24 |
mjr | 17:ab3cec0c8bf4 | 2904 | |
mjr | 17:ab3cec0c8bf4 | 2905 | // Digital in pin to use for the accelerometer interrupt. For the KL25Z, |
mjr | 17:ab3cec0c8bf4 | 2906 | // this can be either PTA14 or PTA15, since those are the pins physically |
mjr | 17:ab3cec0c8bf4 | 2907 | // wired on this board to the MMA8451 interrupt controller. |
mjr | 17:ab3cec0c8bf4 | 2908 | #define MMA8451_INT_PIN PTA15 |
mjr | 17:ab3cec0c8bf4 | 2909 | |
mjr | 17:ab3cec0c8bf4 | 2910 | |
mjr | 6:cc35eb643e8f | 2911 | // accelerometer input history item, for gathering calibration data |
mjr | 6:cc35eb643e8f | 2912 | struct AccHist |
mjr | 5:a70c0bce770d | 2913 | { |
mjr | 6:cc35eb643e8f | 2914 | AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; } |
mjr | 6:cc35eb643e8f | 2915 | void set(float x, float y, AccHist *prv) |
mjr | 6:cc35eb643e8f | 2916 | { |
mjr | 6:cc35eb643e8f | 2917 | // save the raw position |
mjr | 6:cc35eb643e8f | 2918 | this->x = x; |
mjr | 6:cc35eb643e8f | 2919 | this->y = y; |
mjr | 6:cc35eb643e8f | 2920 | this->d = distance(prv); |
mjr | 6:cc35eb643e8f | 2921 | } |
mjr | 6:cc35eb643e8f | 2922 | |
mjr | 6:cc35eb643e8f | 2923 | // reading for this entry |
mjr | 5:a70c0bce770d | 2924 | float x, y; |
mjr | 5:a70c0bce770d | 2925 | |
mjr | 6:cc35eb643e8f | 2926 | // distance from previous entry |
mjr | 6:cc35eb643e8f | 2927 | float d; |
mjr | 5:a70c0bce770d | 2928 | |
mjr | 6:cc35eb643e8f | 2929 | // total and count of samples averaged over this period |
mjr | 6:cc35eb643e8f | 2930 | float xtot, ytot; |
mjr | 6:cc35eb643e8f | 2931 | int cnt; |
mjr | 6:cc35eb643e8f | 2932 | |
mjr | 6:cc35eb643e8f | 2933 | void clearAvg() { xtot = ytot = 0.0; cnt = 0; } |
mjr | 6:cc35eb643e8f | 2934 | void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; } |
mjr | 6:cc35eb643e8f | 2935 | float xAvg() const { return xtot/cnt; } |
mjr | 6:cc35eb643e8f | 2936 | float yAvg() const { return ytot/cnt; } |
mjr | 5:a70c0bce770d | 2937 | |
mjr | 6:cc35eb643e8f | 2938 | float distance(AccHist *p) |
mjr | 6:cc35eb643e8f | 2939 | { return sqrt(square(p->x - x) + square(p->y - y)); } |
mjr | 5:a70c0bce770d | 2940 | }; |
mjr | 5:a70c0bce770d | 2941 | |
mjr | 5:a70c0bce770d | 2942 | // accelerometer wrapper class |
mjr | 3:3514575d4f86 | 2943 | class Accel |
mjr | 3:3514575d4f86 | 2944 | { |
mjr | 3:3514575d4f86 | 2945 | public: |
mjr | 3:3514575d4f86 | 2946 | Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin) |
mjr | 3:3514575d4f86 | 2947 | : mma_(sda, scl, i2cAddr), intIn_(irqPin) |
mjr | 3:3514575d4f86 | 2948 | { |
mjr | 5:a70c0bce770d | 2949 | // remember the interrupt pin assignment |
mjr | 5:a70c0bce770d | 2950 | irqPin_ = irqPin; |
mjr | 5:a70c0bce770d | 2951 | |
mjr | 5:a70c0bce770d | 2952 | // reset and initialize |
mjr | 5:a70c0bce770d | 2953 | reset(); |
mjr | 5:a70c0bce770d | 2954 | } |
mjr | 5:a70c0bce770d | 2955 | |
mjr | 5:a70c0bce770d | 2956 | void reset() |
mjr | 5:a70c0bce770d | 2957 | { |
mjr | 6:cc35eb643e8f | 2958 | // clear the center point |
mjr | 6:cc35eb643e8f | 2959 | cx_ = cy_ = 0.0; |
mjr | 6:cc35eb643e8f | 2960 | |
mjr | 6:cc35eb643e8f | 2961 | // start the calibration timer |
mjr | 5:a70c0bce770d | 2962 | tCenter_.start(); |
mjr | 5:a70c0bce770d | 2963 | iAccPrv_ = nAccPrv_ = 0; |
mjr | 6:cc35eb643e8f | 2964 | |
mjr | 5:a70c0bce770d | 2965 | // reset and initialize the MMA8451Q |
mjr | 5:a70c0bce770d | 2966 | mma_.init(); |
mjr | 6:cc35eb643e8f | 2967 | |
mjr | 6:cc35eb643e8f | 2968 | // set the initial integrated velocity reading to zero |
mjr | 6:cc35eb643e8f | 2969 | vx_ = vy_ = 0; |
mjr | 3:3514575d4f86 | 2970 | |
mjr | 6:cc35eb643e8f | 2971 | // set up our accelerometer interrupt handling |
mjr | 6:cc35eb643e8f | 2972 | intIn_.rise(this, &Accel::isr); |
mjr | 5:a70c0bce770d | 2973 | mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2); |
mjr | 3:3514575d4f86 | 2974 | |
mjr | 3:3514575d4f86 | 2975 | // read the current registers to clear the data ready flag |
mjr | 6:cc35eb643e8f | 2976 | mma_.getAccXYZ(ax_, ay_, az_); |
mjr | 3:3514575d4f86 | 2977 | |
mjr | 3:3514575d4f86 | 2978 | // start our timers |
mjr | 3:3514575d4f86 | 2979 | tGet_.start(); |
mjr | 3:3514575d4f86 | 2980 | tInt_.start(); |
mjr | 3:3514575d4f86 | 2981 | } |
mjr | 3:3514575d4f86 | 2982 | |
mjr | 9:fd65b0a94720 | 2983 | void get(int &x, int &y) |
mjr | 3:3514575d4f86 | 2984 | { |
mjr | 3:3514575d4f86 | 2985 | // disable interrupts while manipulating the shared data |
mjr | 3:3514575d4f86 | 2986 | __disable_irq(); |
mjr | 3:3514575d4f86 | 2987 | |
mjr | 3:3514575d4f86 | 2988 | // read the shared data and store locally for calculations |
mjr | 6:cc35eb643e8f | 2989 | float ax = ax_, ay = ay_; |
mjr | 6:cc35eb643e8f | 2990 | float vx = vx_, vy = vy_; |
mjr | 5:a70c0bce770d | 2991 | |
mjr | 6:cc35eb643e8f | 2992 | // reset the velocity sum for the next run |
mjr | 6:cc35eb643e8f | 2993 | vx_ = vy_ = 0; |
mjr | 3:3514575d4f86 | 2994 | |
mjr | 3:3514575d4f86 | 2995 | // get the time since the last get() sample |
mjr | 73:4e8ce0b18915 | 2996 | int dtus = tGet_.read_us(); |
mjr | 3:3514575d4f86 | 2997 | tGet_.reset(); |
mjr | 3:3514575d4f86 | 2998 | |
mjr | 3:3514575d4f86 | 2999 | // done manipulating the shared data |
mjr | 3:3514575d4f86 | 3000 | __enable_irq(); |
mjr | 3:3514575d4f86 | 3001 | |
mjr | 6:cc35eb643e8f | 3002 | // adjust the readings for the integration time |
mjr | 73:4e8ce0b18915 | 3003 | float dt = dtus/1000000.0f; |
mjr | 6:cc35eb643e8f | 3004 | vx /= dt; |
mjr | 6:cc35eb643e8f | 3005 | vy /= dt; |
mjr | 6:cc35eb643e8f | 3006 | |
mjr | 6:cc35eb643e8f | 3007 | // add this sample to the current calibration interval's running total |
mjr | 6:cc35eb643e8f | 3008 | AccHist *p = accPrv_ + iAccPrv_; |
mjr | 6:cc35eb643e8f | 3009 | p->addAvg(ax, ay); |
mjr | 6:cc35eb643e8f | 3010 | |
mjr | 5:a70c0bce770d | 3011 | // check for auto-centering every so often |
mjr | 48:058ace2aed1d | 3012 | if (tCenter_.read_us() > 1000000) |
mjr | 5:a70c0bce770d | 3013 | { |
mjr | 5:a70c0bce770d | 3014 | // add the latest raw sample to the history list |
mjr | 6:cc35eb643e8f | 3015 | AccHist *prv = p; |
mjr | 5:a70c0bce770d | 3016 | iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv; |
mjr | 6:cc35eb643e8f | 3017 | p = accPrv_ + iAccPrv_; |
mjr | 6:cc35eb643e8f | 3018 | p->set(ax, ay, prv); |
mjr | 5:a70c0bce770d | 3019 | |
mjr | 5:a70c0bce770d | 3020 | // if we have a full complement, check for stability |
mjr | 5:a70c0bce770d | 3021 | if (nAccPrv_ >= maxAccPrv) |
mjr | 5:a70c0bce770d | 3022 | { |
mjr | 5:a70c0bce770d | 3023 | // check if we've been stable for all recent samples |
mjr | 75:677892300e7a | 3024 | static const float accTol = .01f; |
mjr | 6:cc35eb643e8f | 3025 | AccHist *p0 = accPrv_; |
mjr | 6:cc35eb643e8f | 3026 | if (p0[0].d < accTol |
mjr | 6:cc35eb643e8f | 3027 | && p0[1].d < accTol |
mjr | 6:cc35eb643e8f | 3028 | && p0[2].d < accTol |
mjr | 6:cc35eb643e8f | 3029 | && p0[3].d < accTol |
mjr | 6:cc35eb643e8f | 3030 | && p0[4].d < accTol) |
mjr | 5:a70c0bce770d | 3031 | { |
mjr | 6:cc35eb643e8f | 3032 | // Figure the new calibration point as the average of |
mjr | 6:cc35eb643e8f | 3033 | // the samples over the rest period |
mjr | 75:677892300e7a | 3034 | cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0f; |
mjr | 75:677892300e7a | 3035 | cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0f; |
mjr | 5:a70c0bce770d | 3036 | } |
mjr | 5:a70c0bce770d | 3037 | } |
mjr | 5:a70c0bce770d | 3038 | else |
mjr | 5:a70c0bce770d | 3039 | { |
mjr | 5:a70c0bce770d | 3040 | // not enough samples yet; just up the count |
mjr | 5:a70c0bce770d | 3041 | ++nAccPrv_; |
mjr | 5:a70c0bce770d | 3042 | } |
mjr | 6:cc35eb643e8f | 3043 | |
mjr | 6:cc35eb643e8f | 3044 | // clear the new item's running totals |
mjr | 6:cc35eb643e8f | 3045 | p->clearAvg(); |
mjr | 5:a70c0bce770d | 3046 | |
mjr | 5:a70c0bce770d | 3047 | // reset the timer |
mjr | 5:a70c0bce770d | 3048 | tCenter_.reset(); |
mjr | 39:b3815a1c3802 | 3049 | |
mjr | 39:b3815a1c3802 | 3050 | // If we haven't seen an interrupt in a while, do an explicit read to |
mjr | 39:b3815a1c3802 | 3051 | // "unstick" the device. The device can become stuck - which is to say, |
mjr | 39:b3815a1c3802 | 3052 | // it will stop delivering data-ready interrupts - if we fail to service |
mjr | 39:b3815a1c3802 | 3053 | // one data-ready interrupt before the next one occurs. Reading a sample |
mjr | 39:b3815a1c3802 | 3054 | // will clear up this overrun condition and allow normal interrupt |
mjr | 39:b3815a1c3802 | 3055 | // generation to continue. |
mjr | 39:b3815a1c3802 | 3056 | // |
mjr | 39:b3815a1c3802 | 3057 | // Note that this stuck condition *shouldn't* ever occur - if it does, |
mjr | 39:b3815a1c3802 | 3058 | // it means that we're spending a long period with interrupts disabled |
mjr | 39:b3815a1c3802 | 3059 | // (either in a critical section or in another interrupt handler), which |
mjr | 39:b3815a1c3802 | 3060 | // will likely cause other worse problems beyond the sticky accelerometer. |
mjr | 39:b3815a1c3802 | 3061 | // Even so, it's easy to detect and correct, so we'll do so for the sake |
mjr | 39:b3815a1c3802 | 3062 | // of making the system more fault-tolerant. |
mjr | 39:b3815a1c3802 | 3063 | if (tInt_.read() > 1.0f) |
mjr | 39:b3815a1c3802 | 3064 | { |
mjr | 39:b3815a1c3802 | 3065 | float x, y, z; |
mjr | 39:b3815a1c3802 | 3066 | mma_.getAccXYZ(x, y, z); |
mjr | 39:b3815a1c3802 | 3067 | } |
mjr | 5:a70c0bce770d | 3068 | } |
mjr | 5:a70c0bce770d | 3069 | |
mjr | 6:cc35eb643e8f | 3070 | // report our integrated velocity reading in x,y |
mjr | 6:cc35eb643e8f | 3071 | x = rawToReport(vx); |
mjr | 6:cc35eb643e8f | 3072 | y = rawToReport(vy); |
mjr | 5:a70c0bce770d | 3073 | |
mjr | 6:cc35eb643e8f | 3074 | #ifdef DEBUG_PRINTF |
mjr | 6:cc35eb643e8f | 3075 | if (x != 0 || y != 0) |
mjr | 6:cc35eb643e8f | 3076 | printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt); |
mjr | 6:cc35eb643e8f | 3077 | #endif |
mjr | 3:3514575d4f86 | 3078 | } |
mjr | 29:582472d0bc57 | 3079 | |
mjr | 3:3514575d4f86 | 3080 | private: |
mjr | 6:cc35eb643e8f | 3081 | // adjust a raw acceleration figure to a usb report value |
mjr | 6:cc35eb643e8f | 3082 | int rawToReport(float v) |
mjr | 5:a70c0bce770d | 3083 | { |
mjr | 6:cc35eb643e8f | 3084 | // scale to the joystick report range and round to integer |
mjr | 6:cc35eb643e8f | 3085 | int i = int(round(v*JOYMAX)); |
mjr | 5:a70c0bce770d | 3086 | |
mjr | 6:cc35eb643e8f | 3087 | // if it's near the center, scale it roughly as 20*(i/20)^2, |
mjr | 6:cc35eb643e8f | 3088 | // to suppress noise near the rest position |
mjr | 6:cc35eb643e8f | 3089 | static const int filter[] = { |
mjr | 6:cc35eb643e8f | 3090 | -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0, |
mjr | 6:cc35eb643e8f | 3091 | 0, |
mjr | 6:cc35eb643e8f | 3092 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18 |
mjr | 6:cc35eb643e8f | 3093 | }; |
mjr | 6:cc35eb643e8f | 3094 | return (i > 20 || i < -20 ? i : filter[i+20]); |
mjr | 5:a70c0bce770d | 3095 | } |
mjr | 5:a70c0bce770d | 3096 | |
mjr | 3:3514575d4f86 | 3097 | // interrupt handler |
mjr | 3:3514575d4f86 | 3098 | void isr() |
mjr | 3:3514575d4f86 | 3099 | { |
mjr | 3:3514575d4f86 | 3100 | // Read the axes. Note that we have to read all three axes |
mjr | 3:3514575d4f86 | 3101 | // (even though we only really use x and y) in order to clear |
mjr | 3:3514575d4f86 | 3102 | // the "data ready" status bit in the accelerometer. The |
mjr | 3:3514575d4f86 | 3103 | // interrupt only occurs when the "ready" bit transitions from |
mjr | 3:3514575d4f86 | 3104 | // off to on, so we have to make sure it's off. |
mjr | 5:a70c0bce770d | 3105 | float x, y, z; |
mjr | 5:a70c0bce770d | 3106 | mma_.getAccXYZ(x, y, z); |
mjr | 3:3514575d4f86 | 3107 | |
mjr | 3:3514575d4f86 | 3108 | // calculate the time since the last interrupt |
mjr | 39:b3815a1c3802 | 3109 | float dt = tInt_.read(); |
mjr | 3:3514575d4f86 | 3110 | tInt_.reset(); |
mjr | 6:cc35eb643e8f | 3111 | |
mjr | 6:cc35eb643e8f | 3112 | // integrate the time slice from the previous reading to this reading |
mjr | 6:cc35eb643e8f | 3113 | vx_ += (x + ax_ - 2*cx_)*dt/2; |
mjr | 6:cc35eb643e8f | 3114 | vy_ += (y + ay_ - 2*cy_)*dt/2; |
mjr | 3:3514575d4f86 | 3115 | |
mjr | 6:cc35eb643e8f | 3116 | // store the updates |
mjr | 6:cc35eb643e8f | 3117 | ax_ = x; |
mjr | 6:cc35eb643e8f | 3118 | ay_ = y; |
mjr | 6:cc35eb643e8f | 3119 | az_ = z; |
mjr | 3:3514575d4f86 | 3120 | } |
mjr | 3:3514575d4f86 | 3121 | |
mjr | 3:3514575d4f86 | 3122 | // underlying accelerometer object |
mjr | 3:3514575d4f86 | 3123 | MMA8451Q mma_; |
mjr | 3:3514575d4f86 | 3124 | |
mjr | 5:a70c0bce770d | 3125 | // last raw acceleration readings |
mjr | 6:cc35eb643e8f | 3126 | float ax_, ay_, az_; |
mjr | 5:a70c0bce770d | 3127 | |
mjr | 6:cc35eb643e8f | 3128 | // integrated velocity reading since last get() |
mjr | 6:cc35eb643e8f | 3129 | float vx_, vy_; |
mjr | 6:cc35eb643e8f | 3130 | |
mjr | 3:3514575d4f86 | 3131 | // timer for measuring time between get() samples |
mjr | 3:3514575d4f86 | 3132 | Timer tGet_; |
mjr | 3:3514575d4f86 | 3133 | |
mjr | 3:3514575d4f86 | 3134 | // timer for measuring time between interrupts |
mjr | 3:3514575d4f86 | 3135 | Timer tInt_; |
mjr | 5:a70c0bce770d | 3136 | |
mjr | 6:cc35eb643e8f | 3137 | // Calibration reference point for accelerometer. This is the |
mjr | 6:cc35eb643e8f | 3138 | // average reading on the accelerometer when in the neutral position |
mjr | 6:cc35eb643e8f | 3139 | // at rest. |
mjr | 6:cc35eb643e8f | 3140 | float cx_, cy_; |
mjr | 5:a70c0bce770d | 3141 | |
mjr | 5:a70c0bce770d | 3142 | // timer for atuo-centering |
mjr | 5:a70c0bce770d | 3143 | Timer tCenter_; |
mjr | 6:cc35eb643e8f | 3144 | |
mjr | 6:cc35eb643e8f | 3145 | // Auto-centering history. This is a separate history list that |
mjr | 6:cc35eb643e8f | 3146 | // records results spaced out sparesely over time, so that we can |
mjr | 6:cc35eb643e8f | 3147 | // watch for long-lasting periods of rest. When we observe nearly |
mjr | 6:cc35eb643e8f | 3148 | // no motion for an extended period (on the order of 5 seconds), we |
mjr | 6:cc35eb643e8f | 3149 | // take this to mean that the cabinet is at rest in its neutral |
mjr | 6:cc35eb643e8f | 3150 | // position, so we take this as the calibration zero point for the |
mjr | 6:cc35eb643e8f | 3151 | // accelerometer. We update this history continuously, which allows |
mjr | 6:cc35eb643e8f | 3152 | // us to continuously re-calibrate the accelerometer. This ensures |
mjr | 6:cc35eb643e8f | 3153 | // that we'll automatically adjust to any actual changes in the |
mjr | 6:cc35eb643e8f | 3154 | // cabinet's orientation (e.g., if it gets moved slightly by an |
mjr | 6:cc35eb643e8f | 3155 | // especially strong nudge) as well as any systematic drift in the |
mjr | 6:cc35eb643e8f | 3156 | // accelerometer measurement bias (e.g., from temperature changes). |
mjr | 5:a70c0bce770d | 3157 | int iAccPrv_, nAccPrv_; |
mjr | 5:a70c0bce770d | 3158 | static const int maxAccPrv = 5; |
mjr | 6:cc35eb643e8f | 3159 | AccHist accPrv_[maxAccPrv]; |
mjr | 6:cc35eb643e8f | 3160 | |
mjr | 5:a70c0bce770d | 3161 | // interurupt pin name |
mjr | 5:a70c0bce770d | 3162 | PinName irqPin_; |
mjr | 5:a70c0bce770d | 3163 | |
mjr | 5:a70c0bce770d | 3164 | // interrupt router |
mjr | 5:a70c0bce770d | 3165 | InterruptIn intIn_; |
mjr | 3:3514575d4f86 | 3166 | }; |
mjr | 3:3514575d4f86 | 3167 | |
mjr | 5:a70c0bce770d | 3168 | |
mjr | 5:a70c0bce770d | 3169 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 3170 | // |
mjr | 14:df700b22ca08 | 3171 | // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time |
mjr | 5:a70c0bce770d | 3172 | // for reasons that aren't clear to me. Doing a hard power cycle has the same |
mjr | 5:a70c0bce770d | 3173 | // effect, but when we do a soft reset, the hardware sometimes seems to leave |
mjr | 5:a70c0bce770d | 3174 | // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through |
mjr | 14:df700b22ca08 | 3175 | // the SCL line is supposed to clear this condition. I'm not convinced this |
mjr | 14:df700b22ca08 | 3176 | // actually works with the way this component is wired on the KL25Z, but it |
mjr | 14:df700b22ca08 | 3177 | // seems harmless, so we'll do it on reset in case it does some good. What |
mjr | 14:df700b22ca08 | 3178 | // we really seem to need is a way to power cycle the MMA8451Q if it ever |
mjr | 14:df700b22ca08 | 3179 | // gets stuck, but this is simply not possible in software on the KL25Z. |
mjr | 14:df700b22ca08 | 3180 | // |
mjr | 14:df700b22ca08 | 3181 | // If the accelerometer does get stuck, and a software reboot doesn't reset |
mjr | 14:df700b22ca08 | 3182 | // it, the only workaround is to manually power cycle the whole KL25Z by |
mjr | 14:df700b22ca08 | 3183 | // unplugging both of its USB connections. |
mjr | 5:a70c0bce770d | 3184 | // |
mjr | 5:a70c0bce770d | 3185 | void clear_i2c() |
mjr | 5:a70c0bce770d | 3186 | { |
mjr | 38:091e511ce8a0 | 3187 | // set up general-purpose output pins to the I2C lines |
mjr | 5:a70c0bce770d | 3188 | DigitalOut scl(MMA8451_SCL_PIN); |
mjr | 5:a70c0bce770d | 3189 | DigitalIn sda(MMA8451_SDA_PIN); |
mjr | 5:a70c0bce770d | 3190 | |
mjr | 5:a70c0bce770d | 3191 | // clock the SCL 9 times |
mjr | 5:a70c0bce770d | 3192 | for (int i = 0 ; i < 9 ; ++i) |
mjr | 5:a70c0bce770d | 3193 | { |
mjr | 5:a70c0bce770d | 3194 | scl = 1; |
mjr | 5:a70c0bce770d | 3195 | wait_us(20); |
mjr | 5:a70c0bce770d | 3196 | scl = 0; |
mjr | 5:a70c0bce770d | 3197 | wait_us(20); |
mjr | 5:a70c0bce770d | 3198 | } |
mjr | 5:a70c0bce770d | 3199 | } |
mjr | 14:df700b22ca08 | 3200 | |
mjr | 14:df700b22ca08 | 3201 | // --------------------------------------------------------------------------- |
mjr | 14:df700b22ca08 | 3202 | // |
mjr | 33:d832bcab089e | 3203 | // Simple binary (on/off) input debouncer. Requires an input to be stable |
mjr | 33:d832bcab089e | 3204 | // for a given interval before allowing an update. |
mjr | 33:d832bcab089e | 3205 | // |
mjr | 33:d832bcab089e | 3206 | class Debouncer |
mjr | 33:d832bcab089e | 3207 | { |
mjr | 33:d832bcab089e | 3208 | public: |
mjr | 33:d832bcab089e | 3209 | Debouncer(bool initVal, float tmin) |
mjr | 33:d832bcab089e | 3210 | { |
mjr | 33:d832bcab089e | 3211 | t.start(); |
mjr | 33:d832bcab089e | 3212 | this->stable = this->prv = initVal; |
mjr | 33:d832bcab089e | 3213 | this->tmin = tmin; |
mjr | 33:d832bcab089e | 3214 | } |
mjr | 33:d832bcab089e | 3215 | |
mjr | 33:d832bcab089e | 3216 | // Get the current stable value |
mjr | 33:d832bcab089e | 3217 | bool val() const { return stable; } |
mjr | 33:d832bcab089e | 3218 | |
mjr | 33:d832bcab089e | 3219 | // Apply a new sample. This tells us the new raw reading from the |
mjr | 33:d832bcab089e | 3220 | // input device. |
mjr | 33:d832bcab089e | 3221 | void sampleIn(bool val) |
mjr | 33:d832bcab089e | 3222 | { |
mjr | 33:d832bcab089e | 3223 | // If the new raw reading is different from the previous |
mjr | 33:d832bcab089e | 3224 | // raw reading, we've detected an edge - start the clock |
mjr | 33:d832bcab089e | 3225 | // on the sample reader. |
mjr | 33:d832bcab089e | 3226 | if (val != prv) |
mjr | 33:d832bcab089e | 3227 | { |
mjr | 33:d832bcab089e | 3228 | // we have an edge - reset the sample clock |
mjr | 33:d832bcab089e | 3229 | t.reset(); |
mjr | 33:d832bcab089e | 3230 | |
mjr | 33:d832bcab089e | 3231 | // this is now the previous raw sample for nxt time |
mjr | 33:d832bcab089e | 3232 | prv = val; |
mjr | 33:d832bcab089e | 3233 | } |
mjr | 33:d832bcab089e | 3234 | else if (val != stable) |
mjr | 33:d832bcab089e | 3235 | { |
mjr | 33:d832bcab089e | 3236 | // The new raw sample is the same as the last raw sample, |
mjr | 33:d832bcab089e | 3237 | // and different from the stable value. This means that |
mjr | 33:d832bcab089e | 3238 | // the sample value has been the same for the time currently |
mjr | 33:d832bcab089e | 3239 | // indicated by our timer. If enough time has elapsed to |
mjr | 33:d832bcab089e | 3240 | // consider the value stable, apply the new value. |
mjr | 33:d832bcab089e | 3241 | if (t.read() > tmin) |
mjr | 33:d832bcab089e | 3242 | stable = val; |
mjr | 33:d832bcab089e | 3243 | } |
mjr | 33:d832bcab089e | 3244 | } |
mjr | 33:d832bcab089e | 3245 | |
mjr | 33:d832bcab089e | 3246 | private: |
mjr | 33:d832bcab089e | 3247 | // current stable value |
mjr | 33:d832bcab089e | 3248 | bool stable; |
mjr | 33:d832bcab089e | 3249 | |
mjr | 33:d832bcab089e | 3250 | // last raw sample value |
mjr | 33:d832bcab089e | 3251 | bool prv; |
mjr | 33:d832bcab089e | 3252 | |
mjr | 33:d832bcab089e | 3253 | // elapsed time since last raw input change |
mjr | 33:d832bcab089e | 3254 | Timer t; |
mjr | 33:d832bcab089e | 3255 | |
mjr | 33:d832bcab089e | 3256 | // Minimum time interval for stability, in seconds. Input readings |
mjr | 33:d832bcab089e | 3257 | // must be stable for this long before the stable value is updated. |
mjr | 33:d832bcab089e | 3258 | float tmin; |
mjr | 33:d832bcab089e | 3259 | }; |
mjr | 33:d832bcab089e | 3260 | |
mjr | 33:d832bcab089e | 3261 | |
mjr | 33:d832bcab089e | 3262 | // --------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 3263 | // |
mjr | 33:d832bcab089e | 3264 | // TV ON timer. If this feature is enabled, we toggle a TV power switch |
mjr | 33:d832bcab089e | 3265 | // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly |
mjr | 33:d832bcab089e | 3266 | // after the system is powered. This is useful for TVs that don't remember |
mjr | 33:d832bcab089e | 3267 | // their power state and don't turn back on automatically after being |
mjr | 33:d832bcab089e | 3268 | // unplugged and plugged in again. This feature requires external |
mjr | 33:d832bcab089e | 3269 | // circuitry, which is built in to the expansion board and can also be |
mjr | 33:d832bcab089e | 3270 | // built separately - see the Build Guide for the circuit plan. |
mjr | 33:d832bcab089e | 3271 | // |
mjr | 33:d832bcab089e | 3272 | // Theory of operation: to use this feature, the cabinet must have a |
mjr | 33:d832bcab089e | 3273 | // secondary PC-style power supply (PSU2) for the feedback devices, and |
mjr | 33:d832bcab089e | 3274 | // this secondary supply must be plugged in to the same power strip or |
mjr | 33:d832bcab089e | 3275 | // switched outlet that controls power to the TVs. This lets us use PSU2 |
mjr | 33:d832bcab089e | 3276 | // as a proxy for the TV power state - when PSU2 is on, the TV outlet is |
mjr | 33:d832bcab089e | 3277 | // powered, and when PSU2 is off, the TV outlet is off. We use a little |
mjr | 33:d832bcab089e | 3278 | // latch circuit powered by PSU2 to monitor the status. The latch has a |
mjr | 33:d832bcab089e | 3279 | // current state, ON or OFF, that we can read via a GPIO input pin, and |
mjr | 33:d832bcab089e | 3280 | // we can set the state to ON by pulsing a separate GPIO output pin. As |
mjr | 33:d832bcab089e | 3281 | // long as PSU2 is powered off, the latch stays in the OFF state, even if |
mjr | 33:d832bcab089e | 3282 | // we try to set it by pulsing the SET pin. When PSU2 is turned on after |
mjr | 33:d832bcab089e | 3283 | // being off, the latch starts receiving power but stays in the OFF state, |
mjr | 33:d832bcab089e | 3284 | // since this is the initial condition when the power first comes on. So |
mjr | 33:d832bcab089e | 3285 | // if our latch state pin is reading OFF, we know that PSU2 is either off |
mjr | 33:d832bcab089e | 3286 | // now or *was* off some time since we last checked. We use a timer to |
mjr | 33:d832bcab089e | 3287 | // check the state periodically. Each time we see the state is OFF, we |
mjr | 33:d832bcab089e | 3288 | // try pulsing the SET pin. If the state still reads as OFF, we know |
mjr | 33:d832bcab089e | 3289 | // that PSU2 is currently off; if the state changes to ON, though, we |
mjr | 33:d832bcab089e | 3290 | // know that PSU2 has gone from OFF to ON some time between now and the |
mjr | 33:d832bcab089e | 3291 | // previous check. When we see this condition, we start a countdown |
mjr | 33:d832bcab089e | 3292 | // timer, and pulse the TV switch relay when the countdown ends. |
mjr | 33:d832bcab089e | 3293 | // |
mjr | 40:cc0d9814522b | 3294 | // This scheme might seem a little convoluted, but it handles a number |
mjr | 40:cc0d9814522b | 3295 | // of tricky but likely scenarios: |
mjr | 33:d832bcab089e | 3296 | // |
mjr | 33:d832bcab089e | 3297 | // - Most cabinets systems are set up with "soft" PC power switches, |
mjr | 40:cc0d9814522b | 3298 | // so that the PC goes into "Soft Off" mode when the user turns off |
mjr | 40:cc0d9814522b | 3299 | // the cabinet by pushing the power button or using the Shut Down |
mjr | 40:cc0d9814522b | 3300 | // command from within Windows. In Windows parlance, this "soft off" |
mjr | 40:cc0d9814522b | 3301 | // condition is called ACPI State S5. In this state, the main CPU |
mjr | 40:cc0d9814522b | 3302 | // power is turned off, but the motherboard still provides power to |
mjr | 40:cc0d9814522b | 3303 | // USB devices. This means that the KL25Z keeps running. Without |
mjr | 40:cc0d9814522b | 3304 | // the external power sensing circuit, the only hint that we're in |
mjr | 40:cc0d9814522b | 3305 | // this state is that the USB connection to the host goes into Suspend |
mjr | 40:cc0d9814522b | 3306 | // mode, but that could mean other things as well. The latch circuit |
mjr | 40:cc0d9814522b | 3307 | // lets us tell for sure that we're in this state. |
mjr | 33:d832bcab089e | 3308 | // |
mjr | 33:d832bcab089e | 3309 | // - Some cabinet builders might prefer to use "hard" power switches, |
mjr | 33:d832bcab089e | 3310 | // cutting all power to the cabinet, including the PC motherboard (and |
mjr | 33:d832bcab089e | 3311 | // thus the KL25Z) every time the machine is turned off. This also |
mjr | 33:d832bcab089e | 3312 | // applies to the "soft" switch case above when the cabinet is unplugged, |
mjr | 33:d832bcab089e | 3313 | // a power outage occurs, etc. In these cases, the KL25Z will do a cold |
mjr | 33:d832bcab089e | 3314 | // boot when the PC is turned on. We don't know whether the KL25Z |
mjr | 33:d832bcab089e | 3315 | // will power up before or after PSU2, so it's not good enough to |
mjr | 40:cc0d9814522b | 3316 | // observe the current state of PSU2 when we first check. If PSU2 |
mjr | 40:cc0d9814522b | 3317 | // were to come on first, checking only the current state would fool |
mjr | 40:cc0d9814522b | 3318 | // us into thinking that no action is required, because we'd only see |
mjr | 40:cc0d9814522b | 3319 | // that PSU2 is turned on any time we check. The latch handles this |
mjr | 40:cc0d9814522b | 3320 | // case by letting us see that PSU2 was indeed off some time before our |
mjr | 40:cc0d9814522b | 3321 | // first check. |
mjr | 33:d832bcab089e | 3322 | // |
mjr | 33:d832bcab089e | 3323 | // - If the KL25Z is rebooted while the main system is running, or the |
mjr | 40:cc0d9814522b | 3324 | // KL25Z is unplugged and plugged back in, we'll correctly leave the |
mjr | 33:d832bcab089e | 3325 | // TVs as they are. The latch state is independent of the KL25Z's |
mjr | 33:d832bcab089e | 3326 | // power or software state, so it's won't affect the latch state when |
mjr | 33:d832bcab089e | 3327 | // the KL25Z is unplugged or rebooted; when we boot, we'll see that |
mjr | 33:d832bcab089e | 3328 | // the latch is already on and that we don't have to turn on the TVs. |
mjr | 33:d832bcab089e | 3329 | // This is important because TV ON buttons are usually on/off toggles, |
mjr | 33:d832bcab089e | 3330 | // so we don't want to push the button on a TV that's already on. |
mjr | 33:d832bcab089e | 3331 | // |
mjr | 33:d832bcab089e | 3332 | |
mjr | 33:d832bcab089e | 3333 | // Current PSU2 state: |
mjr | 33:d832bcab089e | 3334 | // 1 -> default: latch was on at last check, or we haven't checked yet |
mjr | 33:d832bcab089e | 3335 | // 2 -> latch was off at last check, SET pulsed high |
mjr | 33:d832bcab089e | 3336 | // 3 -> SET pulsed low, ready to check status |
mjr | 33:d832bcab089e | 3337 | // 4 -> TV timer countdown in progress |
mjr | 33:d832bcab089e | 3338 | // 5 -> TV relay on |
mjr | 73:4e8ce0b18915 | 3339 | uint8_t psu2_state = 1; |
mjr | 73:4e8ce0b18915 | 3340 | |
mjr | 73:4e8ce0b18915 | 3341 | // TV relay state. The TV relay can be controlled by the power-on |
mjr | 73:4e8ce0b18915 | 3342 | // timer and directly from the PC (via USB commands), so keep a |
mjr | 73:4e8ce0b18915 | 3343 | // separate state for each: |
mjr | 73:4e8ce0b18915 | 3344 | // |
mjr | 73:4e8ce0b18915 | 3345 | // 0x01 -> turned on by power-on timer |
mjr | 73:4e8ce0b18915 | 3346 | // 0x02 -> turned on by USB command |
mjr | 73:4e8ce0b18915 | 3347 | uint8_t tv_relay_state = 0x00; |
mjr | 73:4e8ce0b18915 | 3348 | const uint8_t TV_RELAY_POWERON = 0x01; |
mjr | 73:4e8ce0b18915 | 3349 | const uint8_t TV_RELAY_USB = 0x02; |
mjr | 73:4e8ce0b18915 | 3350 | |
mjr | 73:4e8ce0b18915 | 3351 | // TV ON switch relay control |
mjr | 73:4e8ce0b18915 | 3352 | DigitalOut *tv_relay; |
mjr | 35:e959ffba78fd | 3353 | |
mjr | 35:e959ffba78fd | 3354 | // PSU2 power sensing circuit connections |
mjr | 35:e959ffba78fd | 3355 | DigitalIn *psu2_status_sense; |
mjr | 35:e959ffba78fd | 3356 | DigitalOut *psu2_status_set; |
mjr | 35:e959ffba78fd | 3357 | |
mjr | 73:4e8ce0b18915 | 3358 | // Apply the current TV relay state |
mjr | 73:4e8ce0b18915 | 3359 | void tvRelayUpdate(uint8_t bit, bool state) |
mjr | 73:4e8ce0b18915 | 3360 | { |
mjr | 73:4e8ce0b18915 | 3361 | // update the state |
mjr | 73:4e8ce0b18915 | 3362 | if (state) |
mjr | 73:4e8ce0b18915 | 3363 | tv_relay_state |= bit; |
mjr | 73:4e8ce0b18915 | 3364 | else |
mjr | 73:4e8ce0b18915 | 3365 | tv_relay_state &= ~bit; |
mjr | 73:4e8ce0b18915 | 3366 | |
mjr | 73:4e8ce0b18915 | 3367 | // set the relay GPIO to the new state |
mjr | 73:4e8ce0b18915 | 3368 | if (tv_relay != 0) |
mjr | 73:4e8ce0b18915 | 3369 | tv_relay->write(tv_relay_state != 0); |
mjr | 73:4e8ce0b18915 | 3370 | } |
mjr | 35:e959ffba78fd | 3371 | |
mjr | 35:e959ffba78fd | 3372 | // Timer interrupt |
mjr | 35:e959ffba78fd | 3373 | Ticker tv_ticker; |
mjr | 35:e959ffba78fd | 3374 | float tv_delay_time; |
mjr | 33:d832bcab089e | 3375 | void TVTimerInt() |
mjr | 33:d832bcab089e | 3376 | { |
mjr | 35:e959ffba78fd | 3377 | // time since last state change |
mjr | 35:e959ffba78fd | 3378 | static Timer tv_timer; |
mjr | 35:e959ffba78fd | 3379 | |
mjr | 33:d832bcab089e | 3380 | // Check our internal state |
mjr | 33:d832bcab089e | 3381 | switch (psu2_state) |
mjr | 33:d832bcab089e | 3382 | { |
mjr | 33:d832bcab089e | 3383 | case 1: |
mjr | 33:d832bcab089e | 3384 | // Default state. This means that the latch was on last |
mjr | 33:d832bcab089e | 3385 | // time we checked or that this is the first check. In |
mjr | 33:d832bcab089e | 3386 | // either case, if the latch is off, switch to state 2 and |
mjr | 33:d832bcab089e | 3387 | // try pulsing the latch. Next time we check, if the latch |
mjr | 33:d832bcab089e | 3388 | // stuck, it means that PSU2 is now on after being off. |
mjr | 35:e959ffba78fd | 3389 | if (!psu2_status_sense->read()) |
mjr | 33:d832bcab089e | 3390 | { |
mjr | 33:d832bcab089e | 3391 | // switch to OFF state |
mjr | 33:d832bcab089e | 3392 | psu2_state = 2; |
mjr | 33:d832bcab089e | 3393 | |
mjr | 33:d832bcab089e | 3394 | // try setting the latch |
mjr | 35:e959ffba78fd | 3395 | psu2_status_set->write(1); |
mjr | 33:d832bcab089e | 3396 | } |
mjr | 33:d832bcab089e | 3397 | break; |
mjr | 33:d832bcab089e | 3398 | |
mjr | 33:d832bcab089e | 3399 | case 2: |
mjr | 33:d832bcab089e | 3400 | // PSU2 was off last time we checked, and we tried setting |
mjr | 33:d832bcab089e | 3401 | // the latch. Drop the SET signal and go to CHECK state. |
mjr | 35:e959ffba78fd | 3402 | psu2_status_set->write(0); |
mjr | 33:d832bcab089e | 3403 | psu2_state = 3; |
mjr | 33:d832bcab089e | 3404 | break; |
mjr | 33:d832bcab089e | 3405 | |
mjr | 33:d832bcab089e | 3406 | case 3: |
mjr | 33:d832bcab089e | 3407 | // CHECK state: we pulsed SET, and we're now ready to see |
mjr | 40:cc0d9814522b | 3408 | // if it stuck. If the latch is now on, PSU2 has transitioned |
mjr | 33:d832bcab089e | 3409 | // from OFF to ON, so start the TV countdown. If the latch is |
mjr | 33:d832bcab089e | 3410 | // off, our SET command didn't stick, so PSU2 is still off. |
mjr | 35:e959ffba78fd | 3411 | if (psu2_status_sense->read()) |
mjr | 33:d832bcab089e | 3412 | { |
mjr | 33:d832bcab089e | 3413 | // The latch stuck, so PSU2 has transitioned from OFF |
mjr | 33:d832bcab089e | 3414 | // to ON. Start the TV countdown timer. |
mjr | 33:d832bcab089e | 3415 | tv_timer.reset(); |
mjr | 33:d832bcab089e | 3416 | tv_timer.start(); |
mjr | 33:d832bcab089e | 3417 | psu2_state = 4; |
mjr | 73:4e8ce0b18915 | 3418 | |
mjr | 73:4e8ce0b18915 | 3419 | // start the power timer diagnostic flashes |
mjr | 73:4e8ce0b18915 | 3420 | powerTimerDiagState = 2; |
mjr | 73:4e8ce0b18915 | 3421 | diagLED(); |
mjr | 33:d832bcab089e | 3422 | } |
mjr | 33:d832bcab089e | 3423 | else |
mjr | 33:d832bcab089e | 3424 | { |
mjr | 33:d832bcab089e | 3425 | // The latch didn't stick, so PSU2 was still off at |
mjr | 33:d832bcab089e | 3426 | // our last check. Try pulsing it again in case PSU2 |
mjr | 33:d832bcab089e | 3427 | // was turned on since the last check. |
mjr | 35:e959ffba78fd | 3428 | psu2_status_set->write(1); |
mjr | 33:d832bcab089e | 3429 | psu2_state = 2; |
mjr | 33:d832bcab089e | 3430 | } |
mjr | 33:d832bcab089e | 3431 | break; |
mjr | 33:d832bcab089e | 3432 | |
mjr | 33:d832bcab089e | 3433 | case 4: |
mjr | 33:d832bcab089e | 3434 | // TV timer countdown in progress. If we've reached the |
mjr | 33:d832bcab089e | 3435 | // delay time, pulse the relay. |
mjr | 35:e959ffba78fd | 3436 | if (tv_timer.read() >= tv_delay_time) |
mjr | 33:d832bcab089e | 3437 | { |
mjr | 33:d832bcab089e | 3438 | // turn on the relay for one timer interval |
mjr | 73:4e8ce0b18915 | 3439 | tvRelayUpdate(TV_RELAY_POWERON, true); |
mjr | 33:d832bcab089e | 3440 | psu2_state = 5; |
mjr | 33:d832bcab089e | 3441 | } |
mjr | 73:4e8ce0b18915 | 3442 | |
mjr | 73:4e8ce0b18915 | 3443 | // flash the power time diagnostic every two interrupts |
mjr | 73:4e8ce0b18915 | 3444 | powerTimerDiagState = (powerTimerDiagState + 1) & 0x03; |
mjr | 73:4e8ce0b18915 | 3445 | diagLED(); |
mjr | 33:d832bcab089e | 3446 | break; |
mjr | 33:d832bcab089e | 3447 | |
mjr | 33:d832bcab089e | 3448 | case 5: |
mjr | 33:d832bcab089e | 3449 | // TV timer relay on. We pulse this for one interval, so |
mjr | 33:d832bcab089e | 3450 | // it's now time to turn it off and return to the default state. |
mjr | 73:4e8ce0b18915 | 3451 | tvRelayUpdate(TV_RELAY_POWERON, false); |
mjr | 33:d832bcab089e | 3452 | psu2_state = 1; |
mjr | 73:4e8ce0b18915 | 3453 | |
mjr | 73:4e8ce0b18915 | 3454 | // done with the diagnostic flashes |
mjr | 73:4e8ce0b18915 | 3455 | powerTimerDiagState = 0; |
mjr | 73:4e8ce0b18915 | 3456 | diagLED(); |
mjr | 33:d832bcab089e | 3457 | break; |
mjr | 33:d832bcab089e | 3458 | } |
mjr | 33:d832bcab089e | 3459 | } |
mjr | 33:d832bcab089e | 3460 | |
mjr | 35:e959ffba78fd | 3461 | // Start the TV ON checker. If the status sense circuit is enabled in |
mjr | 35:e959ffba78fd | 3462 | // the configuration, we'll set up the pin connections and start the |
mjr | 35:e959ffba78fd | 3463 | // interrupt handler that periodically checks the status. Does nothing |
mjr | 35:e959ffba78fd | 3464 | // if any of the pins are configured as NC. |
mjr | 35:e959ffba78fd | 3465 | void startTVTimer(Config &cfg) |
mjr | 35:e959ffba78fd | 3466 | { |
mjr | 55:4db125cd11a0 | 3467 | // only start the timer if the pins are configured and the delay |
mjr | 55:4db125cd11a0 | 3468 | // time is nonzero |
mjr | 55:4db125cd11a0 | 3469 | if (cfg.TVON.delayTime != 0 |
mjr | 55:4db125cd11a0 | 3470 | && cfg.TVON.statusPin != 0xFF |
mjr | 53:9b2611964afc | 3471 | && cfg.TVON.latchPin != 0xFF |
mjr | 53:9b2611964afc | 3472 | && cfg.TVON.relayPin != 0xFF) |
mjr | 35:e959ffba78fd | 3473 | { |
mjr | 53:9b2611964afc | 3474 | psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin)); |
mjr | 53:9b2611964afc | 3475 | psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin)); |
mjr | 53:9b2611964afc | 3476 | tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin)); |
mjr | 73:4e8ce0b18915 | 3477 | tv_delay_time = cfg.TVON.delayTime/100.0f; |
mjr | 35:e959ffba78fd | 3478 | |
mjr | 35:e959ffba78fd | 3479 | // Set up our time routine to run every 1/4 second. |
mjr | 35:e959ffba78fd | 3480 | tv_ticker.attach(&TVTimerInt, 0.25); |
mjr | 35:e959ffba78fd | 3481 | } |
mjr | 35:e959ffba78fd | 3482 | } |
mjr | 35:e959ffba78fd | 3483 | |
mjr | 73:4e8ce0b18915 | 3484 | // TV relay manual control timer. This lets us pulse the TV relay |
mjr | 73:4e8ce0b18915 | 3485 | // under manual control, separately from the TV ON timer. |
mjr | 73:4e8ce0b18915 | 3486 | Ticker tv_manualTicker; |
mjr | 73:4e8ce0b18915 | 3487 | void TVManualInt() |
mjr | 73:4e8ce0b18915 | 3488 | { |
mjr | 73:4e8ce0b18915 | 3489 | tv_manualTicker.detach(); |
mjr | 73:4e8ce0b18915 | 3490 | tvRelayUpdate(TV_RELAY_USB, false); |
mjr | 73:4e8ce0b18915 | 3491 | } |
mjr | 73:4e8ce0b18915 | 3492 | |
mjr | 73:4e8ce0b18915 | 3493 | // Operate the TV ON relay. This allows manual control of the relay |
mjr | 73:4e8ce0b18915 | 3494 | // from the PC. See protocol message 65 submessage 11. |
mjr | 73:4e8ce0b18915 | 3495 | // |
mjr | 73:4e8ce0b18915 | 3496 | // Mode: |
mjr | 73:4e8ce0b18915 | 3497 | // 0 = turn relay off |
mjr | 73:4e8ce0b18915 | 3498 | // 1 = turn relay on |
mjr | 73:4e8ce0b18915 | 3499 | // 2 = pulse relay |
mjr | 73:4e8ce0b18915 | 3500 | void TVRelay(int mode) |
mjr | 73:4e8ce0b18915 | 3501 | { |
mjr | 73:4e8ce0b18915 | 3502 | // if there's no TV relay control pin, ignore this |
mjr | 73:4e8ce0b18915 | 3503 | if (tv_relay == 0) |
mjr | 73:4e8ce0b18915 | 3504 | return; |
mjr | 73:4e8ce0b18915 | 3505 | |
mjr | 73:4e8ce0b18915 | 3506 | switch (mode) |
mjr | 73:4e8ce0b18915 | 3507 | { |
mjr | 73:4e8ce0b18915 | 3508 | case 0: |
mjr | 73:4e8ce0b18915 | 3509 | // relay off |
mjr | 73:4e8ce0b18915 | 3510 | tvRelayUpdate(TV_RELAY_USB, false); |
mjr | 73:4e8ce0b18915 | 3511 | break; |
mjr | 73:4e8ce0b18915 | 3512 | |
mjr | 73:4e8ce0b18915 | 3513 | case 1: |
mjr | 73:4e8ce0b18915 | 3514 | // relay on |
mjr | 73:4e8ce0b18915 | 3515 | tvRelayUpdate(TV_RELAY_USB, true); |
mjr | 73:4e8ce0b18915 | 3516 | break; |
mjr | 73:4e8ce0b18915 | 3517 | |
mjr | 73:4e8ce0b18915 | 3518 | case 2: |
mjr | 73:4e8ce0b18915 | 3519 | // Pulse the relay. Turn it on, then set our timer for 250ms. |
mjr | 73:4e8ce0b18915 | 3520 | tvRelayUpdate(TV_RELAY_USB, true); |
mjr | 73:4e8ce0b18915 | 3521 | tv_manualTicker.attach(&TVManualInt, 0.25); |
mjr | 73:4e8ce0b18915 | 3522 | break; |
mjr | 73:4e8ce0b18915 | 3523 | } |
mjr | 73:4e8ce0b18915 | 3524 | } |
mjr | 73:4e8ce0b18915 | 3525 | |
mjr | 73:4e8ce0b18915 | 3526 | |
mjr | 35:e959ffba78fd | 3527 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 3528 | // |
mjr | 35:e959ffba78fd | 3529 | // In-memory configuration data structure. This is the live version in RAM |
mjr | 35:e959ffba78fd | 3530 | // that we use to determine how things are set up. |
mjr | 35:e959ffba78fd | 3531 | // |
mjr | 35:e959ffba78fd | 3532 | // When we save the configuration settings, we copy this structure to |
mjr | 35:e959ffba78fd | 3533 | // non-volatile flash memory. At startup, we check the flash location where |
mjr | 35:e959ffba78fd | 3534 | // we might have saved settings on a previous run, and it's valid, we copy |
mjr | 35:e959ffba78fd | 3535 | // the flash data to this structure. Firmware updates wipe the flash |
mjr | 35:e959ffba78fd | 3536 | // memory area, so you have to use the PC config tool to send the settings |
mjr | 35:e959ffba78fd | 3537 | // again each time the firmware is updated. |
mjr | 35:e959ffba78fd | 3538 | // |
mjr | 35:e959ffba78fd | 3539 | NVM nvm; |
mjr | 35:e959ffba78fd | 3540 | |
mjr | 35:e959ffba78fd | 3541 | // For convenience, a macro for the Config part of the NVM structure |
mjr | 35:e959ffba78fd | 3542 | #define cfg (nvm.d.c) |
mjr | 35:e959ffba78fd | 3543 | |
mjr | 35:e959ffba78fd | 3544 | // flash memory controller interface |
mjr | 35:e959ffba78fd | 3545 | FreescaleIAP iap; |
mjr | 35:e959ffba78fd | 3546 | |
mjr | 35:e959ffba78fd | 3547 | // figure the flash address as a pointer along with the number of sectors |
mjr | 35:e959ffba78fd | 3548 | // required to store the structure |
mjr | 35:e959ffba78fd | 3549 | NVM *configFlashAddr(int &addr, int &numSectors) |
mjr | 35:e959ffba78fd | 3550 | { |
mjr | 35:e959ffba78fd | 3551 | // figure how many flash sectors we span, rounding up to whole sectors |
mjr | 35:e959ffba78fd | 3552 | numSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE; |
mjr | 35:e959ffba78fd | 3553 | |
mjr | 35:e959ffba78fd | 3554 | // figure the address - this is the highest flash address where the |
mjr | 35:e959ffba78fd | 3555 | // structure will fit with the start aligned on a sector boundary |
mjr | 35:e959ffba78fd | 3556 | addr = iap.flash_size() - (numSectors * SECTOR_SIZE); |
mjr | 35:e959ffba78fd | 3557 | |
mjr | 35:e959ffba78fd | 3558 | // return the address as a pointer |
mjr | 35:e959ffba78fd | 3559 | return (NVM *)addr; |
mjr | 35:e959ffba78fd | 3560 | } |
mjr | 35:e959ffba78fd | 3561 | |
mjr | 35:e959ffba78fd | 3562 | // figure the flash address as a pointer |
mjr | 35:e959ffba78fd | 3563 | NVM *configFlashAddr() |
mjr | 35:e959ffba78fd | 3564 | { |
mjr | 35:e959ffba78fd | 3565 | int addr, numSectors; |
mjr | 35:e959ffba78fd | 3566 | return configFlashAddr(addr, numSectors); |
mjr | 35:e959ffba78fd | 3567 | } |
mjr | 35:e959ffba78fd | 3568 | |
mjr | 35:e959ffba78fd | 3569 | // Load the config from flash |
mjr | 35:e959ffba78fd | 3570 | void loadConfigFromFlash() |
mjr | 35:e959ffba78fd | 3571 | { |
mjr | 35:e959ffba78fd | 3572 | // We want to use the KL25Z's on-board flash to store our configuration |
mjr | 35:e959ffba78fd | 3573 | // data persistently, so that we can restore it across power cycles. |
mjr | 35:e959ffba78fd | 3574 | // Unfortunatly, the mbed platform doesn't explicitly support this. |
mjr | 35:e959ffba78fd | 3575 | // mbed treats the on-board flash as a raw storage device for linker |
mjr | 35:e959ffba78fd | 3576 | // output, and assumes that the linker output is the only thing |
mjr | 35:e959ffba78fd | 3577 | // stored there. There's no file system and no allowance for shared |
mjr | 35:e959ffba78fd | 3578 | // use for other purposes. Fortunately, the linker ues the space in |
mjr | 35:e959ffba78fd | 3579 | // the obvious way, storing the entire linked program in a contiguous |
mjr | 35:e959ffba78fd | 3580 | // block starting at the lowest flash address. This means that the |
mjr | 35:e959ffba78fd | 3581 | // rest of flash - from the end of the linked program to the highest |
mjr | 35:e959ffba78fd | 3582 | // flash address - is all unused free space. Writing our data there |
mjr | 35:e959ffba78fd | 3583 | // won't conflict with anything else. Since the linker doesn't give |
mjr | 35:e959ffba78fd | 3584 | // us any programmatic access to the total linker output size, it's |
mjr | 35:e959ffba78fd | 3585 | // safest to just store our config data at the very end of the flash |
mjr | 35:e959ffba78fd | 3586 | // region (i.e., the highest address). As long as it's smaller than |
mjr | 35:e959ffba78fd | 3587 | // the free space, it won't collide with the linker area. |
mjr | 35:e959ffba78fd | 3588 | |
mjr | 35:e959ffba78fd | 3589 | // Figure how many sectors we need for our structure |
mjr | 35:e959ffba78fd | 3590 | NVM *flash = configFlashAddr(); |
mjr | 35:e959ffba78fd | 3591 | |
mjr | 35:e959ffba78fd | 3592 | // if the flash is valid, load it; otherwise initialize to defaults |
mjr | 35:e959ffba78fd | 3593 | if (flash->valid()) |
mjr | 35:e959ffba78fd | 3594 | { |
mjr | 35:e959ffba78fd | 3595 | // flash is valid - load it into the RAM copy of the structure |
mjr | 35:e959ffba78fd | 3596 | memcpy(&nvm, flash, sizeof(NVM)); |
mjr | 35:e959ffba78fd | 3597 | } |
mjr | 35:e959ffba78fd | 3598 | else |
mjr | 35:e959ffba78fd | 3599 | { |
mjr | 35:e959ffba78fd | 3600 | // flash is invalid - load factory settings nito RAM structure |
mjr | 35:e959ffba78fd | 3601 | cfg.setFactoryDefaults(); |
mjr | 35:e959ffba78fd | 3602 | } |
mjr | 35:e959ffba78fd | 3603 | } |
mjr | 35:e959ffba78fd | 3604 | |
mjr | 35:e959ffba78fd | 3605 | void saveConfigToFlash() |
mjr | 33:d832bcab089e | 3606 | { |
mjr | 35:e959ffba78fd | 3607 | int addr, sectors; |
mjr | 35:e959ffba78fd | 3608 | configFlashAddr(addr, sectors); |
mjr | 35:e959ffba78fd | 3609 | nvm.save(iap, addr); |
mjr | 35:e959ffba78fd | 3610 | } |
mjr | 35:e959ffba78fd | 3611 | |
mjr | 35:e959ffba78fd | 3612 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 3613 | // |
mjr | 55:4db125cd11a0 | 3614 | // Pixel dump mode - the host requested a dump of image sensor pixels |
mjr | 55:4db125cd11a0 | 3615 | // (helpful for installing and setting up the sensor and light source) |
mjr | 55:4db125cd11a0 | 3616 | // |
mjr | 55:4db125cd11a0 | 3617 | bool reportPlungerStat = false; |
mjr | 55:4db125cd11a0 | 3618 | uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h) |
mjr | 55:4db125cd11a0 | 3619 | uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report |
mjr | 55:4db125cd11a0 | 3620 | |
mjr | 55:4db125cd11a0 | 3621 | |
mjr | 55:4db125cd11a0 | 3622 | |
mjr | 55:4db125cd11a0 | 3623 | // --------------------------------------------------------------------------- |
mjr | 55:4db125cd11a0 | 3624 | // |
mjr | 40:cc0d9814522b | 3625 | // Night mode setting updates |
mjr | 40:cc0d9814522b | 3626 | // |
mjr | 38:091e511ce8a0 | 3627 | |
mjr | 38:091e511ce8a0 | 3628 | // Turn night mode on or off |
mjr | 38:091e511ce8a0 | 3629 | static void setNightMode(bool on) |
mjr | 38:091e511ce8a0 | 3630 | { |
mjr | 40:cc0d9814522b | 3631 | // set the new night mode flag in the noisy output class |
mjr | 53:9b2611964afc | 3632 | nightMode = on; |
mjr | 55:4db125cd11a0 | 3633 | |
mjr | 40:cc0d9814522b | 3634 | // update the special output pin that shows the night mode state |
mjr | 53:9b2611964afc | 3635 | int port = int(cfg.nightMode.port) - 1; |
mjr | 53:9b2611964afc | 3636 | if (port >= 0 && port < numOutputs) |
mjr | 53:9b2611964afc | 3637 | lwPin[port]->set(nightMode ? 255 : 0); |
mjr | 40:cc0d9814522b | 3638 | |
mjr | 40:cc0d9814522b | 3639 | // update all outputs for the mode change |
mjr | 40:cc0d9814522b | 3640 | updateAllOuts(); |
mjr | 38:091e511ce8a0 | 3641 | } |
mjr | 38:091e511ce8a0 | 3642 | |
mjr | 38:091e511ce8a0 | 3643 | // Toggle night mode |
mjr | 38:091e511ce8a0 | 3644 | static void toggleNightMode() |
mjr | 38:091e511ce8a0 | 3645 | { |
mjr | 53:9b2611964afc | 3646 | setNightMode(!nightMode); |
mjr | 38:091e511ce8a0 | 3647 | } |
mjr | 38:091e511ce8a0 | 3648 | |
mjr | 38:091e511ce8a0 | 3649 | |
mjr | 38:091e511ce8a0 | 3650 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 3651 | // |
mjr | 35:e959ffba78fd | 3652 | // Plunger Sensor |
mjr | 35:e959ffba78fd | 3653 | // |
mjr | 35:e959ffba78fd | 3654 | |
mjr | 35:e959ffba78fd | 3655 | // the plunger sensor interface object |
mjr | 35:e959ffba78fd | 3656 | PlungerSensor *plungerSensor = 0; |
mjr | 35:e959ffba78fd | 3657 | |
mjr | 35:e959ffba78fd | 3658 | // Create the plunger sensor based on the current configuration. If |
mjr | 35:e959ffba78fd | 3659 | // there's already a sensor object, we'll delete it. |
mjr | 35:e959ffba78fd | 3660 | void createPlunger() |
mjr | 35:e959ffba78fd | 3661 | { |
mjr | 35:e959ffba78fd | 3662 | // create the new sensor object according to the type |
mjr | 35:e959ffba78fd | 3663 | switch (cfg.plunger.sensorType) |
mjr | 35:e959ffba78fd | 3664 | { |
mjr | 35:e959ffba78fd | 3665 | case PlungerType_TSL1410RS: |
mjr | 69:cc5039284fac | 3666 | // TSL1410R, serial mode (all pixels read in one file) |
mjr | 35:e959ffba78fd | 3667 | // pins are: SI, CLOCK, AO |
mjr | 53:9b2611964afc | 3668 | plungerSensor = new PlungerSensorTSL1410R( |
mjr | 53:9b2611964afc | 3669 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 53:9b2611964afc | 3670 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 53:9b2611964afc | 3671 | wirePinName(cfg.plunger.sensorPin[2]), |
mjr | 53:9b2611964afc | 3672 | NC); |
mjr | 35:e959ffba78fd | 3673 | break; |
mjr | 35:e959ffba78fd | 3674 | |
mjr | 35:e959ffba78fd | 3675 | case PlungerType_TSL1410RP: |
mjr | 69:cc5039284fac | 3676 | // TSL1410R, parallel mode (each half-sensor's pixels read separately) |
mjr | 35:e959ffba78fd | 3677 | // pins are: SI, CLOCK, AO1, AO2 |
mjr | 53:9b2611964afc | 3678 | plungerSensor = new PlungerSensorTSL1410R( |
mjr | 53:9b2611964afc | 3679 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 53:9b2611964afc | 3680 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 53:9b2611964afc | 3681 | wirePinName(cfg.plunger.sensorPin[2]), |
mjr | 53:9b2611964afc | 3682 | wirePinName(cfg.plunger.sensorPin[3])); |
mjr | 35:e959ffba78fd | 3683 | break; |
mjr | 35:e959ffba78fd | 3684 | |
mjr | 69:cc5039284fac | 3685 | case PlungerType_TSL1412SS: |
mjr | 69:cc5039284fac | 3686 | // TSL1412S, serial mode |
mjr | 35:e959ffba78fd | 3687 | // pins are: SI, CLOCK, AO1, AO2 |
mjr | 53:9b2611964afc | 3688 | plungerSensor = new PlungerSensorTSL1412R( |
mjr | 53:9b2611964afc | 3689 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 53:9b2611964afc | 3690 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 53:9b2611964afc | 3691 | wirePinName(cfg.plunger.sensorPin[2]), |
mjr | 53:9b2611964afc | 3692 | NC); |
mjr | 35:e959ffba78fd | 3693 | break; |
mjr | 35:e959ffba78fd | 3694 | |
mjr | 69:cc5039284fac | 3695 | case PlungerType_TSL1412SP: |
mjr | 69:cc5039284fac | 3696 | // TSL1412S, parallel mode |
mjr | 35:e959ffba78fd | 3697 | // pins are: SI, CLOCK, AO1, AO2 |
mjr | 53:9b2611964afc | 3698 | plungerSensor = new PlungerSensorTSL1412R( |
mjr | 53:9b2611964afc | 3699 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 53:9b2611964afc | 3700 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 53:9b2611964afc | 3701 | wirePinName(cfg.plunger.sensorPin[2]), |
mjr | 53:9b2611964afc | 3702 | wirePinName(cfg.plunger.sensorPin[3])); |
mjr | 35:e959ffba78fd | 3703 | break; |
mjr | 35:e959ffba78fd | 3704 | |
mjr | 35:e959ffba78fd | 3705 | case PlungerType_Pot: |
mjr | 35:e959ffba78fd | 3706 | // pins are: AO |
mjr | 53:9b2611964afc | 3707 | plungerSensor = new PlungerSensorPot( |
mjr | 53:9b2611964afc | 3708 | wirePinName(cfg.plunger.sensorPin[0])); |
mjr | 35:e959ffba78fd | 3709 | break; |
mjr | 35:e959ffba78fd | 3710 | |
mjr | 35:e959ffba78fd | 3711 | case PlungerType_None: |
mjr | 35:e959ffba78fd | 3712 | default: |
mjr | 35:e959ffba78fd | 3713 | plungerSensor = new PlungerSensorNull(); |
mjr | 35:e959ffba78fd | 3714 | break; |
mjr | 35:e959ffba78fd | 3715 | } |
mjr | 33:d832bcab089e | 3716 | } |
mjr | 33:d832bcab089e | 3717 | |
mjr | 52:8298b2a73eb2 | 3718 | // Global plunger calibration mode flag |
mjr | 52:8298b2a73eb2 | 3719 | bool plungerCalMode; |
mjr | 52:8298b2a73eb2 | 3720 | |
mjr | 48:058ace2aed1d | 3721 | // Plunger reader |
mjr | 51:57eb311faafa | 3722 | // |
mjr | 51:57eb311faafa | 3723 | // This class encapsulates our plunger data processing. At the simplest |
mjr | 51:57eb311faafa | 3724 | // level, we read the position from the sensor, adjust it for the |
mjr | 51:57eb311faafa | 3725 | // calibration settings, and report the calibrated position to the host. |
mjr | 51:57eb311faafa | 3726 | // |
mjr | 51:57eb311faafa | 3727 | // In addition, we constantly monitor the data for "firing" motions. |
mjr | 51:57eb311faafa | 3728 | // A firing motion is when the user pulls back the plunger and releases |
mjr | 51:57eb311faafa | 3729 | // it, allowing it to shoot forward under the force of the main spring. |
mjr | 51:57eb311faafa | 3730 | // When we detect that this is happening, we briefly stop reporting the |
mjr | 51:57eb311faafa | 3731 | // real physical position that we're reading from the sensor, and instead |
mjr | 51:57eb311faafa | 3732 | // report a synthetic series of positions that depicts an idealized |
mjr | 51:57eb311faafa | 3733 | // firing motion. |
mjr | 51:57eb311faafa | 3734 | // |
mjr | 51:57eb311faafa | 3735 | // The point of the synthetic reports is to correct for distortions |
mjr | 51:57eb311faafa | 3736 | // created by the joystick interface conventions used by VP and other |
mjr | 51:57eb311faafa | 3737 | // PC pinball emulators. The convention they use is simply to have the |
mjr | 51:57eb311faafa | 3738 | // plunger device report the instantaneous position of the real plunger. |
mjr | 51:57eb311faafa | 3739 | // The PC software polls this reported position periodically, and moves |
mjr | 51:57eb311faafa | 3740 | // the on-screen virtual plunger in sync with the real plunger. This |
mjr | 51:57eb311faafa | 3741 | // works fine for human-scale motion when the user is manually moving |
mjr | 51:57eb311faafa | 3742 | // the plunger. But it doesn't work for the high speed motion of a |
mjr | 51:57eb311faafa | 3743 | // release. The plunger simply moves too fast. VP polls in about 10ms |
mjr | 51:57eb311faafa | 3744 | // intervals; the plunger takes about 50ms to travel from fully |
mjr | 51:57eb311faafa | 3745 | // retracted to the park position when released. The low sampling |
mjr | 51:57eb311faafa | 3746 | // rate relative to the rate of change of the sampled data creates |
mjr | 51:57eb311faafa | 3747 | // a classic digital aliasing effect. |
mjr | 51:57eb311faafa | 3748 | // |
mjr | 51:57eb311faafa | 3749 | // The synthetic reporting scheme compensates for the interface |
mjr | 51:57eb311faafa | 3750 | // distortions by essentially changing to a coarse enough timescale |
mjr | 51:57eb311faafa | 3751 | // that VP can reliably interpret the readings. Conceptually, there |
mjr | 51:57eb311faafa | 3752 | // are three steps involved in doing this. First, we analyze the |
mjr | 51:57eb311faafa | 3753 | // actual sensor data to detect and characterize the release motion. |
mjr | 51:57eb311faafa | 3754 | // Second, once we think we have a release in progress, we fit the |
mjr | 51:57eb311faafa | 3755 | // data to a mathematical model of the release. The model we use is |
mjr | 51:57eb311faafa | 3756 | // dead simple: we consider the release to have one parameter, namely |
mjr | 51:57eb311faafa | 3757 | // the retraction distance at the moment the user lets go. This is an |
mjr | 51:57eb311faafa | 3758 | // excellent proxy in the real physical system for the final speed |
mjr | 51:57eb311faafa | 3759 | // when the plunger hits the ball, and it also happens to match how |
mjr | 51:57eb311faafa | 3760 | // VP models it internally. Third, we construct synthetic reports |
mjr | 51:57eb311faafa | 3761 | // that will make VP's internal state match our model. This is also |
mjr | 51:57eb311faafa | 3762 | // pretty simple: we just need to send VP the maximum retraction |
mjr | 51:57eb311faafa | 3763 | // distance for long enough to be sure that it polls it at least |
mjr | 51:57eb311faafa | 3764 | // once, and then send it the park position for long enough to |
mjr | 51:57eb311faafa | 3765 | // ensure that VP will complete the same firing motion. The |
mjr | 51:57eb311faafa | 3766 | // immediate jump from the maximum point to the zero point will |
mjr | 51:57eb311faafa | 3767 | // cause VP to move its simulation model plunger forward from the |
mjr | 51:57eb311faafa | 3768 | // starting point at its natural spring acceleration rate, which |
mjr | 51:57eb311faafa | 3769 | // is exactly what the real plunger just did. |
mjr | 51:57eb311faafa | 3770 | // |
mjr | 48:058ace2aed1d | 3771 | class PlungerReader |
mjr | 48:058ace2aed1d | 3772 | { |
mjr | 48:058ace2aed1d | 3773 | public: |
mjr | 48:058ace2aed1d | 3774 | PlungerReader() |
mjr | 48:058ace2aed1d | 3775 | { |
mjr | 48:058ace2aed1d | 3776 | // not in a firing event yet |
mjr | 48:058ace2aed1d | 3777 | firing = 0; |
mjr | 48:058ace2aed1d | 3778 | |
mjr | 48:058ace2aed1d | 3779 | // no history yet |
mjr | 48:058ace2aed1d | 3780 | histIdx = 0; |
mjr | 55:4db125cd11a0 | 3781 | |
mjr | 55:4db125cd11a0 | 3782 | // initialize the filter |
mjr | 55:4db125cd11a0 | 3783 | initFilter(); |
mjr | 48:058ace2aed1d | 3784 | } |
mjr | 48:058ace2aed1d | 3785 | |
mjr | 48:058ace2aed1d | 3786 | // Collect a reading from the plunger sensor. The main loop calls |
mjr | 48:058ace2aed1d | 3787 | // this frequently to read the current raw position data from the |
mjr | 48:058ace2aed1d | 3788 | // sensor. We analyze the raw data to produce the calibrated |
mjr | 48:058ace2aed1d | 3789 | // position that we report to the PC via the joystick interface. |
mjr | 48:058ace2aed1d | 3790 | void read() |
mjr | 48:058ace2aed1d | 3791 | { |
mjr | 48:058ace2aed1d | 3792 | // Read a sample from the sensor |
mjr | 48:058ace2aed1d | 3793 | PlungerReading r; |
mjr | 48:058ace2aed1d | 3794 | if (plungerSensor->read(r)) |
mjr | 48:058ace2aed1d | 3795 | { |
mjr | 69:cc5039284fac | 3796 | // filter the raw sensor reading |
mjr | 69:cc5039284fac | 3797 | applyPreFilter(r); |
mjr | 69:cc5039284fac | 3798 | |
mjr | 51:57eb311faafa | 3799 | // Pull the previous reading from the history |
mjr | 50:40015764bbe6 | 3800 | const PlungerReading &prv = nthHist(0); |
mjr | 48:058ace2aed1d | 3801 | |
mjr | 69:cc5039284fac | 3802 | // If the new reading is within 1ms of the previous reading, |
mjr | 48:058ace2aed1d | 3803 | // ignore it. We require a minimum time between samples to |
mjr | 48:058ace2aed1d | 3804 | // ensure that we have a usable amount of precision in the |
mjr | 48:058ace2aed1d | 3805 | // denominator (the time interval) for calculating the plunger |
mjr | 69:cc5039284fac | 3806 | // velocity. The CCD sensor hardware takes about 2.5ms to |
mjr | 69:cc5039284fac | 3807 | // read, so it will never be affected by this, but other sensor |
mjr | 69:cc5039284fac | 3808 | // types don't all have the same hardware cycle time, so we need |
mjr | 69:cc5039284fac | 3809 | // to throttle them artificially. E.g., the potentiometer only |
mjr | 69:cc5039284fac | 3810 | // needs one ADC sample per reading, which only takes about 15us. |
mjr | 69:cc5039284fac | 3811 | // We don't need to check which sensor type we have here; we |
mjr | 69:cc5039284fac | 3812 | // just ignore readings until the minimum interval has passed, |
mjr | 69:cc5039284fac | 3813 | // so if the sensor is already slower than this, we'll end up |
mjr | 69:cc5039284fac | 3814 | // using all of its readings. |
mjr | 69:cc5039284fac | 3815 | if (uint32_t(r.t - prv.t) < 1000UL) |
mjr | 48:058ace2aed1d | 3816 | return; |
mjr | 53:9b2611964afc | 3817 | |
mjr | 53:9b2611964afc | 3818 | // check for calibration mode |
mjr | 53:9b2611964afc | 3819 | if (plungerCalMode) |
mjr | 53:9b2611964afc | 3820 | { |
mjr | 53:9b2611964afc | 3821 | // Calibration mode. Adjust the calibration bounds to fit |
mjr | 53:9b2611964afc | 3822 | // the value. If this value is beyond the current min or max, |
mjr | 53:9b2611964afc | 3823 | // expand the envelope to include this new value. |
mjr | 53:9b2611964afc | 3824 | if (r.pos > cfg.plunger.cal.max) |
mjr | 53:9b2611964afc | 3825 | cfg.plunger.cal.max = r.pos; |
mjr | 53:9b2611964afc | 3826 | if (r.pos < cfg.plunger.cal.min) |
mjr | 53:9b2611964afc | 3827 | cfg.plunger.cal.min = r.pos; |
mjr | 50:40015764bbe6 | 3828 | |
mjr | 53:9b2611964afc | 3829 | // If we're in calibration state 0, we're waiting for the |
mjr | 53:9b2611964afc | 3830 | // plunger to come to rest at the park position so that we |
mjr | 53:9b2611964afc | 3831 | // can take a sample of the park position. Check to see if |
mjr | 53:9b2611964afc | 3832 | // we've been at rest for a minimum interval. |
mjr | 53:9b2611964afc | 3833 | if (calState == 0) |
mjr | 53:9b2611964afc | 3834 | { |
mjr | 53:9b2611964afc | 3835 | if (abs(r.pos - calZeroStart.pos) < 65535/3/50) |
mjr | 53:9b2611964afc | 3836 | { |
mjr | 53:9b2611964afc | 3837 | // we're close enough - make sure we've been here long enough |
mjr | 53:9b2611964afc | 3838 | if (uint32_t(r.t - calZeroStart.t) > 100000UL) |
mjr | 53:9b2611964afc | 3839 | { |
mjr | 53:9b2611964afc | 3840 | // we've been at rest long enough - count it |
mjr | 53:9b2611964afc | 3841 | calZeroPosSum += r.pos; |
mjr | 53:9b2611964afc | 3842 | calZeroPosN += 1; |
mjr | 53:9b2611964afc | 3843 | |
mjr | 53:9b2611964afc | 3844 | // update the zero position from the new average |
mjr | 53:9b2611964afc | 3845 | cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN); |
mjr | 53:9b2611964afc | 3846 | |
mjr | 53:9b2611964afc | 3847 | // switch to calibration state 1 - at rest |
mjr | 53:9b2611964afc | 3848 | calState = 1; |
mjr | 53:9b2611964afc | 3849 | } |
mjr | 53:9b2611964afc | 3850 | } |
mjr | 53:9b2611964afc | 3851 | else |
mjr | 53:9b2611964afc | 3852 | { |
mjr | 53:9b2611964afc | 3853 | // we're not close to the last position - start again here |
mjr | 53:9b2611964afc | 3854 | calZeroStart = r; |
mjr | 53:9b2611964afc | 3855 | } |
mjr | 53:9b2611964afc | 3856 | } |
mjr | 53:9b2611964afc | 3857 | |
mjr | 53:9b2611964afc | 3858 | // Rescale to the joystick range, and adjust for the current |
mjr | 53:9b2611964afc | 3859 | // park position, but don't calibrate. We don't know the maximum |
mjr | 53:9b2611964afc | 3860 | // point yet, so we can't calibrate the range. |
mjr | 53:9b2611964afc | 3861 | r.pos = int( |
mjr | 53:9b2611964afc | 3862 | (long(r.pos - cfg.plunger.cal.zero) * JOYMAX) |
mjr | 53:9b2611964afc | 3863 | / (65535 - cfg.plunger.cal.zero)); |
mjr | 53:9b2611964afc | 3864 | } |
mjr | 53:9b2611964afc | 3865 | else |
mjr | 53:9b2611964afc | 3866 | { |
mjr | 53:9b2611964afc | 3867 | // Not in calibration mode. Apply the existing calibration and |
mjr | 53:9b2611964afc | 3868 | // rescale to the joystick range. |
mjr | 53:9b2611964afc | 3869 | r.pos = int( |
mjr | 53:9b2611964afc | 3870 | (long(r.pos - cfg.plunger.cal.zero) * JOYMAX) |
mjr | 53:9b2611964afc | 3871 | / (cfg.plunger.cal.max - cfg.plunger.cal.zero)); |
mjr | 53:9b2611964afc | 3872 | |
mjr | 53:9b2611964afc | 3873 | // limit the result to the valid joystick range |
mjr | 53:9b2611964afc | 3874 | if (r.pos > JOYMAX) |
mjr | 53:9b2611964afc | 3875 | r.pos = JOYMAX; |
mjr | 53:9b2611964afc | 3876 | else if (r.pos < -JOYMAX) |
mjr | 53:9b2611964afc | 3877 | r.pos = -JOYMAX; |
mjr | 53:9b2611964afc | 3878 | } |
mjr | 50:40015764bbe6 | 3879 | |
mjr | 50:40015764bbe6 | 3880 | // Calculate the velocity from the second-to-last reading |
mjr | 50:40015764bbe6 | 3881 | // to here, in joystick distance units per microsecond. |
mjr | 50:40015764bbe6 | 3882 | // Note that we use the second-to-last reading rather than |
mjr | 50:40015764bbe6 | 3883 | // the very last reading to give ourselves a little longer |
mjr | 50:40015764bbe6 | 3884 | // time base. The time base is so short between consecutive |
mjr | 50:40015764bbe6 | 3885 | // readings that the error bars in the position would be too |
mjr | 50:40015764bbe6 | 3886 | // large. |
mjr | 50:40015764bbe6 | 3887 | // |
mjr | 50:40015764bbe6 | 3888 | // For reference, the physical plunger velocity ranges up |
mjr | 50:40015764bbe6 | 3889 | // to about 100,000 joystick distance units/sec. This is |
mjr | 50:40015764bbe6 | 3890 | // based on empirical measurements. The typical time for |
mjr | 50:40015764bbe6 | 3891 | // a real plunger to travel the full distance when released |
mjr | 50:40015764bbe6 | 3892 | // from full retraction is about 85ms, so the average velocity |
mjr | 50:40015764bbe6 | 3893 | // covering this distance is about 56,000 units/sec. The |
mjr | 50:40015764bbe6 | 3894 | // peak is probably about twice that. In real-world units, |
mjr | 50:40015764bbe6 | 3895 | // this translates to an average speed of about .75 m/s and |
mjr | 50:40015764bbe6 | 3896 | // a peak of about 1.5 m/s. |
mjr | 50:40015764bbe6 | 3897 | // |
mjr | 50:40015764bbe6 | 3898 | // Note that we actually calculate the value here in units |
mjr | 50:40015764bbe6 | 3899 | // per *microsecond* - the discussion above is in terms of |
mjr | 50:40015764bbe6 | 3900 | // units/sec because that's more on a human scale. Our |
mjr | 50:40015764bbe6 | 3901 | // choice of internal units here really isn't important, |
mjr | 50:40015764bbe6 | 3902 | // since we only use the velocity for comparison purposes, |
mjr | 50:40015764bbe6 | 3903 | // to detect acceleration trends. We therefore save ourselves |
mjr | 50:40015764bbe6 | 3904 | // a little CPU time by using the natural units of our inputs. |
mjr | 51:57eb311faafa | 3905 | const PlungerReading &prv2 = nthHist(1); |
mjr | 50:40015764bbe6 | 3906 | float v = float(r.pos - prv2.pos)/float(r.t - prv2.t); |
mjr | 50:40015764bbe6 | 3907 | |
mjr | 50:40015764bbe6 | 3908 | // presume we'll report the latest instantaneous reading |
mjr | 50:40015764bbe6 | 3909 | z = r.pos; |
mjr | 50:40015764bbe6 | 3910 | vz = v; |
mjr | 48:058ace2aed1d | 3911 | |
mjr | 50:40015764bbe6 | 3912 | // Check firing events |
mjr | 50:40015764bbe6 | 3913 | switch (firing) |
mjr | 50:40015764bbe6 | 3914 | { |
mjr | 50:40015764bbe6 | 3915 | case 0: |
mjr | 50:40015764bbe6 | 3916 | // Default state - not in a firing event. |
mjr | 50:40015764bbe6 | 3917 | |
mjr | 50:40015764bbe6 | 3918 | // If we have forward motion from a position that's retracted |
mjr | 50:40015764bbe6 | 3919 | // beyond a threshold, enter phase 1. If we're not pulled back |
mjr | 50:40015764bbe6 | 3920 | // far enough, don't bother with this, as a release wouldn't |
mjr | 50:40015764bbe6 | 3921 | // be strong enough to require the synthetic firing treatment. |
mjr | 50:40015764bbe6 | 3922 | if (v < 0 && r.pos > JOYMAX/6) |
mjr | 50:40015764bbe6 | 3923 | { |
mjr | 53:9b2611964afc | 3924 | // enter firing phase 1 |
mjr | 50:40015764bbe6 | 3925 | firingMode(1); |
mjr | 50:40015764bbe6 | 3926 | |
mjr | 53:9b2611964afc | 3927 | // if in calibration state 1 (at rest), switch to state 2 (not |
mjr | 53:9b2611964afc | 3928 | // at rest) |
mjr | 53:9b2611964afc | 3929 | if (calState == 1) |
mjr | 53:9b2611964afc | 3930 | calState = 2; |
mjr | 53:9b2611964afc | 3931 | |
mjr | 50:40015764bbe6 | 3932 | // we don't have a freeze position yet, but note the start time |
mjr | 50:40015764bbe6 | 3933 | f1.pos = 0; |
mjr | 50:40015764bbe6 | 3934 | f1.t = r.t; |
mjr | 50:40015764bbe6 | 3935 | |
mjr | 50:40015764bbe6 | 3936 | // Figure the barrel spring "bounce" position in case we complete |
mjr | 50:40015764bbe6 | 3937 | // the firing event. This is the amount that the forward momentum |
mjr | 50:40015764bbe6 | 3938 | // of the plunger will compress the barrel spring at the peak of |
mjr | 50:40015764bbe6 | 3939 | // the forward travel during the release. Assume that this is |
mjr | 50:40015764bbe6 | 3940 | // linearly proportional to the starting retraction distance. |
mjr | 50:40015764bbe6 | 3941 | // The barrel spring is about 1/6 the length of the main spring, |
mjr | 50:40015764bbe6 | 3942 | // so figure it compresses by 1/6 the distance. (This is overly |
mjr | 53:9b2611964afc | 3943 | // simplistic and not very accurate, but it seems to give good |
mjr | 50:40015764bbe6 | 3944 | // visual results, and that's all it's for.) |
mjr | 50:40015764bbe6 | 3945 | f2.pos = -r.pos/6; |
mjr | 50:40015764bbe6 | 3946 | } |
mjr | 50:40015764bbe6 | 3947 | break; |
mjr | 50:40015764bbe6 | 3948 | |
mjr | 50:40015764bbe6 | 3949 | case 1: |
mjr | 50:40015764bbe6 | 3950 | // Phase 1 - acceleration. If we cross the zero point, trigger |
mjr | 50:40015764bbe6 | 3951 | // the firing event. Otherwise, continue monitoring as long as we |
mjr | 50:40015764bbe6 | 3952 | // see acceleration in the forward direction. |
mjr | 50:40015764bbe6 | 3953 | if (r.pos <= 0) |
mjr | 50:40015764bbe6 | 3954 | { |
mjr | 50:40015764bbe6 | 3955 | // switch to the synthetic firing mode |
mjr | 50:40015764bbe6 | 3956 | firingMode(2); |
mjr | 50:40015764bbe6 | 3957 | z = f2.pos; |
mjr | 50:40015764bbe6 | 3958 | |
mjr | 50:40015764bbe6 | 3959 | // note the start time for the firing phase |
mjr | 50:40015764bbe6 | 3960 | f2.t = r.t; |
mjr | 53:9b2611964afc | 3961 | |
mjr | 53:9b2611964afc | 3962 | // if in calibration mode, and we're in state 2 (moving), |
mjr | 53:9b2611964afc | 3963 | // collect firing statistics for calibration purposes |
mjr | 53:9b2611964afc | 3964 | if (plungerCalMode && calState == 2) |
mjr | 53:9b2611964afc | 3965 | { |
mjr | 53:9b2611964afc | 3966 | // collect a new zero point for the average when we |
mjr | 53:9b2611964afc | 3967 | // come to rest |
mjr | 53:9b2611964afc | 3968 | calState = 0; |
mjr | 53:9b2611964afc | 3969 | |
mjr | 53:9b2611964afc | 3970 | // collect average firing time statistics in millseconds, if |
mjr | 53:9b2611964afc | 3971 | // it's in range (20 to 255 ms) |
mjr | 53:9b2611964afc | 3972 | int dt = uint32_t(r.t - f1.t)/1000UL; |
mjr | 53:9b2611964afc | 3973 | if (dt >= 20 && dt <= 255) |
mjr | 53:9b2611964afc | 3974 | { |
mjr | 53:9b2611964afc | 3975 | calRlsTimeSum += dt; |
mjr | 53:9b2611964afc | 3976 | calRlsTimeN += 1; |
mjr | 53:9b2611964afc | 3977 | cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN); |
mjr | 53:9b2611964afc | 3978 | } |
mjr | 53:9b2611964afc | 3979 | } |
mjr | 50:40015764bbe6 | 3980 | } |
mjr | 50:40015764bbe6 | 3981 | else if (v < vprv2) |
mjr | 50:40015764bbe6 | 3982 | { |
mjr | 50:40015764bbe6 | 3983 | // We're still accelerating, and we haven't crossed the zero |
mjr | 50:40015764bbe6 | 3984 | // point yet - stay in phase 1. (Note that forward motion is |
mjr | 50:40015764bbe6 | 3985 | // negative velocity, so accelerating means that the new |
mjr | 50:40015764bbe6 | 3986 | // velocity is more negative than the previous one, which |
mjr | 50:40015764bbe6 | 3987 | // is to say numerically less than - that's why the test |
mjr | 50:40015764bbe6 | 3988 | // for acceleration is the seemingly backwards 'v < vprv'.) |
mjr | 50:40015764bbe6 | 3989 | |
mjr | 50:40015764bbe6 | 3990 | // If we've been accelerating for at least 20ms, we're probably |
mjr | 50:40015764bbe6 | 3991 | // really doing a release. Jump back to the recent local |
mjr | 50:40015764bbe6 | 3992 | // maximum where the release *really* started. This is always |
mjr | 50:40015764bbe6 | 3993 | // a bit before we started seeing sustained accleration, because |
mjr | 50:40015764bbe6 | 3994 | // the plunger motion for the first few milliseconds is too slow |
mjr | 50:40015764bbe6 | 3995 | // for our sensor precision to reliably detect acceleration. |
mjr | 50:40015764bbe6 | 3996 | if (f1.pos != 0) |
mjr | 50:40015764bbe6 | 3997 | { |
mjr | 50:40015764bbe6 | 3998 | // we have a reset point - freeze there |
mjr | 50:40015764bbe6 | 3999 | z = f1.pos; |
mjr | 50:40015764bbe6 | 4000 | } |
mjr | 50:40015764bbe6 | 4001 | else if (uint32_t(r.t - f1.t) >= 20000UL) |
mjr | 50:40015764bbe6 | 4002 | { |
mjr | 50:40015764bbe6 | 4003 | // it's been long enough - set a reset point. |
mjr | 50:40015764bbe6 | 4004 | f1.pos = z = histLocalMax(r.t, 50000UL); |
mjr | 50:40015764bbe6 | 4005 | } |
mjr | 50:40015764bbe6 | 4006 | } |
mjr | 50:40015764bbe6 | 4007 | else |
mjr | 50:40015764bbe6 | 4008 | { |
mjr | 50:40015764bbe6 | 4009 | // We're not accelerating. Cancel the firing event. |
mjr | 50:40015764bbe6 | 4010 | firingMode(0); |
mjr | 53:9b2611964afc | 4011 | calState = 1; |
mjr | 50:40015764bbe6 | 4012 | } |
mjr | 50:40015764bbe6 | 4013 | break; |
mjr | 50:40015764bbe6 | 4014 | |
mjr | 50:40015764bbe6 | 4015 | case 2: |
mjr | 50:40015764bbe6 | 4016 | // Phase 2 - start of synthetic firing event. Report the fake |
mjr | 50:40015764bbe6 | 4017 | // bounce for 25ms. VP polls the joystick about every 10ms, so |
mjr | 50:40015764bbe6 | 4018 | // this should be enough time to guarantee that VP sees this |
mjr | 50:40015764bbe6 | 4019 | // report at least once. |
mjr | 50:40015764bbe6 | 4020 | if (uint32_t(r.t - f2.t) < 25000UL) |
mjr | 50:40015764bbe6 | 4021 | { |
mjr | 50:40015764bbe6 | 4022 | // report the bounce position |
mjr | 50:40015764bbe6 | 4023 | z = f2.pos; |
mjr | 50:40015764bbe6 | 4024 | } |
mjr | 50:40015764bbe6 | 4025 | else |
mjr | 50:40015764bbe6 | 4026 | { |
mjr | 50:40015764bbe6 | 4027 | // it's been long enough - switch to phase 3, where we |
mjr | 50:40015764bbe6 | 4028 | // report the park position until the real plunger comes |
mjr | 50:40015764bbe6 | 4029 | // to rest |
mjr | 50:40015764bbe6 | 4030 | firingMode(3); |
mjr | 50:40015764bbe6 | 4031 | z = 0; |
mjr | 50:40015764bbe6 | 4032 | |
mjr | 50:40015764bbe6 | 4033 | // set the start of the "stability window" to the rest position |
mjr | 50:40015764bbe6 | 4034 | f3s.t = r.t; |
mjr | 50:40015764bbe6 | 4035 | f3s.pos = 0; |
mjr | 50:40015764bbe6 | 4036 | |
mjr | 50:40015764bbe6 | 4037 | // set the start of the "retraction window" to the actual position |
mjr | 50:40015764bbe6 | 4038 | f3r = r; |
mjr | 50:40015764bbe6 | 4039 | } |
mjr | 50:40015764bbe6 | 4040 | break; |
mjr | 50:40015764bbe6 | 4041 | |
mjr | 50:40015764bbe6 | 4042 | case 3: |
mjr | 50:40015764bbe6 | 4043 | // Phase 3 - in synthetic firing event. Report the park position |
mjr | 50:40015764bbe6 | 4044 | // until the plunger position stabilizes. Left to its own devices, |
mjr | 50:40015764bbe6 | 4045 | // the plunger will usualy bounce off the barrel spring several |
mjr | 50:40015764bbe6 | 4046 | // times before coming to rest, so we'll see oscillating motion |
mjr | 50:40015764bbe6 | 4047 | // for a second or two. In the simplest case, we can aimply wait |
mjr | 50:40015764bbe6 | 4048 | // for the plunger to stop moving for a short time. However, the |
mjr | 50:40015764bbe6 | 4049 | // player might intervene by pulling the plunger back again, so |
mjr | 50:40015764bbe6 | 4050 | // watch for that motion as well. If we're just bouncing freely, |
mjr | 50:40015764bbe6 | 4051 | // we'll see the direction change frequently. If the player is |
mjr | 50:40015764bbe6 | 4052 | // moving the plunger manually, the direction will be constant |
mjr | 50:40015764bbe6 | 4053 | // for longer. |
mjr | 50:40015764bbe6 | 4054 | if (v >= 0) |
mjr | 50:40015764bbe6 | 4055 | { |
mjr | 50:40015764bbe6 | 4056 | // We're moving back (or standing still). If this has been |
mjr | 50:40015764bbe6 | 4057 | // going on for a while, the user must have taken control. |
mjr | 50:40015764bbe6 | 4058 | if (uint32_t(r.t - f3r.t) > 65000UL) |
mjr | 50:40015764bbe6 | 4059 | { |
mjr | 50:40015764bbe6 | 4060 | // user has taken control - cancel firing mode |
mjr | 50:40015764bbe6 | 4061 | firingMode(0); |
mjr | 50:40015764bbe6 | 4062 | break; |
mjr | 50:40015764bbe6 | 4063 | } |
mjr | 50:40015764bbe6 | 4064 | } |
mjr | 50:40015764bbe6 | 4065 | else |
mjr | 50:40015764bbe6 | 4066 | { |
mjr | 50:40015764bbe6 | 4067 | // forward motion - reset retraction window |
mjr | 50:40015764bbe6 | 4068 | f3r.t = r.t; |
mjr | 50:40015764bbe6 | 4069 | } |
mjr | 50:40015764bbe6 | 4070 | |
mjr | 53:9b2611964afc | 4071 | // Check if we're close to the last starting point. The joystick |
mjr | 53:9b2611964afc | 4072 | // positive axis range (0..4096) covers the retraction distance of |
mjr | 53:9b2611964afc | 4073 | // about 2.5", so 1" is about 1638 joystick units, hence 1/16" is |
mjr | 53:9b2611964afc | 4074 | // about 100 units. |
mjr | 53:9b2611964afc | 4075 | if (abs(r.pos - f3s.pos) < 100) |
mjr | 50:40015764bbe6 | 4076 | { |
mjr | 53:9b2611964afc | 4077 | // It's at roughly the same position as the starting point. |
mjr | 53:9b2611964afc | 4078 | // Consider it stable if this has been true for 300ms. |
mjr | 50:40015764bbe6 | 4079 | if (uint32_t(r.t - f3s.t) > 30000UL) |
mjr | 50:40015764bbe6 | 4080 | { |
mjr | 50:40015764bbe6 | 4081 | // we're done with the firing event |
mjr | 50:40015764bbe6 | 4082 | firingMode(0); |
mjr | 50:40015764bbe6 | 4083 | } |
mjr | 50:40015764bbe6 | 4084 | else |
mjr | 50:40015764bbe6 | 4085 | { |
mjr | 50:40015764bbe6 | 4086 | // it's close to the last position but hasn't been |
mjr | 50:40015764bbe6 | 4087 | // here long enough; stay in firing mode and continue |
mjr | 50:40015764bbe6 | 4088 | // to report the park position |
mjr | 50:40015764bbe6 | 4089 | z = 0; |
mjr | 50:40015764bbe6 | 4090 | } |
mjr | 50:40015764bbe6 | 4091 | } |
mjr | 50:40015764bbe6 | 4092 | else |
mjr | 50:40015764bbe6 | 4093 | { |
mjr | 50:40015764bbe6 | 4094 | // It's not close enough to the last starting point, so use |
mjr | 50:40015764bbe6 | 4095 | // this as a new starting point, and stay in firing mode. |
mjr | 50:40015764bbe6 | 4096 | f3s = r; |
mjr | 50:40015764bbe6 | 4097 | z = 0; |
mjr | 50:40015764bbe6 | 4098 | } |
mjr | 50:40015764bbe6 | 4099 | break; |
mjr | 50:40015764bbe6 | 4100 | } |
mjr | 50:40015764bbe6 | 4101 | |
mjr | 50:40015764bbe6 | 4102 | // save the velocity reading for next time |
mjr | 50:40015764bbe6 | 4103 | vprv2 = vprv; |
mjr | 50:40015764bbe6 | 4104 | vprv = v; |
mjr | 50:40015764bbe6 | 4105 | |
mjr | 50:40015764bbe6 | 4106 | // add the new reading to the history |
mjr | 50:40015764bbe6 | 4107 | hist[histIdx++] = r; |
mjr | 50:40015764bbe6 | 4108 | histIdx %= countof(hist); |
mjr | 58:523fdcffbe6d | 4109 | |
mjr | 69:cc5039284fac | 4110 | // apply the post-processing filter |
mjr | 69:cc5039284fac | 4111 | zf = applyPostFilter(); |
mjr | 48:058ace2aed1d | 4112 | } |
mjr | 48:058ace2aed1d | 4113 | } |
mjr | 48:058ace2aed1d | 4114 | |
mjr | 48:058ace2aed1d | 4115 | // Get the current value to report through the joystick interface |
mjr | 58:523fdcffbe6d | 4116 | int16_t getPosition() |
mjr | 58:523fdcffbe6d | 4117 | { |
mjr | 58:523fdcffbe6d | 4118 | // return the last filtered reading |
mjr | 58:523fdcffbe6d | 4119 | return zf; |
mjr | 55:4db125cd11a0 | 4120 | } |
mjr | 58:523fdcffbe6d | 4121 | |
mjr | 48:058ace2aed1d | 4122 | // Get the current velocity (joystick distance units per microsecond) |
mjr | 48:058ace2aed1d | 4123 | float getVelocity() const { return vz; } |
mjr | 48:058ace2aed1d | 4124 | |
mjr | 48:058ace2aed1d | 4125 | // get the timestamp of the current joystick report (microseconds) |
mjr | 50:40015764bbe6 | 4126 | uint32_t getTimestamp() const { return nthHist(0).t; } |
mjr | 48:058ace2aed1d | 4127 | |
mjr | 48:058ace2aed1d | 4128 | // Set calibration mode on or off |
mjr | 52:8298b2a73eb2 | 4129 | void setCalMode(bool f) |
mjr | 48:058ace2aed1d | 4130 | { |
mjr | 52:8298b2a73eb2 | 4131 | // check to see if we're entering calibration mode |
mjr | 52:8298b2a73eb2 | 4132 | if (f && !plungerCalMode) |
mjr | 52:8298b2a73eb2 | 4133 | { |
mjr | 52:8298b2a73eb2 | 4134 | // reset the calibration in the configuration |
mjr | 48:058ace2aed1d | 4135 | cfg.plunger.cal.begin(); |
mjr | 52:8298b2a73eb2 | 4136 | |
mjr | 52:8298b2a73eb2 | 4137 | // start in state 0 (waiting to settle) |
mjr | 52:8298b2a73eb2 | 4138 | calState = 0; |
mjr | 52:8298b2a73eb2 | 4139 | calZeroPosSum = 0; |
mjr | 52:8298b2a73eb2 | 4140 | calZeroPosN = 0; |
mjr | 52:8298b2a73eb2 | 4141 | calRlsTimeSum = 0; |
mjr | 52:8298b2a73eb2 | 4142 | calRlsTimeN = 0; |
mjr | 52:8298b2a73eb2 | 4143 | |
mjr | 52:8298b2a73eb2 | 4144 | // set the initial zero point to the current position |
mjr | 52:8298b2a73eb2 | 4145 | PlungerReading r; |
mjr | 52:8298b2a73eb2 | 4146 | if (plungerSensor->read(r)) |
mjr | 52:8298b2a73eb2 | 4147 | { |
mjr | 52:8298b2a73eb2 | 4148 | // got a reading - use it as the initial zero point |
mjr | 69:cc5039284fac | 4149 | applyPreFilter(r); |
mjr | 52:8298b2a73eb2 | 4150 | cfg.plunger.cal.zero = r.pos; |
mjr | 52:8298b2a73eb2 | 4151 | |
mjr | 52:8298b2a73eb2 | 4152 | // use it as the starting point for the settling watch |
mjr | 53:9b2611964afc | 4153 | calZeroStart = r; |
mjr | 52:8298b2a73eb2 | 4154 | } |
mjr | 52:8298b2a73eb2 | 4155 | else |
mjr | 52:8298b2a73eb2 | 4156 | { |
mjr | 52:8298b2a73eb2 | 4157 | // no reading available - use the default 1/6 position |
mjr | 52:8298b2a73eb2 | 4158 | cfg.plunger.cal.zero = 0xffff/6; |
mjr | 52:8298b2a73eb2 | 4159 | |
mjr | 52:8298b2a73eb2 | 4160 | // we don't have a starting point for the setting watch |
mjr | 53:9b2611964afc | 4161 | calZeroStart.pos = -65535; |
mjr | 53:9b2611964afc | 4162 | calZeroStart.t = 0; |
mjr | 53:9b2611964afc | 4163 | } |
mjr | 53:9b2611964afc | 4164 | } |
mjr | 53:9b2611964afc | 4165 | else if (!f && plungerCalMode) |
mjr | 53:9b2611964afc | 4166 | { |
mjr | 53:9b2611964afc | 4167 | // Leaving calibration mode. Make sure the max is past the |
mjr | 53:9b2611964afc | 4168 | // zero point - if it's not, we'd have a zero or negative |
mjr | 53:9b2611964afc | 4169 | // denominator for the scaling calculation, which would be |
mjr | 53:9b2611964afc | 4170 | // physically meaningless. |
mjr | 53:9b2611964afc | 4171 | if (cfg.plunger.cal.max <= cfg.plunger.cal.zero) |
mjr | 53:9b2611964afc | 4172 | { |
mjr | 53:9b2611964afc | 4173 | // bad settings - reset to defaults |
mjr | 53:9b2611964afc | 4174 | cfg.plunger.cal.max = 0xffff; |
mjr | 53:9b2611964afc | 4175 | cfg.plunger.cal.zero = 0xffff/6; |
mjr | 52:8298b2a73eb2 | 4176 | } |
mjr | 52:8298b2a73eb2 | 4177 | } |
mjr | 52:8298b2a73eb2 | 4178 | |
mjr | 48:058ace2aed1d | 4179 | // remember the new mode |
mjr | 52:8298b2a73eb2 | 4180 | plungerCalMode = f; |
mjr | 48:058ace2aed1d | 4181 | } |
mjr | 48:058ace2aed1d | 4182 | |
mjr | 48:058ace2aed1d | 4183 | // is a firing event in progress? |
mjr | 53:9b2611964afc | 4184 | bool isFiring() { return firing == 3; } |
mjr | 48:058ace2aed1d | 4185 | |
mjr | 48:058ace2aed1d | 4186 | private: |
mjr | 52:8298b2a73eb2 | 4187 | |
mjr | 74:822a92bc11d2 | 4188 | // Plunger data filtering mode: optionally apply filtering to the raw |
mjr | 74:822a92bc11d2 | 4189 | // plunger sensor readings to try to reduce noise in the signal. This |
mjr | 74:822a92bc11d2 | 4190 | // is designed for the TSL1410/12 optical sensors, where essentially all |
mjr | 74:822a92bc11d2 | 4191 | // of the noise in the signal comes from lack of sharpness in the shadow |
mjr | 74:822a92bc11d2 | 4192 | // edge. When the shadow is blurry, the edge detector has to pick a pixel, |
mjr | 74:822a92bc11d2 | 4193 | // even though the edge is actually a gradient spanning several pixels. |
mjr | 74:822a92bc11d2 | 4194 | // The edge detection algorithm decides on the exact pixel, but whatever |
mjr | 74:822a92bc11d2 | 4195 | // the algorithm, the choice is going to be somewhat arbitrary given that |
mjr | 74:822a92bc11d2 | 4196 | // there's really no one pixel that's "the edge" when the edge actually |
mjr | 74:822a92bc11d2 | 4197 | // covers multiple pixels. This can make the choice of pixel sensitive to |
mjr | 74:822a92bc11d2 | 4198 | // small changes in exposure and pixel respose from frame to frame, which |
mjr | 74:822a92bc11d2 | 4199 | // means that the reported edge position can move by a pixel or two from |
mjr | 74:822a92bc11d2 | 4200 | // one frame to the next even when the physical plunger is perfectly still. |
mjr | 74:822a92bc11d2 | 4201 | // That's the noise we're talking about. |
mjr | 74:822a92bc11d2 | 4202 | // |
mjr | 74:822a92bc11d2 | 4203 | // We previously applied a mild hysteresis filter to the signal to try to |
mjr | 74:822a92bc11d2 | 4204 | // eliminate this noise. The filter tracked the average over the last |
mjr | 74:822a92bc11d2 | 4205 | // several samples, and rejected readings that wandered within a few |
mjr | 74:822a92bc11d2 | 4206 | // pixels of the average. If a certain number of readings moved away from |
mjr | 74:822a92bc11d2 | 4207 | // the average in the same direction, even by small amounts, the filter |
mjr | 74:822a92bc11d2 | 4208 | // accepted the changes, on the assumption that they represented actual |
mjr | 74:822a92bc11d2 | 4209 | // slow movement of the plunger. This filter was applied after the firing |
mjr | 74:822a92bc11d2 | 4210 | // detection. |
mjr | 74:822a92bc11d2 | 4211 | // |
mjr | 74:822a92bc11d2 | 4212 | // I also tried a simpler filter that rejected changes that were too fast |
mjr | 74:822a92bc11d2 | 4213 | // to be physically possible, as well as changes that were very close to |
mjr | 74:822a92bc11d2 | 4214 | // the last reported position (i.e., simple hysteresis). The "too fast" |
mjr | 74:822a92bc11d2 | 4215 | // filter was there to reject spurious readings where the edge detector |
mjr | 74:822a92bc11d2 | 4216 | // mistook a bad pixel value as an edge. |
mjr | 74:822a92bc11d2 | 4217 | // |
mjr | 74:822a92bc11d2 | 4218 | // The new "mode 2" edge detector (see ccdSensor.h) seems to do a better |
mjr | 74:822a92bc11d2 | 4219 | // job of rejecting pixel-level noise by itself than the older "mode 0" |
mjr | 74:822a92bc11d2 | 4220 | // algorithm did, so I removed the filtering entirely. Any filtering has |
mjr | 74:822a92bc11d2 | 4221 | // some downsides, so it's better to reduce noise in the underlying signal |
mjr | 74:822a92bc11d2 | 4222 | // as much as possible first. It seems possible to get a very stable signal |
mjr | 74:822a92bc11d2 | 4223 | // now with a combination of the mode 2 edge detector and optimizing the |
mjr | 74:822a92bc11d2 | 4224 | // physical sensor arrangement, especially optimizing the light source to |
mjr | 74:822a92bc11d2 | 4225 | // cast as sharp as shadow as possible and adjusting the brightness to |
mjr | 74:822a92bc11d2 | 4226 | // maximize bright/dark contrast in the image. |
mjr | 74:822a92bc11d2 | 4227 | // |
mjr | 74:822a92bc11d2 | 4228 | // 0 = No filtering (current default) |
mjr | 74:822a92bc11d2 | 4229 | // 1 = Filter the data after firing detection using moving average |
mjr | 74:822a92bc11d2 | 4230 | // hysteresis filter (old version, used in most 2016 releases) |
mjr | 74:822a92bc11d2 | 4231 | // 2 = Filter the data before firing detection using simple hysteresis |
mjr | 74:822a92bc11d2 | 4232 | // plus spurious "too fast" motion rejection |
mjr | 74:822a92bc11d2 | 4233 | // |
mjr | 73:4e8ce0b18915 | 4234 | #define PLUNGER_FILTERING_MODE 0 |
mjr | 73:4e8ce0b18915 | 4235 | |
mjr | 73:4e8ce0b18915 | 4236 | #if PLUNGER_FILTERING_MODE == 0 |
mjr | 69:cc5039284fac | 4237 | // Disable all filtering |
mjr | 74:822a92bc11d2 | 4238 | inline void applyPreFilter(PlungerReading &r) { } |
mjr | 74:822a92bc11d2 | 4239 | inline int applyPostFilter() { return z; } |
mjr | 73:4e8ce0b18915 | 4240 | #elif PLUNGER_FILTERING_MODE == 1 |
mjr | 73:4e8ce0b18915 | 4241 | // Apply pre-processing filter. This filter is applied to the raw |
mjr | 73:4e8ce0b18915 | 4242 | // value coming off the sensor, before calibration or fire-event |
mjr | 73:4e8ce0b18915 | 4243 | // processing. |
mjr | 73:4e8ce0b18915 | 4244 | void applyPreFilter(PlungerReading &r) |
mjr | 73:4e8ce0b18915 | 4245 | { |
mjr | 73:4e8ce0b18915 | 4246 | } |
mjr | 73:4e8ce0b18915 | 4247 | |
mjr | 73:4e8ce0b18915 | 4248 | // Figure the next post-processing filtered value. This applies a |
mjr | 73:4e8ce0b18915 | 4249 | // hysteresis filter to the last raw z value and returns the |
mjr | 73:4e8ce0b18915 | 4250 | // filtered result. |
mjr | 73:4e8ce0b18915 | 4251 | int applyPostFilter() |
mjr | 73:4e8ce0b18915 | 4252 | { |
mjr | 73:4e8ce0b18915 | 4253 | if (firing <= 1) |
mjr | 73:4e8ce0b18915 | 4254 | { |
mjr | 73:4e8ce0b18915 | 4255 | // Filter limit - 5 samples. Once we've been moving |
mjr | 73:4e8ce0b18915 | 4256 | // in the same direction for this many samples, we'll |
mjr | 73:4e8ce0b18915 | 4257 | // clear the history and start over. |
mjr | 73:4e8ce0b18915 | 4258 | const int filterMask = 0x1f; |
mjr | 73:4e8ce0b18915 | 4259 | |
mjr | 73:4e8ce0b18915 | 4260 | // figure the last average |
mjr | 73:4e8ce0b18915 | 4261 | int lastAvg = int(filterSum / filterN); |
mjr | 73:4e8ce0b18915 | 4262 | |
mjr | 73:4e8ce0b18915 | 4263 | // figure the direction of this sample relative to the average, |
mjr | 73:4e8ce0b18915 | 4264 | // and shift it in to our bit mask of recent direction data |
mjr | 73:4e8ce0b18915 | 4265 | if (z != lastAvg) |
mjr | 73:4e8ce0b18915 | 4266 | { |
mjr | 73:4e8ce0b18915 | 4267 | // shift the new direction bit into the vector |
mjr | 73:4e8ce0b18915 | 4268 | filterDir <<= 1; |
mjr | 73:4e8ce0b18915 | 4269 | if (z > lastAvg) filterDir |= 1; |
mjr | 73:4e8ce0b18915 | 4270 | } |
mjr | 73:4e8ce0b18915 | 4271 | |
mjr | 73:4e8ce0b18915 | 4272 | // keep only the last N readings, up to the filter limit |
mjr | 73:4e8ce0b18915 | 4273 | filterDir &= filterMask; |
mjr | 73:4e8ce0b18915 | 4274 | |
mjr | 73:4e8ce0b18915 | 4275 | // if we've been moving consistently in one direction (all 1's |
mjr | 73:4e8ce0b18915 | 4276 | // or all 0's in the direction history vector), reset the average |
mjr | 73:4e8ce0b18915 | 4277 | if (filterDir == 0x00 || filterDir == filterMask) |
mjr | 73:4e8ce0b18915 | 4278 | { |
mjr | 73:4e8ce0b18915 | 4279 | // motion away from the average - reset the average |
mjr | 73:4e8ce0b18915 | 4280 | filterDir = 0x5555; |
mjr | 73:4e8ce0b18915 | 4281 | filterN = 1; |
mjr | 73:4e8ce0b18915 | 4282 | filterSum = (lastAvg + z)/2; |
mjr | 73:4e8ce0b18915 | 4283 | return int16_t(filterSum); |
mjr | 73:4e8ce0b18915 | 4284 | } |
mjr | 73:4e8ce0b18915 | 4285 | else |
mjr | 73:4e8ce0b18915 | 4286 | { |
mjr | 73:4e8ce0b18915 | 4287 | // we're directionless - return the new average, with the |
mjr | 73:4e8ce0b18915 | 4288 | // new sample included |
mjr | 73:4e8ce0b18915 | 4289 | filterSum += z; |
mjr | 73:4e8ce0b18915 | 4290 | ++filterN; |
mjr | 73:4e8ce0b18915 | 4291 | return int16_t(filterSum / filterN); |
mjr | 73:4e8ce0b18915 | 4292 | } |
mjr | 73:4e8ce0b18915 | 4293 | } |
mjr | 73:4e8ce0b18915 | 4294 | else |
mjr | 73:4e8ce0b18915 | 4295 | { |
mjr | 73:4e8ce0b18915 | 4296 | // firing mode - skip the filter |
mjr | 73:4e8ce0b18915 | 4297 | filterN = 1; |
mjr | 73:4e8ce0b18915 | 4298 | filterSum = z; |
mjr | 73:4e8ce0b18915 | 4299 | filterDir = 0x5555; |
mjr | 73:4e8ce0b18915 | 4300 | return z; |
mjr | 73:4e8ce0b18915 | 4301 | } |
mjr | 73:4e8ce0b18915 | 4302 | } |
mjr | 73:4e8ce0b18915 | 4303 | #elif PLUNGER_FILTERING_MODE == 2 |
mjr | 69:cc5039284fac | 4304 | // Apply pre-processing filter. This filter is applied to the raw |
mjr | 69:cc5039284fac | 4305 | // value coming off the sensor, before calibration or fire-event |
mjr | 69:cc5039284fac | 4306 | // processing. |
mjr | 69:cc5039284fac | 4307 | void applyPreFilter(PlungerReading &r) |
mjr | 69:cc5039284fac | 4308 | { |
mjr | 69:cc5039284fac | 4309 | // get the previous raw reading |
mjr | 69:cc5039284fac | 4310 | PlungerReading prv = pre.raw; |
mjr | 69:cc5039284fac | 4311 | |
mjr | 69:cc5039284fac | 4312 | // the new reading is the previous raw reading next time, no |
mjr | 69:cc5039284fac | 4313 | // matter how we end up filtering it |
mjr | 69:cc5039284fac | 4314 | pre.raw = r; |
mjr | 69:cc5039284fac | 4315 | |
mjr | 69:cc5039284fac | 4316 | // If it's too big an excursion from the previous raw reading, |
mjr | 69:cc5039284fac | 4317 | // ignore it and repeat the previous reported reading. This |
mjr | 69:cc5039284fac | 4318 | // filters out anomalous spikes where we suddenly jump to a |
mjr | 69:cc5039284fac | 4319 | // level that's too far away to be possible. Real plungers |
mjr | 69:cc5039284fac | 4320 | // take about 60ms to travel the full distance when released, |
mjr | 69:cc5039284fac | 4321 | // so assuming constant acceleration, the maximum realistic |
mjr | 69:cc5039284fac | 4322 | // speed is about 2.200 distance units (on our 0..0xffff scale) |
mjr | 69:cc5039284fac | 4323 | // per microsecond. |
mjr | 69:cc5039284fac | 4324 | // |
mjr | 69:cc5039284fac | 4325 | // On the other hand, if the new reading is too *close* to the |
mjr | 69:cc5039284fac | 4326 | // previous reading, use the previous reported reading. This |
mjr | 69:cc5039284fac | 4327 | // filters out jitter around a stationary position. |
mjr | 69:cc5039284fac | 4328 | const float maxDist = 2.184f*uint32_t(r.t - prv.t); |
mjr | 69:cc5039284fac | 4329 | const int minDist = 256; |
mjr | 69:cc5039284fac | 4330 | const int delta = abs(r.pos - prv.pos); |
mjr | 69:cc5039284fac | 4331 | if (maxDist > minDist && delta > maxDist) |
mjr | 69:cc5039284fac | 4332 | { |
mjr | 69:cc5039284fac | 4333 | // too big an excursion - discard this reading by reporting |
mjr | 69:cc5039284fac | 4334 | // the last reported reading instead |
mjr | 69:cc5039284fac | 4335 | r.pos = pre.reported; |
mjr | 69:cc5039284fac | 4336 | } |
mjr | 69:cc5039284fac | 4337 | else if (delta < minDist) |
mjr | 69:cc5039284fac | 4338 | { |
mjr | 69:cc5039284fac | 4339 | // too close to the prior reading - apply hysteresis |
mjr | 69:cc5039284fac | 4340 | r.pos = pre.reported; |
mjr | 69:cc5039284fac | 4341 | } |
mjr | 69:cc5039284fac | 4342 | else |
mjr | 69:cc5039284fac | 4343 | { |
mjr | 69:cc5039284fac | 4344 | // the reading is in range - keep it, and remember it as |
mjr | 69:cc5039284fac | 4345 | // the last reported reading |
mjr | 69:cc5039284fac | 4346 | pre.reported = r.pos; |
mjr | 69:cc5039284fac | 4347 | } |
mjr | 69:cc5039284fac | 4348 | } |
mjr | 69:cc5039284fac | 4349 | |
mjr | 69:cc5039284fac | 4350 | // pre-filter data |
mjr | 69:cc5039284fac | 4351 | struct PreFilterData { |
mjr | 69:cc5039284fac | 4352 | PreFilterData() |
mjr | 69:cc5039284fac | 4353 | : reported(0) |
mjr | 69:cc5039284fac | 4354 | { |
mjr | 69:cc5039284fac | 4355 | raw.t = 0; |
mjr | 69:cc5039284fac | 4356 | raw.pos = 0; |
mjr | 69:cc5039284fac | 4357 | } |
mjr | 69:cc5039284fac | 4358 | PlungerReading raw; // previous raw sensor reading |
mjr | 69:cc5039284fac | 4359 | int reported; // previous reported reading |
mjr | 69:cc5039284fac | 4360 | } pre; |
mjr | 69:cc5039284fac | 4361 | |
mjr | 69:cc5039284fac | 4362 | |
mjr | 69:cc5039284fac | 4363 | // Apply the post-processing filter. This filter is applied after |
mjr | 69:cc5039284fac | 4364 | // the fire-event processing. In the past, this used hysteresis to |
mjr | 69:cc5039284fac | 4365 | // try to smooth out jittering readings for a stationary plunger. |
mjr | 69:cc5039284fac | 4366 | // We've switched to a different approach that massages the readings |
mjr | 69:cc5039284fac | 4367 | // coming off the sensor before |
mjr | 69:cc5039284fac | 4368 | int applyPostFilter() |
mjr | 69:cc5039284fac | 4369 | { |
mjr | 69:cc5039284fac | 4370 | return z; |
mjr | 69:cc5039284fac | 4371 | } |
mjr | 69:cc5039284fac | 4372 | #endif |
mjr | 58:523fdcffbe6d | 4373 | |
mjr | 58:523fdcffbe6d | 4374 | void initFilter() |
mjr | 58:523fdcffbe6d | 4375 | { |
mjr | 58:523fdcffbe6d | 4376 | filterSum = 0; |
mjr | 58:523fdcffbe6d | 4377 | filterN = 1; |
mjr | 58:523fdcffbe6d | 4378 | filterDir = 0x5555; |
mjr | 58:523fdcffbe6d | 4379 | } |
mjr | 58:523fdcffbe6d | 4380 | int64_t filterSum; |
mjr | 58:523fdcffbe6d | 4381 | int64_t filterN; |
mjr | 58:523fdcffbe6d | 4382 | uint16_t filterDir; |
mjr | 58:523fdcffbe6d | 4383 | |
mjr | 58:523fdcffbe6d | 4384 | |
mjr | 52:8298b2a73eb2 | 4385 | // Calibration state. During calibration mode, we watch for release |
mjr | 52:8298b2a73eb2 | 4386 | // events, to measure the time it takes to complete the release |
mjr | 52:8298b2a73eb2 | 4387 | // motion; and we watch for the plunger to come to reset after a |
mjr | 52:8298b2a73eb2 | 4388 | // release, to gather statistics on the rest position. |
mjr | 52:8298b2a73eb2 | 4389 | // 0 = waiting to settle |
mjr | 52:8298b2a73eb2 | 4390 | // 1 = at rest |
mjr | 52:8298b2a73eb2 | 4391 | // 2 = retracting |
mjr | 52:8298b2a73eb2 | 4392 | // 3 = possibly releasing |
mjr | 52:8298b2a73eb2 | 4393 | uint8_t calState; |
mjr | 52:8298b2a73eb2 | 4394 | |
mjr | 52:8298b2a73eb2 | 4395 | // Calibration zero point statistics. |
mjr | 52:8298b2a73eb2 | 4396 | // During calibration mode, we collect data on the rest position (the |
mjr | 52:8298b2a73eb2 | 4397 | // zero point) by watching for the plunger to come to rest after each |
mjr | 52:8298b2a73eb2 | 4398 | // release. We average these rest positions to get the calibrated |
mjr | 52:8298b2a73eb2 | 4399 | // zero point. We use the average because the real physical plunger |
mjr | 52:8298b2a73eb2 | 4400 | // itself doesn't come to rest at exactly the same spot every time, |
mjr | 52:8298b2a73eb2 | 4401 | // largely due to friction in the mechanism. To calculate the average, |
mjr | 52:8298b2a73eb2 | 4402 | // we keep a sum of the readings and a count of samples. |
mjr | 53:9b2611964afc | 4403 | PlungerReading calZeroStart; |
mjr | 52:8298b2a73eb2 | 4404 | long calZeroPosSum; |
mjr | 52:8298b2a73eb2 | 4405 | int calZeroPosN; |
mjr | 52:8298b2a73eb2 | 4406 | |
mjr | 52:8298b2a73eb2 | 4407 | // Calibration release time statistics. |
mjr | 52:8298b2a73eb2 | 4408 | // During calibration, we collect an average for the release time. |
mjr | 52:8298b2a73eb2 | 4409 | long calRlsTimeSum; |
mjr | 52:8298b2a73eb2 | 4410 | int calRlsTimeN; |
mjr | 52:8298b2a73eb2 | 4411 | |
mjr | 48:058ace2aed1d | 4412 | // set a firing mode |
mjr | 48:058ace2aed1d | 4413 | inline void firingMode(int m) |
mjr | 48:058ace2aed1d | 4414 | { |
mjr | 48:058ace2aed1d | 4415 | firing = m; |
mjr | 48:058ace2aed1d | 4416 | } |
mjr | 48:058ace2aed1d | 4417 | |
mjr | 48:058ace2aed1d | 4418 | // Find the most recent local maximum in the history data, up to |
mjr | 48:058ace2aed1d | 4419 | // the given time limit. |
mjr | 48:058ace2aed1d | 4420 | int histLocalMax(uint32_t tcur, uint32_t dt) |
mjr | 48:058ace2aed1d | 4421 | { |
mjr | 48:058ace2aed1d | 4422 | // start with the prior entry |
mjr | 48:058ace2aed1d | 4423 | int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1; |
mjr | 48:058ace2aed1d | 4424 | int hi = hist[idx].pos; |
mjr | 48:058ace2aed1d | 4425 | |
mjr | 48:058ace2aed1d | 4426 | // scan backwards for a local maximum |
mjr | 48:058ace2aed1d | 4427 | for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1) |
mjr | 48:058ace2aed1d | 4428 | { |
mjr | 48:058ace2aed1d | 4429 | // if this isn't within the time window, stop |
mjr | 48:058ace2aed1d | 4430 | if (uint32_t(tcur - hist[idx].t) > dt) |
mjr | 48:058ace2aed1d | 4431 | break; |
mjr | 48:058ace2aed1d | 4432 | |
mjr | 48:058ace2aed1d | 4433 | // if this isn't above the current hith, stop |
mjr | 48:058ace2aed1d | 4434 | if (hist[idx].pos < hi) |
mjr | 48:058ace2aed1d | 4435 | break; |
mjr | 48:058ace2aed1d | 4436 | |
mjr | 48:058ace2aed1d | 4437 | // this is the new high |
mjr | 48:058ace2aed1d | 4438 | hi = hist[idx].pos; |
mjr | 48:058ace2aed1d | 4439 | } |
mjr | 48:058ace2aed1d | 4440 | |
mjr | 48:058ace2aed1d | 4441 | // return the local maximum |
mjr | 48:058ace2aed1d | 4442 | return hi; |
mjr | 48:058ace2aed1d | 4443 | } |
mjr | 48:058ace2aed1d | 4444 | |
mjr | 50:40015764bbe6 | 4445 | // velocity at previous reading, and the one before that |
mjr | 50:40015764bbe6 | 4446 | float vprv, vprv2; |
mjr | 48:058ace2aed1d | 4447 | |
mjr | 48:058ace2aed1d | 4448 | // Circular buffer of recent readings. We keep a short history |
mjr | 48:058ace2aed1d | 4449 | // of readings to analyze during firing events. We can only identify |
mjr | 48:058ace2aed1d | 4450 | // a firing event once it's somewhat under way, so we need a little |
mjr | 48:058ace2aed1d | 4451 | // retrospective information to accurately determine after the fact |
mjr | 48:058ace2aed1d | 4452 | // exactly when it started. We throttle our readings to no more |
mjr | 74:822a92bc11d2 | 4453 | // than one every 1ms, so we have at least N*1ms of history in this |
mjr | 48:058ace2aed1d | 4454 | // array. |
mjr | 74:822a92bc11d2 | 4455 | PlungerReading hist[32]; |
mjr | 48:058ace2aed1d | 4456 | int histIdx; |
mjr | 49:37bd97eb7688 | 4457 | |
mjr | 50:40015764bbe6 | 4458 | // get the nth history item (0=last, 1=2nd to last, etc) |
mjr | 74:822a92bc11d2 | 4459 | inline const PlungerReading &nthHist(int n) const |
mjr | 50:40015764bbe6 | 4460 | { |
mjr | 50:40015764bbe6 | 4461 | // histIdx-1 is the last written; go from there |
mjr | 50:40015764bbe6 | 4462 | n = histIdx - 1 - n; |
mjr | 50:40015764bbe6 | 4463 | |
mjr | 50:40015764bbe6 | 4464 | // adjust for wrapping |
mjr | 50:40015764bbe6 | 4465 | if (n < 0) |
mjr | 50:40015764bbe6 | 4466 | n += countof(hist); |
mjr | 50:40015764bbe6 | 4467 | |
mjr | 50:40015764bbe6 | 4468 | // return the item |
mjr | 50:40015764bbe6 | 4469 | return hist[n]; |
mjr | 50:40015764bbe6 | 4470 | } |
mjr | 48:058ace2aed1d | 4471 | |
mjr | 48:058ace2aed1d | 4472 | // Firing event state. |
mjr | 48:058ace2aed1d | 4473 | // |
mjr | 48:058ace2aed1d | 4474 | // 0 - Default state. We report the real instantaneous plunger |
mjr | 48:058ace2aed1d | 4475 | // position to the joystick interface. |
mjr | 48:058ace2aed1d | 4476 | // |
mjr | 53:9b2611964afc | 4477 | // 1 - Moving forward |
mjr | 48:058ace2aed1d | 4478 | // |
mjr | 53:9b2611964afc | 4479 | // 2 - Accelerating |
mjr | 48:058ace2aed1d | 4480 | // |
mjr | 53:9b2611964afc | 4481 | // 3 - Firing. We report the rest position for a minimum interval, |
mjr | 53:9b2611964afc | 4482 | // or until the real plunger comes to rest somewhere. |
mjr | 48:058ace2aed1d | 4483 | // |
mjr | 48:058ace2aed1d | 4484 | int firing; |
mjr | 48:058ace2aed1d | 4485 | |
mjr | 51:57eb311faafa | 4486 | // Position/timestamp at start of firing phase 1. When we see a |
mjr | 51:57eb311faafa | 4487 | // sustained forward acceleration, we freeze joystick reports at |
mjr | 51:57eb311faafa | 4488 | // the recent local maximum, on the assumption that this was the |
mjr | 51:57eb311faafa | 4489 | // start of the release. If this is zero, it means that we're |
mjr | 51:57eb311faafa | 4490 | // monitoring accelerating motion but haven't seen it for long |
mjr | 51:57eb311faafa | 4491 | // enough yet to be confident that a release is in progress. |
mjr | 48:058ace2aed1d | 4492 | PlungerReading f1; |
mjr | 48:058ace2aed1d | 4493 | |
mjr | 48:058ace2aed1d | 4494 | // Position/timestamp at start of firing phase 2. The position is |
mjr | 48:058ace2aed1d | 4495 | // the fake "bounce" position we report during this phase, and the |
mjr | 48:058ace2aed1d | 4496 | // timestamp tells us when the phase began so that we can end it |
mjr | 48:058ace2aed1d | 4497 | // after enough time elapses. |
mjr | 48:058ace2aed1d | 4498 | PlungerReading f2; |
mjr | 48:058ace2aed1d | 4499 | |
mjr | 48:058ace2aed1d | 4500 | // Position/timestamp of start of stability window during phase 3. |
mjr | 48:058ace2aed1d | 4501 | // We use this to determine when the plunger comes to rest. We set |
mjr | 51:57eb311faafa | 4502 | // this at the beginning of phase 3, and then reset it when the |
mjr | 48:058ace2aed1d | 4503 | // plunger moves too far from the last position. |
mjr | 48:058ace2aed1d | 4504 | PlungerReading f3s; |
mjr | 48:058ace2aed1d | 4505 | |
mjr | 48:058ace2aed1d | 4506 | // Position/timestamp of start of retraction window during phase 3. |
mjr | 48:058ace2aed1d | 4507 | // We use this to determine if the user is drawing the plunger back. |
mjr | 48:058ace2aed1d | 4508 | // If we see retraction motion for more than about 65ms, we assume |
mjr | 48:058ace2aed1d | 4509 | // that the user has taken over, because we should see forward |
mjr | 48:058ace2aed1d | 4510 | // motion within this timeframe if the plunger is just bouncing |
mjr | 48:058ace2aed1d | 4511 | // freely. |
mjr | 48:058ace2aed1d | 4512 | PlungerReading f3r; |
mjr | 48:058ace2aed1d | 4513 | |
mjr | 58:523fdcffbe6d | 4514 | // next raw (unfiltered) Z value to report to the joystick interface |
mjr | 58:523fdcffbe6d | 4515 | // (in joystick distance units) |
mjr | 48:058ace2aed1d | 4516 | int z; |
mjr | 48:058ace2aed1d | 4517 | |
mjr | 48:058ace2aed1d | 4518 | // velocity of this reading (joystick distance units per microsecond) |
mjr | 48:058ace2aed1d | 4519 | float vz; |
mjr | 58:523fdcffbe6d | 4520 | |
mjr | 58:523fdcffbe6d | 4521 | // next filtered Z value to report to the joystick interface |
mjr | 58:523fdcffbe6d | 4522 | int zf; |
mjr | 48:058ace2aed1d | 4523 | }; |
mjr | 48:058ace2aed1d | 4524 | |
mjr | 48:058ace2aed1d | 4525 | // plunger reader singleton |
mjr | 48:058ace2aed1d | 4526 | PlungerReader plungerReader; |
mjr | 48:058ace2aed1d | 4527 | |
mjr | 48:058ace2aed1d | 4528 | // --------------------------------------------------------------------------- |
mjr | 48:058ace2aed1d | 4529 | // |
mjr | 48:058ace2aed1d | 4530 | // Handle the ZB Launch Ball feature. |
mjr | 48:058ace2aed1d | 4531 | // |
mjr | 48:058ace2aed1d | 4532 | // The ZB Launch Ball feature, if enabled, lets the mechanical plunger |
mjr | 48:058ace2aed1d | 4533 | // serve as a substitute for a physical Launch Ball button. When a table |
mjr | 48:058ace2aed1d | 4534 | // is loaded in VP, and the table has the ZB Launch Ball LedWiz port |
mjr | 48:058ace2aed1d | 4535 | // turned on, we'll disable mechanical plunger reports through the |
mjr | 48:058ace2aed1d | 4536 | // joystick interface and instead use the plunger only to simulate the |
mjr | 48:058ace2aed1d | 4537 | // Launch Ball button. When the mode is active, pulling back and |
mjr | 48:058ace2aed1d | 4538 | // releasing the plunger causes a brief simulated press of the Launch |
mjr | 48:058ace2aed1d | 4539 | // button, and pushing the plunger forward of the rest position presses |
mjr | 48:058ace2aed1d | 4540 | // the Launch button as long as the plunger is pressed forward. |
mjr | 48:058ace2aed1d | 4541 | // |
mjr | 48:058ace2aed1d | 4542 | // This feature has two configuration components: |
mjr | 48:058ace2aed1d | 4543 | // |
mjr | 48:058ace2aed1d | 4544 | // - An LedWiz port number. This port is a "virtual" port that doesn't |
mjr | 48:058ace2aed1d | 4545 | // have to be attached to any actual output. DOF uses it to signal |
mjr | 48:058ace2aed1d | 4546 | // that the current table uses a Launch button instead of a plunger. |
mjr | 48:058ace2aed1d | 4547 | // DOF simply turns the port on when such a table is loaded and turns |
mjr | 48:058ace2aed1d | 4548 | // it off at all other times. We use it to enable and disable the |
mjr | 48:058ace2aed1d | 4549 | // plunger/launch button connection. |
mjr | 48:058ace2aed1d | 4550 | // |
mjr | 48:058ace2aed1d | 4551 | // - A joystick button ID. We simulate pressing this button when the |
mjr | 48:058ace2aed1d | 4552 | // launch feature is activated via the LedWiz port and the plunger is |
mjr | 48:058ace2aed1d | 4553 | // either pulled back and releasd, or pushed forward past the rest |
mjr | 48:058ace2aed1d | 4554 | // position. |
mjr | 48:058ace2aed1d | 4555 | // |
mjr | 48:058ace2aed1d | 4556 | class ZBLaunchBall |
mjr | 48:058ace2aed1d | 4557 | { |
mjr | 48:058ace2aed1d | 4558 | public: |
mjr | 48:058ace2aed1d | 4559 | ZBLaunchBall() |
mjr | 48:058ace2aed1d | 4560 | { |
mjr | 48:058ace2aed1d | 4561 | // start in the default state |
mjr | 48:058ace2aed1d | 4562 | lbState = 0; |
mjr | 53:9b2611964afc | 4563 | btnState = false; |
mjr | 48:058ace2aed1d | 4564 | } |
mjr | 48:058ace2aed1d | 4565 | |
mjr | 48:058ace2aed1d | 4566 | // Update state. This checks the current plunger position and |
mjr | 48:058ace2aed1d | 4567 | // the timers to see if the plunger is in a position that simulates |
mjr | 48:058ace2aed1d | 4568 | // a Launch Ball button press via the ZB Launch Ball feature. |
mjr | 48:058ace2aed1d | 4569 | // Updates the simulated button vector according to the current |
mjr | 48:058ace2aed1d | 4570 | // launch ball state. The main loop calls this before each |
mjr | 48:058ace2aed1d | 4571 | // joystick update to figure the new simulated button state. |
mjr | 53:9b2611964afc | 4572 | void update() |
mjr | 48:058ace2aed1d | 4573 | { |
mjr | 53:9b2611964afc | 4574 | // If the ZB Launch Ball led wiz output is ON, check for a |
mjr | 53:9b2611964afc | 4575 | // plunger firing event |
mjr | 53:9b2611964afc | 4576 | if (zbLaunchOn) |
mjr | 48:058ace2aed1d | 4577 | { |
mjr | 53:9b2611964afc | 4578 | // note the new position |
mjr | 48:058ace2aed1d | 4579 | int znew = plungerReader.getPosition(); |
mjr | 53:9b2611964afc | 4580 | |
mjr | 53:9b2611964afc | 4581 | // figure the push threshold from the configuration data |
mjr | 51:57eb311faafa | 4582 | const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0); |
mjr | 53:9b2611964afc | 4583 | |
mjr | 53:9b2611964afc | 4584 | // check the state |
mjr | 48:058ace2aed1d | 4585 | switch (lbState) |
mjr | 48:058ace2aed1d | 4586 | { |
mjr | 48:058ace2aed1d | 4587 | case 0: |
mjr | 53:9b2611964afc | 4588 | // Default state. If a launch event has been detected on |
mjr | 53:9b2611964afc | 4589 | // the plunger, activate a timed pulse and switch to state 1. |
mjr | 53:9b2611964afc | 4590 | // If the plunger is pushed forward of the threshold, push |
mjr | 53:9b2611964afc | 4591 | // the button. |
mjr | 53:9b2611964afc | 4592 | if (plungerReader.isFiring()) |
mjr | 53:9b2611964afc | 4593 | { |
mjr | 53:9b2611964afc | 4594 | // firing event - start a timed Launch button pulse |
mjr | 53:9b2611964afc | 4595 | lbTimer.reset(); |
mjr | 53:9b2611964afc | 4596 | lbTimer.start(); |
mjr | 53:9b2611964afc | 4597 | setButton(true); |
mjr | 53:9b2611964afc | 4598 | |
mjr | 53:9b2611964afc | 4599 | // switch to state 1 |
mjr | 53:9b2611964afc | 4600 | lbState = 1; |
mjr | 53:9b2611964afc | 4601 | } |
mjr | 48:058ace2aed1d | 4602 | else if (znew <= pushThreshold) |
mjr | 53:9b2611964afc | 4603 | { |
mjr | 53:9b2611964afc | 4604 | // pushed forward without a firing event - hold the |
mjr | 53:9b2611964afc | 4605 | // button as long as we're pushed forward |
mjr | 53:9b2611964afc | 4606 | setButton(true); |
mjr | 53:9b2611964afc | 4607 | } |
mjr | 53:9b2611964afc | 4608 | else |
mjr | 53:9b2611964afc | 4609 | { |
mjr | 53:9b2611964afc | 4610 | // not pushed forward - turn off the Launch button |
mjr | 53:9b2611964afc | 4611 | setButton(false); |
mjr | 53:9b2611964afc | 4612 | } |
mjr | 48:058ace2aed1d | 4613 | break; |
mjr | 48:058ace2aed1d | 4614 | |
mjr | 48:058ace2aed1d | 4615 | case 1: |
mjr | 53:9b2611964afc | 4616 | // State 1: Timed Launch button pulse in progress after a |
mjr | 53:9b2611964afc | 4617 | // firing event. Wait for the timer to expire. |
mjr | 53:9b2611964afc | 4618 | if (lbTimer.read_us() > 200000UL) |
mjr | 53:9b2611964afc | 4619 | { |
mjr | 53:9b2611964afc | 4620 | // timer expired - turn off the button |
mjr | 53:9b2611964afc | 4621 | setButton(false); |
mjr | 53:9b2611964afc | 4622 | |
mjr | 53:9b2611964afc | 4623 | // switch to state 2 |
mjr | 53:9b2611964afc | 4624 | lbState = 2; |
mjr | 53:9b2611964afc | 4625 | } |
mjr | 48:058ace2aed1d | 4626 | break; |
mjr | 48:058ace2aed1d | 4627 | |
mjr | 48:058ace2aed1d | 4628 | case 2: |
mjr | 53:9b2611964afc | 4629 | // State 2: Timed Launch button pulse done. Wait for the |
mjr | 53:9b2611964afc | 4630 | // plunger launch event to end. |
mjr | 53:9b2611964afc | 4631 | if (!plungerReader.isFiring()) |
mjr | 53:9b2611964afc | 4632 | { |
mjr | 53:9b2611964afc | 4633 | // firing event done - return to default state |
mjr | 53:9b2611964afc | 4634 | lbState = 0; |
mjr | 53:9b2611964afc | 4635 | } |
mjr | 48:058ace2aed1d | 4636 | break; |
mjr | 48:058ace2aed1d | 4637 | } |
mjr | 53:9b2611964afc | 4638 | } |
mjr | 53:9b2611964afc | 4639 | else |
mjr | 53:9b2611964afc | 4640 | { |
mjr | 53:9b2611964afc | 4641 | // ZB Launch Ball disabled - turn off the button if it was on |
mjr | 53:9b2611964afc | 4642 | setButton(false); |
mjr | 48:058ace2aed1d | 4643 | |
mjr | 53:9b2611964afc | 4644 | // return to the default state |
mjr | 53:9b2611964afc | 4645 | lbState = 0; |
mjr | 48:058ace2aed1d | 4646 | } |
mjr | 48:058ace2aed1d | 4647 | } |
mjr | 53:9b2611964afc | 4648 | |
mjr | 53:9b2611964afc | 4649 | // Set the button state |
mjr | 53:9b2611964afc | 4650 | void setButton(bool on) |
mjr | 53:9b2611964afc | 4651 | { |
mjr | 53:9b2611964afc | 4652 | if (btnState != on) |
mjr | 53:9b2611964afc | 4653 | { |
mjr | 53:9b2611964afc | 4654 | // remember the new state |
mjr | 53:9b2611964afc | 4655 | btnState = on; |
mjr | 53:9b2611964afc | 4656 | |
mjr | 53:9b2611964afc | 4657 | // update the virtual button state |
mjr | 65:739875521aae | 4658 | buttonState[zblButtonIndex].virtPress(on); |
mjr | 53:9b2611964afc | 4659 | } |
mjr | 53:9b2611964afc | 4660 | } |
mjr | 53:9b2611964afc | 4661 | |
mjr | 48:058ace2aed1d | 4662 | private: |
mjr | 48:058ace2aed1d | 4663 | // Simulated Launch Ball button state. If a "ZB Launch Ball" port is |
mjr | 48:058ace2aed1d | 4664 | // defined for our LedWiz port mapping, any time that port is turned ON, |
mjr | 48:058ace2aed1d | 4665 | // we'll simulate pushing the Launch Ball button if the player pulls |
mjr | 48:058ace2aed1d | 4666 | // back and releases the plunger, or simply pushes on the plunger from |
mjr | 48:058ace2aed1d | 4667 | // the rest position. This allows the plunger to be used in lieu of a |
mjr | 48:058ace2aed1d | 4668 | // physical Launch Ball button for tables that don't have plungers. |
mjr | 48:058ace2aed1d | 4669 | // |
mjr | 48:058ace2aed1d | 4670 | // States: |
mjr | 48:058ace2aed1d | 4671 | // 0 = default |
mjr | 53:9b2611964afc | 4672 | // 1 = firing (firing event has activated a Launch button pulse) |
mjr | 53:9b2611964afc | 4673 | // 2 = firing done (Launch button pulse ended, waiting for plunger |
mjr | 53:9b2611964afc | 4674 | // firing event to end) |
mjr | 53:9b2611964afc | 4675 | uint8_t lbState; |
mjr | 48:058ace2aed1d | 4676 | |
mjr | 53:9b2611964afc | 4677 | // button state |
mjr | 53:9b2611964afc | 4678 | bool btnState; |
mjr | 48:058ace2aed1d | 4679 | |
mjr | 48:058ace2aed1d | 4680 | // Time since last lbState transition. Some of the states are time- |
mjr | 48:058ace2aed1d | 4681 | // sensitive. In the "uncocked" state, we'll return to state 0 if |
mjr | 48:058ace2aed1d | 4682 | // we remain in this state for more than a few milliseconds, since |
mjr | 48:058ace2aed1d | 4683 | // it indicates that the plunger is being slowly returned to rest |
mjr | 48:058ace2aed1d | 4684 | // rather than released. In the "launching" state, we need to release |
mjr | 48:058ace2aed1d | 4685 | // the Launch Ball button after a moment, and we need to wait for |
mjr | 48:058ace2aed1d | 4686 | // the plunger to come to rest before returning to state 0. |
mjr | 48:058ace2aed1d | 4687 | Timer lbTimer; |
mjr | 48:058ace2aed1d | 4688 | }; |
mjr | 48:058ace2aed1d | 4689 | |
mjr | 35:e959ffba78fd | 4690 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 4691 | // |
mjr | 35:e959ffba78fd | 4692 | // Reboot - resets the microcontroller |
mjr | 35:e959ffba78fd | 4693 | // |
mjr | 54:fd77a6b2f76c | 4694 | void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L) |
mjr | 35:e959ffba78fd | 4695 | { |
mjr | 35:e959ffba78fd | 4696 | // disconnect from USB |
mjr | 54:fd77a6b2f76c | 4697 | if (disconnect) |
mjr | 54:fd77a6b2f76c | 4698 | js.disconnect(); |
mjr | 35:e959ffba78fd | 4699 | |
mjr | 35:e959ffba78fd | 4700 | // wait a few seconds to make sure the host notices the disconnect |
mjr | 54:fd77a6b2f76c | 4701 | wait_us(pause_us); |
mjr | 35:e959ffba78fd | 4702 | |
mjr | 35:e959ffba78fd | 4703 | // reset the device |
mjr | 35:e959ffba78fd | 4704 | NVIC_SystemReset(); |
mjr | 35:e959ffba78fd | 4705 | while (true) { } |
mjr | 35:e959ffba78fd | 4706 | } |
mjr | 35:e959ffba78fd | 4707 | |
mjr | 35:e959ffba78fd | 4708 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 4709 | // |
mjr | 35:e959ffba78fd | 4710 | // Translate joystick readings from raw values to reported values, based |
mjr | 35:e959ffba78fd | 4711 | // on the orientation of the controller card in the cabinet. |
mjr | 35:e959ffba78fd | 4712 | // |
mjr | 35:e959ffba78fd | 4713 | void accelRotate(int &x, int &y) |
mjr | 35:e959ffba78fd | 4714 | { |
mjr | 35:e959ffba78fd | 4715 | int tmp; |
mjr | 35:e959ffba78fd | 4716 | switch (cfg.orientation) |
mjr | 35:e959ffba78fd | 4717 | { |
mjr | 35:e959ffba78fd | 4718 | case OrientationFront: |
mjr | 35:e959ffba78fd | 4719 | tmp = x; |
mjr | 35:e959ffba78fd | 4720 | x = y; |
mjr | 35:e959ffba78fd | 4721 | y = tmp; |
mjr | 35:e959ffba78fd | 4722 | break; |
mjr | 35:e959ffba78fd | 4723 | |
mjr | 35:e959ffba78fd | 4724 | case OrientationLeft: |
mjr | 35:e959ffba78fd | 4725 | x = -x; |
mjr | 35:e959ffba78fd | 4726 | break; |
mjr | 35:e959ffba78fd | 4727 | |
mjr | 35:e959ffba78fd | 4728 | case OrientationRight: |
mjr | 35:e959ffba78fd | 4729 | y = -y; |
mjr | 35:e959ffba78fd | 4730 | break; |
mjr | 35:e959ffba78fd | 4731 | |
mjr | 35:e959ffba78fd | 4732 | case OrientationRear: |
mjr | 35:e959ffba78fd | 4733 | tmp = -x; |
mjr | 35:e959ffba78fd | 4734 | x = -y; |
mjr | 35:e959ffba78fd | 4735 | y = tmp; |
mjr | 35:e959ffba78fd | 4736 | break; |
mjr | 35:e959ffba78fd | 4737 | } |
mjr | 35:e959ffba78fd | 4738 | } |
mjr | 35:e959ffba78fd | 4739 | |
mjr | 35:e959ffba78fd | 4740 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 4741 | // |
mjr | 35:e959ffba78fd | 4742 | // Calibration button state: |
mjr | 35:e959ffba78fd | 4743 | // 0 = not pushed |
mjr | 35:e959ffba78fd | 4744 | // 1 = pushed, not yet debounced |
mjr | 35:e959ffba78fd | 4745 | // 2 = pushed, debounced, waiting for hold time |
mjr | 35:e959ffba78fd | 4746 | // 3 = pushed, hold time completed - in calibration mode |
mjr | 35:e959ffba78fd | 4747 | int calBtnState = 0; |
mjr | 35:e959ffba78fd | 4748 | |
mjr | 35:e959ffba78fd | 4749 | // calibration button debounce timer |
mjr | 35:e959ffba78fd | 4750 | Timer calBtnTimer; |
mjr | 35:e959ffba78fd | 4751 | |
mjr | 35:e959ffba78fd | 4752 | // calibration button light state |
mjr | 35:e959ffba78fd | 4753 | int calBtnLit = false; |
mjr | 35:e959ffba78fd | 4754 | |
mjr | 35:e959ffba78fd | 4755 | |
mjr | 35:e959ffba78fd | 4756 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 4757 | // |
mjr | 40:cc0d9814522b | 4758 | // Configuration variable get/set message handling |
mjr | 35:e959ffba78fd | 4759 | // |
mjr | 40:cc0d9814522b | 4760 | |
mjr | 40:cc0d9814522b | 4761 | // Handle SET messages - write configuration variables from USB message data |
mjr | 40:cc0d9814522b | 4762 | #define if_msg_valid(test) if (test) |
mjr | 53:9b2611964afc | 4763 | #define v_byte(var, ofs) cfg.var = data[ofs] |
mjr | 53:9b2611964afc | 4764 | #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs)) |
mjr | 53:9b2611964afc | 4765 | #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs]) |
mjr | 53:9b2611964afc | 4766 | #define v_byte_ro(val, ofs) // ignore read-only variables on SET |
mjr | 74:822a92bc11d2 | 4767 | #define v_ui32_ro(val, ofs) // ignore read-only variables on SET |
mjr | 74:822a92bc11d2 | 4768 | #define VAR_MODE_SET 1 // we're in SET mode |
mjr | 40:cc0d9814522b | 4769 | #define v_func configVarSet |
mjr | 40:cc0d9814522b | 4770 | #include "cfgVarMsgMap.h" |
mjr | 35:e959ffba78fd | 4771 | |
mjr | 40:cc0d9814522b | 4772 | // redefine everything for the SET messages |
mjr | 40:cc0d9814522b | 4773 | #undef if_msg_valid |
mjr | 40:cc0d9814522b | 4774 | #undef v_byte |
mjr | 40:cc0d9814522b | 4775 | #undef v_ui16 |
mjr | 40:cc0d9814522b | 4776 | #undef v_pin |
mjr | 53:9b2611964afc | 4777 | #undef v_byte_ro |
mjr | 74:822a92bc11d2 | 4778 | #undef v_ui32_ro |
mjr | 74:822a92bc11d2 | 4779 | #undef VAR_MODE_SET |
mjr | 40:cc0d9814522b | 4780 | #undef v_func |
mjr | 38:091e511ce8a0 | 4781 | |
mjr | 40:cc0d9814522b | 4782 | // Handle GET messages - read variable values and return in USB message daa |
mjr | 40:cc0d9814522b | 4783 | #define if_msg_valid(test) |
mjr | 53:9b2611964afc | 4784 | #define v_byte(var, ofs) data[ofs] = cfg.var |
mjr | 53:9b2611964afc | 4785 | #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var) |
mjr | 53:9b2611964afc | 4786 | #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var) |
mjr | 73:4e8ce0b18915 | 4787 | #define v_byte_ro(val, ofs) data[ofs] = (val) |
mjr | 74:822a92bc11d2 | 4788 | #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val); |
mjr | 74:822a92bc11d2 | 4789 | #define VAR_MODE_SET 0 // we're in GET mode |
mjr | 40:cc0d9814522b | 4790 | #define v_func configVarGet |
mjr | 40:cc0d9814522b | 4791 | #include "cfgVarMsgMap.h" |
mjr | 40:cc0d9814522b | 4792 | |
mjr | 35:e959ffba78fd | 4793 | |
mjr | 35:e959ffba78fd | 4794 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 4795 | // |
mjr | 35:e959ffba78fd | 4796 | // Handle an input report from the USB host. Input reports use our extended |
mjr | 35:e959ffba78fd | 4797 | // LedWiz protocol. |
mjr | 33:d832bcab089e | 4798 | // |
mjr | 48:058ace2aed1d | 4799 | void handleInputMsg(LedWizMsg &lwm, USBJoystick &js) |
mjr | 35:e959ffba78fd | 4800 | { |
mjr | 38:091e511ce8a0 | 4801 | // LedWiz commands come in two varieties: SBA and PBA. An |
mjr | 38:091e511ce8a0 | 4802 | // SBA is marked by the first byte having value 64 (0x40). In |
mjr | 38:091e511ce8a0 | 4803 | // the real LedWiz protocol, any other value in the first byte |
mjr | 38:091e511ce8a0 | 4804 | // means it's a PBA message. However, *valid* PBA messages |
mjr | 38:091e511ce8a0 | 4805 | // always have a first byte (and in fact all 8 bytes) in the |
mjr | 38:091e511ce8a0 | 4806 | // range 0-49 or 129-132. Anything else is invalid. We take |
mjr | 38:091e511ce8a0 | 4807 | // advantage of this to implement private protocol extensions. |
mjr | 38:091e511ce8a0 | 4808 | // So our full protocol is as follows: |
mjr | 38:091e511ce8a0 | 4809 | // |
mjr | 38:091e511ce8a0 | 4810 | // first byte = |
mjr | 74:822a92bc11d2 | 4811 | // 0-48 -> PBA |
mjr | 74:822a92bc11d2 | 4812 | // 64 -> SBA |
mjr | 38:091e511ce8a0 | 4813 | // 65 -> private control message; second byte specifies subtype |
mjr | 74:822a92bc11d2 | 4814 | // 129-132 -> PBA |
mjr | 38:091e511ce8a0 | 4815 | // 200-228 -> extended bank brightness set for outputs N to N+6, where |
mjr | 38:091e511ce8a0 | 4816 | // N is (first byte - 200)*7 |
mjr | 38:091e511ce8a0 | 4817 | // other -> reserved for future use |
mjr | 38:091e511ce8a0 | 4818 | // |
mjr | 39:b3815a1c3802 | 4819 | uint8_t *data = lwm.data; |
mjr | 74:822a92bc11d2 | 4820 | if (data[0] == 64) |
mjr | 35:e959ffba78fd | 4821 | { |
mjr | 74:822a92bc11d2 | 4822 | // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32) |
mjr | 74:822a92bc11d2 | 4823 | //printf("SBA %02x %02x %02x %02x, speed %02x\r\n", |
mjr | 38:091e511ce8a0 | 4824 | // data[1], data[2], data[3], data[4], data[5]); |
mjr | 74:822a92bc11d2 | 4825 | sba_sbx(0, data); |
mjr | 74:822a92bc11d2 | 4826 | |
mjr | 74:822a92bc11d2 | 4827 | // SBA resets the PBA port group counter |
mjr | 38:091e511ce8a0 | 4828 | pbaIdx = 0; |
mjr | 38:091e511ce8a0 | 4829 | } |
mjr | 38:091e511ce8a0 | 4830 | else if (data[0] == 65) |
mjr | 38:091e511ce8a0 | 4831 | { |
mjr | 38:091e511ce8a0 | 4832 | // Private control message. This isn't an LedWiz message - it's |
mjr | 38:091e511ce8a0 | 4833 | // an extension for this device. 65 is an invalid PBA setting, |
mjr | 38:091e511ce8a0 | 4834 | // and isn't used for any other LedWiz message, so we appropriate |
mjr | 38:091e511ce8a0 | 4835 | // it for our own private use. The first byte specifies the |
mjr | 38:091e511ce8a0 | 4836 | // message type. |
mjr | 39:b3815a1c3802 | 4837 | switch (data[1]) |
mjr | 38:091e511ce8a0 | 4838 | { |
mjr | 39:b3815a1c3802 | 4839 | case 0: |
mjr | 39:b3815a1c3802 | 4840 | // No Op |
mjr | 39:b3815a1c3802 | 4841 | break; |
mjr | 39:b3815a1c3802 | 4842 | |
mjr | 39:b3815a1c3802 | 4843 | case 1: |
mjr | 38:091e511ce8a0 | 4844 | // 1 = Old Set Configuration: |
mjr | 38:091e511ce8a0 | 4845 | // data[2] = LedWiz unit number (0x00 to 0x0f) |
mjr | 38:091e511ce8a0 | 4846 | // data[3] = feature enable bit mask: |
mjr | 38:091e511ce8a0 | 4847 | // 0x01 = enable plunger sensor |
mjr | 39:b3815a1c3802 | 4848 | { |
mjr | 39:b3815a1c3802 | 4849 | |
mjr | 39:b3815a1c3802 | 4850 | // get the new LedWiz unit number - this is 0-15, whereas we |
mjr | 39:b3815a1c3802 | 4851 | // we save the *nominal* unit number 1-16 in the config |
mjr | 39:b3815a1c3802 | 4852 | uint8_t newUnitNo = (data[2] & 0x0f) + 1; |
mjr | 39:b3815a1c3802 | 4853 | |
mjr | 39:b3815a1c3802 | 4854 | // we'll need a reset if the LedWiz unit number is changing |
mjr | 39:b3815a1c3802 | 4855 | bool needReset = (newUnitNo != cfg.psUnitNo); |
mjr | 39:b3815a1c3802 | 4856 | |
mjr | 39:b3815a1c3802 | 4857 | // set the configuration parameters from the message |
mjr | 39:b3815a1c3802 | 4858 | cfg.psUnitNo = newUnitNo; |
mjr | 39:b3815a1c3802 | 4859 | cfg.plunger.enabled = data[3] & 0x01; |
mjr | 39:b3815a1c3802 | 4860 | |
mjr | 39:b3815a1c3802 | 4861 | // save the configuration |
mjr | 39:b3815a1c3802 | 4862 | saveConfigToFlash(); |
mjr | 39:b3815a1c3802 | 4863 | |
mjr | 39:b3815a1c3802 | 4864 | // reboot if necessary |
mjr | 39:b3815a1c3802 | 4865 | if (needReset) |
mjr | 39:b3815a1c3802 | 4866 | reboot(js); |
mjr | 39:b3815a1c3802 | 4867 | } |
mjr | 39:b3815a1c3802 | 4868 | break; |
mjr | 38:091e511ce8a0 | 4869 | |
mjr | 39:b3815a1c3802 | 4870 | case 2: |
mjr | 38:091e511ce8a0 | 4871 | // 2 = Calibrate plunger |
mjr | 38:091e511ce8a0 | 4872 | // (No parameters) |
mjr | 38:091e511ce8a0 | 4873 | |
mjr | 38:091e511ce8a0 | 4874 | // enter calibration mode |
mjr | 38:091e511ce8a0 | 4875 | calBtnState = 3; |
mjr | 52:8298b2a73eb2 | 4876 | plungerReader.setCalMode(true); |
mjr | 38:091e511ce8a0 | 4877 | calBtnTimer.reset(); |
mjr | 39:b3815a1c3802 | 4878 | break; |
mjr | 39:b3815a1c3802 | 4879 | |
mjr | 39:b3815a1c3802 | 4880 | case 3: |
mjr | 52:8298b2a73eb2 | 4881 | // 3 = plunger sensor status report |
mjr | 48:058ace2aed1d | 4882 | // data[2] = flag bits |
mjr | 53:9b2611964afc | 4883 | // data[3] = extra exposure time, 100us (.1ms) increments |
mjr | 52:8298b2a73eb2 | 4884 | reportPlungerStat = true; |
mjr | 53:9b2611964afc | 4885 | reportPlungerStatFlags = data[2]; |
mjr | 53:9b2611964afc | 4886 | reportPlungerStatTime = data[3]; |
mjr | 38:091e511ce8a0 | 4887 | |
mjr | 38:091e511ce8a0 | 4888 | // show purple until we finish sending the report |
mjr | 38:091e511ce8a0 | 4889 | diagLED(1, 0, 1); |
mjr | 39:b3815a1c3802 | 4890 | break; |
mjr | 39:b3815a1c3802 | 4891 | |
mjr | 39:b3815a1c3802 | 4892 | case 4: |
mjr | 38:091e511ce8a0 | 4893 | // 4 = hardware configuration query |
mjr | 38:091e511ce8a0 | 4894 | // (No parameters) |
mjr | 38:091e511ce8a0 | 4895 | js.reportConfig( |
mjr | 38:091e511ce8a0 | 4896 | numOutputs, |
mjr | 38:091e511ce8a0 | 4897 | cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally) |
mjr | 52:8298b2a73eb2 | 4898 | cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease, |
mjr | 75:677892300e7a | 4899 | nvm.valid(), // a config is loaded if the config memory block is valid |
mjr | 75:677892300e7a | 4900 | true, // we support sbx/pbx extensions |
mjr | 75:677892300e7a | 4901 | xmalloc_rem); // remaining memory size |
mjr | 39:b3815a1c3802 | 4902 | break; |
mjr | 39:b3815a1c3802 | 4903 | |
mjr | 39:b3815a1c3802 | 4904 | case 5: |
mjr | 38:091e511ce8a0 | 4905 | // 5 = all outputs off, reset to LedWiz defaults |
mjr | 38:091e511ce8a0 | 4906 | allOutputsOff(); |
mjr | 39:b3815a1c3802 | 4907 | break; |
mjr | 39:b3815a1c3802 | 4908 | |
mjr | 39:b3815a1c3802 | 4909 | case 6: |
mjr | 38:091e511ce8a0 | 4910 | // 6 = Save configuration to flash. |
mjr | 38:091e511ce8a0 | 4911 | saveConfigToFlash(); |
mjr | 38:091e511ce8a0 | 4912 | |
mjr | 53:9b2611964afc | 4913 | // before disconnecting, pause for the delay time specified in |
mjr | 53:9b2611964afc | 4914 | // the parameter byte (in seconds) |
mjr | 53:9b2611964afc | 4915 | rebootTime_us = data[2] * 1000000L; |
mjr | 53:9b2611964afc | 4916 | rebootTimer.start(); |
mjr | 39:b3815a1c3802 | 4917 | break; |
mjr | 40:cc0d9814522b | 4918 | |
mjr | 40:cc0d9814522b | 4919 | case 7: |
mjr | 40:cc0d9814522b | 4920 | // 7 = Device ID report |
mjr | 53:9b2611964afc | 4921 | // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID |
mjr | 53:9b2611964afc | 4922 | js.reportID(data[2]); |
mjr | 40:cc0d9814522b | 4923 | break; |
mjr | 40:cc0d9814522b | 4924 | |
mjr | 40:cc0d9814522b | 4925 | case 8: |
mjr | 40:cc0d9814522b | 4926 | // 8 = Engage/disengage night mode. |
mjr | 40:cc0d9814522b | 4927 | // data[2] = 1 to engage, 0 to disengage |
mjr | 40:cc0d9814522b | 4928 | setNightMode(data[2]); |
mjr | 40:cc0d9814522b | 4929 | break; |
mjr | 52:8298b2a73eb2 | 4930 | |
mjr | 52:8298b2a73eb2 | 4931 | case 9: |
mjr | 52:8298b2a73eb2 | 4932 | // 9 = Config variable query. |
mjr | 52:8298b2a73eb2 | 4933 | // data[2] = config var ID |
mjr | 52:8298b2a73eb2 | 4934 | // data[3] = array index (for array vars: button assignments, output ports) |
mjr | 52:8298b2a73eb2 | 4935 | { |
mjr | 53:9b2611964afc | 4936 | // set up the reply buffer with the variable ID data, and zero out |
mjr | 53:9b2611964afc | 4937 | // the rest of the buffer |
mjr | 52:8298b2a73eb2 | 4938 | uint8_t reply[8]; |
mjr | 52:8298b2a73eb2 | 4939 | reply[1] = data[2]; |
mjr | 52:8298b2a73eb2 | 4940 | reply[2] = data[3]; |
mjr | 53:9b2611964afc | 4941 | memset(reply+3, 0, sizeof(reply)-3); |
mjr | 52:8298b2a73eb2 | 4942 | |
mjr | 52:8298b2a73eb2 | 4943 | // query the value |
mjr | 52:8298b2a73eb2 | 4944 | configVarGet(reply); |
mjr | 52:8298b2a73eb2 | 4945 | |
mjr | 52:8298b2a73eb2 | 4946 | // send the reply |
mjr | 52:8298b2a73eb2 | 4947 | js.reportConfigVar(reply + 1); |
mjr | 52:8298b2a73eb2 | 4948 | } |
mjr | 52:8298b2a73eb2 | 4949 | break; |
mjr | 53:9b2611964afc | 4950 | |
mjr | 53:9b2611964afc | 4951 | case 10: |
mjr | 53:9b2611964afc | 4952 | // 10 = Build ID query. |
mjr | 53:9b2611964afc | 4953 | js.reportBuildInfo(getBuildID()); |
mjr | 53:9b2611964afc | 4954 | break; |
mjr | 73:4e8ce0b18915 | 4955 | |
mjr | 73:4e8ce0b18915 | 4956 | case 11: |
mjr | 73:4e8ce0b18915 | 4957 | // 11 = TV ON relay control. |
mjr | 73:4e8ce0b18915 | 4958 | // data[2] = operation: |
mjr | 73:4e8ce0b18915 | 4959 | // 0 = turn relay off |
mjr | 73:4e8ce0b18915 | 4960 | // 1 = turn relay on |
mjr | 73:4e8ce0b18915 | 4961 | // 2 = pulse relay (as though the power-on timer fired) |
mjr | 73:4e8ce0b18915 | 4962 | TVRelay(data[2]); |
mjr | 73:4e8ce0b18915 | 4963 | break; |
mjr | 73:4e8ce0b18915 | 4964 | |
mjr | 73:4e8ce0b18915 | 4965 | case 12: |
mjr | 74:822a92bc11d2 | 4966 | // Unused |
mjr | 73:4e8ce0b18915 | 4967 | break; |
mjr | 73:4e8ce0b18915 | 4968 | |
mjr | 73:4e8ce0b18915 | 4969 | case 13: |
mjr | 73:4e8ce0b18915 | 4970 | // 13 = Send button status report |
mjr | 73:4e8ce0b18915 | 4971 | reportButtonStatus(js); |
mjr | 73:4e8ce0b18915 | 4972 | break; |
mjr | 38:091e511ce8a0 | 4973 | } |
mjr | 38:091e511ce8a0 | 4974 | } |
mjr | 38:091e511ce8a0 | 4975 | else if (data[0] == 66) |
mjr | 38:091e511ce8a0 | 4976 | { |
mjr | 38:091e511ce8a0 | 4977 | // Extended protocol - Set configuration variable. |
mjr | 38:091e511ce8a0 | 4978 | // The second byte of the message is the ID of the variable |
mjr | 38:091e511ce8a0 | 4979 | // to update, and the remaining bytes give the new value, |
mjr | 38:091e511ce8a0 | 4980 | // in a variable-dependent format. |
mjr | 40:cc0d9814522b | 4981 | configVarSet(data); |
mjr | 38:091e511ce8a0 | 4982 | } |
mjr | 74:822a92bc11d2 | 4983 | else if (data[0] == 67) |
mjr | 74:822a92bc11d2 | 4984 | { |
mjr | 74:822a92bc11d2 | 4985 | // SBX - extended SBA message. This is the same as SBA, except |
mjr | 74:822a92bc11d2 | 4986 | // that the 7th byte selects a group of 32 ports, to allow access |
mjr | 74:822a92bc11d2 | 4987 | // to ports beyond the first 32. |
mjr | 74:822a92bc11d2 | 4988 | sba_sbx(data[6], data); |
mjr | 74:822a92bc11d2 | 4989 | } |
mjr | 74:822a92bc11d2 | 4990 | else if (data[0] == 68) |
mjr | 74:822a92bc11d2 | 4991 | { |
mjr | 74:822a92bc11d2 | 4992 | // PBX - extended PBA message. This is similar to PBA, but |
mjr | 74:822a92bc11d2 | 4993 | // allows access to more than the first 32 ports by encoding |
mjr | 74:822a92bc11d2 | 4994 | // a port group byte that selects a block of 8 ports. |
mjr | 74:822a92bc11d2 | 4995 | |
mjr | 74:822a92bc11d2 | 4996 | // get the port group - the first port is 8*group |
mjr | 74:822a92bc11d2 | 4997 | int portGroup = data[1]; |
mjr | 74:822a92bc11d2 | 4998 | |
mjr | 74:822a92bc11d2 | 4999 | // unpack the brightness values |
mjr | 74:822a92bc11d2 | 5000 | uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16); |
mjr | 74:822a92bc11d2 | 5001 | uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16); |
mjr | 74:822a92bc11d2 | 5002 | uint8_t bri[8] = { |
mjr | 74:822a92bc11d2 | 5003 | tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F, |
mjr | 74:822a92bc11d2 | 5004 | tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F |
mjr | 74:822a92bc11d2 | 5005 | }; |
mjr | 74:822a92bc11d2 | 5006 | |
mjr | 74:822a92bc11d2 | 5007 | // map the flash levels: 60->129, 61->130, 62->131, 63->132 |
mjr | 74:822a92bc11d2 | 5008 | for (int i = 0 ; i < 8 ; ++i) |
mjr | 74:822a92bc11d2 | 5009 | { |
mjr | 74:822a92bc11d2 | 5010 | if (bri[i] >= 60) |
mjr | 74:822a92bc11d2 | 5011 | bri[i] += 129-60; |
mjr | 74:822a92bc11d2 | 5012 | } |
mjr | 74:822a92bc11d2 | 5013 | |
mjr | 74:822a92bc11d2 | 5014 | // Carry out the PBA |
mjr | 74:822a92bc11d2 | 5015 | pba_pbx(portGroup*8, bri); |
mjr | 74:822a92bc11d2 | 5016 | } |
mjr | 38:091e511ce8a0 | 5017 | else if (data[0] >= 200 && data[0] <= 228) |
mjr | 38:091e511ce8a0 | 5018 | { |
mjr | 38:091e511ce8a0 | 5019 | // Extended protocol - Extended output port brightness update. |
mjr | 38:091e511ce8a0 | 5020 | // data[0]-200 gives us the bank of 7 outputs we're setting: |
mjr | 38:091e511ce8a0 | 5021 | // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc. |
mjr | 38:091e511ce8a0 | 5022 | // The remaining bytes are brightness levels, 0-255, for the |
mjr | 38:091e511ce8a0 | 5023 | // seven outputs in the selected bank. The LedWiz flashing |
mjr | 38:091e511ce8a0 | 5024 | // modes aren't accessible in this message type; we can only |
mjr | 38:091e511ce8a0 | 5025 | // set a fixed brightness, but in exchange we get 8-bit |
mjr | 38:091e511ce8a0 | 5026 | // resolution rather than the paltry 0-48 scale that the real |
mjr | 38:091e511ce8a0 | 5027 | // LedWiz uses. There's no separate on/off status for outputs |
mjr | 38:091e511ce8a0 | 5028 | // adjusted with this message type, either, as there would be |
mjr | 38:091e511ce8a0 | 5029 | // for a PBA message - setting a non-zero value immediately |
mjr | 38:091e511ce8a0 | 5030 | // turns the output, overriding the last SBA setting. |
mjr | 38:091e511ce8a0 | 5031 | // |
mjr | 38:091e511ce8a0 | 5032 | // For outputs 0-31, this overrides any previous PBA/SBA |
mjr | 38:091e511ce8a0 | 5033 | // settings for the port. Any subsequent PBA/SBA message will |
mjr | 38:091e511ce8a0 | 5034 | // in turn override the setting made here. It's simple - the |
mjr | 38:091e511ce8a0 | 5035 | // most recent message of either type takes precedence. For |
mjr | 38:091e511ce8a0 | 5036 | // outputs above the LedWiz range, PBA/SBA messages can't |
mjr | 38:091e511ce8a0 | 5037 | // address those ports anyway. |
mjr | 63:5cd1a5f3a41b | 5038 | |
mjr | 63:5cd1a5f3a41b | 5039 | // flag that we're in extended protocol mode |
mjr | 74:822a92bc11d2 | 5040 | ledWizMode = true; |
mjr | 63:5cd1a5f3a41b | 5041 | |
mjr | 63:5cd1a5f3a41b | 5042 | // figure the block of 7 ports covered in the message |
mjr | 38:091e511ce8a0 | 5043 | int i0 = (data[0] - 200)*7; |
mjr | 38:091e511ce8a0 | 5044 | int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs; |
mjr | 63:5cd1a5f3a41b | 5045 | |
mjr | 63:5cd1a5f3a41b | 5046 | // update each port |
mjr | 38:091e511ce8a0 | 5047 | for (int i = i0 ; i < i1 ; ++i) |
mjr | 38:091e511ce8a0 | 5048 | { |
mjr | 38:091e511ce8a0 | 5049 | // set the brightness level for the output |
mjr | 40:cc0d9814522b | 5050 | uint8_t b = data[i-i0+1]; |
mjr | 38:091e511ce8a0 | 5051 | outLevel[i] = b; |
mjr | 38:091e511ce8a0 | 5052 | |
mjr | 74:822a92bc11d2 | 5053 | // set the port's LedWiz state to the nearest equivalent, so |
mjr | 74:822a92bc11d2 | 5054 | // that it maintains its current setting if we switch back to |
mjr | 74:822a92bc11d2 | 5055 | // LedWiz mode on a future update |
mjr | 74:822a92bc11d2 | 5056 | wizOn[i] = (b != 0); |
mjr | 74:822a92bc11d2 | 5057 | wizVal[i] = (b*48)/255; |
mjr | 74:822a92bc11d2 | 5058 | |
mjr | 38:091e511ce8a0 | 5059 | // set the output |
mjr | 40:cc0d9814522b | 5060 | lwPin[i]->set(b); |
mjr | 38:091e511ce8a0 | 5061 | } |
mjr | 38:091e511ce8a0 | 5062 | |
mjr | 38:091e511ce8a0 | 5063 | // update 74HC595 outputs, if attached |
mjr | 38:091e511ce8a0 | 5064 | if (hc595 != 0) |
mjr | 38:091e511ce8a0 | 5065 | hc595->update(); |
mjr | 38:091e511ce8a0 | 5066 | } |
mjr | 38:091e511ce8a0 | 5067 | else |
mjr | 38:091e511ce8a0 | 5068 | { |
mjr | 74:822a92bc11d2 | 5069 | // Everything else is an LedWiz PBA message. This is a full |
mjr | 74:822a92bc11d2 | 5070 | // "profile" dump from the host for one bank of 8 outputs. Each |
mjr | 74:822a92bc11d2 | 5071 | // byte sets one output in the current bank. The current bank |
mjr | 74:822a92bc11d2 | 5072 | // is implied; the bank starts at 0 and is reset to 0 by any SBA |
mjr | 74:822a92bc11d2 | 5073 | // message, and is incremented to the next bank by each PBA. Our |
mjr | 74:822a92bc11d2 | 5074 | // variable pbaIdx keeps track of the current bank. There's no |
mjr | 74:822a92bc11d2 | 5075 | // direct way for the host to select the bank; it just has to count |
mjr | 74:822a92bc11d2 | 5076 | // on us staying in sync. In practice, clients always send the |
mjr | 74:822a92bc11d2 | 5077 | // full set of 4 PBA messages in a row to set all 32 outputs. |
mjr | 38:091e511ce8a0 | 5078 | // |
mjr | 38:091e511ce8a0 | 5079 | // Note that a PBA implicitly overrides our extended profile |
mjr | 38:091e511ce8a0 | 5080 | // messages (message prefix 200-219), because this sets the |
mjr | 38:091e511ce8a0 | 5081 | // wizVal[] entry for each output, and that takes precedence |
mjr | 63:5cd1a5f3a41b | 5082 | // over the extended protocol settings when we're in LedWiz |
mjr | 63:5cd1a5f3a41b | 5083 | // protocol mode. |
mjr | 38:091e511ce8a0 | 5084 | // |
mjr | 38:091e511ce8a0 | 5085 | //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n", |
mjr | 38:091e511ce8a0 | 5086 | // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); |
mjr | 38:091e511ce8a0 | 5087 | |
mjr | 74:822a92bc11d2 | 5088 | // carry out the PBA |
mjr | 74:822a92bc11d2 | 5089 | pba_pbx(pbaIdx, data); |
mjr | 74:822a92bc11d2 | 5090 | |
mjr | 74:822a92bc11d2 | 5091 | // update the PBX index state for the next message |
mjr | 74:822a92bc11d2 | 5092 | pbaIdx = (pbaIdx + 8) % 32; |
mjr | 38:091e511ce8a0 | 5093 | } |
mjr | 38:091e511ce8a0 | 5094 | } |
mjr | 35:e959ffba78fd | 5095 | |
mjr | 38:091e511ce8a0 | 5096 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 5097 | // |
mjr | 5:a70c0bce770d | 5098 | // Main program loop. This is invoked on startup and runs forever. Our |
mjr | 5:a70c0bce770d | 5099 | // main work is to read our devices (the accelerometer and the CCD), process |
mjr | 5:a70c0bce770d | 5100 | // the readings into nudge and plunger position data, and send the results |
mjr | 5:a70c0bce770d | 5101 | // to the host computer via the USB joystick interface. We also monitor |
mjr | 5:a70c0bce770d | 5102 | // the USB connection for incoming LedWiz commands and process those into |
mjr | 5:a70c0bce770d | 5103 | // port outputs. |
mjr | 5:a70c0bce770d | 5104 | // |
mjr | 0:5acbbe3f4cf4 | 5105 | int main(void) |
mjr | 0:5acbbe3f4cf4 | 5106 | { |
mjr | 60:f38da020aa13 | 5107 | // say hello to the debug console, in case it's connected |
mjr | 39:b3815a1c3802 | 5108 | printf("\r\nPinscape Controller starting\r\n"); |
mjr | 60:f38da020aa13 | 5109 | |
mjr | 60:f38da020aa13 | 5110 | // debugging: print memory config info |
mjr | 59:94eb9265b6d7 | 5111 | // -> no longer very useful, since we use our own custom malloc/new allocator (see xmalloc() above) |
mjr | 60:f38da020aa13 | 5112 | // {int *a = new int; printf("Stack=%lx, heap=%lx, free=%ld\r\n", (long)&a, (long)a, (long)&a - (long)a);} |
mjr | 1:d913e0afb2ac | 5113 | |
mjr | 39:b3815a1c3802 | 5114 | // clear the I2C bus (for the accelerometer) |
mjr | 35:e959ffba78fd | 5115 | clear_i2c(); |
mjr | 38:091e511ce8a0 | 5116 | |
mjr | 43:7a6364d82a41 | 5117 | // load the saved configuration (or set factory defaults if no flash |
mjr | 43:7a6364d82a41 | 5118 | // configuration has ever been saved) |
mjr | 35:e959ffba78fd | 5119 | loadConfigFromFlash(); |
mjr | 35:e959ffba78fd | 5120 | |
mjr | 38:091e511ce8a0 | 5121 | // initialize the diagnostic LEDs |
mjr | 38:091e511ce8a0 | 5122 | initDiagLEDs(cfg); |
mjr | 38:091e511ce8a0 | 5123 | |
mjr | 33:d832bcab089e | 5124 | // we're not connected/awake yet |
mjr | 33:d832bcab089e | 5125 | bool connected = false; |
mjr | 40:cc0d9814522b | 5126 | Timer connectChangeTimer; |
mjr | 33:d832bcab089e | 5127 | |
mjr | 35:e959ffba78fd | 5128 | // create the plunger sensor interface |
mjr | 35:e959ffba78fd | 5129 | createPlunger(); |
mjr | 33:d832bcab089e | 5130 | |
mjr | 60:f38da020aa13 | 5131 | // set up the TLC5940 interface, if these chips are present |
mjr | 35:e959ffba78fd | 5132 | init_tlc5940(cfg); |
mjr | 34:6b981a2afab7 | 5133 | |
mjr | 60:f38da020aa13 | 5134 | // set up 74HC595 interface, if these chips are present |
mjr | 35:e959ffba78fd | 5135 | init_hc595(cfg); |
mjr | 6:cc35eb643e8f | 5136 | |
mjr | 54:fd77a6b2f76c | 5137 | // Initialize the LedWiz ports. Note that the ordering here is important: |
mjr | 54:fd77a6b2f76c | 5138 | // this has to come after we create the TLC5940 and 74HC595 object instances |
mjr | 54:fd77a6b2f76c | 5139 | // (which we just did above), since we need to access those objects to set |
mjr | 54:fd77a6b2f76c | 5140 | // up ports assigned to the respective chips. |
mjr | 35:e959ffba78fd | 5141 | initLwOut(cfg); |
mjr | 48:058ace2aed1d | 5142 | |
mjr | 60:f38da020aa13 | 5143 | // start the TLC5940 refresh cycle clock |
mjr | 35:e959ffba78fd | 5144 | if (tlc5940 != 0) |
mjr | 35:e959ffba78fd | 5145 | tlc5940->start(); |
mjr | 35:e959ffba78fd | 5146 | |
mjr | 40:cc0d9814522b | 5147 | // start the TV timer, if applicable |
mjr | 40:cc0d9814522b | 5148 | startTVTimer(cfg); |
mjr | 48:058ace2aed1d | 5149 | |
mjr | 35:e959ffba78fd | 5150 | // initialize the button input ports |
mjr | 35:e959ffba78fd | 5151 | bool kbKeys = false; |
mjr | 35:e959ffba78fd | 5152 | initButtons(cfg, kbKeys); |
mjr | 38:091e511ce8a0 | 5153 | |
mjr | 60:f38da020aa13 | 5154 | // Create the joystick USB client. Note that the USB vendor/product ID |
mjr | 60:f38da020aa13 | 5155 | // information comes from the saved configuration. Also note that we have |
mjr | 60:f38da020aa13 | 5156 | // to wait until after initializing the input buttons (which we just did |
mjr | 60:f38da020aa13 | 5157 | // above) to set up the interface, since the button setup will determine |
mjr | 60:f38da020aa13 | 5158 | // whether or not we need to present a USB keyboard interface in addition |
mjr | 60:f38da020aa13 | 5159 | // to the joystick interface. |
mjr | 51:57eb311faafa | 5160 | MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false, |
mjr | 51:57eb311faafa | 5161 | cfg.joystickEnabled, kbKeys); |
mjr | 51:57eb311faafa | 5162 | |
mjr | 60:f38da020aa13 | 5163 | // Wait for the USB connection to start up. Show a distinctive diagnostic |
mjr | 60:f38da020aa13 | 5164 | // flash pattern while waiting. |
mjr | 70:9f58735a1732 | 5165 | Timer connTimeoutTimer, connFlashTimer; |
mjr | 70:9f58735a1732 | 5166 | connTimeoutTimer.start(); |
mjr | 70:9f58735a1732 | 5167 | connFlashTimer.start(); |
mjr | 51:57eb311faafa | 5168 | while (!js.configured()) |
mjr | 51:57eb311faafa | 5169 | { |
mjr | 51:57eb311faafa | 5170 | // show one short yellow flash at 2-second intervals |
mjr | 70:9f58735a1732 | 5171 | if (connFlashTimer.read_us() > 2000000) |
mjr | 51:57eb311faafa | 5172 | { |
mjr | 51:57eb311faafa | 5173 | // short yellow flash |
mjr | 51:57eb311faafa | 5174 | diagLED(1, 1, 0); |
mjr | 54:fd77a6b2f76c | 5175 | wait_us(50000); |
mjr | 51:57eb311faafa | 5176 | diagLED(0, 0, 0); |
mjr | 51:57eb311faafa | 5177 | |
mjr | 51:57eb311faafa | 5178 | // reset the flash timer |
mjr | 70:9f58735a1732 | 5179 | connFlashTimer.reset(); |
mjr | 51:57eb311faafa | 5180 | } |
mjr | 70:9f58735a1732 | 5181 | |
mjr | 70:9f58735a1732 | 5182 | if (cfg.disconnectRebootTimeout != 0 |
mjr | 70:9f58735a1732 | 5183 | && connTimeoutTimer.read() > cfg.disconnectRebootTimeout) |
mjr | 70:9f58735a1732 | 5184 | reboot(js, false, 0); |
mjr | 51:57eb311faafa | 5185 | } |
mjr | 60:f38da020aa13 | 5186 | |
mjr | 60:f38da020aa13 | 5187 | // we're now connected to the host |
mjr | 54:fd77a6b2f76c | 5188 | connected = true; |
mjr | 40:cc0d9814522b | 5189 | |
mjr | 60:f38da020aa13 | 5190 | // Last report timer for the joytick interface. We use this timer to |
mjr | 60:f38da020aa13 | 5191 | // throttle the report rate to a pace that's suitable for VP. Without |
mjr | 60:f38da020aa13 | 5192 | // any artificial delays, we could generate data to send on the joystick |
mjr | 60:f38da020aa13 | 5193 | // interface on every loop iteration. The loop iteration time depends |
mjr | 60:f38da020aa13 | 5194 | // on which devices are attached, since most of the work in our main |
mjr | 60:f38da020aa13 | 5195 | // loop is simply polling our devices. For typical setups, the loop |
mjr | 60:f38da020aa13 | 5196 | // time ranges from about 0.25ms to 2.5ms; the biggest factor is the |
mjr | 60:f38da020aa13 | 5197 | // plunger sensor. But VP polls for input about every 10ms, so there's |
mjr | 60:f38da020aa13 | 5198 | // no benefit in sending data faster than that, and there's some harm, |
mjr | 60:f38da020aa13 | 5199 | // in that it creates USB overhead (both on the wire and on the host |
mjr | 60:f38da020aa13 | 5200 | // CPU). We therefore use this timer to pace our reports to roughly |
mjr | 60:f38da020aa13 | 5201 | // the VP input polling rate. Note that there's no way to actually |
mjr | 60:f38da020aa13 | 5202 | // synchronize with VP's polling, but there's also no need to, as the |
mjr | 60:f38da020aa13 | 5203 | // input model is designed to reflect the overall current state at any |
mjr | 60:f38da020aa13 | 5204 | // given time rather than events or deltas. If VP polls twice between |
mjr | 60:f38da020aa13 | 5205 | // two updates, it simply sees no state change; if we send two updates |
mjr | 60:f38da020aa13 | 5206 | // between VP polls, VP simply sees the latest state when it does get |
mjr | 60:f38da020aa13 | 5207 | // around to polling. |
mjr | 38:091e511ce8a0 | 5208 | Timer jsReportTimer; |
mjr | 38:091e511ce8a0 | 5209 | jsReportTimer.start(); |
mjr | 38:091e511ce8a0 | 5210 | |
mjr | 60:f38da020aa13 | 5211 | // Time since we successfully sent a USB report. This is a hacky |
mjr | 60:f38da020aa13 | 5212 | // workaround to deal with any remaining sporadic problems in the USB |
mjr | 60:f38da020aa13 | 5213 | // stack. I've been trying to bulletproof the USB code over time to |
mjr | 60:f38da020aa13 | 5214 | // remove all such problems at their source, but it seems unlikely that |
mjr | 60:f38da020aa13 | 5215 | // we'll ever get them all. Thus this hack. The idea here is that if |
mjr | 60:f38da020aa13 | 5216 | // we go too long without successfully sending a USB report, we'll |
mjr | 60:f38da020aa13 | 5217 | // assume that the connection is broken (and the KL25Z USB hardware |
mjr | 60:f38da020aa13 | 5218 | // hasn't noticed this), and we'll try taking measures to recover. |
mjr | 38:091e511ce8a0 | 5219 | Timer jsOKTimer; |
mjr | 38:091e511ce8a0 | 5220 | jsOKTimer.start(); |
mjr | 35:e959ffba78fd | 5221 | |
mjr | 55:4db125cd11a0 | 5222 | // Initialize the calibration button and lamp, if enabled. To be enabled, |
mjr | 55:4db125cd11a0 | 5223 | // the pin has to be assigned to something other than NC (0xFF), AND the |
mjr | 55:4db125cd11a0 | 5224 | // corresponding feature enable flag has to be set. |
mjr | 55:4db125cd11a0 | 5225 | DigitalIn *calBtn = 0; |
mjr | 55:4db125cd11a0 | 5226 | DigitalOut *calBtnLed = 0; |
mjr | 55:4db125cd11a0 | 5227 | |
mjr | 55:4db125cd11a0 | 5228 | // calibration button input - feature flag 0x01 |
mjr | 55:4db125cd11a0 | 5229 | if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF) |
mjr | 55:4db125cd11a0 | 5230 | calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn)); |
mjr | 55:4db125cd11a0 | 5231 | |
mjr | 55:4db125cd11a0 | 5232 | // calibration button indicator lamp output - feature flag 0x02 |
mjr | 55:4db125cd11a0 | 5233 | if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF) |
mjr | 55:4db125cd11a0 | 5234 | calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led)); |
mjr | 6:cc35eb643e8f | 5235 | |
mjr | 35:e959ffba78fd | 5236 | // initialize the calibration button |
mjr | 1:d913e0afb2ac | 5237 | calBtnTimer.start(); |
mjr | 35:e959ffba78fd | 5238 | calBtnState = 0; |
mjr | 1:d913e0afb2ac | 5239 | |
mjr | 1:d913e0afb2ac | 5240 | // set up a timer for our heartbeat indicator |
mjr | 1:d913e0afb2ac | 5241 | Timer hbTimer; |
mjr | 1:d913e0afb2ac | 5242 | hbTimer.start(); |
mjr | 1:d913e0afb2ac | 5243 | int hb = 0; |
mjr | 5:a70c0bce770d | 5244 | uint16_t hbcnt = 0; |
mjr | 1:d913e0afb2ac | 5245 | |
mjr | 1:d913e0afb2ac | 5246 | // set a timer for accelerometer auto-centering |
mjr | 1:d913e0afb2ac | 5247 | Timer acTimer; |
mjr | 1:d913e0afb2ac | 5248 | acTimer.start(); |
mjr | 1:d913e0afb2ac | 5249 | |
mjr | 0:5acbbe3f4cf4 | 5250 | // create the accelerometer object |
mjr | 5:a70c0bce770d | 5251 | Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN); |
mjr | 48:058ace2aed1d | 5252 | |
mjr | 17:ab3cec0c8bf4 | 5253 | // last accelerometer report, in joystick units (we report the nudge |
mjr | 17:ab3cec0c8bf4 | 5254 | // acceleration via the joystick x & y axes, per the VP convention) |
mjr | 17:ab3cec0c8bf4 | 5255 | int x = 0, y = 0; |
mjr | 17:ab3cec0c8bf4 | 5256 | |
mjr | 48:058ace2aed1d | 5257 | // initialize the plunger sensor |
mjr | 35:e959ffba78fd | 5258 | plungerSensor->init(); |
mjr | 10:976666ffa4ef | 5259 | |
mjr | 48:058ace2aed1d | 5260 | // set up the ZB Launch Ball monitor |
mjr | 48:058ace2aed1d | 5261 | ZBLaunchBall zbLaunchBall; |
mjr | 48:058ace2aed1d | 5262 | |
mjr | 54:fd77a6b2f76c | 5263 | // enable the peripheral chips |
mjr | 54:fd77a6b2f76c | 5264 | if (tlc5940 != 0) |
mjr | 54:fd77a6b2f76c | 5265 | tlc5940->enable(true); |
mjr | 54:fd77a6b2f76c | 5266 | if (hc595 != 0) |
mjr | 54:fd77a6b2f76c | 5267 | hc595->enable(true); |
mjr | 74:822a92bc11d2 | 5268 | |
mjr | 74:822a92bc11d2 | 5269 | // start the LedWiz flash cycle timers |
mjr | 74:822a92bc11d2 | 5270 | wizPulseTimer.start(); |
mjr | 74:822a92bc11d2 | 5271 | wizCycleTimer.start(); |
mjr | 74:822a92bc11d2 | 5272 | |
mjr | 74:822a92bc11d2 | 5273 | // start the PWM update polling timer |
mjr | 74:822a92bc11d2 | 5274 | polledPwmTimer.start(); |
mjr | 43:7a6364d82a41 | 5275 | |
mjr | 1:d913e0afb2ac | 5276 | // we're all set up - now just loop, processing sensor reports and |
mjr | 1:d913e0afb2ac | 5277 | // host requests |
mjr | 0:5acbbe3f4cf4 | 5278 | for (;;) |
mjr | 0:5acbbe3f4cf4 | 5279 | { |
mjr | 74:822a92bc11d2 | 5280 | // start the main loop timer for diagnostic data collection |
mjr | 74:822a92bc11d2 | 5281 | IF_DIAG( |
mjr | 74:822a92bc11d2 | 5282 | Timer mainLoopTimer; |
mjr | 74:822a92bc11d2 | 5283 | mainLoopTimer.start(); |
mjr | 74:822a92bc11d2 | 5284 | ) |
mjr | 74:822a92bc11d2 | 5285 | |
mjr | 48:058ace2aed1d | 5286 | // Process incoming reports on the joystick interface. The joystick |
mjr | 48:058ace2aed1d | 5287 | // "out" (receive) endpoint is used for LedWiz commands and our |
mjr | 48:058ace2aed1d | 5288 | // extended protocol commands. Limit processing time to 5ms to |
mjr | 48:058ace2aed1d | 5289 | // ensure we don't starve the input side. |
mjr | 39:b3815a1c3802 | 5290 | LedWizMsg lwm; |
mjr | 48:058ace2aed1d | 5291 | Timer lwt; |
mjr | 48:058ace2aed1d | 5292 | lwt.start(); |
mjr | 74:822a92bc11d2 | 5293 | IF_DIAG(int msgCount = 0;) |
mjr | 48:058ace2aed1d | 5294 | while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000) |
mjr | 74:822a92bc11d2 | 5295 | { |
mjr | 48:058ace2aed1d | 5296 | handleInputMsg(lwm, js); |
mjr | 74:822a92bc11d2 | 5297 | IF_DIAG(++msgCount;) |
mjr | 74:822a92bc11d2 | 5298 | } |
mjr | 74:822a92bc11d2 | 5299 | |
mjr | 74:822a92bc11d2 | 5300 | // collect performance statistics on the message reader, if desired |
mjr | 74:822a92bc11d2 | 5301 | IF_DIAG( |
mjr | 74:822a92bc11d2 | 5302 | if (msgCount != 0) |
mjr | 74:822a92bc11d2 | 5303 | { |
mjr | 74:822a92bc11d2 | 5304 | mainLoopMsgTime += lwt.read(); |
mjr | 74:822a92bc11d2 | 5305 | mainLoopMsgCount++; |
mjr | 74:822a92bc11d2 | 5306 | } |
mjr | 74:822a92bc11d2 | 5307 | ) |
mjr | 74:822a92bc11d2 | 5308 | |
mjr | 74:822a92bc11d2 | 5309 | // update flashing LedWiz outputs periodically |
mjr | 74:822a92bc11d2 | 5310 | wizPulse(); |
mjr | 74:822a92bc11d2 | 5311 | |
mjr | 74:822a92bc11d2 | 5312 | // update PWM outputs |
mjr | 74:822a92bc11d2 | 5313 | pollPwmUpdates(); |
mjr | 55:4db125cd11a0 | 5314 | |
mjr | 55:4db125cd11a0 | 5315 | // send TLC5940 data updates if applicable |
mjr | 55:4db125cd11a0 | 5316 | if (tlc5940 != 0) |
mjr | 55:4db125cd11a0 | 5317 | tlc5940->send(); |
mjr | 1:d913e0afb2ac | 5318 | |
mjr | 1:d913e0afb2ac | 5319 | // check for plunger calibration |
mjr | 17:ab3cec0c8bf4 | 5320 | if (calBtn != 0 && !calBtn->read()) |
mjr | 0:5acbbe3f4cf4 | 5321 | { |
mjr | 1:d913e0afb2ac | 5322 | // check the state |
mjr | 1:d913e0afb2ac | 5323 | switch (calBtnState) |
mjr | 0:5acbbe3f4cf4 | 5324 | { |
mjr | 1:d913e0afb2ac | 5325 | case 0: |
mjr | 1:d913e0afb2ac | 5326 | // button not yet pushed - start debouncing |
mjr | 1:d913e0afb2ac | 5327 | calBtnTimer.reset(); |
mjr | 1:d913e0afb2ac | 5328 | calBtnState = 1; |
mjr | 1:d913e0afb2ac | 5329 | break; |
mjr | 1:d913e0afb2ac | 5330 | |
mjr | 1:d913e0afb2ac | 5331 | case 1: |
mjr | 1:d913e0afb2ac | 5332 | // pushed, not yet debounced - if the debounce time has |
mjr | 1:d913e0afb2ac | 5333 | // passed, start the hold period |
mjr | 48:058ace2aed1d | 5334 | if (calBtnTimer.read_us() > 50000) |
mjr | 1:d913e0afb2ac | 5335 | calBtnState = 2; |
mjr | 1:d913e0afb2ac | 5336 | break; |
mjr | 1:d913e0afb2ac | 5337 | |
mjr | 1:d913e0afb2ac | 5338 | case 2: |
mjr | 1:d913e0afb2ac | 5339 | // in the hold period - if the button has been held down |
mjr | 1:d913e0afb2ac | 5340 | // for the entire hold period, move to calibration mode |
mjr | 48:058ace2aed1d | 5341 | if (calBtnTimer.read_us() > 2050000) |
mjr | 1:d913e0afb2ac | 5342 | { |
mjr | 1:d913e0afb2ac | 5343 | // enter calibration mode |
mjr | 1:d913e0afb2ac | 5344 | calBtnState = 3; |
mjr | 9:fd65b0a94720 | 5345 | calBtnTimer.reset(); |
mjr | 35:e959ffba78fd | 5346 | |
mjr | 44:b5ac89b9cd5d | 5347 | // begin the plunger calibration limits |
mjr | 52:8298b2a73eb2 | 5348 | plungerReader.setCalMode(true); |
mjr | 1:d913e0afb2ac | 5349 | } |
mjr | 1:d913e0afb2ac | 5350 | break; |
mjr | 2:c174f9ee414a | 5351 | |
mjr | 2:c174f9ee414a | 5352 | case 3: |
mjr | 9:fd65b0a94720 | 5353 | // Already in calibration mode - pushing the button here |
mjr | 9:fd65b0a94720 | 5354 | // doesn't change the current state, but we won't leave this |
mjr | 9:fd65b0a94720 | 5355 | // state as long as it's held down. So nothing changes here. |
mjr | 2:c174f9ee414a | 5356 | break; |
mjr | 0:5acbbe3f4cf4 | 5357 | } |
mjr | 0:5acbbe3f4cf4 | 5358 | } |
mjr | 1:d913e0afb2ac | 5359 | else |
mjr | 1:d913e0afb2ac | 5360 | { |
mjr | 2:c174f9ee414a | 5361 | // Button released. If we're in calibration mode, and |
mjr | 2:c174f9ee414a | 5362 | // the calibration time has elapsed, end the calibration |
mjr | 2:c174f9ee414a | 5363 | // and save the results to flash. |
mjr | 2:c174f9ee414a | 5364 | // |
mjr | 2:c174f9ee414a | 5365 | // Otherwise, return to the base state without saving anything. |
mjr | 2:c174f9ee414a | 5366 | // If the button is released before we make it to calibration |
mjr | 2:c174f9ee414a | 5367 | // mode, it simply cancels the attempt. |
mjr | 48:058ace2aed1d | 5368 | if (calBtnState == 3 && calBtnTimer.read_us() > 15000000) |
mjr | 2:c174f9ee414a | 5369 | { |
mjr | 2:c174f9ee414a | 5370 | // exit calibration mode |
mjr | 1:d913e0afb2ac | 5371 | calBtnState = 0; |
mjr | 52:8298b2a73eb2 | 5372 | plungerReader.setCalMode(false); |
mjr | 2:c174f9ee414a | 5373 | |
mjr | 6:cc35eb643e8f | 5374 | // save the updated configuration |
mjr | 35:e959ffba78fd | 5375 | cfg.plunger.cal.calibrated = 1; |
mjr | 35:e959ffba78fd | 5376 | saveConfigToFlash(); |
mjr | 2:c174f9ee414a | 5377 | } |
mjr | 2:c174f9ee414a | 5378 | else if (calBtnState != 3) |
mjr | 2:c174f9ee414a | 5379 | { |
mjr | 2:c174f9ee414a | 5380 | // didn't make it to calibration mode - cancel the operation |
mjr | 1:d913e0afb2ac | 5381 | calBtnState = 0; |
mjr | 2:c174f9ee414a | 5382 | } |
mjr | 1:d913e0afb2ac | 5383 | } |
mjr | 1:d913e0afb2ac | 5384 | |
mjr | 1:d913e0afb2ac | 5385 | // light/flash the calibration button light, if applicable |
mjr | 1:d913e0afb2ac | 5386 | int newCalBtnLit = calBtnLit; |
mjr | 1:d913e0afb2ac | 5387 | switch (calBtnState) |
mjr | 0:5acbbe3f4cf4 | 5388 | { |
mjr | 1:d913e0afb2ac | 5389 | case 2: |
mjr | 1:d913e0afb2ac | 5390 | // in the hold period - flash the light |
mjr | 48:058ace2aed1d | 5391 | newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1); |
mjr | 1:d913e0afb2ac | 5392 | break; |
mjr | 1:d913e0afb2ac | 5393 | |
mjr | 1:d913e0afb2ac | 5394 | case 3: |
mjr | 1:d913e0afb2ac | 5395 | // calibration mode - show steady on |
mjr | 1:d913e0afb2ac | 5396 | newCalBtnLit = true; |
mjr | 1:d913e0afb2ac | 5397 | break; |
mjr | 1:d913e0afb2ac | 5398 | |
mjr | 1:d913e0afb2ac | 5399 | default: |
mjr | 1:d913e0afb2ac | 5400 | // not calibrating/holding - show steady off |
mjr | 1:d913e0afb2ac | 5401 | newCalBtnLit = false; |
mjr | 1:d913e0afb2ac | 5402 | break; |
mjr | 1:d913e0afb2ac | 5403 | } |
mjr | 3:3514575d4f86 | 5404 | |
mjr | 3:3514575d4f86 | 5405 | // light or flash the external calibration button LED, and |
mjr | 3:3514575d4f86 | 5406 | // do the same with the on-board blue LED |
mjr | 1:d913e0afb2ac | 5407 | if (calBtnLit != newCalBtnLit) |
mjr | 1:d913e0afb2ac | 5408 | { |
mjr | 1:d913e0afb2ac | 5409 | calBtnLit = newCalBtnLit; |
mjr | 2:c174f9ee414a | 5410 | if (calBtnLit) { |
mjr | 17:ab3cec0c8bf4 | 5411 | if (calBtnLed != 0) |
mjr | 17:ab3cec0c8bf4 | 5412 | calBtnLed->write(1); |
mjr | 38:091e511ce8a0 | 5413 | diagLED(0, 0, 1); // blue |
mjr | 2:c174f9ee414a | 5414 | } |
mjr | 2:c174f9ee414a | 5415 | else { |
mjr | 17:ab3cec0c8bf4 | 5416 | if (calBtnLed != 0) |
mjr | 17:ab3cec0c8bf4 | 5417 | calBtnLed->write(0); |
mjr | 38:091e511ce8a0 | 5418 | diagLED(0, 0, 0); // off |
mjr | 2:c174f9ee414a | 5419 | } |
mjr | 1:d913e0afb2ac | 5420 | } |
mjr | 35:e959ffba78fd | 5421 | |
mjr | 48:058ace2aed1d | 5422 | // read the plunger sensor |
mjr | 48:058ace2aed1d | 5423 | plungerReader.read(); |
mjr | 48:058ace2aed1d | 5424 | |
mjr | 53:9b2611964afc | 5425 | // update the ZB Launch Ball status |
mjr | 53:9b2611964afc | 5426 | zbLaunchBall.update(); |
mjr | 37:ed52738445fc | 5427 | |
mjr | 53:9b2611964afc | 5428 | // process button updates |
mjr | 53:9b2611964afc | 5429 | processButtons(cfg); |
mjr | 53:9b2611964afc | 5430 | |
mjr | 38:091e511ce8a0 | 5431 | // send a keyboard report if we have new data |
mjr | 37:ed52738445fc | 5432 | if (kbState.changed) |
mjr | 37:ed52738445fc | 5433 | { |
mjr | 38:091e511ce8a0 | 5434 | // send a keyboard report |
mjr | 37:ed52738445fc | 5435 | js.kbUpdate(kbState.data); |
mjr | 37:ed52738445fc | 5436 | kbState.changed = false; |
mjr | 37:ed52738445fc | 5437 | } |
mjr | 38:091e511ce8a0 | 5438 | |
mjr | 38:091e511ce8a0 | 5439 | // likewise for the media controller |
mjr | 37:ed52738445fc | 5440 | if (mediaState.changed) |
mjr | 37:ed52738445fc | 5441 | { |
mjr | 38:091e511ce8a0 | 5442 | // send a media report |
mjr | 37:ed52738445fc | 5443 | js.mediaUpdate(mediaState.data); |
mjr | 37:ed52738445fc | 5444 | mediaState.changed = false; |
mjr | 37:ed52738445fc | 5445 | } |
mjr | 38:091e511ce8a0 | 5446 | |
mjr | 38:091e511ce8a0 | 5447 | // flag: did we successfully send a joystick report on this round? |
mjr | 38:091e511ce8a0 | 5448 | bool jsOK = false; |
mjr | 55:4db125cd11a0 | 5449 | |
mjr | 55:4db125cd11a0 | 5450 | // figure the current status flags for joystick reports |
mjr | 55:4db125cd11a0 | 5451 | uint16_t statusFlags = |
mjr | 55:4db125cd11a0 | 5452 | (cfg.plunger.enabled ? 0x01 : 0x00) |
mjr | 73:4e8ce0b18915 | 5453 | | (nightMode ? 0x02 : 0x00) |
mjr | 73:4e8ce0b18915 | 5454 | | ((psu2_state & 0x07) << 2); |
mjr | 17:ab3cec0c8bf4 | 5455 | |
mjr | 50:40015764bbe6 | 5456 | // If it's been long enough since our last USB status report, send |
mjr | 50:40015764bbe6 | 5457 | // the new report. VP only polls for input in 10ms intervals, so |
mjr | 50:40015764bbe6 | 5458 | // there's no benefit in sending reports more frequently than this. |
mjr | 50:40015764bbe6 | 5459 | // More frequent reporting would only add USB I/O overhead. |
mjr | 50:40015764bbe6 | 5460 | if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL) |
mjr | 17:ab3cec0c8bf4 | 5461 | { |
mjr | 17:ab3cec0c8bf4 | 5462 | // read the accelerometer |
mjr | 17:ab3cec0c8bf4 | 5463 | int xa, ya; |
mjr | 17:ab3cec0c8bf4 | 5464 | accel.get(xa, ya); |
mjr | 17:ab3cec0c8bf4 | 5465 | |
mjr | 17:ab3cec0c8bf4 | 5466 | // confine the results to our joystick axis range |
mjr | 17:ab3cec0c8bf4 | 5467 | if (xa < -JOYMAX) xa = -JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 5468 | if (xa > JOYMAX) xa = JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 5469 | if (ya < -JOYMAX) ya = -JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 5470 | if (ya > JOYMAX) ya = JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 5471 | |
mjr | 17:ab3cec0c8bf4 | 5472 | // store the updated accelerometer coordinates |
mjr | 17:ab3cec0c8bf4 | 5473 | x = xa; |
mjr | 17:ab3cec0c8bf4 | 5474 | y = ya; |
mjr | 17:ab3cec0c8bf4 | 5475 | |
mjr | 48:058ace2aed1d | 5476 | // Report the current plunger position unless the plunger is |
mjr | 48:058ace2aed1d | 5477 | // disabled, or the ZB Launch Ball signal is on. In either of |
mjr | 48:058ace2aed1d | 5478 | // those cases, just report a constant 0 value. ZB Launch Ball |
mjr | 48:058ace2aed1d | 5479 | // temporarily disables mechanical plunger reporting because it |
mjr | 21:5048e16cc9ef | 5480 | // tells us that the table has a Launch Ball button instead of |
mjr | 48:058ace2aed1d | 5481 | // a traditional plunger, so we don't want to confuse VP with |
mjr | 48:058ace2aed1d | 5482 | // regular plunger inputs. |
mjr | 48:058ace2aed1d | 5483 | int z = plungerReader.getPosition(); |
mjr | 53:9b2611964afc | 5484 | int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z); |
mjr | 35:e959ffba78fd | 5485 | |
mjr | 35:e959ffba78fd | 5486 | // rotate X and Y according to the device orientation in the cabinet |
mjr | 35:e959ffba78fd | 5487 | accelRotate(x, y); |
mjr | 35:e959ffba78fd | 5488 | |
mjr | 35:e959ffba78fd | 5489 | // send the joystick report |
mjr | 53:9b2611964afc | 5490 | jsOK = js.update(x, y, zrep, jsButtons, statusFlags); |
mjr | 21:5048e16cc9ef | 5491 | |
mjr | 17:ab3cec0c8bf4 | 5492 | // we've just started a new report interval, so reset the timer |
mjr | 38:091e511ce8a0 | 5493 | jsReportTimer.reset(); |
mjr | 17:ab3cec0c8bf4 | 5494 | } |
mjr | 21:5048e16cc9ef | 5495 | |
mjr | 52:8298b2a73eb2 | 5496 | // If we're in sensor status mode, report all pixel exposure values |
mjr | 52:8298b2a73eb2 | 5497 | if (reportPlungerStat) |
mjr | 10:976666ffa4ef | 5498 | { |
mjr | 17:ab3cec0c8bf4 | 5499 | // send the report |
mjr | 53:9b2611964afc | 5500 | plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime); |
mjr | 17:ab3cec0c8bf4 | 5501 | |
mjr | 10:976666ffa4ef | 5502 | // we have satisfied this request |
mjr | 52:8298b2a73eb2 | 5503 | reportPlungerStat = false; |
mjr | 10:976666ffa4ef | 5504 | } |
mjr | 10:976666ffa4ef | 5505 | |
mjr | 35:e959ffba78fd | 5506 | // If joystick reports are turned off, send a generic status report |
mjr | 35:e959ffba78fd | 5507 | // periodically for the sake of the Windows config tool. |
mjr | 55:4db125cd11a0 | 5508 | if (!cfg.joystickEnabled && jsReportTimer.read_us() > 5000) |
mjr | 21:5048e16cc9ef | 5509 | { |
mjr | 55:4db125cd11a0 | 5510 | jsOK = js.updateStatus(statusFlags); |
mjr | 38:091e511ce8a0 | 5511 | jsReportTimer.reset(); |
mjr | 38:091e511ce8a0 | 5512 | } |
mjr | 38:091e511ce8a0 | 5513 | |
mjr | 38:091e511ce8a0 | 5514 | // if we successfully sent a joystick report, reset the watchdog timer |
mjr | 38:091e511ce8a0 | 5515 | if (jsOK) |
mjr | 38:091e511ce8a0 | 5516 | { |
mjr | 38:091e511ce8a0 | 5517 | jsOKTimer.reset(); |
mjr | 38:091e511ce8a0 | 5518 | jsOKTimer.start(); |
mjr | 21:5048e16cc9ef | 5519 | } |
mjr | 21:5048e16cc9ef | 5520 | |
mjr | 6:cc35eb643e8f | 5521 | #ifdef DEBUG_PRINTF |
mjr | 6:cc35eb643e8f | 5522 | if (x != 0 || y != 0) |
mjr | 6:cc35eb643e8f | 5523 | printf("%d,%d\r\n", x, y); |
mjr | 6:cc35eb643e8f | 5524 | #endif |
mjr | 6:cc35eb643e8f | 5525 | |
mjr | 33:d832bcab089e | 5526 | // check for connection status changes |
mjr | 54:fd77a6b2f76c | 5527 | bool newConnected = js.isConnected() && !js.isSleeping(); |
mjr | 33:d832bcab089e | 5528 | if (newConnected != connected) |
mjr | 33:d832bcab089e | 5529 | { |
mjr | 54:fd77a6b2f76c | 5530 | // give it a moment to stabilize |
mjr | 40:cc0d9814522b | 5531 | connectChangeTimer.start(); |
mjr | 55:4db125cd11a0 | 5532 | if (connectChangeTimer.read_us() > 1000000) |
mjr | 33:d832bcab089e | 5533 | { |
mjr | 33:d832bcab089e | 5534 | // note the new status |
mjr | 33:d832bcab089e | 5535 | connected = newConnected; |
mjr | 40:cc0d9814522b | 5536 | |
mjr | 40:cc0d9814522b | 5537 | // done with the change timer for this round - reset it for next time |
mjr | 40:cc0d9814522b | 5538 | connectChangeTimer.stop(); |
mjr | 40:cc0d9814522b | 5539 | connectChangeTimer.reset(); |
mjr | 33:d832bcab089e | 5540 | |
mjr | 54:fd77a6b2f76c | 5541 | // if we're newly disconnected, clean up for PC suspend mode or power off |
mjr | 54:fd77a6b2f76c | 5542 | if (!connected) |
mjr | 40:cc0d9814522b | 5543 | { |
mjr | 54:fd77a6b2f76c | 5544 | // turn off all outputs |
mjr | 33:d832bcab089e | 5545 | allOutputsOff(); |
mjr | 40:cc0d9814522b | 5546 | |
mjr | 40:cc0d9814522b | 5547 | // The KL25Z runs off of USB power, so we might (depending on the PC |
mjr | 40:cc0d9814522b | 5548 | // and OS configuration) continue to receive power even when the main |
mjr | 40:cc0d9814522b | 5549 | // PC power supply is turned off, such as in soft-off or suspend/sleep |
mjr | 40:cc0d9814522b | 5550 | // mode. Any external output controller chips (TLC5940, 74HC595) might |
mjr | 40:cc0d9814522b | 5551 | // be powered from the PC power supply directly rather than from our |
mjr | 40:cc0d9814522b | 5552 | // USB power, so they might be powered off even when we're still running. |
mjr | 40:cc0d9814522b | 5553 | // To ensure cleaner startup when the power comes back on, globally |
mjr | 40:cc0d9814522b | 5554 | // disable the outputs. The global disable signals come from GPIO lines |
mjr | 40:cc0d9814522b | 5555 | // that remain powered as long as the KL25Z is powered, so these modes |
mjr | 40:cc0d9814522b | 5556 | // will apply smoothly across power state transitions in the external |
mjr | 40:cc0d9814522b | 5557 | // hardware. That is, when the external chips are powered up, they'll |
mjr | 40:cc0d9814522b | 5558 | // see the global disable signals as stable voltage inputs immediately, |
mjr | 40:cc0d9814522b | 5559 | // which will cause them to suppress any output triggering. This ensures |
mjr | 40:cc0d9814522b | 5560 | // that we don't fire any solenoids or flash any lights spuriously when |
mjr | 40:cc0d9814522b | 5561 | // the power first comes on. |
mjr | 40:cc0d9814522b | 5562 | if (tlc5940 != 0) |
mjr | 40:cc0d9814522b | 5563 | tlc5940->enable(false); |
mjr | 40:cc0d9814522b | 5564 | if (hc595 != 0) |
mjr | 40:cc0d9814522b | 5565 | hc595->enable(false); |
mjr | 40:cc0d9814522b | 5566 | } |
mjr | 33:d832bcab089e | 5567 | } |
mjr | 33:d832bcab089e | 5568 | } |
mjr | 48:058ace2aed1d | 5569 | |
mjr | 53:9b2611964afc | 5570 | // if we have a reboot timer pending, check for completion |
mjr | 53:9b2611964afc | 5571 | if (rebootTimer.isRunning() && rebootTimer.read_us() > rebootTime_us) |
mjr | 53:9b2611964afc | 5572 | reboot(js); |
mjr | 53:9b2611964afc | 5573 | |
mjr | 48:058ace2aed1d | 5574 | // if we're disconnected, initiate a new connection |
mjr | 51:57eb311faafa | 5575 | if (!connected) |
mjr | 48:058ace2aed1d | 5576 | { |
mjr | 54:fd77a6b2f76c | 5577 | // show USB HAL debug events |
mjr | 54:fd77a6b2f76c | 5578 | extern void HAL_DEBUG_PRINTEVENTS(const char *prefix); |
mjr | 54:fd77a6b2f76c | 5579 | HAL_DEBUG_PRINTEVENTS(">DISC"); |
mjr | 54:fd77a6b2f76c | 5580 | |
mjr | 54:fd77a6b2f76c | 5581 | // show immediate diagnostic feedback |
mjr | 54:fd77a6b2f76c | 5582 | js.diagFlash(); |
mjr | 54:fd77a6b2f76c | 5583 | |
mjr | 54:fd77a6b2f76c | 5584 | // clear any previous diagnostic LED display |
mjr | 54:fd77a6b2f76c | 5585 | diagLED(0, 0, 0); |
mjr | 51:57eb311faafa | 5586 | |
mjr | 51:57eb311faafa | 5587 | // set up a timer to monitor the reboot timeout |
mjr | 70:9f58735a1732 | 5588 | Timer reconnTimeoutTimer; |
mjr | 70:9f58735a1732 | 5589 | reconnTimeoutTimer.start(); |
mjr | 48:058ace2aed1d | 5590 | |
mjr | 54:fd77a6b2f76c | 5591 | // set up a timer for diagnostic displays |
mjr | 54:fd77a6b2f76c | 5592 | Timer diagTimer; |
mjr | 54:fd77a6b2f76c | 5593 | diagTimer.reset(); |
mjr | 54:fd77a6b2f76c | 5594 | diagTimer.start(); |
mjr | 74:822a92bc11d2 | 5595 | |
mjr | 74:822a92bc11d2 | 5596 | // turn off the main loop timer while spinning |
mjr | 74:822a92bc11d2 | 5597 | IF_DIAG(mainLoopTimer.stop();) |
mjr | 54:fd77a6b2f76c | 5598 | |
mjr | 54:fd77a6b2f76c | 5599 | // loop until we get our connection back |
mjr | 54:fd77a6b2f76c | 5600 | while (!js.isConnected() || js.isSleeping()) |
mjr | 51:57eb311faafa | 5601 | { |
mjr | 54:fd77a6b2f76c | 5602 | // try to recover the connection |
mjr | 54:fd77a6b2f76c | 5603 | js.recoverConnection(); |
mjr | 54:fd77a6b2f76c | 5604 | |
mjr | 55:4db125cd11a0 | 5605 | // send TLC5940 data if necessary |
mjr | 55:4db125cd11a0 | 5606 | if (tlc5940 != 0) |
mjr | 55:4db125cd11a0 | 5607 | tlc5940->send(); |
mjr | 55:4db125cd11a0 | 5608 | |
mjr | 54:fd77a6b2f76c | 5609 | // show a diagnostic flash every couple of seconds |
mjr | 54:fd77a6b2f76c | 5610 | if (diagTimer.read_us() > 2000000) |
mjr | 51:57eb311faafa | 5611 | { |
mjr | 54:fd77a6b2f76c | 5612 | // flush the USB HAL debug events, if in debug mode |
mjr | 54:fd77a6b2f76c | 5613 | HAL_DEBUG_PRINTEVENTS(">NC"); |
mjr | 54:fd77a6b2f76c | 5614 | |
mjr | 54:fd77a6b2f76c | 5615 | // show diagnostic feedback |
mjr | 54:fd77a6b2f76c | 5616 | js.diagFlash(); |
mjr | 51:57eb311faafa | 5617 | |
mjr | 51:57eb311faafa | 5618 | // reset the flash timer |
mjr | 54:fd77a6b2f76c | 5619 | diagTimer.reset(); |
mjr | 51:57eb311faafa | 5620 | } |
mjr | 51:57eb311faafa | 5621 | |
mjr | 51:57eb311faafa | 5622 | // if the disconnect reboot timeout has expired, reboot |
mjr | 51:57eb311faafa | 5623 | if (cfg.disconnectRebootTimeout != 0 |
mjr | 70:9f58735a1732 | 5624 | && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout) |
mjr | 54:fd77a6b2f76c | 5625 | reboot(js, false, 0); |
mjr | 54:fd77a6b2f76c | 5626 | } |
mjr | 54:fd77a6b2f76c | 5627 | |
mjr | 74:822a92bc11d2 | 5628 | // resume the main loop timer |
mjr | 74:822a92bc11d2 | 5629 | IF_DIAG(mainLoopTimer.start();) |
mjr | 74:822a92bc11d2 | 5630 | |
mjr | 54:fd77a6b2f76c | 5631 | // if we made it out of that loop alive, we're connected again! |
mjr | 54:fd77a6b2f76c | 5632 | connected = true; |
mjr | 54:fd77a6b2f76c | 5633 | HAL_DEBUG_PRINTEVENTS(">C"); |
mjr | 54:fd77a6b2f76c | 5634 | |
mjr | 54:fd77a6b2f76c | 5635 | // Enable peripheral chips and update them with current output data |
mjr | 54:fd77a6b2f76c | 5636 | if (tlc5940 != 0) |
mjr | 54:fd77a6b2f76c | 5637 | { |
mjr | 55:4db125cd11a0 | 5638 | tlc5940->enable(true); |
mjr | 54:fd77a6b2f76c | 5639 | tlc5940->update(true); |
mjr | 54:fd77a6b2f76c | 5640 | } |
mjr | 54:fd77a6b2f76c | 5641 | if (hc595 != 0) |
mjr | 54:fd77a6b2f76c | 5642 | { |
mjr | 55:4db125cd11a0 | 5643 | hc595->enable(true); |
mjr | 54:fd77a6b2f76c | 5644 | hc595->update(true); |
mjr | 51:57eb311faafa | 5645 | } |
mjr | 48:058ace2aed1d | 5646 | } |
mjr | 43:7a6364d82a41 | 5647 | |
mjr | 6:cc35eb643e8f | 5648 | // provide a visual status indication on the on-board LED |
mjr | 48:058ace2aed1d | 5649 | if (calBtnState < 2 && hbTimer.read_us() > 1000000) |
mjr | 1:d913e0afb2ac | 5650 | { |
mjr | 54:fd77a6b2f76c | 5651 | if (jsOKTimer.read_us() > 1000000) |
mjr | 38:091e511ce8a0 | 5652 | { |
mjr | 39:b3815a1c3802 | 5653 | // USB freeze - show red/yellow. |
mjr | 40:cc0d9814522b | 5654 | // |
mjr | 54:fd77a6b2f76c | 5655 | // It's been more than a second since we successfully sent a joystick |
mjr | 54:fd77a6b2f76c | 5656 | // update message. This must mean that something's wrong on the USB |
mjr | 54:fd77a6b2f76c | 5657 | // connection, even though we haven't detected an outright disconnect. |
mjr | 54:fd77a6b2f76c | 5658 | // Show a distinctive diagnostic LED pattern when this occurs. |
mjr | 38:091e511ce8a0 | 5659 | hb = !hb; |
mjr | 38:091e511ce8a0 | 5660 | diagLED(1, hb, 0); |
mjr | 54:fd77a6b2f76c | 5661 | |
mjr | 54:fd77a6b2f76c | 5662 | // If the reboot-on-disconnect option is in effect, treat this condition |
mjr | 54:fd77a6b2f76c | 5663 | // as equivalent to a disconnect, since something is obviously wrong |
mjr | 54:fd77a6b2f76c | 5664 | // with the USB connection. |
mjr | 54:fd77a6b2f76c | 5665 | if (cfg.disconnectRebootTimeout != 0) |
mjr | 54:fd77a6b2f76c | 5666 | { |
mjr | 54:fd77a6b2f76c | 5667 | // The reboot timeout is in effect. If we've been incommunicado for |
mjr | 54:fd77a6b2f76c | 5668 | // longer than the timeout, reboot. If we haven't reached the time |
mjr | 54:fd77a6b2f76c | 5669 | // limit, keep running for now, and leave the OK timer running so |
mjr | 54:fd77a6b2f76c | 5670 | // that we can continue to monitor this. |
mjr | 54:fd77a6b2f76c | 5671 | if (jsOKTimer.read() > cfg.disconnectRebootTimeout) |
mjr | 54:fd77a6b2f76c | 5672 | reboot(js, false, 0); |
mjr | 54:fd77a6b2f76c | 5673 | } |
mjr | 54:fd77a6b2f76c | 5674 | else |
mjr | 54:fd77a6b2f76c | 5675 | { |
mjr | 54:fd77a6b2f76c | 5676 | // There's no reboot timer, so just keep running with the diagnostic |
mjr | 54:fd77a6b2f76c | 5677 | // pattern displayed. Since we're not waiting for any other timed |
mjr | 54:fd77a6b2f76c | 5678 | // conditions in this state, stop the timer so that it doesn't |
mjr | 54:fd77a6b2f76c | 5679 | // overflow if this condition persists for a long time. |
mjr | 54:fd77a6b2f76c | 5680 | jsOKTimer.stop(); |
mjr | 54:fd77a6b2f76c | 5681 | } |
mjr | 38:091e511ce8a0 | 5682 | } |
mjr | 73:4e8ce0b18915 | 5683 | else if (psu2_state >= 4) |
mjr | 73:4e8ce0b18915 | 5684 | { |
mjr | 73:4e8ce0b18915 | 5685 | // We're in the TV timer countdown. Skip the normal heartbeat |
mjr | 73:4e8ce0b18915 | 5686 | // flashes and show the TV timer flashes instead. |
mjr | 73:4e8ce0b18915 | 5687 | diagLED(0, 0, 0); |
mjr | 73:4e8ce0b18915 | 5688 | } |
mjr | 35:e959ffba78fd | 5689 | else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated) |
mjr | 6:cc35eb643e8f | 5690 | { |
mjr | 6:cc35eb643e8f | 5691 | // connected, plunger calibration needed - flash yellow/green |
mjr | 6:cc35eb643e8f | 5692 | hb = !hb; |
mjr | 38:091e511ce8a0 | 5693 | diagLED(hb, 1, 0); |
mjr | 6:cc35eb643e8f | 5694 | } |
mjr | 6:cc35eb643e8f | 5695 | else |
mjr | 6:cc35eb643e8f | 5696 | { |
mjr | 6:cc35eb643e8f | 5697 | // connected - flash blue/green |
mjr | 2:c174f9ee414a | 5698 | hb = !hb; |
mjr | 38:091e511ce8a0 | 5699 | diagLED(0, hb, !hb); |
mjr | 2:c174f9ee414a | 5700 | } |
mjr | 1:d913e0afb2ac | 5701 | |
mjr | 1:d913e0afb2ac | 5702 | // reset the heartbeat timer |
mjr | 1:d913e0afb2ac | 5703 | hbTimer.reset(); |
mjr | 5:a70c0bce770d | 5704 | ++hbcnt; |
mjr | 1:d913e0afb2ac | 5705 | } |
mjr | 74:822a92bc11d2 | 5706 | |
mjr | 74:822a92bc11d2 | 5707 | // collect statistics on the main loop time, if desired |
mjr | 74:822a92bc11d2 | 5708 | IF_DIAG( |
mjr | 74:822a92bc11d2 | 5709 | mainLoopIterTime += mainLoopTimer.read(); |
mjr | 74:822a92bc11d2 | 5710 | mainLoopIterCount++; |
mjr | 74:822a92bc11d2 | 5711 | ) |
mjr | 1:d913e0afb2ac | 5712 | } |
mjr | 0:5acbbe3f4cf4 | 5713 | } |