Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
mjr
Date:
Wed Dec 28 23:32:38 2016 +0000
Revision:
69:cc5039284fac
Parent:
67:c39e66c4e000
Child:
70:9f58735a1732
Slope-based edge detection; disable filtering in plunger readings;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 38:091e511ce8a0 42 // - Plunger position sensing, with mulitple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 38:091e511ce8a0 55 // Note VP has built-in support for plunger devices like this one, but some VP
mjr 38:091e511ce8a0 56 // tables can't use it without some additional scripting work. The Build Guide has
mjr 38:091e511ce8a0 57 // advice on adjusting tables to add plunger support when necessary.
mjr 5:a70c0bce770d 58 //
mjr 6:cc35eb643e8f 59 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 60 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 61 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 62 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 63 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 64 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 65 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 66 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 67 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 68 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 69 //
mjr 17:ab3cec0c8bf4 70 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 71 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 72 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 73 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 74 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 75 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 76 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 77 //
mjr 13:72dda449c3c0 78 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 38:091e511ce8a0 79 // for buttons and switches. You can wire each input to a physical pinball-style
mjr 38:091e511ce8a0 80 // button or switch, such as flipper buttons, Start buttons, coin chute switches,
mjr 38:091e511ce8a0 81 // tilt bobs, and service buttons. Each button can be configured to be reported
mjr 38:091e511ce8a0 82 // to the PC as a joystick button or as a keyboard key (you can select which key
mjr 38:091e511ce8a0 83 // is used for each button).
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 38:091e511ce8a0 143 // software to sense the power supply status, and you have to run wires to your
mjr 38:091e511ce8a0 144 // TV's on/off button, which requires opening the case on your TV. The Build
mjr 38:091e511ce8a0 145 // Guide has details on the necessary circuitry and connections to the TV.
mjr 38:091e511ce8a0 146 //
mjr 35:e959ffba78fd 147 //
mjr 35:e959ffba78fd 148 //
mjr 33:d832bcab089e 149 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 150 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 151 //
mjr 48:058ace2aed1d 152 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 153 //
mjr 48:058ace2aed1d 154 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 155 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 156 // has been established)
mjr 48:058ace2aed1d 157 //
mjr 48:058ace2aed1d 158 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 159 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 160 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 161 //
mjr 38:091e511ce8a0 162 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 163 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 164 // transmissions are failing.
mjr 38:091e511ce8a0 165 //
mjr 6:cc35eb643e8f 166 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 167 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 168 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 169 // no plunger sensor configured.
mjr 6:cc35eb643e8f 170 //
mjr 38:091e511ce8a0 171 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 172 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 173 //
mjr 48:058ace2aed1d 174 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 175 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 176 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 177 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 178 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 179 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 180 //
mjr 48:058ace2aed1d 181 //
mjr 48:058ace2aed1d 182 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 183 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 184 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 185 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 186 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 187 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 188 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 189 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 190
mjr 33:d832bcab089e 191
mjr 0:5acbbe3f4cf4 192 #include "mbed.h"
mjr 6:cc35eb643e8f 193 #include "math.h"
mjr 48:058ace2aed1d 194 #include "pinscape.h"
mjr 0:5acbbe3f4cf4 195 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 196 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 197 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 198 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 199 #include "crc32.h"
mjr 26:cb71c4af2912 200 #include "TLC5940.h"
mjr 34:6b981a2afab7 201 #include "74HC595.h"
mjr 35:e959ffba78fd 202 #include "nvm.h"
mjr 35:e959ffba78fd 203 #include "plunger.h"
mjr 35:e959ffba78fd 204 #include "ccdSensor.h"
mjr 35:e959ffba78fd 205 #include "potSensor.h"
mjr 35:e959ffba78fd 206 #include "nullSensor.h"
mjr 48:058ace2aed1d 207 #include "TinyDigitalIn.h"
mjr 64:ef7ca92dff36 208 #include "FastPWM.h"
mjr 2:c174f9ee414a 209
mjr 21:5048e16cc9ef 210 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 211 #include "config.h"
mjr 17:ab3cec0c8bf4 212
mjr 53:9b2611964afc 213
mjr 53:9b2611964afc 214 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 215 //
mjr 53:9b2611964afc 216 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 217 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 218 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 219 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 220 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 221 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 222 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 223 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 224 // interface.
mjr 53:9b2611964afc 225 //
mjr 53:9b2611964afc 226 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 227 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 228 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 229 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 230 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 231 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 232 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 233 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 234 //
mjr 53:9b2611964afc 235 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 236 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 237 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 238 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 239 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 240 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 241 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 242 //
mjr 53:9b2611964afc 243 const char *getOpenSDAID()
mjr 53:9b2611964afc 244 {
mjr 53:9b2611964afc 245 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 246 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 247 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 248
mjr 53:9b2611964afc 249 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 250 }
mjr 53:9b2611964afc 251
mjr 53:9b2611964afc 252 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 253 //
mjr 53:9b2611964afc 254 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 255 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 256 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 257 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 258 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 259 // want from this.
mjr 53:9b2611964afc 260 //
mjr 53:9b2611964afc 261 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 262 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 263 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 264 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 265 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 266 // macros.
mjr 53:9b2611964afc 267 //
mjr 53:9b2611964afc 268 const char *getBuildID()
mjr 53:9b2611964afc 269 {
mjr 53:9b2611964afc 270 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 271 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 272 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 273
mjr 53:9b2611964afc 274 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 275 }
mjr 53:9b2611964afc 276
mjr 53:9b2611964afc 277
mjr 48:058ace2aed1d 278 // --------------------------------------------------------------------------
mjr 48:058ace2aed1d 279 //
mjr 59:94eb9265b6d7 280 // Custom memory allocator. We use our own version of malloc() for more
mjr 59:94eb9265b6d7 281 // efficient memory usage, and to provide diagnostics if we run out of heap.
mjr 48:058ace2aed1d 282 //
mjr 59:94eb9265b6d7 283 // We can implement a more efficient malloc than the library can because we
mjr 59:94eb9265b6d7 284 // can make an assumption that the library can't: allocations are permanent.
mjr 59:94eb9265b6d7 285 // The normal malloc has to assume that allocations can be freed, so it has
mjr 59:94eb9265b6d7 286 // to track blocks individually. For the purposes of this program, though,
mjr 59:94eb9265b6d7 287 // we don't have to do this because virtually all of our allocations are
mjr 59:94eb9265b6d7 288 // de facto permanent. We only allocate dyanmic memory during setup, and
mjr 59:94eb9265b6d7 289 // once we set things up, we never delete anything. This means that we can
mjr 59:94eb9265b6d7 290 // allocate memory in bare blocks without any bookkeeping overhead.
mjr 59:94eb9265b6d7 291 //
mjr 59:94eb9265b6d7 292 // In addition, we can make a much larger overall pool of memory available
mjr 59:94eb9265b6d7 293 // in a custom allocator. The mbed library malloc() seems to have a pool
mjr 59:94eb9265b6d7 294 // of about 3K to work with, even though there's really about 9K of RAM
mjr 59:94eb9265b6d7 295 // left over after counting the static writable data and reserving space
mjr 59:94eb9265b6d7 296 // for a reasonable stack. I haven't looked at the mbed malloc to see why
mjr 59:94eb9265b6d7 297 // they're so stingy, but it appears from empirical testing that we can
mjr 59:94eb9265b6d7 298 // create a static array up to about 9K before things get crashy.
mjr 59:94eb9265b6d7 299
mjr 48:058ace2aed1d 300 void *xmalloc(size_t siz)
mjr 48:058ace2aed1d 301 {
mjr 59:94eb9265b6d7 302 // Dynamic memory pool. We'll reserve space for all dynamic
mjr 59:94eb9265b6d7 303 // allocations by creating a simple C array of bytes. The size
mjr 59:94eb9265b6d7 304 // of this array is the maximum number of bytes we can allocate
mjr 59:94eb9265b6d7 305 // with malloc or operator 'new'.
mjr 59:94eb9265b6d7 306 //
mjr 59:94eb9265b6d7 307 // The maximum safe size for this array is, in essence, the
mjr 59:94eb9265b6d7 308 // amount of physical KL25Z RAM left over after accounting for
mjr 59:94eb9265b6d7 309 // static data throughout the rest of the program, the run-time
mjr 59:94eb9265b6d7 310 // stack, and any other space reserved for compiler or MCU
mjr 59:94eb9265b6d7 311 // overhead. Unfortunately, it's not straightforward to
mjr 59:94eb9265b6d7 312 // determine this analytically. The big complication is that
mjr 59:94eb9265b6d7 313 // the minimum stack size isn't easily predictable, as the stack
mjr 59:94eb9265b6d7 314 // grows according to what the program does. In addition, the
mjr 59:94eb9265b6d7 315 // mbed platform tools don't give us detailed data on the
mjr 59:94eb9265b6d7 316 // compiler/linker memory map. All we get is a generic total
mjr 59:94eb9265b6d7 317 // RAM requirement, which doesn't necessarily account for all
mjr 59:94eb9265b6d7 318 // overhead (e.g., gaps inserted to get proper alignment for
mjr 59:94eb9265b6d7 319 // particular memory blocks).
mjr 59:94eb9265b6d7 320 //
mjr 59:94eb9265b6d7 321 // A very rough estimate: the total RAM size reported by the
mjr 59:94eb9265b6d7 322 // linker is about 3.5K (currently - that can obviously change
mjr 59:94eb9265b6d7 323 // as the project evolves) out of 16K total. Assuming about a
mjr 59:94eb9265b6d7 324 // 3K stack, that leaves in the ballpark of 10K. Empirically,
mjr 59:94eb9265b6d7 325 // that seems pretty close. In testing, we start to see some
mjr 59:94eb9265b6d7 326 // instability at 10K, while 9K seems safe. To be conservative,
mjr 59:94eb9265b6d7 327 // we'll reduce this to 8K.
mjr 59:94eb9265b6d7 328 //
mjr 59:94eb9265b6d7 329 // Our measured total usage in the base configuration (22 GPIO
mjr 59:94eb9265b6d7 330 // output ports, TSL1410R plunger sensor) is about 4000 bytes.
mjr 59:94eb9265b6d7 331 // A pretty fully decked-out configuration (121 output ports,
mjr 59:94eb9265b6d7 332 // with 8 TLC5940 chips and 3 74HC595 chips, plus the TSL1412R
mjr 59:94eb9265b6d7 333 // sensor with the higher pixel count, and all expansion board
mjr 59:94eb9265b6d7 334 // features enabled) comes to about 6700 bytes. That leaves
mjr 59:94eb9265b6d7 335 // us with about 1.5K free out of our 8K, so we still have a
mjr 59:94eb9265b6d7 336 // little more headroom for future expansion.
mjr 59:94eb9265b6d7 337 //
mjr 59:94eb9265b6d7 338 // For comparison, the standard mbed malloc() runs out of
mjr 59:94eb9265b6d7 339 // memory at about 6K. That's what led to this custom malloc:
mjr 59:94eb9265b6d7 340 // we can just fit the base configuration into that 4K, but
mjr 59:94eb9265b6d7 341 // it's not enough space for more complex setups. There's
mjr 59:94eb9265b6d7 342 // still a little room for squeezing out unnecessary space
mjr 59:94eb9265b6d7 343 // from the mbed library code, but at this point I'd prefer
mjr 59:94eb9265b6d7 344 // to treat that as a last resort, since it would mean having
mjr 59:94eb9265b6d7 345 // to fork private copies of the libraries.
mjr 59:94eb9265b6d7 346 static char pool[8*1024];
mjr 59:94eb9265b6d7 347 static char *nxt = pool;
mjr 59:94eb9265b6d7 348 static size_t rem = sizeof(pool);
mjr 59:94eb9265b6d7 349
mjr 59:94eb9265b6d7 350 // align to a 4-byte increment
mjr 59:94eb9265b6d7 351 siz = (siz + 3) & ~3;
mjr 59:94eb9265b6d7 352
mjr 59:94eb9265b6d7 353 // If insufficient memory is available, halt and show a fast red/purple
mjr 59:94eb9265b6d7 354 // diagnostic flash. We don't want to return, since we assume throughout
mjr 59:94eb9265b6d7 355 // the program that all memory allocations must succeed. Note that this
mjr 59:94eb9265b6d7 356 // is generally considered bad programming practice in applications on
mjr 59:94eb9265b6d7 357 // "real" computers, but for the purposes of this microcontroller app,
mjr 59:94eb9265b6d7 358 // there's no point in checking for failed allocations individually
mjr 59:94eb9265b6d7 359 // because there's no way to recover from them. It's better in this
mjr 59:94eb9265b6d7 360 // context to handle failed allocations as fatal errors centrally. We
mjr 59:94eb9265b6d7 361 // can't recover from these automatically, so we have to resort to user
mjr 59:94eb9265b6d7 362 // intervention, which we signal with the diagnostic LED flashes.
mjr 59:94eb9265b6d7 363 if (siz > rem)
mjr 59:94eb9265b6d7 364 {
mjr 59:94eb9265b6d7 365 // halt with the diagnostic display (by looping forever)
mjr 59:94eb9265b6d7 366 for (;;)
mjr 59:94eb9265b6d7 367 {
mjr 59:94eb9265b6d7 368 diagLED(1, 0, 0);
mjr 59:94eb9265b6d7 369 wait_us(200000);
mjr 59:94eb9265b6d7 370 diagLED(1, 0, 1);
mjr 59:94eb9265b6d7 371 wait_us(200000);
mjr 59:94eb9265b6d7 372 }
mjr 59:94eb9265b6d7 373 }
mjr 48:058ace2aed1d 374
mjr 59:94eb9265b6d7 375 // get the next free location from the pool to return
mjr 59:94eb9265b6d7 376 char *ret = nxt;
mjr 59:94eb9265b6d7 377
mjr 59:94eb9265b6d7 378 // advance the pool pointer and decrement the remaining size counter
mjr 59:94eb9265b6d7 379 nxt += siz;
mjr 59:94eb9265b6d7 380 rem -= siz;
mjr 59:94eb9265b6d7 381
mjr 59:94eb9265b6d7 382 // return the allocated block
mjr 59:94eb9265b6d7 383 return ret;
mjr 48:058ace2aed1d 384 }
mjr 48:058ace2aed1d 385
mjr 59:94eb9265b6d7 386 // Overload operator new to call our custom malloc. This ensures that
mjr 59:94eb9265b6d7 387 // all 'new' allocations throughout the program (including library code)
mjr 59:94eb9265b6d7 388 // go through our private allocator.
mjr 48:058ace2aed1d 389 void *operator new(size_t siz) { return xmalloc(siz); }
mjr 48:058ace2aed1d 390 void *operator new[](size_t siz) { return xmalloc(siz); }
mjr 5:a70c0bce770d 391
mjr 59:94eb9265b6d7 392 // Since we don't do bookkeeping to track released memory, 'delete' does
mjr 59:94eb9265b6d7 393 // nothing. In actual testing, this routine appears to never be called.
mjr 59:94eb9265b6d7 394 // If it *is* ever called, it will simply leave the block in place, which
mjr 59:94eb9265b6d7 395 // will make it unavailable for re-use but will otherwise be harmless.
mjr 59:94eb9265b6d7 396 void operator delete(void *ptr) { }
mjr 59:94eb9265b6d7 397
mjr 59:94eb9265b6d7 398
mjr 5:a70c0bce770d 399 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 400 //
mjr 38:091e511ce8a0 401 // Forward declarations
mjr 38:091e511ce8a0 402 //
mjr 38:091e511ce8a0 403 void setNightMode(bool on);
mjr 38:091e511ce8a0 404 void toggleNightMode();
mjr 38:091e511ce8a0 405
mjr 38:091e511ce8a0 406 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 407 // utilities
mjr 17:ab3cec0c8bf4 408
mjr 26:cb71c4af2912 409 // floating point square of a number
mjr 26:cb71c4af2912 410 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 411
mjr 26:cb71c4af2912 412 // floating point rounding
mjr 26:cb71c4af2912 413 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 414
mjr 17:ab3cec0c8bf4 415
mjr 33:d832bcab089e 416 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 417 //
mjr 40:cc0d9814522b 418 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 419 // the running state.
mjr 40:cc0d9814522b 420 //
mjr 40:cc0d9814522b 421 class Timer2: public Timer
mjr 40:cc0d9814522b 422 {
mjr 40:cc0d9814522b 423 public:
mjr 40:cc0d9814522b 424 Timer2() : running(false) { }
mjr 40:cc0d9814522b 425
mjr 40:cc0d9814522b 426 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 427 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 428
mjr 40:cc0d9814522b 429 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 430
mjr 40:cc0d9814522b 431 private:
mjr 40:cc0d9814522b 432 bool running;
mjr 40:cc0d9814522b 433 };
mjr 40:cc0d9814522b 434
mjr 53:9b2611964afc 435
mjr 53:9b2611964afc 436 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 437 //
mjr 53:9b2611964afc 438 // Reboot timer. When we have a deferred reboot operation pending, we
mjr 53:9b2611964afc 439 // set the target time and start the timer.
mjr 53:9b2611964afc 440 Timer2 rebootTimer;
mjr 53:9b2611964afc 441 long rebootTime_us;
mjr 53:9b2611964afc 442
mjr 40:cc0d9814522b 443 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 444 //
mjr 33:d832bcab089e 445 // USB product version number
mjr 5:a70c0bce770d 446 //
mjr 47:df7a88cd249c 447 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 448
mjr 33:d832bcab089e 449 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 450 //
mjr 6:cc35eb643e8f 451 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 452 //
mjr 6:cc35eb643e8f 453 #define JOYMAX 4096
mjr 6:cc35eb643e8f 454
mjr 9:fd65b0a94720 455
mjr 17:ab3cec0c8bf4 456 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 457 //
mjr 40:cc0d9814522b 458 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 459 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 460 //
mjr 35:e959ffba78fd 461
mjr 35:e959ffba78fd 462 // unsigned 16-bit integer
mjr 35:e959ffba78fd 463 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 464 {
mjr 35:e959ffba78fd 465 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 466 }
mjr 40:cc0d9814522b 467 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 468 {
mjr 40:cc0d9814522b 469 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 470 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 471 }
mjr 35:e959ffba78fd 472
mjr 35:e959ffba78fd 473 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 474 {
mjr 35:e959ffba78fd 475 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 476 }
mjr 40:cc0d9814522b 477 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 478 {
mjr 40:cc0d9814522b 479 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 480 }
mjr 35:e959ffba78fd 481
mjr 35:e959ffba78fd 482 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 483 {
mjr 35:e959ffba78fd 484 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 485 }
mjr 40:cc0d9814522b 486 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 487 {
mjr 40:cc0d9814522b 488 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 489 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 490 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 491 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 492 }
mjr 35:e959ffba78fd 493
mjr 35:e959ffba78fd 494 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 495 {
mjr 35:e959ffba78fd 496 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 497 }
mjr 35:e959ffba78fd 498
mjr 53:9b2611964afc 499 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 500 //
mjr 53:9b2611964afc 501 // The internal mbed PinName format is
mjr 53:9b2611964afc 502 //
mjr 53:9b2611964afc 503 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 504 //
mjr 53:9b2611964afc 505 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 506 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 507 //
mjr 53:9b2611964afc 508 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 509 // pin name fits in 8 bits:
mjr 53:9b2611964afc 510 //
mjr 53:9b2611964afc 511 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 512 //
mjr 53:9b2611964afc 513 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 514 //
mjr 53:9b2611964afc 515 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 516 //
mjr 53:9b2611964afc 517 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 518 {
mjr 53:9b2611964afc 519 if (c == 0xFF)
mjr 53:9b2611964afc 520 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 521 else
mjr 53:9b2611964afc 522 return PinName(
mjr 53:9b2611964afc 523 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 524 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 525 }
mjr 40:cc0d9814522b 526 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 527 {
mjr 53:9b2611964afc 528 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 529 }
mjr 35:e959ffba78fd 530
mjr 35:e959ffba78fd 531
mjr 35:e959ffba78fd 532 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 533 //
mjr 38:091e511ce8a0 534 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 535 //
mjr 38:091e511ce8a0 536 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 537 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 538 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 539 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 540 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 541 // SPI capability.
mjr 38:091e511ce8a0 542 //
mjr 38:091e511ce8a0 543 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 546 // on, and -1 is no change (leaves the current setting intact).
mjr 38:091e511ce8a0 547 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 548 {
mjr 38:091e511ce8a0 549 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 550 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 551 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 552 }
mjr 38:091e511ce8a0 553
mjr 38:091e511ce8a0 554 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 555 // an on-board LED segment
mjr 38:091e511ce8a0 556 struct LedSeg
mjr 38:091e511ce8a0 557 {
mjr 38:091e511ce8a0 558 bool r, g, b;
mjr 38:091e511ce8a0 559 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 560
mjr 38:091e511ce8a0 561 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 562 {
mjr 38:091e511ce8a0 563 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 564 // our on-board LED segments
mjr 38:091e511ce8a0 565 int t = pc.typ;
mjr 38:091e511ce8a0 566 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 567 {
mjr 38:091e511ce8a0 568 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 569 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 570 if (pin == LED1)
mjr 38:091e511ce8a0 571 r = true;
mjr 38:091e511ce8a0 572 else if (pin == LED2)
mjr 38:091e511ce8a0 573 g = true;
mjr 38:091e511ce8a0 574 else if (pin == LED3)
mjr 38:091e511ce8a0 575 b = true;
mjr 38:091e511ce8a0 576 }
mjr 38:091e511ce8a0 577 }
mjr 38:091e511ce8a0 578 };
mjr 38:091e511ce8a0 579
mjr 38:091e511ce8a0 580 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 581 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 582 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 583 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 584 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 585 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 586 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 587 {
mjr 38:091e511ce8a0 588 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 589 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 590 LedSeg l;
mjr 38:091e511ce8a0 591 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 592 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 593
mjr 38:091e511ce8a0 594 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 595 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 596 // LedWiz use.
mjr 38:091e511ce8a0 597 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 598 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 599 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 600 }
mjr 38:091e511ce8a0 601
mjr 38:091e511ce8a0 602
mjr 38:091e511ce8a0 603 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 604 //
mjr 29:582472d0bc57 605 // LedWiz emulation, and enhanced TLC5940 output controller
mjr 5:a70c0bce770d 606 //
mjr 26:cb71c4af2912 607 // There are two modes for this feature. The default mode uses the on-board
mjr 26:cb71c4af2912 608 // GPIO ports to implement device outputs - each LedWiz software port is
mjr 26:cb71c4af2912 609 // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10
mjr 26:cb71c4af2912 610 // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the
mjr 26:cb71c4af2912 611 // rest are strictly on/off. The KL25Z also has a limited number of GPIO
mjr 26:cb71c4af2912 612 // ports overall - not enough for the full complement of 32 LedWiz ports
mjr 26:cb71c4af2912 613 // and 24 VP joystick inputs, so it's necessary to trade one against the
mjr 26:cb71c4af2912 614 // other if both features are to be used.
mjr 26:cb71c4af2912 615 //
mjr 26:cb71c4af2912 616 // The alternative, enhanced mode uses external TLC5940 PWM controller
mjr 26:cb71c4af2912 617 // chips to control device outputs. In this mode, each LedWiz software
mjr 26:cb71c4af2912 618 // port is mapped to an output on one of the external TLC5940 chips.
mjr 26:cb71c4af2912 619 // Two 5940s is enough for the full set of 32 LedWiz ports, and we can
mjr 26:cb71c4af2912 620 // support even more chips for even more outputs (although doing so requires
mjr 26:cb71c4af2912 621 // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired
mjr 26:cb71c4af2912 622 // for 32 outputs). Every port in this mode has full PWM support.
mjr 26:cb71c4af2912 623 //
mjr 5:a70c0bce770d 624
mjr 29:582472d0bc57 625
mjr 26:cb71c4af2912 626 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 627 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 628 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 629 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 630 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 631
mjr 26:cb71c4af2912 632 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 633 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 634 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 635 class LwOut
mjr 6:cc35eb643e8f 636 {
mjr 6:cc35eb643e8f 637 public:
mjr 40:cc0d9814522b 638 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 639 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 640 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 641 };
mjr 26:cb71c4af2912 642
mjr 35:e959ffba78fd 643 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 644 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 645 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 646 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 647 // numbering.
mjr 35:e959ffba78fd 648 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 649 {
mjr 33:d832bcab089e 650 public:
mjr 35:e959ffba78fd 651 LwVirtualOut() { }
mjr 40:cc0d9814522b 652 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 653 };
mjr 26:cb71c4af2912 654
mjr 34:6b981a2afab7 655 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 656 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 657 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 658 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 659 {
mjr 34:6b981a2afab7 660 public:
mjr 34:6b981a2afab7 661 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 662 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 663
mjr 34:6b981a2afab7 664 private:
mjr 53:9b2611964afc 665 // underlying physical output
mjr 34:6b981a2afab7 666 LwOut *out;
mjr 34:6b981a2afab7 667 };
mjr 34:6b981a2afab7 668
mjr 53:9b2611964afc 669 // Global ZB Launch Ball state
mjr 53:9b2611964afc 670 bool zbLaunchOn = false;
mjr 53:9b2611964afc 671
mjr 53:9b2611964afc 672 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 673 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 674 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 675 {
mjr 53:9b2611964afc 676 public:
mjr 53:9b2611964afc 677 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 678 virtual void set(uint8_t val)
mjr 53:9b2611964afc 679 {
mjr 53:9b2611964afc 680 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 681 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 682
mjr 53:9b2611964afc 683 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 684 out->set(val);
mjr 53:9b2611964afc 685 }
mjr 53:9b2611964afc 686
mjr 53:9b2611964afc 687 private:
mjr 53:9b2611964afc 688 // underlying physical or virtual output
mjr 53:9b2611964afc 689 LwOut *out;
mjr 53:9b2611964afc 690 };
mjr 53:9b2611964afc 691
mjr 53:9b2611964afc 692
mjr 40:cc0d9814522b 693 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 694 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 695 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 696 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 697 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 698 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 699 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 700 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 701 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 702 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 703 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 704 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 705 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 706 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 707 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 708 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 709 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 710 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 711 };
mjr 40:cc0d9814522b 712
mjr 40:cc0d9814522b 713 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 714 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 715 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 716 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 717 {
mjr 40:cc0d9814522b 718 public:
mjr 40:cc0d9814522b 719 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 720 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 721
mjr 40:cc0d9814522b 722 private:
mjr 40:cc0d9814522b 723 LwOut *out;
mjr 40:cc0d9814522b 724 };
mjr 40:cc0d9814522b 725
mjr 53:9b2611964afc 726 // global night mode flag
mjr 53:9b2611964afc 727 static bool nightMode = false;
mjr 53:9b2611964afc 728
mjr 40:cc0d9814522b 729 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 730 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 731 // mode is engaged.
mjr 40:cc0d9814522b 732 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 733 {
mjr 40:cc0d9814522b 734 public:
mjr 40:cc0d9814522b 735 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 736 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 737
mjr 53:9b2611964afc 738 private:
mjr 53:9b2611964afc 739 LwOut *out;
mjr 53:9b2611964afc 740 };
mjr 53:9b2611964afc 741
mjr 53:9b2611964afc 742 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 743 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 744 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 745 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 746 {
mjr 53:9b2611964afc 747 public:
mjr 53:9b2611964afc 748 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 749 virtual void set(uint8_t)
mjr 53:9b2611964afc 750 {
mjr 53:9b2611964afc 751 // ignore the host value and simply show the current
mjr 53:9b2611964afc 752 // night mode setting
mjr 53:9b2611964afc 753 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 754 }
mjr 40:cc0d9814522b 755
mjr 40:cc0d9814522b 756 private:
mjr 40:cc0d9814522b 757 LwOut *out;
mjr 40:cc0d9814522b 758 };
mjr 40:cc0d9814522b 759
mjr 26:cb71c4af2912 760
mjr 35:e959ffba78fd 761 //
mjr 35:e959ffba78fd 762 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 763 // assignments set in config.h.
mjr 33:d832bcab089e 764 //
mjr 35:e959ffba78fd 765 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 766 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 767 {
mjr 35:e959ffba78fd 768 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 769 {
mjr 53:9b2611964afc 770 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 771 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 772 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 773 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 774 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 775 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 776 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 777 }
mjr 35:e959ffba78fd 778 }
mjr 26:cb71c4af2912 779
mjr 40:cc0d9814522b 780 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 781 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 782 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 783 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 784 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 785 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 786 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 787 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 788 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 789 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 790 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 791 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 792 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 793 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 794 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 795 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 796 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 797 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 798 };
mjr 40:cc0d9814522b 799
mjr 40:cc0d9814522b 800 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 801 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 802 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 803 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 804 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 805 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 806 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 807 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 808 // are always 8 bits.
mjr 40:cc0d9814522b 809 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 810 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 811 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 812 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 813 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 814 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 815 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 816 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 817 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 818 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 819 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 820 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 821 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 822 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 823 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 824 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 825 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 826 };
mjr 40:cc0d9814522b 827
mjr 26:cb71c4af2912 828 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 829 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 830 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 831 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 832 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 833 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 834 {
mjr 26:cb71c4af2912 835 public:
mjr 60:f38da020aa13 836 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 837 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 838 {
mjr 26:cb71c4af2912 839 if (val != prv)
mjr 40:cc0d9814522b 840 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 841 }
mjr 60:f38da020aa13 842 uint8_t idx;
mjr 40:cc0d9814522b 843 uint8_t prv;
mjr 26:cb71c4af2912 844 };
mjr 26:cb71c4af2912 845
mjr 40:cc0d9814522b 846 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 847 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 848 {
mjr 40:cc0d9814522b 849 public:
mjr 60:f38da020aa13 850 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 851 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 852 {
mjr 40:cc0d9814522b 853 if (val != prv)
mjr 40:cc0d9814522b 854 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 855 }
mjr 60:f38da020aa13 856 uint8_t idx;
mjr 40:cc0d9814522b 857 uint8_t prv;
mjr 40:cc0d9814522b 858 };
mjr 40:cc0d9814522b 859
mjr 40:cc0d9814522b 860
mjr 33:d832bcab089e 861
mjr 34:6b981a2afab7 862 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 863 // config.h.
mjr 35:e959ffba78fd 864 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 865
mjr 35:e959ffba78fd 866 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 867 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 868 {
mjr 35:e959ffba78fd 869 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 870 {
mjr 53:9b2611964afc 871 hc595 = new HC595(
mjr 53:9b2611964afc 872 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 873 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 874 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 875 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 876 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 877 hc595->init();
mjr 35:e959ffba78fd 878 hc595->update();
mjr 35:e959ffba78fd 879 }
mjr 35:e959ffba78fd 880 }
mjr 34:6b981a2afab7 881
mjr 34:6b981a2afab7 882 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 883 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 884 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 885 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 886 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 887 class Lw595Out: public LwOut
mjr 33:d832bcab089e 888 {
mjr 33:d832bcab089e 889 public:
mjr 60:f38da020aa13 890 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 891 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 892 {
mjr 34:6b981a2afab7 893 if (val != prv)
mjr 40:cc0d9814522b 894 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 895 }
mjr 60:f38da020aa13 896 uint8_t idx;
mjr 40:cc0d9814522b 897 uint8_t prv;
mjr 33:d832bcab089e 898 };
mjr 33:d832bcab089e 899
mjr 26:cb71c4af2912 900
mjr 40:cc0d9814522b 901
mjr 64:ef7ca92dff36 902 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 903 // normalized to 0.0 to 1.0 scale.
mjr 40:cc0d9814522b 904 static const float pwm_level[] = {
mjr 64:ef7ca92dff36 905 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 906 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 907 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 908 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 909 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 910 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 911 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 912 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 913 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 914 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 915 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 916 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 917 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 918 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 919 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 920 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 921 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 922 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 923 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 924 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 925 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 926 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 927 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 928 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 929 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 930 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 931 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 932 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 933 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 934 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 935 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 936 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 937 };
mjr 26:cb71c4af2912 938
mjr 64:ef7ca92dff36 939
mjr 64:ef7ca92dff36 940 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 941 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 942 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 943 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 944 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 945 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 946 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 947 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 948 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 949 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 950 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 951 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 952 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 953 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 954 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 955 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 956 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 957 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 958 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 959 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 960 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 961 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 962 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 963 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 964 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 965 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 966 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 967 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 968 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 969 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 970 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 971 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 972 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 973 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 974 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 975 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 976 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 977 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 978 };
mjr 64:ef7ca92dff36 979
mjr 64:ef7ca92dff36 980 // LwOut class for a PWM-capable GPIO port. Note that we use FastPWM for
mjr 64:ef7ca92dff36 981 // the underlying port interface. This isn't because we need the "fast"
mjr 64:ef7ca92dff36 982 // part; it's because FastPWM fixes a bug in the base mbed PwmOut class
mjr 64:ef7ca92dff36 983 // that makes it look ugly for fades. The base PwmOut class resets
mjr 64:ef7ca92dff36 984 // the cycle counter when changing the duty cycle, which makes the output
mjr 64:ef7ca92dff36 985 // reset immediately on every change. For an output connected to a lamp
mjr 64:ef7ca92dff36 986 // or LED, this causes obvious flickering when performing a rapid series
mjr 64:ef7ca92dff36 987 // of writes, such as during a fade. The KL25Z TPM hardware is specifically
mjr 64:ef7ca92dff36 988 // designed to make it easy for software to avoid this kind of flickering
mjr 64:ef7ca92dff36 989 // when used correctly: it has an internal staging register for the duty
mjr 64:ef7ca92dff36 990 // cycle register that gets latched at the start of the next cycle, ensuring
mjr 64:ef7ca92dff36 991 // that the duty cycle setting never changes mid-cycle. The mbed PwmOut
mjr 64:ef7ca92dff36 992 // defeats this by resetting the cycle counter on every write, which aborts
mjr 64:ef7ca92dff36 993 // the current cycle at the moment of the write, causing an effectively random
mjr 64:ef7ca92dff36 994 // drop in brightness on each write (by artificially shortening a cycle).
mjr 64:ef7ca92dff36 995 // Fortunately, we can fix this by switching to the API-compatible FastPWM
mjr 64:ef7ca92dff36 996 // class, which does the write right (heh).
mjr 6:cc35eb643e8f 997 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 998 {
mjr 6:cc35eb643e8f 999 public:
mjr 43:7a6364d82a41 1000 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1001 {
mjr 43:7a6364d82a41 1002 prv = initVal ^ 0xFF;
mjr 43:7a6364d82a41 1003 set(initVal);
mjr 43:7a6364d82a41 1004 }
mjr 40:cc0d9814522b 1005 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1006 {
mjr 13:72dda449c3c0 1007 if (val != prv)
mjr 40:cc0d9814522b 1008 p.write(pwm_level[prv = val]);
mjr 13:72dda449c3c0 1009 }
mjr 64:ef7ca92dff36 1010 FastPWM p;
mjr 40:cc0d9814522b 1011 uint8_t prv;
mjr 6:cc35eb643e8f 1012 };
mjr 26:cb71c4af2912 1013
mjr 64:ef7ca92dff36 1014 // Gamma corrected PWM GPIO output
mjr 64:ef7ca92dff36 1015 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1016 {
mjr 64:ef7ca92dff36 1017 public:
mjr 64:ef7ca92dff36 1018 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1019 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1020 {
mjr 64:ef7ca92dff36 1021 }
mjr 64:ef7ca92dff36 1022 virtual void set(uint8_t val)
mjr 64:ef7ca92dff36 1023 {
mjr 64:ef7ca92dff36 1024 if (val != prv)
mjr 64:ef7ca92dff36 1025 p.write(dof_to_gamma_pwm[prv = val]);
mjr 64:ef7ca92dff36 1026 }
mjr 64:ef7ca92dff36 1027 };
mjr 64:ef7ca92dff36 1028
mjr 64:ef7ca92dff36 1029
mjr 26:cb71c4af2912 1030 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1031 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1032 {
mjr 6:cc35eb643e8f 1033 public:
mjr 43:7a6364d82a41 1034 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1035 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1036 {
mjr 13:72dda449c3c0 1037 if (val != prv)
mjr 40:cc0d9814522b 1038 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1039 }
mjr 6:cc35eb643e8f 1040 DigitalOut p;
mjr 40:cc0d9814522b 1041 uint8_t prv;
mjr 6:cc35eb643e8f 1042 };
mjr 26:cb71c4af2912 1043
mjr 29:582472d0bc57 1044 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1045 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1046 // port n (0-based).
mjr 35:e959ffba78fd 1047 //
mjr 35:e959ffba78fd 1048 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1049 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1050 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1051 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1052 // 74HC595 ports).
mjr 33:d832bcab089e 1053 static int numOutputs;
mjr 33:d832bcab089e 1054 static LwOut **lwPin;
mjr 33:d832bcab089e 1055
mjr 38:091e511ce8a0 1056
mjr 35:e959ffba78fd 1057 // Number of LedWiz emulation outputs. This is the number of ports
mjr 35:e959ffba78fd 1058 // accessible through the standard (non-extended) LedWiz protocol
mjr 35:e959ffba78fd 1059 // messages. The protocol has a fixed set of 32 outputs, but we
mjr 35:e959ffba78fd 1060 // might have fewer actual outputs. This is therefore set to the
mjr 35:e959ffba78fd 1061 // lower of 32 or the actual number of outputs.
mjr 35:e959ffba78fd 1062 static int numLwOutputs;
mjr 35:e959ffba78fd 1063
mjr 63:5cd1a5f3a41b 1064 // Current absolute brightness levels for all outputs. These are
mjr 63:5cd1a5f3a41b 1065 // DOF brightness level value, from 0 for fully off to 255 for fully
mjr 63:5cd1a5f3a41b 1066 // on. These are always used for extended ports (33 and above), and
mjr 63:5cd1a5f3a41b 1067 // are used for LedWiz ports (1-32) when we're in extended protocol
mjr 63:5cd1a5f3a41b 1068 // mode (i.e., ledWizMode == false).
mjr 40:cc0d9814522b 1069 static uint8_t *outLevel;
mjr 38:091e511ce8a0 1070
mjr 38:091e511ce8a0 1071 // create a single output pin
mjr 53:9b2611964afc 1072 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1073 {
mjr 38:091e511ce8a0 1074 // get this item's values
mjr 38:091e511ce8a0 1075 int typ = pc.typ;
mjr 38:091e511ce8a0 1076 int pin = pc.pin;
mjr 38:091e511ce8a0 1077 int flags = pc.flags;
mjr 40:cc0d9814522b 1078 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1079 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1080 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1081
mjr 38:091e511ce8a0 1082 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1083 LwOut *lwp;
mjr 38:091e511ce8a0 1084 switch (typ)
mjr 38:091e511ce8a0 1085 {
mjr 38:091e511ce8a0 1086 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1087 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1088 if (pin != 0)
mjr 64:ef7ca92dff36 1089 {
mjr 64:ef7ca92dff36 1090 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1091 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1092 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1093 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1094 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1095 {
mjr 64:ef7ca92dff36 1096 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1097 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1098
mjr 64:ef7ca92dff36 1099 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1100 gamma = false;
mjr 64:ef7ca92dff36 1101 }
mjr 64:ef7ca92dff36 1102 else
mjr 64:ef7ca92dff36 1103 {
mjr 64:ef7ca92dff36 1104 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1105 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1106 }
mjr 64:ef7ca92dff36 1107 }
mjr 48:058ace2aed1d 1108 else
mjr 48:058ace2aed1d 1109 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1110 break;
mjr 38:091e511ce8a0 1111
mjr 38:091e511ce8a0 1112 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1113 // Digital GPIO port
mjr 48:058ace2aed1d 1114 if (pin != 0)
mjr 48:058ace2aed1d 1115 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1116 else
mjr 48:058ace2aed1d 1117 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1118 break;
mjr 38:091e511ce8a0 1119
mjr 38:091e511ce8a0 1120 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1121 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1122 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1123 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1124 {
mjr 40:cc0d9814522b 1125 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1126 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1127 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1128 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1129 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1130 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1131 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1132 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1133 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1134 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1135 // for this unlikely case.
mjr 40:cc0d9814522b 1136 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1137 {
mjr 40:cc0d9814522b 1138 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1139 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1140
mjr 40:cc0d9814522b 1141 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1142 gamma = false;
mjr 40:cc0d9814522b 1143 }
mjr 40:cc0d9814522b 1144 else
mjr 40:cc0d9814522b 1145 {
mjr 40:cc0d9814522b 1146 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1147 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1148 }
mjr 40:cc0d9814522b 1149 }
mjr 38:091e511ce8a0 1150 else
mjr 40:cc0d9814522b 1151 {
mjr 40:cc0d9814522b 1152 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1153 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1154 }
mjr 38:091e511ce8a0 1155 break;
mjr 38:091e511ce8a0 1156
mjr 38:091e511ce8a0 1157 case PortType74HC595:
mjr 38:091e511ce8a0 1158 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 1159 // output number, create a virtual port)
mjr 38:091e511ce8a0 1160 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1161 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1162 else
mjr 38:091e511ce8a0 1163 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1164 break;
mjr 38:091e511ce8a0 1165
mjr 38:091e511ce8a0 1166 case PortTypeVirtual:
mjr 43:7a6364d82a41 1167 case PortTypeDisabled:
mjr 38:091e511ce8a0 1168 default:
mjr 38:091e511ce8a0 1169 // virtual or unknown
mjr 38:091e511ce8a0 1170 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1171 break;
mjr 38:091e511ce8a0 1172 }
mjr 38:091e511ce8a0 1173
mjr 40:cc0d9814522b 1174 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1175 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1176 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1177 if (activeLow)
mjr 38:091e511ce8a0 1178 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1179
mjr 40:cc0d9814522b 1180 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1181 // needs to be
mjr 40:cc0d9814522b 1182 if (noisy)
mjr 40:cc0d9814522b 1183 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1184
mjr 40:cc0d9814522b 1185 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1186 if (gamma)
mjr 40:cc0d9814522b 1187 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1188
mjr 53:9b2611964afc 1189 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1190 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1191 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1192 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1193 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1194
mjr 53:9b2611964afc 1195 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1196 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1197 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1198
mjr 38:091e511ce8a0 1199 // turn it off initially
mjr 38:091e511ce8a0 1200 lwp->set(0);
mjr 38:091e511ce8a0 1201
mjr 38:091e511ce8a0 1202 // return the pin
mjr 38:091e511ce8a0 1203 return lwp;
mjr 38:091e511ce8a0 1204 }
mjr 38:091e511ce8a0 1205
mjr 6:cc35eb643e8f 1206 // initialize the output pin array
mjr 35:e959ffba78fd 1207 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1208 {
mjr 35:e959ffba78fd 1209 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1210 // total number of ports.
mjr 35:e959ffba78fd 1211 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1212 int i;
mjr 35:e959ffba78fd 1213 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1214 {
mjr 35:e959ffba78fd 1215 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1216 {
mjr 35:e959ffba78fd 1217 numOutputs = i;
mjr 34:6b981a2afab7 1218 break;
mjr 34:6b981a2afab7 1219 }
mjr 33:d832bcab089e 1220 }
mjr 33:d832bcab089e 1221
mjr 35:e959ffba78fd 1222 // the real LedWiz protocol can access at most 32 ports, or the
mjr 35:e959ffba78fd 1223 // actual number of outputs, whichever is lower
mjr 35:e959ffba78fd 1224 numLwOutputs = (numOutputs < 32 ? numOutputs : 32);
mjr 35:e959ffba78fd 1225
mjr 33:d832bcab089e 1226 // allocate the pin array
mjr 33:d832bcab089e 1227 lwPin = new LwOut*[numOutputs];
mjr 33:d832bcab089e 1228
mjr 38:091e511ce8a0 1229 // Allocate the current brightness array. For these, allocate at
mjr 38:091e511ce8a0 1230 // least 32, so that we have enough for all LedWiz messages, but
mjr 38:091e511ce8a0 1231 // allocate the full set of actual ports if we have more than the
mjr 38:091e511ce8a0 1232 // LedWiz complement.
mjr 38:091e511ce8a0 1233 int minOuts = numOutputs < 32 ? 32 : numOutputs;
mjr 40:cc0d9814522b 1234 outLevel = new uint8_t[minOuts];
mjr 33:d832bcab089e 1235
mjr 35:e959ffba78fd 1236 // create the pin interface object for each port
mjr 35:e959ffba78fd 1237 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1238 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1239 }
mjr 6:cc35eb643e8f 1240
mjr 63:5cd1a5f3a41b 1241 // LedWiz/Extended protocol mode.
mjr 63:5cd1a5f3a41b 1242 //
mjr 63:5cd1a5f3a41b 1243 // We implement output port control using both the legacy LedWiz
mjr 63:5cd1a5f3a41b 1244 // protocol and a private extended protocol (which is 100% backwards
mjr 63:5cd1a5f3a41b 1245 // compatible with the LedWiz protocol: we recognize all valid legacy
mjr 63:5cd1a5f3a41b 1246 // protocol commands and handle them the same way a real LedWiz does).
mjr 63:5cd1a5f3a41b 1247 // The legacy protocol can access the first 32 ports; the extended
mjr 63:5cd1a5f3a41b 1248 // protocol can access all ports, including the first 32 as well as
mjr 63:5cd1a5f3a41b 1249 // the higher numbered ports. This means that the first 32 ports
mjr 63:5cd1a5f3a41b 1250 // can be addressed with either protocol, which muddies the waters
mjr 63:5cd1a5f3a41b 1251 // a bit because of the different approaches the two protocols take.
mjr 63:5cd1a5f3a41b 1252 // The legacy protocol separates the brightness/flash state of an
mjr 63:5cd1a5f3a41b 1253 // output (which it calls the "profile" state) from the on/off state.
mjr 63:5cd1a5f3a41b 1254 // The extended protocol doesn't; "off" is simply represented as
mjr 63:5cd1a5f3a41b 1255 // brightness 0.
mjr 63:5cd1a5f3a41b 1256 //
mjr 63:5cd1a5f3a41b 1257 // To deal with the different approaches, we use this flag to keep
mjr 63:5cd1a5f3a41b 1258 // track of the global protocol state. Each time we get an output
mjr 63:5cd1a5f3a41b 1259 // port command, we switch the protocol state to the protocol that
mjr 63:5cd1a5f3a41b 1260 // was used in the command. On a legacy SBA or PBA, we switch to
mjr 63:5cd1a5f3a41b 1261 // LedWiz mode; on an extended output set message, we switch to
mjr 63:5cd1a5f3a41b 1262 // extended mode. We remember the LedWiz and extended output state
mjr 63:5cd1a5f3a41b 1263 // for each LW ports (1-32) separately. Any time the mode changes,
mjr 63:5cd1a5f3a41b 1264 // we set ports 1-32 back to the state for the new mode.
mjr 63:5cd1a5f3a41b 1265 //
mjr 63:5cd1a5f3a41b 1266 // The reasoning here is that any given client (on the PC) will use
mjr 63:5cd1a5f3a41b 1267 // one mode or the other, and won't mix the two. An older program
mjr 63:5cd1a5f3a41b 1268 // that only knows about the LedWiz protocol will use the legacy
mjr 63:5cd1a5f3a41b 1269 // protocol only, and never send us an extended command. A DOF-based
mjr 63:5cd1a5f3a41b 1270 // program might use one or the other, according to how the user has
mjr 63:5cd1a5f3a41b 1271 // configured DOF. We have to be able to switch seamlessly between
mjr 63:5cd1a5f3a41b 1272 // the protocols to accommodate switching from one type of program
mjr 63:5cd1a5f3a41b 1273 // on the PC to the other, but we shouldn't have to worry about one
mjr 63:5cd1a5f3a41b 1274 // program switching back and forth.
mjr 63:5cd1a5f3a41b 1275 static uint8_t ledWizMode = true;
mjr 63:5cd1a5f3a41b 1276
mjr 29:582472d0bc57 1277 // LedWiz output states.
mjr 29:582472d0bc57 1278 //
mjr 29:582472d0bc57 1279 // The LedWiz protocol has two separate control axes for each output.
mjr 29:582472d0bc57 1280 // One axis is its on/off state; the other is its "profile" state, which
mjr 29:582472d0bc57 1281 // is either a fixed brightness or a blinking pattern for the light.
mjr 29:582472d0bc57 1282 // The two axes are independent.
mjr 29:582472d0bc57 1283 //
mjr 29:582472d0bc57 1284 // Note that the LedWiz protocol can only address 32 outputs, so the
mjr 29:582472d0bc57 1285 // wizOn and wizVal arrays have fixed sizes of 32 elements no matter
mjr 29:582472d0bc57 1286 // how many physical outputs we're using.
mjr 29:582472d0bc57 1287
mjr 0:5acbbe3f4cf4 1288 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 1289 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 1290
mjr 40:cc0d9814522b 1291 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 40:cc0d9814522b 1292 // for each LedWiz output. If the output was last updated through an
mjr 40:cc0d9814522b 1293 // LedWiz protocol message, it will have one of these values:
mjr 29:582472d0bc57 1294 //
mjr 29:582472d0bc57 1295 // 0-48 = fixed brightness 0% to 100%
mjr 40:cc0d9814522b 1296 // 49 = fixed brightness 100% (equivalent to 48)
mjr 29:582472d0bc57 1297 // 129 = ramp up / ramp down
mjr 29:582472d0bc57 1298 // 130 = flash on / off
mjr 29:582472d0bc57 1299 // 131 = on / ramp down
mjr 29:582472d0bc57 1300 // 132 = ramp up / on
mjr 29:582472d0bc57 1301 //
mjr 40:cc0d9814522b 1302 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 40:cc0d9814522b 1303 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 40:cc0d9814522b 1304 // it, so we need to accept it for compatibility.)
mjr 1:d913e0afb2ac 1305 static uint8_t wizVal[32] = {
mjr 13:72dda449c3c0 1306 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 1307 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 1308 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 1309 48, 48, 48, 48, 48, 48, 48, 48
mjr 0:5acbbe3f4cf4 1310 };
mjr 0:5acbbe3f4cf4 1311
mjr 29:582472d0bc57 1312 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 29:582472d0bc57 1313 // rate for lights in blinking states.
mjr 29:582472d0bc57 1314 static uint8_t wizSpeed = 2;
mjr 29:582472d0bc57 1315
mjr 40:cc0d9814522b 1316 // Current LedWiz flash cycle counter. This runs from 0 to 255
mjr 40:cc0d9814522b 1317 // during each cycle.
mjr 29:582472d0bc57 1318 static uint8_t wizFlashCounter = 0;
mjr 29:582472d0bc57 1319
mjr 40:cc0d9814522b 1320 // translate an LedWiz brightness level (0-49) to a DOF brightness
mjr 40:cc0d9814522b 1321 // level (0-255)
mjr 40:cc0d9814522b 1322 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1323 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1324 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1325 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1326 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1327 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1328 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1329 255, 255
mjr 40:cc0d9814522b 1330 };
mjr 40:cc0d9814522b 1331
mjr 40:cc0d9814522b 1332 // Translate an LedWiz output (ports 1-32) to a DOF brightness level.
mjr 40:cc0d9814522b 1333 static uint8_t wizState(int idx)
mjr 0:5acbbe3f4cf4 1334 {
mjr 63:5cd1a5f3a41b 1335 // If we're in extended protocol mode, ignore the LedWiz setting
mjr 63:5cd1a5f3a41b 1336 // for the port and use the new protocol setting instead.
mjr 63:5cd1a5f3a41b 1337 if (!ledWizMode)
mjr 29:582472d0bc57 1338 return outLevel[idx];
mjr 29:582472d0bc57 1339
mjr 29:582472d0bc57 1340 // if it's off, show at zero intensity
mjr 29:582472d0bc57 1341 if (!wizOn[idx])
mjr 29:582472d0bc57 1342 return 0;
mjr 29:582472d0bc57 1343
mjr 29:582472d0bc57 1344 // check the state
mjr 29:582472d0bc57 1345 uint8_t val = wizVal[idx];
mjr 40:cc0d9814522b 1346 if (val <= 49)
mjr 29:582472d0bc57 1347 {
mjr 29:582472d0bc57 1348 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 29:582472d0bc57 1349 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 29:582472d0bc57 1350 // Note that on the actual LedWiz, level 48 is actually about
mjr 29:582472d0bc57 1351 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 29:582472d0bc57 1352 // the true 100% level. (In the documentation, level 49 is
mjr 29:582472d0bc57 1353 // simply not a valid setting.) Even so, we treat level 48 as
mjr 29:582472d0bc57 1354 // 100% on to match the documentation. This won't be perfectly
mjr 29:582472d0bc57 1355 // ocmpatible with the actual LedWiz, but it makes for such a
mjr 29:582472d0bc57 1356 // small difference in brightness (if the output device is an
mjr 29:582472d0bc57 1357 // LED, say) that no one should notice. It seems better to
mjr 29:582472d0bc57 1358 // err in this direction, because while the difference in
mjr 29:582472d0bc57 1359 // brightness when attached to an LED won't be noticeable, the
mjr 29:582472d0bc57 1360 // difference in duty cycle when attached to something like a
mjr 29:582472d0bc57 1361 // contactor *can* be noticeable - anything less than 100%
mjr 29:582472d0bc57 1362 // can cause a contactor or relay to chatter. There's almost
mjr 29:582472d0bc57 1363 // never a situation where you'd want values other than 0% and
mjr 29:582472d0bc57 1364 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 29:582472d0bc57 1365 // makes us work properly with software that's expecting the
mjr 29:582472d0bc57 1366 // documented LedWiz behavior and therefore uses level 48 to
mjr 29:582472d0bc57 1367 // turn a contactor or relay fully on.
mjr 40:cc0d9814522b 1368 //
mjr 40:cc0d9814522b 1369 // Note that value 49 is undefined in the LedWiz documentation,
mjr 40:cc0d9814522b 1370 // but real LedWiz units treat it as 100%, equivalent to 48.
mjr 40:cc0d9814522b 1371 // Some software on the PC side uses this, so we need to treat
mjr 40:cc0d9814522b 1372 // it the same way for compatibility.
mjr 40:cc0d9814522b 1373 return lw_to_dof[val];
mjr 29:582472d0bc57 1374 }
mjr 29:582472d0bc57 1375 else if (val == 129)
mjr 29:582472d0bc57 1376 {
mjr 40:cc0d9814522b 1377 // 129 = ramp up / ramp down
mjr 30:6e9902f06f48 1378 return wizFlashCounter < 128
mjr 40:cc0d9814522b 1379 ? wizFlashCounter*2 + 1
mjr 40:cc0d9814522b 1380 : (255 - wizFlashCounter)*2;
mjr 29:582472d0bc57 1381 }
mjr 29:582472d0bc57 1382 else if (val == 130)
mjr 29:582472d0bc57 1383 {
mjr 40:cc0d9814522b 1384 // 130 = flash on / off
mjr 40:cc0d9814522b 1385 return wizFlashCounter < 128 ? 255 : 0;
mjr 29:582472d0bc57 1386 }
mjr 29:582472d0bc57 1387 else if (val == 131)
mjr 29:582472d0bc57 1388 {
mjr 40:cc0d9814522b 1389 // 131 = on / ramp down
mjr 40:cc0d9814522b 1390 return wizFlashCounter < 128 ? 255 : (255 - wizFlashCounter)*2;
mjr 0:5acbbe3f4cf4 1391 }
mjr 29:582472d0bc57 1392 else if (val == 132)
mjr 29:582472d0bc57 1393 {
mjr 40:cc0d9814522b 1394 // 132 = ramp up / on
mjr 40:cc0d9814522b 1395 return wizFlashCounter < 128 ? wizFlashCounter*2 : 255;
mjr 29:582472d0bc57 1396 }
mjr 29:582472d0bc57 1397 else
mjr 13:72dda449c3c0 1398 {
mjr 29:582472d0bc57 1399 // Other values are undefined in the LedWiz documentation. Hosts
mjr 29:582472d0bc57 1400 // *should* never send undefined values, since whatever behavior an
mjr 29:582472d0bc57 1401 // LedWiz unit exhibits in response is accidental and could change
mjr 29:582472d0bc57 1402 // in a future version. We'll treat all undefined values as equivalent
mjr 29:582472d0bc57 1403 // to 48 (fully on).
mjr 40:cc0d9814522b 1404 return 255;
mjr 0:5acbbe3f4cf4 1405 }
mjr 0:5acbbe3f4cf4 1406 }
mjr 0:5acbbe3f4cf4 1407
mjr 29:582472d0bc57 1408 // LedWiz flash timer pulse. This fires periodically to update
mjr 29:582472d0bc57 1409 // LedWiz flashing outputs. At the slowest pulse speed set via
mjr 29:582472d0bc57 1410 // the SBA command, each waveform cycle has 256 steps, so we
mjr 29:582472d0bc57 1411 // choose the pulse time base so that the slowest cycle completes
mjr 29:582472d0bc57 1412 // in 2 seconds. This seems to roughly match the real LedWiz
mjr 29:582472d0bc57 1413 // behavior. We run the pulse timer at the same rate regardless
mjr 29:582472d0bc57 1414 // of the pulse speed; at higher pulse speeds, we simply use
mjr 29:582472d0bc57 1415 // larger steps through the cycle on each interrupt. Running
mjr 29:582472d0bc57 1416 // every 1/127 of a second = 8ms seems to be a pretty light load.
mjr 29:582472d0bc57 1417 Timeout wizPulseTimer;
mjr 38:091e511ce8a0 1418 #define WIZ_PULSE_TIME_BASE (1.0f/127.0f)
mjr 29:582472d0bc57 1419 static void wizPulse()
mjr 29:582472d0bc57 1420 {
mjr 29:582472d0bc57 1421 // increase the counter by the speed increment, and wrap at 256
mjr 29:582472d0bc57 1422 wizFlashCounter += wizSpeed;
mjr 29:582472d0bc57 1423 wizFlashCounter &= 0xff;
mjr 29:582472d0bc57 1424
mjr 29:582472d0bc57 1425 // if we have any flashing lights, update them
mjr 29:582472d0bc57 1426 int ena = false;
mjr 35:e959ffba78fd 1427 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 1428 {
mjr 29:582472d0bc57 1429 if (wizOn[i])
mjr 29:582472d0bc57 1430 {
mjr 29:582472d0bc57 1431 uint8_t s = wizVal[i];
mjr 29:582472d0bc57 1432 if (s >= 129 && s <= 132)
mjr 29:582472d0bc57 1433 {
mjr 40:cc0d9814522b 1434 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1435 ena = true;
mjr 29:582472d0bc57 1436 }
mjr 29:582472d0bc57 1437 }
mjr 29:582472d0bc57 1438 }
mjr 29:582472d0bc57 1439
mjr 29:582472d0bc57 1440 // Set up the next timer pulse only if we found anything flashing.
mjr 29:582472d0bc57 1441 // To minimize overhead from this feature, we only enable the interrupt
mjr 29:582472d0bc57 1442 // when we need it. This eliminates any performance penalty to other
mjr 29:582472d0bc57 1443 // features when the host software doesn't care about the flashing
mjr 29:582472d0bc57 1444 // modes. For example, DOF never uses these modes, so there's no
mjr 29:582472d0bc57 1445 // need for them when running Visual Pinball.
mjr 29:582472d0bc57 1446 if (ena)
mjr 29:582472d0bc57 1447 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 29:582472d0bc57 1448 }
mjr 29:582472d0bc57 1449
mjr 29:582472d0bc57 1450 // Update the physical outputs connected to the LedWiz ports. This is
mjr 29:582472d0bc57 1451 // called after any update from an LedWiz protocol message.
mjr 1:d913e0afb2ac 1452 static void updateWizOuts()
mjr 1:d913e0afb2ac 1453 {
mjr 29:582472d0bc57 1454 // update each output
mjr 29:582472d0bc57 1455 int pulse = false;
mjr 35:e959ffba78fd 1456 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 1457 {
mjr 29:582472d0bc57 1458 pulse |= (wizVal[i] >= 129 && wizVal[i] <= 132);
mjr 40:cc0d9814522b 1459 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1460 }
mjr 29:582472d0bc57 1461
mjr 29:582472d0bc57 1462 // if any outputs are set to flashing mode, and the pulse timer
mjr 29:582472d0bc57 1463 // isn't running, turn it on
mjr 29:582472d0bc57 1464 if (pulse)
mjr 29:582472d0bc57 1465 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 34:6b981a2afab7 1466
mjr 34:6b981a2afab7 1467 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1468 if (hc595 != 0)
mjr 35:e959ffba78fd 1469 hc595->update();
mjr 1:d913e0afb2ac 1470 }
mjr 38:091e511ce8a0 1471
mjr 38:091e511ce8a0 1472 // Update all physical outputs. This is called after a change to a global
mjr 38:091e511ce8a0 1473 // setting that affects all outputs, such as engaging or canceling Night Mode.
mjr 38:091e511ce8a0 1474 static void updateAllOuts()
mjr 38:091e511ce8a0 1475 {
mjr 38:091e511ce8a0 1476 // uddate each LedWiz output
mjr 38:091e511ce8a0 1477 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 40:cc0d9814522b 1478 lwPin[i]->set(wizState(i));
mjr 34:6b981a2afab7 1479
mjr 38:091e511ce8a0 1480 // update each extended output
mjr 63:5cd1a5f3a41b 1481 for (int i = numLwOutputs ; i < numOutputs ; ++i)
mjr 40:cc0d9814522b 1482 lwPin[i]->set(outLevel[i]);
mjr 38:091e511ce8a0 1483
mjr 38:091e511ce8a0 1484 // flush 74HC595 changes, if necessary
mjr 38:091e511ce8a0 1485 if (hc595 != 0)
mjr 38:091e511ce8a0 1486 hc595->update();
mjr 38:091e511ce8a0 1487 }
mjr 38:091e511ce8a0 1488
mjr 11:bd9da7088e6e 1489 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 1490 //
mjr 11:bd9da7088e6e 1491 // Button input
mjr 11:bd9da7088e6e 1492 //
mjr 11:bd9da7088e6e 1493
mjr 18:5e890ebd0023 1494 // button state
mjr 18:5e890ebd0023 1495 struct ButtonState
mjr 18:5e890ebd0023 1496 {
mjr 38:091e511ce8a0 1497 ButtonState()
mjr 38:091e511ce8a0 1498 {
mjr 38:091e511ce8a0 1499 di = NULL;
mjr 53:9b2611964afc 1500 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 1501 virtState = 0;
mjr 53:9b2611964afc 1502 dbState = 0;
mjr 38:091e511ce8a0 1503 pulseState = 0;
mjr 53:9b2611964afc 1504 pulseTime = 0;
mjr 38:091e511ce8a0 1505 }
mjr 35:e959ffba78fd 1506
mjr 53:9b2611964afc 1507 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 1508 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 1509 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 1510 //
mjr 53:9b2611964afc 1511 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 1512 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 1513 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 1514 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 1515 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 1516 void virtPress(bool on)
mjr 53:9b2611964afc 1517 {
mjr 53:9b2611964afc 1518 // Increment or decrement the current state
mjr 53:9b2611964afc 1519 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 1520 }
mjr 53:9b2611964afc 1521
mjr 53:9b2611964afc 1522 // DigitalIn for the button, if connected to a physical input
mjr 48:058ace2aed1d 1523 TinyDigitalIn *di;
mjr 38:091e511ce8a0 1524
mjr 65:739875521aae 1525 // Time of last pulse state transition.
mjr 65:739875521aae 1526 //
mjr 65:739875521aae 1527 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 1528 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 1529 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 1530 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 1531 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 1532 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 1533 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 1534 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 1535 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 1536 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 1537 // This software system can't be fooled that way.)
mjr 65:739875521aae 1538 uint32_t pulseTime;
mjr 18:5e890ebd0023 1539
mjr 65:739875521aae 1540 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 1541 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 1542 uint8_t cfgIndex;
mjr 53:9b2611964afc 1543
mjr 53:9b2611964afc 1544 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 1545 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 1546 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 1547 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 1548 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 1549 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 1550 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 1551 // and physical source states.
mjr 53:9b2611964afc 1552 uint8_t virtState;
mjr 38:091e511ce8a0 1553
mjr 38:091e511ce8a0 1554 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 1555 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 1556 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 1557 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 1558 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 1559 uint8_t dbState;
mjr 38:091e511ce8a0 1560
mjr 65:739875521aae 1561 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 1562 uint8_t physState : 1;
mjr 65:739875521aae 1563
mjr 65:739875521aae 1564 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 1565 uint8_t logState : 1;
mjr 65:739875521aae 1566
mjr 65:739875521aae 1567 // previous logical on/off state, when keys were last processed for USB
mjr 65:739875521aae 1568 // reports and local effects
mjr 65:739875521aae 1569 uint8_t prevLogState : 1;
mjr 65:739875521aae 1570
mjr 65:739875521aae 1571 // Pulse state
mjr 65:739875521aae 1572 //
mjr 65:739875521aae 1573 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 1574 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 1575 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 1576 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 1577 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 1578 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 1579 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 1580 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 1581 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 1582 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 1583 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 65:739875521aae 1584 // option brdiges this gap by generating a toggle key event each time
mjr 65:739875521aae 1585 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 1586 //
mjr 38:091e511ce8a0 1587 // Pulse state:
mjr 38:091e511ce8a0 1588 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 1589 // 1 -> off
mjr 38:091e511ce8a0 1590 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 1591 // 3 -> on
mjr 38:091e511ce8a0 1592 // 4 -> transitioning on-off
mjr 65:739875521aae 1593 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 1594
mjr 65:739875521aae 1595 } __attribute__((packed));
mjr 65:739875521aae 1596
mjr 65:739875521aae 1597 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 1598 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 1599 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 1600
mjr 66:2e3583fbd2f4 1601 // Shift button state
mjr 66:2e3583fbd2f4 1602 struct
mjr 66:2e3583fbd2f4 1603 {
mjr 66:2e3583fbd2f4 1604 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 66:2e3583fbd2f4 1605 uint8_t state : 2; // current shift state:
mjr 66:2e3583fbd2f4 1606 // 0 = not shifted
mjr 66:2e3583fbd2f4 1607 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 1608 // 2 = shift button down, key pressed
mjr 66:2e3583fbd2f4 1609 uint8_t pulse : 1; // sending pulsed keystroke on release
mjr 66:2e3583fbd2f4 1610 uint32_t pulseTime; // time of start of pulsed keystroke
mjr 66:2e3583fbd2f4 1611 }
mjr 66:2e3583fbd2f4 1612 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 1613
mjr 38:091e511ce8a0 1614 // Button data
mjr 38:091e511ce8a0 1615 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 1616
mjr 38:091e511ce8a0 1617 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 1618 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 1619 // modifier keys.
mjr 38:091e511ce8a0 1620 struct
mjr 38:091e511ce8a0 1621 {
mjr 38:091e511ce8a0 1622 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 1623 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 1624 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 1625 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 1626 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 1627
mjr 38:091e511ce8a0 1628 // Media key state
mjr 38:091e511ce8a0 1629 struct
mjr 38:091e511ce8a0 1630 {
mjr 38:091e511ce8a0 1631 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 1632 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 1633 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 1634
mjr 38:091e511ce8a0 1635 // button scan interrupt ticker
mjr 38:091e511ce8a0 1636 Ticker buttonTicker;
mjr 38:091e511ce8a0 1637
mjr 38:091e511ce8a0 1638 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 1639 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 1640 void scanButtons()
mjr 38:091e511ce8a0 1641 {
mjr 38:091e511ce8a0 1642 // scan all button input pins
mjr 38:091e511ce8a0 1643 ButtonState *bs = buttonState;
mjr 65:739875521aae 1644 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 38:091e511ce8a0 1645 {
mjr 53:9b2611964afc 1646 // if this logical button is connected to a physical input, check
mjr 53:9b2611964afc 1647 // the GPIO pin state
mjr 38:091e511ce8a0 1648 if (bs->di != NULL)
mjr 38:091e511ce8a0 1649 {
mjr 38:091e511ce8a0 1650 // Shift the new state into the debounce history. Note that
mjr 38:091e511ce8a0 1651 // the physical pin inputs are active low (0V/GND = ON), so invert
mjr 38:091e511ce8a0 1652 // the reading by XOR'ing the low bit with 1. And of course we
mjr 38:091e511ce8a0 1653 // only want the low bit (since the history is effectively a bit
mjr 38:091e511ce8a0 1654 // vector), so mask the whole thing with 0x01 as well.
mjr 53:9b2611964afc 1655 uint8_t db = bs->dbState;
mjr 38:091e511ce8a0 1656 db <<= 1;
mjr 38:091e511ce8a0 1657 db |= (bs->di->read() & 0x01) ^ 0x01;
mjr 53:9b2611964afc 1658 bs->dbState = db;
mjr 38:091e511ce8a0 1659
mjr 38:091e511ce8a0 1660 // if we have all 0's or 1's in the history for the required
mjr 38:091e511ce8a0 1661 // debounce period, the key state is stable - check for a change
mjr 38:091e511ce8a0 1662 // to the last stable state
mjr 38:091e511ce8a0 1663 const uint8_t stable = 0x1F; // 00011111b -> 5 stable readings
mjr 38:091e511ce8a0 1664 db &= stable;
mjr 38:091e511ce8a0 1665 if (db == 0 || db == stable)
mjr 53:9b2611964afc 1666 bs->physState = db & 1;
mjr 38:091e511ce8a0 1667 }
mjr 38:091e511ce8a0 1668 }
mjr 38:091e511ce8a0 1669 }
mjr 38:091e511ce8a0 1670
mjr 38:091e511ce8a0 1671 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 1672 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 1673 // in the physical button state.
mjr 38:091e511ce8a0 1674 Timer buttonTimer;
mjr 12:669df364a565 1675
mjr 65:739875521aae 1676 // Count a button during the initial setup scan
mjr 65:739875521aae 1677 void countButton(uint8_t typ, bool &kbKeys)
mjr 65:739875521aae 1678 {
mjr 65:739875521aae 1679 // count it
mjr 65:739875521aae 1680 ++nButtons;
mjr 65:739875521aae 1681
mjr 67:c39e66c4e000 1682 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 1683 // keyboard interface
mjr 67:c39e66c4e000 1684 if (typ == BtnTypeKey || typ == BtnTypeMedia)
mjr 65:739875521aae 1685 kbKeys = true;
mjr 65:739875521aae 1686 }
mjr 65:739875521aae 1687
mjr 11:bd9da7088e6e 1688 // initialize the button inputs
mjr 35:e959ffba78fd 1689 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 1690 {
mjr 35:e959ffba78fd 1691 // presume we'll find no keyboard keys
mjr 35:e959ffba78fd 1692 kbKeys = false;
mjr 35:e959ffba78fd 1693
mjr 66:2e3583fbd2f4 1694 // presume no shift key
mjr 66:2e3583fbd2f4 1695 shiftButton.index = -1;
mjr 66:2e3583fbd2f4 1696
mjr 65:739875521aae 1697 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 1698 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 1699 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 1700 nButtons = 0;
mjr 65:739875521aae 1701 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 1702 {
mjr 65:739875521aae 1703 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 1704 if (wirePinName(cfg.button[i].pin) != NC)
mjr 65:739875521aae 1705 countButton(cfg.button[i].typ, kbKeys);
mjr 65:739875521aae 1706 }
mjr 65:739875521aae 1707
mjr 65:739875521aae 1708 // Count virtual buttons
mjr 65:739875521aae 1709
mjr 65:739875521aae 1710 // ZB Launch
mjr 65:739875521aae 1711 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 1712 {
mjr 65:739875521aae 1713 // valid - remember the live button index
mjr 65:739875521aae 1714 zblButtonIndex = nButtons;
mjr 65:739875521aae 1715
mjr 65:739875521aae 1716 // count it
mjr 65:739875521aae 1717 countButton(cfg.plunger.zbLaunchBall.keytype, kbKeys);
mjr 65:739875521aae 1718 }
mjr 65:739875521aae 1719
mjr 65:739875521aae 1720 // Allocate the live button slots
mjr 65:739875521aae 1721 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 1722
mjr 65:739875521aae 1723 // Configure the physical inputs
mjr 65:739875521aae 1724 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 1725 {
mjr 65:739875521aae 1726 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 1727 if (pin != NC)
mjr 65:739875521aae 1728 {
mjr 65:739875521aae 1729 // point back to the config slot for the keyboard data
mjr 65:739875521aae 1730 bs->cfgIndex = i;
mjr 65:739875521aae 1731
mjr 65:739875521aae 1732 // set up the GPIO input pin for this button
mjr 65:739875521aae 1733 bs->di = new TinyDigitalIn(pin);
mjr 65:739875521aae 1734
mjr 65:739875521aae 1735 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 1736 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 1737 bs->pulseState = 1;
mjr 65:739875521aae 1738
mjr 66:2e3583fbd2f4 1739 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 1740 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 1741 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 1742 // config slots are left unused.
mjr 66:2e3583fbd2f4 1743 if (cfg.shiftButton == i+1)
mjr 66:2e3583fbd2f4 1744 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 1745
mjr 65:739875521aae 1746 // advance to the next button
mjr 65:739875521aae 1747 ++bs;
mjr 65:739875521aae 1748 }
mjr 65:739875521aae 1749 }
mjr 65:739875521aae 1750
mjr 53:9b2611964afc 1751 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 1752 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 1753 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 1754 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 1755
mjr 53:9b2611964afc 1756 // ZB Launch Ball button
mjr 65:739875521aae 1757 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 1758 {
mjr 65:739875521aae 1759 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 1760 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 1761 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 1762 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 1763 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 1764 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 1765 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 1766 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 1767
mjr 66:2e3583fbd2f4 1768 // advance to the next button
mjr 65:739875521aae 1769 ++bs;
mjr 11:bd9da7088e6e 1770 }
mjr 12:669df364a565 1771
mjr 38:091e511ce8a0 1772 // start the button scan thread
mjr 38:091e511ce8a0 1773 buttonTicker.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 1774
mjr 38:091e511ce8a0 1775 // start the button state transition timer
mjr 12:669df364a565 1776 buttonTimer.start();
mjr 11:bd9da7088e6e 1777 }
mjr 11:bd9da7088e6e 1778
mjr 67:c39e66c4e000 1779 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 1780 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 1781 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 1782 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 1783 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 1784 //
mjr 67:c39e66c4e000 1785 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 1786 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 1787 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 1788 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 1789 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 1790 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 1791 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 1792 //
mjr 67:c39e66c4e000 1793 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 1794 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 1795 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 1796 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 1797 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 1798 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 1799 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 1800 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 1801 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 1802 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 1803 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 1804 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 1805 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 1806 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 1807 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 1808 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 1809 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 67:c39e66c4e000 1810 };
mjr 67:c39e66c4e000 1811
mjr 67:c39e66c4e000 1812
mjr 38:091e511ce8a0 1813 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 1814 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 1815 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 1816 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 1817 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 1818 {
mjr 35:e959ffba78fd 1819 // start with an empty list of USB key codes
mjr 35:e959ffba78fd 1820 uint8_t modkeys = 0;
mjr 35:e959ffba78fd 1821 uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 };
mjr 35:e959ffba78fd 1822 int nkeys = 0;
mjr 11:bd9da7088e6e 1823
mjr 35:e959ffba78fd 1824 // clear the joystick buttons
mjr 36:b9747461331e 1825 uint32_t newjs = 0;
mjr 35:e959ffba78fd 1826
mjr 35:e959ffba78fd 1827 // start with no media keys pressed
mjr 35:e959ffba78fd 1828 uint8_t mediakeys = 0;
mjr 38:091e511ce8a0 1829
mjr 38:091e511ce8a0 1830 // calculate the time since the last run
mjr 53:9b2611964afc 1831 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 1832 buttonTimer.reset();
mjr 66:2e3583fbd2f4 1833
mjr 66:2e3583fbd2f4 1834 // check the shift button state
mjr 66:2e3583fbd2f4 1835 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 1836 {
mjr 66:2e3583fbd2f4 1837 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 66:2e3583fbd2f4 1838 switch (shiftButton.state)
mjr 66:2e3583fbd2f4 1839 {
mjr 66:2e3583fbd2f4 1840 case 0:
mjr 66:2e3583fbd2f4 1841 // Not shifted. Check if the button is now down: if so,
mjr 66:2e3583fbd2f4 1842 // switch to state 1 (shift button down, no key pressed yet).
mjr 66:2e3583fbd2f4 1843 if (sbs->physState)
mjr 66:2e3583fbd2f4 1844 shiftButton.state = 1;
mjr 66:2e3583fbd2f4 1845 break;
mjr 66:2e3583fbd2f4 1846
mjr 66:2e3583fbd2f4 1847 case 1:
mjr 66:2e3583fbd2f4 1848 // Shift button down, no key pressed yet. If the button is
mjr 66:2e3583fbd2f4 1849 // now up, it counts as an ordinary button press instead of
mjr 66:2e3583fbd2f4 1850 // a shift button press, since the shift function was never
mjr 66:2e3583fbd2f4 1851 // used. Return to unshifted state and start a timed key
mjr 66:2e3583fbd2f4 1852 // pulse event.
mjr 66:2e3583fbd2f4 1853 if (!sbs->physState)
mjr 66:2e3583fbd2f4 1854 {
mjr 66:2e3583fbd2f4 1855 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 1856 shiftButton.pulse = 1;
mjr 66:2e3583fbd2f4 1857 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 66:2e3583fbd2f4 1858 }
mjr 66:2e3583fbd2f4 1859 break;
mjr 66:2e3583fbd2f4 1860
mjr 66:2e3583fbd2f4 1861 case 2:
mjr 66:2e3583fbd2f4 1862 // Shift button down, other key was pressed. If the button is
mjr 66:2e3583fbd2f4 1863 // now up, simply clear the shift state without sending a key
mjr 66:2e3583fbd2f4 1864 // press for the shift button itself to the PC. The shift
mjr 66:2e3583fbd2f4 1865 // function was used, so its ordinary key press function is
mjr 66:2e3583fbd2f4 1866 // suppressed.
mjr 66:2e3583fbd2f4 1867 if (!sbs->physState)
mjr 66:2e3583fbd2f4 1868 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 1869 break;
mjr 66:2e3583fbd2f4 1870 }
mjr 66:2e3583fbd2f4 1871 }
mjr 38:091e511ce8a0 1872
mjr 11:bd9da7088e6e 1873 // scan the button list
mjr 18:5e890ebd0023 1874 ButtonState *bs = buttonState;
mjr 65:739875521aae 1875 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 1876 {
mjr 66:2e3583fbd2f4 1877 // Check the button type:
mjr 66:2e3583fbd2f4 1878 // - shift button
mjr 66:2e3583fbd2f4 1879 // - pulsed button
mjr 66:2e3583fbd2f4 1880 // - regular button
mjr 66:2e3583fbd2f4 1881 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 1882 {
mjr 66:2e3583fbd2f4 1883 // This is the shift button. Its logical state for key
mjr 66:2e3583fbd2f4 1884 // reporting purposes is controlled by the shift buttton
mjr 66:2e3583fbd2f4 1885 // pulse timer. If we're in a pulse, its logical state
mjr 66:2e3583fbd2f4 1886 // is pressed.
mjr 66:2e3583fbd2f4 1887 if (shiftButton.pulse)
mjr 66:2e3583fbd2f4 1888 {
mjr 66:2e3583fbd2f4 1889 // deduct the current interval from the pulse time, ending
mjr 66:2e3583fbd2f4 1890 // the pulse if the time has expired
mjr 66:2e3583fbd2f4 1891 if (shiftButton.pulseTime > dt)
mjr 66:2e3583fbd2f4 1892 shiftButton.pulseTime -= dt;
mjr 66:2e3583fbd2f4 1893 else
mjr 66:2e3583fbd2f4 1894 shiftButton.pulse = 0;
mjr 66:2e3583fbd2f4 1895 }
mjr 66:2e3583fbd2f4 1896
mjr 66:2e3583fbd2f4 1897 // the button is logically pressed if we're in a pulse
mjr 66:2e3583fbd2f4 1898 bs->logState = shiftButton.pulse;
mjr 66:2e3583fbd2f4 1899 }
mjr 66:2e3583fbd2f4 1900 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 1901 {
mjr 38:091e511ce8a0 1902 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 1903 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 1904 {
mjr 53:9b2611964afc 1905 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 1906 bs->pulseTime -= dt;
mjr 53:9b2611964afc 1907 }
mjr 53:9b2611964afc 1908 else
mjr 53:9b2611964afc 1909 {
mjr 53:9b2611964afc 1910 // pulse time expired - check for a state change
mjr 53:9b2611964afc 1911 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 1912 switch (bs->pulseState)
mjr 18:5e890ebd0023 1913 {
mjr 38:091e511ce8a0 1914 case 1:
mjr 38:091e511ce8a0 1915 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 1916 if (bs->physState)
mjr 53:9b2611964afc 1917 {
mjr 38:091e511ce8a0 1918 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1919 bs->pulseState = 2;
mjr 53:9b2611964afc 1920 bs->logState = 1;
mjr 38:091e511ce8a0 1921 }
mjr 38:091e511ce8a0 1922 break;
mjr 18:5e890ebd0023 1923
mjr 38:091e511ce8a0 1924 case 2:
mjr 38:091e511ce8a0 1925 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 1926 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 1927 // change in state in the logical button
mjr 38:091e511ce8a0 1928 bs->pulseState = 3;
mjr 38:091e511ce8a0 1929 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 1930 bs->logState = 0;
mjr 38:091e511ce8a0 1931 break;
mjr 38:091e511ce8a0 1932
mjr 38:091e511ce8a0 1933 case 3:
mjr 38:091e511ce8a0 1934 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 1935 if (!bs->physState)
mjr 53:9b2611964afc 1936 {
mjr 38:091e511ce8a0 1937 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1938 bs->pulseState = 4;
mjr 53:9b2611964afc 1939 bs->logState = 1;
mjr 38:091e511ce8a0 1940 }
mjr 38:091e511ce8a0 1941 break;
mjr 38:091e511ce8a0 1942
mjr 38:091e511ce8a0 1943 case 4:
mjr 38:091e511ce8a0 1944 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 1945 bs->pulseState = 1;
mjr 38:091e511ce8a0 1946 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 1947 bs->logState = 0;
mjr 38:091e511ce8a0 1948 break;
mjr 18:5e890ebd0023 1949 }
mjr 18:5e890ebd0023 1950 }
mjr 38:091e511ce8a0 1951 }
mjr 38:091e511ce8a0 1952 else
mjr 38:091e511ce8a0 1953 {
mjr 38:091e511ce8a0 1954 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 1955 bs->logState = bs->physState;
mjr 38:091e511ce8a0 1956 }
mjr 35:e959ffba78fd 1957
mjr 38:091e511ce8a0 1958 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 1959 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 1960 {
mjr 38:091e511ce8a0 1961 // check for special key transitions
mjr 53:9b2611964afc 1962 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 1963 {
mjr 53:9b2611964afc 1964 // Check the switch type in the config flags. If flag 0x01 is set,
mjr 53:9b2611964afc 1965 // it's a persistent on/off switch, so the night mode state simply
mjr 53:9b2611964afc 1966 // follows the current state of the switch. Otherwise, it's a
mjr 53:9b2611964afc 1967 // momentary button, so each button push (i.e., each transition from
mjr 53:9b2611964afc 1968 // logical state OFF to ON) toggles the current night mode state.
mjr 53:9b2611964afc 1969 if (cfg.nightMode.flags & 0x01)
mjr 53:9b2611964afc 1970 {
mjr 69:cc5039284fac 1971 // on/off switch - when the button changes state, change
mjr 53:9b2611964afc 1972 // night mode to match the new state
mjr 53:9b2611964afc 1973 setNightMode(bs->logState);
mjr 53:9b2611964afc 1974 }
mjr 53:9b2611964afc 1975 else
mjr 53:9b2611964afc 1976 {
mjr 66:2e3583fbd2f4 1977 // Momentary switch - toggle the night mode state when the
mjr 53:9b2611964afc 1978 // physical button is pushed (i.e., when its logical state
mjr 66:2e3583fbd2f4 1979 // transitions from OFF to ON).
mjr 66:2e3583fbd2f4 1980 //
mjr 66:2e3583fbd2f4 1981 // In momentary mode, night mode flag 0x02 makes it the
mjr 66:2e3583fbd2f4 1982 // shifted version of the button. In this case, only
mjr 66:2e3583fbd2f4 1983 // proceed if the shift button is pressed.
mjr 66:2e3583fbd2f4 1984 bool pressed = bs->logState;
mjr 66:2e3583fbd2f4 1985 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 1986 {
mjr 66:2e3583fbd2f4 1987 // if the shift button is pressed but hasn't been used
mjr 66:2e3583fbd2f4 1988 // as a shift yet, mark it as used, so that it doesn't
mjr 66:2e3583fbd2f4 1989 // also generate its own key code on release
mjr 66:2e3583fbd2f4 1990 if (shiftButton.state == 1)
mjr 66:2e3583fbd2f4 1991 shiftButton.state = 2;
mjr 66:2e3583fbd2f4 1992
mjr 66:2e3583fbd2f4 1993 // if the shift button isn't even pressed
mjr 66:2e3583fbd2f4 1994 if (shiftButton.state == 0)
mjr 66:2e3583fbd2f4 1995 pressed = false;
mjr 66:2e3583fbd2f4 1996 }
mjr 66:2e3583fbd2f4 1997
mjr 66:2e3583fbd2f4 1998 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 1999 // toggle night mode
mjr 66:2e3583fbd2f4 2000 if (pressed)
mjr 53:9b2611964afc 2001 toggleNightMode();
mjr 53:9b2611964afc 2002 }
mjr 35:e959ffba78fd 2003 }
mjr 38:091e511ce8a0 2004
mjr 38:091e511ce8a0 2005 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 2006 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 2007 }
mjr 38:091e511ce8a0 2008
mjr 53:9b2611964afc 2009 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 2010 // key state list
mjr 53:9b2611964afc 2011 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 2012 {
mjr 66:2e3583fbd2f4 2013 // Get the key type and code. If the shift button is down AND
mjr 66:2e3583fbd2f4 2014 // this button has a shifted key meaning, use the shifted key
mjr 66:2e3583fbd2f4 2015 // meaning. Otherwise use the primary key meaning.
mjr 65:739875521aae 2016 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 66:2e3583fbd2f4 2017 uint8_t typ, val;
mjr 66:2e3583fbd2f4 2018 if (shiftButton.state && bc->typ2 != BtnTypeNone)
mjr 66:2e3583fbd2f4 2019 {
mjr 66:2e3583fbd2f4 2020 // shifted - use the secondary key code
mjr 66:2e3583fbd2f4 2021 typ = bc->typ2, val = bc->val2;
mjr 66:2e3583fbd2f4 2022
mjr 66:2e3583fbd2f4 2023 // If the shift button hasn't been used a a shift yet
mjr 66:2e3583fbd2f4 2024 // (state 1), mark it as used (state 2). This prevents
mjr 66:2e3583fbd2f4 2025 // it from generating its own keystroke when released,
mjr 66:2e3583fbd2f4 2026 // which it does if no other keys are pressed while it's
mjr 66:2e3583fbd2f4 2027 // being held.
mjr 66:2e3583fbd2f4 2028 if (shiftButton.state == 1)
mjr 66:2e3583fbd2f4 2029 shiftButton.state = 2;
mjr 66:2e3583fbd2f4 2030 }
mjr 66:2e3583fbd2f4 2031 else
mjr 66:2e3583fbd2f4 2032 {
mjr 66:2e3583fbd2f4 2033 // not shifted - use the primary key code
mjr 66:2e3583fbd2f4 2034 typ = bc->typ, val = bc->val;
mjr 66:2e3583fbd2f4 2035 }
mjr 66:2e3583fbd2f4 2036
mjr 66:2e3583fbd2f4 2037 switch (typ)
mjr 53:9b2611964afc 2038 {
mjr 53:9b2611964afc 2039 case BtnTypeJoystick:
mjr 53:9b2611964afc 2040 // joystick button
mjr 53:9b2611964afc 2041 newjs |= (1 << (val - 1));
mjr 53:9b2611964afc 2042 break;
mjr 53:9b2611964afc 2043
mjr 53:9b2611964afc 2044 case BtnTypeKey:
mjr 67:c39e66c4e000 2045 // Keyboard key. The USB keyboard report encodes regular
mjr 67:c39e66c4e000 2046 // keys and modifier keys separately, so we need to check
mjr 67:c39e66c4e000 2047 // which type we have. Note that past versions mapped the
mjr 67:c39e66c4e000 2048 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 67:c39e66c4e000 2049 // Mute keys to the corresponding Media keys. We no longer
mjr 67:c39e66c4e000 2050 // do this; instead, we have the separate BtnTypeMedia for
mjr 67:c39e66c4e000 2051 // explicitly using media keys if desired.
mjr 67:c39e66c4e000 2052 if (val >= 0xE0 && val <= 0xE7)
mjr 53:9b2611964afc 2053 {
mjr 67:c39e66c4e000 2054 // It's a modifier key. These are represented in the USB
mjr 67:c39e66c4e000 2055 // reports with a bit mask. We arrange the mask bits in
mjr 67:c39e66c4e000 2056 // the same order as the scan codes, so we can figure the
mjr 67:c39e66c4e000 2057 // appropriate bit with a simple shift.
mjr 53:9b2611964afc 2058 modkeys |= (1 << (val - 0xE0));
mjr 53:9b2611964afc 2059 }
mjr 53:9b2611964afc 2060 else
mjr 53:9b2611964afc 2061 {
mjr 67:c39e66c4e000 2062 // It's a regular key. Make sure it's not already in the
mjr 67:c39e66c4e000 2063 // list, and that the list isn't full. If neither of these
mjr 67:c39e66c4e000 2064 // apply, add the key to the key array.
mjr 53:9b2611964afc 2065 if (nkeys < 7)
mjr 53:9b2611964afc 2066 {
mjr 57:cc03231f676b 2067 bool found = false;
mjr 53:9b2611964afc 2068 for (int j = 0 ; j < nkeys ; ++j)
mjr 53:9b2611964afc 2069 {
mjr 53:9b2611964afc 2070 if (keys[j] == val)
mjr 53:9b2611964afc 2071 {
mjr 53:9b2611964afc 2072 found = true;
mjr 53:9b2611964afc 2073 break;
mjr 53:9b2611964afc 2074 }
mjr 53:9b2611964afc 2075 }
mjr 53:9b2611964afc 2076 if (!found)
mjr 53:9b2611964afc 2077 keys[nkeys++] = val;
mjr 53:9b2611964afc 2078 }
mjr 53:9b2611964afc 2079 }
mjr 53:9b2611964afc 2080 break;
mjr 67:c39e66c4e000 2081
mjr 67:c39e66c4e000 2082 case BtnTypeMedia:
mjr 67:c39e66c4e000 2083 // Media control key. The media keys are mapped in the USB
mjr 67:c39e66c4e000 2084 // report to bits, whereas the key codes are specified in the
mjr 67:c39e66c4e000 2085 // config with their USB usage numbers. E.g., the config val
mjr 67:c39e66c4e000 2086 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 67:c39e66c4e000 2087 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 67:c39e66c4e000 2088 // from the USB usage number to the mask bit. If the key isn't
mjr 67:c39e66c4e000 2089 // among the subset we support, the mapped bit will be zero, so
mjr 67:c39e66c4e000 2090 // the "|=" will have no effect and the key will be ignored.
mjr 67:c39e66c4e000 2091 mediakeys |= mediaKeyMap[val];
mjr 67:c39e66c4e000 2092 break;
mjr 53:9b2611964afc 2093 }
mjr 18:5e890ebd0023 2094 }
mjr 11:bd9da7088e6e 2095 }
mjr 36:b9747461331e 2096
mjr 36:b9747461331e 2097 // check for joystick button changes
mjr 36:b9747461331e 2098 if (jsButtons != newjs)
mjr 36:b9747461331e 2099 jsButtons = newjs;
mjr 11:bd9da7088e6e 2100
mjr 35:e959ffba78fd 2101 // Check for changes to the keyboard keys
mjr 35:e959ffba78fd 2102 if (kbState.data[0] != modkeys
mjr 35:e959ffba78fd 2103 || kbState.nkeys != nkeys
mjr 35:e959ffba78fd 2104 || memcmp(keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 2105 {
mjr 35:e959ffba78fd 2106 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 2107 kbState.changed = true;
mjr 35:e959ffba78fd 2108 kbState.data[0] = modkeys;
mjr 35:e959ffba78fd 2109 if (nkeys <= 6) {
mjr 35:e959ffba78fd 2110 // 6 or fewer simultaneous keys - report the key codes
mjr 35:e959ffba78fd 2111 kbState.nkeys = nkeys;
mjr 35:e959ffba78fd 2112 memcpy(&kbState.data[2], keys, 6);
mjr 35:e959ffba78fd 2113 }
mjr 35:e959ffba78fd 2114 else {
mjr 35:e959ffba78fd 2115 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 2116 kbState.nkeys = 6;
mjr 35:e959ffba78fd 2117 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 2118 }
mjr 35:e959ffba78fd 2119 }
mjr 35:e959ffba78fd 2120
mjr 35:e959ffba78fd 2121 // Check for changes to media keys
mjr 35:e959ffba78fd 2122 if (mediaState.data != mediakeys)
mjr 35:e959ffba78fd 2123 {
mjr 35:e959ffba78fd 2124 mediaState.changed = true;
mjr 35:e959ffba78fd 2125 mediaState.data = mediakeys;
mjr 35:e959ffba78fd 2126 }
mjr 11:bd9da7088e6e 2127 }
mjr 11:bd9da7088e6e 2128
mjr 5:a70c0bce770d 2129 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 2130 //
mjr 5:a70c0bce770d 2131 // Customization joystick subbclass
mjr 5:a70c0bce770d 2132 //
mjr 5:a70c0bce770d 2133
mjr 5:a70c0bce770d 2134 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 2135 {
mjr 5:a70c0bce770d 2136 public:
mjr 35:e959ffba78fd 2137 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 2138 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 2139 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 2140 {
mjr 54:fd77a6b2f76c 2141 sleeping_ = false;
mjr 54:fd77a6b2f76c 2142 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 2143 timer_.start();
mjr 54:fd77a6b2f76c 2144 }
mjr 54:fd77a6b2f76c 2145
mjr 54:fd77a6b2f76c 2146 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 2147 void diagFlash()
mjr 54:fd77a6b2f76c 2148 {
mjr 54:fd77a6b2f76c 2149 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 2150 {
mjr 54:fd77a6b2f76c 2151 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 2152 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 2153 {
mjr 54:fd77a6b2f76c 2154 // short red flash
mjr 54:fd77a6b2f76c 2155 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 2156 wait_us(50000);
mjr 54:fd77a6b2f76c 2157 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 2158 wait_us(50000);
mjr 54:fd77a6b2f76c 2159 }
mjr 54:fd77a6b2f76c 2160 }
mjr 5:a70c0bce770d 2161 }
mjr 5:a70c0bce770d 2162
mjr 5:a70c0bce770d 2163 // are we connected?
mjr 5:a70c0bce770d 2164 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 2165
mjr 54:fd77a6b2f76c 2166 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 2167 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 2168 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 2169 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 2170 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 2171
mjr 54:fd77a6b2f76c 2172 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 2173 //
mjr 54:fd77a6b2f76c 2174 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 2175 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 2176 // other way.
mjr 54:fd77a6b2f76c 2177 //
mjr 54:fd77a6b2f76c 2178 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 2179 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 2180 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 2181 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 2182 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 2183 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 2184 //
mjr 54:fd77a6b2f76c 2185 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 2186 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 2187 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 2188 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 2189 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 2190 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 2191 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 2192 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 2193 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 2194 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 2195 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 2196 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 2197 // is effectively dead.
mjr 54:fd77a6b2f76c 2198 //
mjr 54:fd77a6b2f76c 2199 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 2200 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 2201 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 2202 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 2203 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 2204 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 2205 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 2206 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 2207 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 2208 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 2209 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 2210 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 2211 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 2212 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 2213 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 2214 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 2215 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 2216 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 2217 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 2218 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 2219 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 2220 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 2221 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 2222 // a disconnect.
mjr 54:fd77a6b2f76c 2223 //
mjr 54:fd77a6b2f76c 2224 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 2225 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 2226 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 2227 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 2228 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 2229 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 2230 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 2231 //
mjr 54:fd77a6b2f76c 2232 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 2233 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 2234 //
mjr 54:fd77a6b2f76c 2235 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 2236 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 2237 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 2238 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 2239 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 2240 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 2241 // has been plugged in and initiates the logical connection setup.
mjr 54:fd77a6b2f76c 2242 // We have to remain disconnected for a macroscopic interval for
mjr 54:fd77a6b2f76c 2243 // this to happen - 5ms seems to do the trick.
mjr 54:fd77a6b2f76c 2244 //
mjr 54:fd77a6b2f76c 2245 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 2246 //
mjr 54:fd77a6b2f76c 2247 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 2248 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 2249 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 2250 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 2251 // return.
mjr 54:fd77a6b2f76c 2252 //
mjr 54:fd77a6b2f76c 2253 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 2254 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 2255 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 2256 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 2257 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 2258 //
mjr 54:fd77a6b2f76c 2259 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 2260 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 2261 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 2262 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 2263 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 2264 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 2265 //
mjr 54:fd77a6b2f76c 2266 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 2267 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 2268 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 2269 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 2270 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 2271 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 2272 // freezes over.
mjr 54:fd77a6b2f76c 2273 //
mjr 54:fd77a6b2f76c 2274 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 2275 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 2276 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 2277 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 2278 // less than second with this code in place.
mjr 54:fd77a6b2f76c 2279 void recoverConnection()
mjr 54:fd77a6b2f76c 2280 {
mjr 54:fd77a6b2f76c 2281 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 2282 if (reconnectPending_)
mjr 54:fd77a6b2f76c 2283 {
mjr 54:fd77a6b2f76c 2284 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 2285 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 2286 {
mjr 54:fd77a6b2f76c 2287 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 2288 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 2289 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 2290 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 2291 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 2292 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 2293 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 2294 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 2295 __disable_irq();
mjr 54:fd77a6b2f76c 2296 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 2297 {
mjr 54:fd77a6b2f76c 2298 connect(false);
mjr 54:fd77a6b2f76c 2299 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 2300 done = true;
mjr 54:fd77a6b2f76c 2301 }
mjr 54:fd77a6b2f76c 2302 __enable_irq();
mjr 54:fd77a6b2f76c 2303 }
mjr 54:fd77a6b2f76c 2304 }
mjr 54:fd77a6b2f76c 2305 }
mjr 5:a70c0bce770d 2306
mjr 5:a70c0bce770d 2307 protected:
mjr 54:fd77a6b2f76c 2308 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 2309 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 2310 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 2311 //
mjr 54:fd77a6b2f76c 2312 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 2313 //
mjr 54:fd77a6b2f76c 2314 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 2315 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 2316 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 2317 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 2318 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 2319 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 2320 {
mjr 54:fd77a6b2f76c 2321 // note the new state
mjr 54:fd77a6b2f76c 2322 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 2323
mjr 54:fd77a6b2f76c 2324 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 2325 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 2326 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 2327 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 2328 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 2329 {
mjr 54:fd77a6b2f76c 2330 disconnect();
mjr 54:fd77a6b2f76c 2331 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 2332 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 2333 }
mjr 54:fd77a6b2f76c 2334 }
mjr 54:fd77a6b2f76c 2335
mjr 54:fd77a6b2f76c 2336 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 2337 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 2338
mjr 54:fd77a6b2f76c 2339 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 2340 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 2341
mjr 54:fd77a6b2f76c 2342 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 2343 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 2344
mjr 54:fd77a6b2f76c 2345 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 2346 Timer timer_;
mjr 5:a70c0bce770d 2347 };
mjr 5:a70c0bce770d 2348
mjr 5:a70c0bce770d 2349 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 2350 //
mjr 5:a70c0bce770d 2351 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 2352 //
mjr 5:a70c0bce770d 2353
mjr 5:a70c0bce770d 2354 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 2355 //
mjr 5:a70c0bce770d 2356 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 2357 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 2358 // automatic calibration.
mjr 5:a70c0bce770d 2359 //
mjr 5:a70c0bce770d 2360 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 2361 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 2362 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 2363 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 2364 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 2365 // every sample.
mjr 5:a70c0bce770d 2366 //
mjr 6:cc35eb643e8f 2367 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 2368 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 2369 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 2370 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 2371 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 2372 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 2373 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 2374 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 2375 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 2376 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 2377 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 2378 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 2379 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 2380 // of nudging, say).
mjr 5:a70c0bce770d 2381 //
mjr 5:a70c0bce770d 2382
mjr 17:ab3cec0c8bf4 2383 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 2384 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 2385
mjr 17:ab3cec0c8bf4 2386 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 2387 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 2388 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 2389
mjr 17:ab3cec0c8bf4 2390 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 2391 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 2392 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 2393 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 2394
mjr 17:ab3cec0c8bf4 2395
mjr 6:cc35eb643e8f 2396 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 2397 struct AccHist
mjr 5:a70c0bce770d 2398 {
mjr 6:cc35eb643e8f 2399 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 2400 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 2401 {
mjr 6:cc35eb643e8f 2402 // save the raw position
mjr 6:cc35eb643e8f 2403 this->x = x;
mjr 6:cc35eb643e8f 2404 this->y = y;
mjr 6:cc35eb643e8f 2405 this->d = distance(prv);
mjr 6:cc35eb643e8f 2406 }
mjr 6:cc35eb643e8f 2407
mjr 6:cc35eb643e8f 2408 // reading for this entry
mjr 5:a70c0bce770d 2409 float x, y;
mjr 5:a70c0bce770d 2410
mjr 6:cc35eb643e8f 2411 // distance from previous entry
mjr 6:cc35eb643e8f 2412 float d;
mjr 5:a70c0bce770d 2413
mjr 6:cc35eb643e8f 2414 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 2415 float xtot, ytot;
mjr 6:cc35eb643e8f 2416 int cnt;
mjr 6:cc35eb643e8f 2417
mjr 6:cc35eb643e8f 2418 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 2419 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 2420 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 2421 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 2422
mjr 6:cc35eb643e8f 2423 float distance(AccHist *p)
mjr 6:cc35eb643e8f 2424 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 2425 };
mjr 5:a70c0bce770d 2426
mjr 5:a70c0bce770d 2427 // accelerometer wrapper class
mjr 3:3514575d4f86 2428 class Accel
mjr 3:3514575d4f86 2429 {
mjr 3:3514575d4f86 2430 public:
mjr 3:3514575d4f86 2431 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 2432 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 2433 {
mjr 5:a70c0bce770d 2434 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 2435 irqPin_ = irqPin;
mjr 5:a70c0bce770d 2436
mjr 5:a70c0bce770d 2437 // reset and initialize
mjr 5:a70c0bce770d 2438 reset();
mjr 5:a70c0bce770d 2439 }
mjr 5:a70c0bce770d 2440
mjr 5:a70c0bce770d 2441 void reset()
mjr 5:a70c0bce770d 2442 {
mjr 6:cc35eb643e8f 2443 // clear the center point
mjr 6:cc35eb643e8f 2444 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 2445
mjr 6:cc35eb643e8f 2446 // start the calibration timer
mjr 5:a70c0bce770d 2447 tCenter_.start();
mjr 5:a70c0bce770d 2448 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 2449
mjr 5:a70c0bce770d 2450 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 2451 mma_.init();
mjr 6:cc35eb643e8f 2452
mjr 6:cc35eb643e8f 2453 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 2454 vx_ = vy_ = 0;
mjr 3:3514575d4f86 2455
mjr 6:cc35eb643e8f 2456 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 2457 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 2458 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 2459
mjr 3:3514575d4f86 2460 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 2461 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 2462
mjr 3:3514575d4f86 2463 // start our timers
mjr 3:3514575d4f86 2464 tGet_.start();
mjr 3:3514575d4f86 2465 tInt_.start();
mjr 3:3514575d4f86 2466 }
mjr 3:3514575d4f86 2467
mjr 9:fd65b0a94720 2468 void get(int &x, int &y)
mjr 3:3514575d4f86 2469 {
mjr 3:3514575d4f86 2470 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 2471 __disable_irq();
mjr 3:3514575d4f86 2472
mjr 3:3514575d4f86 2473 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 2474 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 2475 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 2476
mjr 6:cc35eb643e8f 2477 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 2478 vx_ = vy_ = 0;
mjr 3:3514575d4f86 2479
mjr 3:3514575d4f86 2480 // get the time since the last get() sample
mjr 38:091e511ce8a0 2481 float dt = tGet_.read_us()/1.0e6f;
mjr 3:3514575d4f86 2482 tGet_.reset();
mjr 3:3514575d4f86 2483
mjr 3:3514575d4f86 2484 // done manipulating the shared data
mjr 3:3514575d4f86 2485 __enable_irq();
mjr 3:3514575d4f86 2486
mjr 6:cc35eb643e8f 2487 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 2488 vx /= dt;
mjr 6:cc35eb643e8f 2489 vy /= dt;
mjr 6:cc35eb643e8f 2490
mjr 6:cc35eb643e8f 2491 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 2492 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 2493 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 2494
mjr 5:a70c0bce770d 2495 // check for auto-centering every so often
mjr 48:058ace2aed1d 2496 if (tCenter_.read_us() > 1000000)
mjr 5:a70c0bce770d 2497 {
mjr 5:a70c0bce770d 2498 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 2499 AccHist *prv = p;
mjr 5:a70c0bce770d 2500 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 2501 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 2502 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 2503
mjr 5:a70c0bce770d 2504 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 2505 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 2506 {
mjr 5:a70c0bce770d 2507 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 2508 static const float accTol = .01;
mjr 6:cc35eb643e8f 2509 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 2510 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 2511 && p0[1].d < accTol
mjr 6:cc35eb643e8f 2512 && p0[2].d < accTol
mjr 6:cc35eb643e8f 2513 && p0[3].d < accTol
mjr 6:cc35eb643e8f 2514 && p0[4].d < accTol)
mjr 5:a70c0bce770d 2515 {
mjr 6:cc35eb643e8f 2516 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 2517 // the samples over the rest period
mjr 6:cc35eb643e8f 2518 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 2519 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 2520 }
mjr 5:a70c0bce770d 2521 }
mjr 5:a70c0bce770d 2522 else
mjr 5:a70c0bce770d 2523 {
mjr 5:a70c0bce770d 2524 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 2525 ++nAccPrv_;
mjr 5:a70c0bce770d 2526 }
mjr 6:cc35eb643e8f 2527
mjr 6:cc35eb643e8f 2528 // clear the new item's running totals
mjr 6:cc35eb643e8f 2529 p->clearAvg();
mjr 5:a70c0bce770d 2530
mjr 5:a70c0bce770d 2531 // reset the timer
mjr 5:a70c0bce770d 2532 tCenter_.reset();
mjr 39:b3815a1c3802 2533
mjr 39:b3815a1c3802 2534 // If we haven't seen an interrupt in a while, do an explicit read to
mjr 39:b3815a1c3802 2535 // "unstick" the device. The device can become stuck - which is to say,
mjr 39:b3815a1c3802 2536 // it will stop delivering data-ready interrupts - if we fail to service
mjr 39:b3815a1c3802 2537 // one data-ready interrupt before the next one occurs. Reading a sample
mjr 39:b3815a1c3802 2538 // will clear up this overrun condition and allow normal interrupt
mjr 39:b3815a1c3802 2539 // generation to continue.
mjr 39:b3815a1c3802 2540 //
mjr 39:b3815a1c3802 2541 // Note that this stuck condition *shouldn't* ever occur - if it does,
mjr 39:b3815a1c3802 2542 // it means that we're spending a long period with interrupts disabled
mjr 39:b3815a1c3802 2543 // (either in a critical section or in another interrupt handler), which
mjr 39:b3815a1c3802 2544 // will likely cause other worse problems beyond the sticky accelerometer.
mjr 39:b3815a1c3802 2545 // Even so, it's easy to detect and correct, so we'll do so for the sake
mjr 39:b3815a1c3802 2546 // of making the system more fault-tolerant.
mjr 39:b3815a1c3802 2547 if (tInt_.read() > 1.0f)
mjr 39:b3815a1c3802 2548 {
mjr 39:b3815a1c3802 2549 float x, y, z;
mjr 39:b3815a1c3802 2550 mma_.getAccXYZ(x, y, z);
mjr 39:b3815a1c3802 2551 }
mjr 5:a70c0bce770d 2552 }
mjr 5:a70c0bce770d 2553
mjr 6:cc35eb643e8f 2554 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 2555 x = rawToReport(vx);
mjr 6:cc35eb643e8f 2556 y = rawToReport(vy);
mjr 5:a70c0bce770d 2557
mjr 6:cc35eb643e8f 2558 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 2559 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 2560 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 2561 #endif
mjr 3:3514575d4f86 2562 }
mjr 29:582472d0bc57 2563
mjr 3:3514575d4f86 2564 private:
mjr 6:cc35eb643e8f 2565 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 2566 int rawToReport(float v)
mjr 5:a70c0bce770d 2567 {
mjr 6:cc35eb643e8f 2568 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 2569 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 2570
mjr 6:cc35eb643e8f 2571 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 2572 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 2573 static const int filter[] = {
mjr 6:cc35eb643e8f 2574 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 2575 0,
mjr 6:cc35eb643e8f 2576 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 2577 };
mjr 6:cc35eb643e8f 2578 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 2579 }
mjr 5:a70c0bce770d 2580
mjr 3:3514575d4f86 2581 // interrupt handler
mjr 3:3514575d4f86 2582 void isr()
mjr 3:3514575d4f86 2583 {
mjr 3:3514575d4f86 2584 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 2585 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 2586 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 2587 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 2588 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 2589 float x, y, z;
mjr 5:a70c0bce770d 2590 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 2591
mjr 3:3514575d4f86 2592 // calculate the time since the last interrupt
mjr 39:b3815a1c3802 2593 float dt = tInt_.read();
mjr 3:3514575d4f86 2594 tInt_.reset();
mjr 6:cc35eb643e8f 2595
mjr 6:cc35eb643e8f 2596 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 2597 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 2598 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 2599
mjr 6:cc35eb643e8f 2600 // store the updates
mjr 6:cc35eb643e8f 2601 ax_ = x;
mjr 6:cc35eb643e8f 2602 ay_ = y;
mjr 6:cc35eb643e8f 2603 az_ = z;
mjr 3:3514575d4f86 2604 }
mjr 3:3514575d4f86 2605
mjr 3:3514575d4f86 2606 // underlying accelerometer object
mjr 3:3514575d4f86 2607 MMA8451Q mma_;
mjr 3:3514575d4f86 2608
mjr 5:a70c0bce770d 2609 // last raw acceleration readings
mjr 6:cc35eb643e8f 2610 float ax_, ay_, az_;
mjr 5:a70c0bce770d 2611
mjr 6:cc35eb643e8f 2612 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 2613 float vx_, vy_;
mjr 6:cc35eb643e8f 2614
mjr 3:3514575d4f86 2615 // timer for measuring time between get() samples
mjr 3:3514575d4f86 2616 Timer tGet_;
mjr 3:3514575d4f86 2617
mjr 3:3514575d4f86 2618 // timer for measuring time between interrupts
mjr 3:3514575d4f86 2619 Timer tInt_;
mjr 5:a70c0bce770d 2620
mjr 6:cc35eb643e8f 2621 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 2622 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 2623 // at rest.
mjr 6:cc35eb643e8f 2624 float cx_, cy_;
mjr 5:a70c0bce770d 2625
mjr 5:a70c0bce770d 2626 // timer for atuo-centering
mjr 5:a70c0bce770d 2627 Timer tCenter_;
mjr 6:cc35eb643e8f 2628
mjr 6:cc35eb643e8f 2629 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 2630 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 2631 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 2632 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 2633 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 2634 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 2635 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 2636 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 2637 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 2638 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 2639 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 2640 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 2641 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 2642 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 2643 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 2644
mjr 5:a70c0bce770d 2645 // interurupt pin name
mjr 5:a70c0bce770d 2646 PinName irqPin_;
mjr 5:a70c0bce770d 2647
mjr 5:a70c0bce770d 2648 // interrupt router
mjr 5:a70c0bce770d 2649 InterruptIn intIn_;
mjr 3:3514575d4f86 2650 };
mjr 3:3514575d4f86 2651
mjr 5:a70c0bce770d 2652
mjr 5:a70c0bce770d 2653 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 2654 //
mjr 14:df700b22ca08 2655 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 2656 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 2657 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 2658 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 2659 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 2660 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 2661 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 2662 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 2663 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 2664 //
mjr 14:df700b22ca08 2665 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 2666 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 2667 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 2668 //
mjr 5:a70c0bce770d 2669 void clear_i2c()
mjr 5:a70c0bce770d 2670 {
mjr 38:091e511ce8a0 2671 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 2672 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 2673 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 2674
mjr 5:a70c0bce770d 2675 // clock the SCL 9 times
mjr 5:a70c0bce770d 2676 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 2677 {
mjr 5:a70c0bce770d 2678 scl = 1;
mjr 5:a70c0bce770d 2679 wait_us(20);
mjr 5:a70c0bce770d 2680 scl = 0;
mjr 5:a70c0bce770d 2681 wait_us(20);
mjr 5:a70c0bce770d 2682 }
mjr 5:a70c0bce770d 2683 }
mjr 14:df700b22ca08 2684
mjr 14:df700b22ca08 2685 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 2686 //
mjr 33:d832bcab089e 2687 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 2688 // for a given interval before allowing an update.
mjr 33:d832bcab089e 2689 //
mjr 33:d832bcab089e 2690 class Debouncer
mjr 33:d832bcab089e 2691 {
mjr 33:d832bcab089e 2692 public:
mjr 33:d832bcab089e 2693 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 2694 {
mjr 33:d832bcab089e 2695 t.start();
mjr 33:d832bcab089e 2696 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 2697 this->tmin = tmin;
mjr 33:d832bcab089e 2698 }
mjr 33:d832bcab089e 2699
mjr 33:d832bcab089e 2700 // Get the current stable value
mjr 33:d832bcab089e 2701 bool val() const { return stable; }
mjr 33:d832bcab089e 2702
mjr 33:d832bcab089e 2703 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 2704 // input device.
mjr 33:d832bcab089e 2705 void sampleIn(bool val)
mjr 33:d832bcab089e 2706 {
mjr 33:d832bcab089e 2707 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 2708 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 2709 // on the sample reader.
mjr 33:d832bcab089e 2710 if (val != prv)
mjr 33:d832bcab089e 2711 {
mjr 33:d832bcab089e 2712 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 2713 t.reset();
mjr 33:d832bcab089e 2714
mjr 33:d832bcab089e 2715 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 2716 prv = val;
mjr 33:d832bcab089e 2717 }
mjr 33:d832bcab089e 2718 else if (val != stable)
mjr 33:d832bcab089e 2719 {
mjr 33:d832bcab089e 2720 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 2721 // and different from the stable value. This means that
mjr 33:d832bcab089e 2722 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 2723 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 2724 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 2725 if (t.read() > tmin)
mjr 33:d832bcab089e 2726 stable = val;
mjr 33:d832bcab089e 2727 }
mjr 33:d832bcab089e 2728 }
mjr 33:d832bcab089e 2729
mjr 33:d832bcab089e 2730 private:
mjr 33:d832bcab089e 2731 // current stable value
mjr 33:d832bcab089e 2732 bool stable;
mjr 33:d832bcab089e 2733
mjr 33:d832bcab089e 2734 // last raw sample value
mjr 33:d832bcab089e 2735 bool prv;
mjr 33:d832bcab089e 2736
mjr 33:d832bcab089e 2737 // elapsed time since last raw input change
mjr 33:d832bcab089e 2738 Timer t;
mjr 33:d832bcab089e 2739
mjr 33:d832bcab089e 2740 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 2741 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 2742 float tmin;
mjr 33:d832bcab089e 2743 };
mjr 33:d832bcab089e 2744
mjr 33:d832bcab089e 2745
mjr 33:d832bcab089e 2746 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 2747 //
mjr 33:d832bcab089e 2748 // Turn off all outputs and restore everything to the default LedWiz
mjr 33:d832bcab089e 2749 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 33:d832bcab089e 2750 // brightness) and switch state Off, sets all extended outputs (#33
mjr 33:d832bcab089e 2751 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 33:d832bcab089e 2752 // This effectively restores the power-on conditions.
mjr 33:d832bcab089e 2753 //
mjr 33:d832bcab089e 2754 void allOutputsOff()
mjr 33:d832bcab089e 2755 {
mjr 33:d832bcab089e 2756 // reset all LedWiz outputs to OFF/48
mjr 35:e959ffba78fd 2757 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 33:d832bcab089e 2758 {
mjr 33:d832bcab089e 2759 outLevel[i] = 0;
mjr 33:d832bcab089e 2760 wizOn[i] = 0;
mjr 33:d832bcab089e 2761 wizVal[i] = 48;
mjr 33:d832bcab089e 2762 lwPin[i]->set(0);
mjr 33:d832bcab089e 2763 }
mjr 33:d832bcab089e 2764
mjr 33:d832bcab089e 2765 // reset all extended outputs (ports >32) to full off (brightness 0)
mjr 40:cc0d9814522b 2766 for (int i = numLwOutputs ; i < numOutputs ; ++i)
mjr 33:d832bcab089e 2767 {
mjr 33:d832bcab089e 2768 outLevel[i] = 0;
mjr 33:d832bcab089e 2769 lwPin[i]->set(0);
mjr 33:d832bcab089e 2770 }
mjr 33:d832bcab089e 2771
mjr 33:d832bcab089e 2772 // restore default LedWiz flash rate
mjr 33:d832bcab089e 2773 wizSpeed = 2;
mjr 34:6b981a2afab7 2774
mjr 34:6b981a2afab7 2775 // flush changes to hc595, if applicable
mjr 35:e959ffba78fd 2776 if (hc595 != 0)
mjr 35:e959ffba78fd 2777 hc595->update();
mjr 33:d832bcab089e 2778 }
mjr 33:d832bcab089e 2779
mjr 33:d832bcab089e 2780 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 2781 //
mjr 33:d832bcab089e 2782 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 2783 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 2784 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 2785 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 2786 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 2787 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 2788 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 2789 //
mjr 33:d832bcab089e 2790 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 2791 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 2792 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 2793 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 2794 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 2795 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 2796 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 2797 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 2798 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 2799 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 2800 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 2801 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 2802 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 2803 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 2804 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 2805 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 2806 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 2807 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 2808 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 2809 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 2810 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 2811 //
mjr 40:cc0d9814522b 2812 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 2813 // of tricky but likely scenarios:
mjr 33:d832bcab089e 2814 //
mjr 33:d832bcab089e 2815 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 2816 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 2817 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 2818 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 2819 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 2820 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 2821 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 2822 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 2823 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 2824 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 2825 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 2826 //
mjr 33:d832bcab089e 2827 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 2828 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 2829 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 2830 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 2831 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 2832 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 2833 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 2834 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 2835 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 2836 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 2837 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 2838 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 2839 // first check.
mjr 33:d832bcab089e 2840 //
mjr 33:d832bcab089e 2841 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 2842 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 2843 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 2844 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 2845 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 2846 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 2847 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 2848 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 2849 //
mjr 33:d832bcab089e 2850
mjr 33:d832bcab089e 2851 // Current PSU2 state:
mjr 33:d832bcab089e 2852 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 2853 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 2854 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 2855 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 2856 // 5 -> TV relay on
mjr 33:d832bcab089e 2857 int psu2_state = 1;
mjr 35:e959ffba78fd 2858
mjr 35:e959ffba78fd 2859 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 2860 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 2861 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 2862
mjr 35:e959ffba78fd 2863 // TV ON switch relay control
mjr 35:e959ffba78fd 2864 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 2865
mjr 35:e959ffba78fd 2866 // Timer interrupt
mjr 35:e959ffba78fd 2867 Ticker tv_ticker;
mjr 35:e959ffba78fd 2868 float tv_delay_time;
mjr 33:d832bcab089e 2869 void TVTimerInt()
mjr 33:d832bcab089e 2870 {
mjr 35:e959ffba78fd 2871 // time since last state change
mjr 35:e959ffba78fd 2872 static Timer tv_timer;
mjr 35:e959ffba78fd 2873
mjr 33:d832bcab089e 2874 // Check our internal state
mjr 33:d832bcab089e 2875 switch (psu2_state)
mjr 33:d832bcab089e 2876 {
mjr 33:d832bcab089e 2877 case 1:
mjr 33:d832bcab089e 2878 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 2879 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 2880 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 2881 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 2882 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 2883 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 2884 {
mjr 33:d832bcab089e 2885 // switch to OFF state
mjr 33:d832bcab089e 2886 psu2_state = 2;
mjr 33:d832bcab089e 2887
mjr 33:d832bcab089e 2888 // try setting the latch
mjr 35:e959ffba78fd 2889 psu2_status_set->write(1);
mjr 33:d832bcab089e 2890 }
mjr 33:d832bcab089e 2891 break;
mjr 33:d832bcab089e 2892
mjr 33:d832bcab089e 2893 case 2:
mjr 33:d832bcab089e 2894 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 2895 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 2896 psu2_status_set->write(0);
mjr 33:d832bcab089e 2897 psu2_state = 3;
mjr 33:d832bcab089e 2898 break;
mjr 33:d832bcab089e 2899
mjr 33:d832bcab089e 2900 case 3:
mjr 33:d832bcab089e 2901 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 2902 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 2903 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 2904 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 2905 if (psu2_status_sense->read())
mjr 33:d832bcab089e 2906 {
mjr 33:d832bcab089e 2907 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 2908 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 2909 tv_timer.reset();
mjr 33:d832bcab089e 2910 tv_timer.start();
mjr 33:d832bcab089e 2911 psu2_state = 4;
mjr 33:d832bcab089e 2912 }
mjr 33:d832bcab089e 2913 else
mjr 33:d832bcab089e 2914 {
mjr 33:d832bcab089e 2915 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 2916 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 2917 // was turned on since the last check.
mjr 35:e959ffba78fd 2918 psu2_status_set->write(1);
mjr 33:d832bcab089e 2919 psu2_state = 2;
mjr 33:d832bcab089e 2920 }
mjr 33:d832bcab089e 2921 break;
mjr 33:d832bcab089e 2922
mjr 33:d832bcab089e 2923 case 4:
mjr 33:d832bcab089e 2924 // TV timer countdown in progress. If we've reached the
mjr 33:d832bcab089e 2925 // delay time, pulse the relay.
mjr 35:e959ffba78fd 2926 if (tv_timer.read() >= tv_delay_time)
mjr 33:d832bcab089e 2927 {
mjr 33:d832bcab089e 2928 // turn on the relay for one timer interval
mjr 35:e959ffba78fd 2929 tv_relay->write(1);
mjr 33:d832bcab089e 2930 psu2_state = 5;
mjr 33:d832bcab089e 2931 }
mjr 33:d832bcab089e 2932 break;
mjr 33:d832bcab089e 2933
mjr 33:d832bcab089e 2934 case 5:
mjr 33:d832bcab089e 2935 // TV timer relay on. We pulse this for one interval, so
mjr 33:d832bcab089e 2936 // it's now time to turn it off and return to the default state.
mjr 35:e959ffba78fd 2937 tv_relay->write(0);
mjr 33:d832bcab089e 2938 psu2_state = 1;
mjr 33:d832bcab089e 2939 break;
mjr 33:d832bcab089e 2940 }
mjr 33:d832bcab089e 2941 }
mjr 33:d832bcab089e 2942
mjr 35:e959ffba78fd 2943 // Start the TV ON checker. If the status sense circuit is enabled in
mjr 35:e959ffba78fd 2944 // the configuration, we'll set up the pin connections and start the
mjr 35:e959ffba78fd 2945 // interrupt handler that periodically checks the status. Does nothing
mjr 35:e959ffba78fd 2946 // if any of the pins are configured as NC.
mjr 35:e959ffba78fd 2947 void startTVTimer(Config &cfg)
mjr 35:e959ffba78fd 2948 {
mjr 55:4db125cd11a0 2949 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 2950 // time is nonzero
mjr 55:4db125cd11a0 2951 if (cfg.TVON.delayTime != 0
mjr 55:4db125cd11a0 2952 && cfg.TVON.statusPin != 0xFF
mjr 53:9b2611964afc 2953 && cfg.TVON.latchPin != 0xFF
mjr 53:9b2611964afc 2954 && cfg.TVON.relayPin != 0xFF)
mjr 35:e959ffba78fd 2955 {
mjr 53:9b2611964afc 2956 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 2957 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 53:9b2611964afc 2958 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 40:cc0d9814522b 2959 tv_delay_time = cfg.TVON.delayTime/100.0;
mjr 35:e959ffba78fd 2960
mjr 35:e959ffba78fd 2961 // Set up our time routine to run every 1/4 second.
mjr 35:e959ffba78fd 2962 tv_ticker.attach(&TVTimerInt, 0.25);
mjr 35:e959ffba78fd 2963 }
mjr 35:e959ffba78fd 2964 }
mjr 35:e959ffba78fd 2965
mjr 35:e959ffba78fd 2966 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2967 //
mjr 35:e959ffba78fd 2968 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 2969 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 2970 //
mjr 35:e959ffba78fd 2971 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 2972 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 2973 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 2974 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 2975 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 2976 // again each time the firmware is updated.
mjr 35:e959ffba78fd 2977 //
mjr 35:e959ffba78fd 2978 NVM nvm;
mjr 35:e959ffba78fd 2979
mjr 35:e959ffba78fd 2980 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 2981 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 2982
mjr 35:e959ffba78fd 2983 // flash memory controller interface
mjr 35:e959ffba78fd 2984 FreescaleIAP iap;
mjr 35:e959ffba78fd 2985
mjr 35:e959ffba78fd 2986 // figure the flash address as a pointer along with the number of sectors
mjr 35:e959ffba78fd 2987 // required to store the structure
mjr 35:e959ffba78fd 2988 NVM *configFlashAddr(int &addr, int &numSectors)
mjr 35:e959ffba78fd 2989 {
mjr 35:e959ffba78fd 2990 // figure how many flash sectors we span, rounding up to whole sectors
mjr 35:e959ffba78fd 2991 numSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 35:e959ffba78fd 2992
mjr 35:e959ffba78fd 2993 // figure the address - this is the highest flash address where the
mjr 35:e959ffba78fd 2994 // structure will fit with the start aligned on a sector boundary
mjr 35:e959ffba78fd 2995 addr = iap.flash_size() - (numSectors * SECTOR_SIZE);
mjr 35:e959ffba78fd 2996
mjr 35:e959ffba78fd 2997 // return the address as a pointer
mjr 35:e959ffba78fd 2998 return (NVM *)addr;
mjr 35:e959ffba78fd 2999 }
mjr 35:e959ffba78fd 3000
mjr 35:e959ffba78fd 3001 // figure the flash address as a pointer
mjr 35:e959ffba78fd 3002 NVM *configFlashAddr()
mjr 35:e959ffba78fd 3003 {
mjr 35:e959ffba78fd 3004 int addr, numSectors;
mjr 35:e959ffba78fd 3005 return configFlashAddr(addr, numSectors);
mjr 35:e959ffba78fd 3006 }
mjr 35:e959ffba78fd 3007
mjr 35:e959ffba78fd 3008 // Load the config from flash
mjr 35:e959ffba78fd 3009 void loadConfigFromFlash()
mjr 35:e959ffba78fd 3010 {
mjr 35:e959ffba78fd 3011 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 3012 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 3013 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 3014 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 3015 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 3016 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 3017 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 3018 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 3019 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 3020 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 3021 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 3022 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 3023 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 3024 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 3025 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 3026 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 3027
mjr 35:e959ffba78fd 3028 // Figure how many sectors we need for our structure
mjr 35:e959ffba78fd 3029 NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 3030
mjr 35:e959ffba78fd 3031 // if the flash is valid, load it; otherwise initialize to defaults
mjr 35:e959ffba78fd 3032 if (flash->valid())
mjr 35:e959ffba78fd 3033 {
mjr 35:e959ffba78fd 3034 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 3035 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 3036 }
mjr 35:e959ffba78fd 3037 else
mjr 35:e959ffba78fd 3038 {
mjr 35:e959ffba78fd 3039 // flash is invalid - load factory settings nito RAM structure
mjr 35:e959ffba78fd 3040 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 3041 }
mjr 35:e959ffba78fd 3042 }
mjr 35:e959ffba78fd 3043
mjr 35:e959ffba78fd 3044 void saveConfigToFlash()
mjr 33:d832bcab089e 3045 {
mjr 35:e959ffba78fd 3046 int addr, sectors;
mjr 35:e959ffba78fd 3047 configFlashAddr(addr, sectors);
mjr 35:e959ffba78fd 3048 nvm.save(iap, addr);
mjr 35:e959ffba78fd 3049 }
mjr 35:e959ffba78fd 3050
mjr 35:e959ffba78fd 3051 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3052 //
mjr 55:4db125cd11a0 3053 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 3054 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 3055 //
mjr 55:4db125cd11a0 3056 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 3057 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 3058 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 3059
mjr 55:4db125cd11a0 3060
mjr 55:4db125cd11a0 3061
mjr 55:4db125cd11a0 3062 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 3063 //
mjr 40:cc0d9814522b 3064 // Night mode setting updates
mjr 40:cc0d9814522b 3065 //
mjr 38:091e511ce8a0 3066
mjr 38:091e511ce8a0 3067 // Turn night mode on or off
mjr 38:091e511ce8a0 3068 static void setNightMode(bool on)
mjr 38:091e511ce8a0 3069 {
mjr 40:cc0d9814522b 3070 // set the new night mode flag in the noisy output class
mjr 53:9b2611964afc 3071 nightMode = on;
mjr 55:4db125cd11a0 3072
mjr 40:cc0d9814522b 3073 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 3074 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 3075 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 3076 lwPin[port]->set(nightMode ? 255 : 0);
mjr 40:cc0d9814522b 3077
mjr 40:cc0d9814522b 3078 // update all outputs for the mode change
mjr 40:cc0d9814522b 3079 updateAllOuts();
mjr 38:091e511ce8a0 3080 }
mjr 38:091e511ce8a0 3081
mjr 38:091e511ce8a0 3082 // Toggle night mode
mjr 38:091e511ce8a0 3083 static void toggleNightMode()
mjr 38:091e511ce8a0 3084 {
mjr 53:9b2611964afc 3085 setNightMode(!nightMode);
mjr 38:091e511ce8a0 3086 }
mjr 38:091e511ce8a0 3087
mjr 38:091e511ce8a0 3088
mjr 38:091e511ce8a0 3089 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 3090 //
mjr 35:e959ffba78fd 3091 // Plunger Sensor
mjr 35:e959ffba78fd 3092 //
mjr 35:e959ffba78fd 3093
mjr 35:e959ffba78fd 3094 // the plunger sensor interface object
mjr 35:e959ffba78fd 3095 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 3096
mjr 35:e959ffba78fd 3097 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 3098 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 3099 void createPlunger()
mjr 35:e959ffba78fd 3100 {
mjr 35:e959ffba78fd 3101 // create the new sensor object according to the type
mjr 35:e959ffba78fd 3102 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 3103 {
mjr 35:e959ffba78fd 3104 case PlungerType_TSL1410RS:
mjr 69:cc5039284fac 3105 // TSL1410R, serial mode (all pixels read in one file)
mjr 35:e959ffba78fd 3106 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 3107 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 3108 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3109 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3110 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3111 NC);
mjr 35:e959ffba78fd 3112 break;
mjr 35:e959ffba78fd 3113
mjr 35:e959ffba78fd 3114 case PlungerType_TSL1410RP:
mjr 69:cc5039284fac 3115 // TSL1410R, parallel mode (each half-sensor's pixels read separately)
mjr 35:e959ffba78fd 3116 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 3117 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 3118 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3119 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3120 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3121 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 3122 break;
mjr 35:e959ffba78fd 3123
mjr 69:cc5039284fac 3124 case PlungerType_TSL1412SS:
mjr 69:cc5039284fac 3125 // TSL1412S, serial mode
mjr 35:e959ffba78fd 3126 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 3127 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 3128 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3129 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3130 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3131 NC);
mjr 35:e959ffba78fd 3132 break;
mjr 35:e959ffba78fd 3133
mjr 69:cc5039284fac 3134 case PlungerType_TSL1412SP:
mjr 69:cc5039284fac 3135 // TSL1412S, parallel mode
mjr 35:e959ffba78fd 3136 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 3137 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 3138 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3139 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3140 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3141 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 3142 break;
mjr 35:e959ffba78fd 3143
mjr 35:e959ffba78fd 3144 case PlungerType_Pot:
mjr 35:e959ffba78fd 3145 // pins are: AO
mjr 53:9b2611964afc 3146 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 3147 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 3148 break;
mjr 35:e959ffba78fd 3149
mjr 35:e959ffba78fd 3150 case PlungerType_None:
mjr 35:e959ffba78fd 3151 default:
mjr 35:e959ffba78fd 3152 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 3153 break;
mjr 35:e959ffba78fd 3154 }
mjr 33:d832bcab089e 3155 }
mjr 33:d832bcab089e 3156
mjr 52:8298b2a73eb2 3157 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 3158 bool plungerCalMode;
mjr 52:8298b2a73eb2 3159
mjr 48:058ace2aed1d 3160 // Plunger reader
mjr 51:57eb311faafa 3161 //
mjr 51:57eb311faafa 3162 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 3163 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 3164 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 3165 //
mjr 51:57eb311faafa 3166 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 3167 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 3168 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 3169 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 3170 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 3171 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 3172 // firing motion.
mjr 51:57eb311faafa 3173 //
mjr 51:57eb311faafa 3174 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 3175 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 3176 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 3177 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 3178 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 3179 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 3180 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 3181 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 3182 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 3183 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 3184 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 3185 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 3186 // a classic digital aliasing effect.
mjr 51:57eb311faafa 3187 //
mjr 51:57eb311faafa 3188 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 3189 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 3190 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 3191 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 3192 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 3193 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 3194 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 3195 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 3196 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 3197 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 3198 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 3199 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 3200 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 3201 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 3202 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 3203 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 3204 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 3205 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 3206 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 3207 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 3208 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 3209 //
mjr 48:058ace2aed1d 3210 class PlungerReader
mjr 48:058ace2aed1d 3211 {
mjr 48:058ace2aed1d 3212 public:
mjr 48:058ace2aed1d 3213 PlungerReader()
mjr 48:058ace2aed1d 3214 {
mjr 48:058ace2aed1d 3215 // not in a firing event yet
mjr 48:058ace2aed1d 3216 firing = 0;
mjr 48:058ace2aed1d 3217
mjr 48:058ace2aed1d 3218 // no history yet
mjr 48:058ace2aed1d 3219 histIdx = 0;
mjr 55:4db125cd11a0 3220
mjr 55:4db125cd11a0 3221 // initialize the filter
mjr 55:4db125cd11a0 3222 initFilter();
mjr 48:058ace2aed1d 3223 }
mjr 48:058ace2aed1d 3224
mjr 48:058ace2aed1d 3225 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 3226 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 3227 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 3228 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 3229 void read()
mjr 48:058ace2aed1d 3230 {
mjr 48:058ace2aed1d 3231 // Read a sample from the sensor
mjr 48:058ace2aed1d 3232 PlungerReading r;
mjr 48:058ace2aed1d 3233 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 3234 {
mjr 69:cc5039284fac 3235 // filter the raw sensor reading
mjr 69:cc5039284fac 3236 applyPreFilter(r);
mjr 69:cc5039284fac 3237
mjr 51:57eb311faafa 3238 // Pull the previous reading from the history
mjr 50:40015764bbe6 3239 const PlungerReading &prv = nthHist(0);
mjr 48:058ace2aed1d 3240
mjr 69:cc5039284fac 3241 // If the new reading is within 1ms of the previous reading,
mjr 48:058ace2aed1d 3242 // ignore it. We require a minimum time between samples to
mjr 48:058ace2aed1d 3243 // ensure that we have a usable amount of precision in the
mjr 48:058ace2aed1d 3244 // denominator (the time interval) for calculating the plunger
mjr 69:cc5039284fac 3245 // velocity. The CCD sensor hardware takes about 2.5ms to
mjr 69:cc5039284fac 3246 // read, so it will never be affected by this, but other sensor
mjr 69:cc5039284fac 3247 // types don't all have the same hardware cycle time, so we need
mjr 69:cc5039284fac 3248 // to throttle them artificially. E.g., the potentiometer only
mjr 69:cc5039284fac 3249 // needs one ADC sample per reading, which only takes about 15us.
mjr 69:cc5039284fac 3250 // We don't need to check which sensor type we have here; we
mjr 69:cc5039284fac 3251 // just ignore readings until the minimum interval has passed,
mjr 69:cc5039284fac 3252 // so if the sensor is already slower than this, we'll end up
mjr 69:cc5039284fac 3253 // using all of its readings.
mjr 69:cc5039284fac 3254 if (uint32_t(r.t - prv.t) < 1000UL)
mjr 48:058ace2aed1d 3255 return;
mjr 53:9b2611964afc 3256
mjr 53:9b2611964afc 3257 // check for calibration mode
mjr 53:9b2611964afc 3258 if (plungerCalMode)
mjr 53:9b2611964afc 3259 {
mjr 53:9b2611964afc 3260 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 3261 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 3262 // expand the envelope to include this new value.
mjr 53:9b2611964afc 3263 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 3264 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 3265 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 3266 cfg.plunger.cal.min = r.pos;
mjr 50:40015764bbe6 3267
mjr 53:9b2611964afc 3268 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 3269 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 3270 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 3271 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 3272 if (calState == 0)
mjr 53:9b2611964afc 3273 {
mjr 53:9b2611964afc 3274 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 3275 {
mjr 53:9b2611964afc 3276 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 3277 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 3278 {
mjr 53:9b2611964afc 3279 // we've been at rest long enough - count it
mjr 53:9b2611964afc 3280 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 3281 calZeroPosN += 1;
mjr 53:9b2611964afc 3282
mjr 53:9b2611964afc 3283 // update the zero position from the new average
mjr 53:9b2611964afc 3284 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 53:9b2611964afc 3285
mjr 53:9b2611964afc 3286 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 3287 calState = 1;
mjr 53:9b2611964afc 3288 }
mjr 53:9b2611964afc 3289 }
mjr 53:9b2611964afc 3290 else
mjr 53:9b2611964afc 3291 {
mjr 53:9b2611964afc 3292 // we're not close to the last position - start again here
mjr 53:9b2611964afc 3293 calZeroStart = r;
mjr 53:9b2611964afc 3294 }
mjr 53:9b2611964afc 3295 }
mjr 53:9b2611964afc 3296
mjr 53:9b2611964afc 3297 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 3298 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 3299 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 3300 r.pos = int(
mjr 53:9b2611964afc 3301 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 3302 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 3303 }
mjr 53:9b2611964afc 3304 else
mjr 53:9b2611964afc 3305 {
mjr 53:9b2611964afc 3306 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 3307 // rescale to the joystick range.
mjr 53:9b2611964afc 3308 r.pos = int(
mjr 53:9b2611964afc 3309 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 3310 / (cfg.plunger.cal.max - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 3311
mjr 53:9b2611964afc 3312 // limit the result to the valid joystick range
mjr 53:9b2611964afc 3313 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 3314 r.pos = JOYMAX;
mjr 53:9b2611964afc 3315 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 3316 r.pos = -JOYMAX;
mjr 53:9b2611964afc 3317 }
mjr 50:40015764bbe6 3318
mjr 50:40015764bbe6 3319 // Calculate the velocity from the second-to-last reading
mjr 50:40015764bbe6 3320 // to here, in joystick distance units per microsecond.
mjr 50:40015764bbe6 3321 // Note that we use the second-to-last reading rather than
mjr 50:40015764bbe6 3322 // the very last reading to give ourselves a little longer
mjr 50:40015764bbe6 3323 // time base. The time base is so short between consecutive
mjr 50:40015764bbe6 3324 // readings that the error bars in the position would be too
mjr 50:40015764bbe6 3325 // large.
mjr 50:40015764bbe6 3326 //
mjr 50:40015764bbe6 3327 // For reference, the physical plunger velocity ranges up
mjr 50:40015764bbe6 3328 // to about 100,000 joystick distance units/sec. This is
mjr 50:40015764bbe6 3329 // based on empirical measurements. The typical time for
mjr 50:40015764bbe6 3330 // a real plunger to travel the full distance when released
mjr 50:40015764bbe6 3331 // from full retraction is about 85ms, so the average velocity
mjr 50:40015764bbe6 3332 // covering this distance is about 56,000 units/sec. The
mjr 50:40015764bbe6 3333 // peak is probably about twice that. In real-world units,
mjr 50:40015764bbe6 3334 // this translates to an average speed of about .75 m/s and
mjr 50:40015764bbe6 3335 // a peak of about 1.5 m/s.
mjr 50:40015764bbe6 3336 //
mjr 50:40015764bbe6 3337 // Note that we actually calculate the value here in units
mjr 50:40015764bbe6 3338 // per *microsecond* - the discussion above is in terms of
mjr 50:40015764bbe6 3339 // units/sec because that's more on a human scale. Our
mjr 50:40015764bbe6 3340 // choice of internal units here really isn't important,
mjr 50:40015764bbe6 3341 // since we only use the velocity for comparison purposes,
mjr 50:40015764bbe6 3342 // to detect acceleration trends. We therefore save ourselves
mjr 50:40015764bbe6 3343 // a little CPU time by using the natural units of our inputs.
mjr 51:57eb311faafa 3344 const PlungerReading &prv2 = nthHist(1);
mjr 50:40015764bbe6 3345 float v = float(r.pos - prv2.pos)/float(r.t - prv2.t);
mjr 50:40015764bbe6 3346
mjr 50:40015764bbe6 3347 // presume we'll report the latest instantaneous reading
mjr 50:40015764bbe6 3348 z = r.pos;
mjr 50:40015764bbe6 3349 vz = v;
mjr 48:058ace2aed1d 3350
mjr 50:40015764bbe6 3351 // Check firing events
mjr 50:40015764bbe6 3352 switch (firing)
mjr 50:40015764bbe6 3353 {
mjr 50:40015764bbe6 3354 case 0:
mjr 50:40015764bbe6 3355 // Default state - not in a firing event.
mjr 50:40015764bbe6 3356
mjr 50:40015764bbe6 3357 // If we have forward motion from a position that's retracted
mjr 50:40015764bbe6 3358 // beyond a threshold, enter phase 1. If we're not pulled back
mjr 50:40015764bbe6 3359 // far enough, don't bother with this, as a release wouldn't
mjr 50:40015764bbe6 3360 // be strong enough to require the synthetic firing treatment.
mjr 50:40015764bbe6 3361 if (v < 0 && r.pos > JOYMAX/6)
mjr 50:40015764bbe6 3362 {
mjr 53:9b2611964afc 3363 // enter firing phase 1
mjr 50:40015764bbe6 3364 firingMode(1);
mjr 50:40015764bbe6 3365
mjr 53:9b2611964afc 3366 // if in calibration state 1 (at rest), switch to state 2 (not
mjr 53:9b2611964afc 3367 // at rest)
mjr 53:9b2611964afc 3368 if (calState == 1)
mjr 53:9b2611964afc 3369 calState = 2;
mjr 53:9b2611964afc 3370
mjr 50:40015764bbe6 3371 // we don't have a freeze position yet, but note the start time
mjr 50:40015764bbe6 3372 f1.pos = 0;
mjr 50:40015764bbe6 3373 f1.t = r.t;
mjr 50:40015764bbe6 3374
mjr 50:40015764bbe6 3375 // Figure the barrel spring "bounce" position in case we complete
mjr 50:40015764bbe6 3376 // the firing event. This is the amount that the forward momentum
mjr 50:40015764bbe6 3377 // of the plunger will compress the barrel spring at the peak of
mjr 50:40015764bbe6 3378 // the forward travel during the release. Assume that this is
mjr 50:40015764bbe6 3379 // linearly proportional to the starting retraction distance.
mjr 50:40015764bbe6 3380 // The barrel spring is about 1/6 the length of the main spring,
mjr 50:40015764bbe6 3381 // so figure it compresses by 1/6 the distance. (This is overly
mjr 53:9b2611964afc 3382 // simplistic and not very accurate, but it seems to give good
mjr 50:40015764bbe6 3383 // visual results, and that's all it's for.)
mjr 50:40015764bbe6 3384 f2.pos = -r.pos/6;
mjr 50:40015764bbe6 3385 }
mjr 50:40015764bbe6 3386 break;
mjr 50:40015764bbe6 3387
mjr 50:40015764bbe6 3388 case 1:
mjr 50:40015764bbe6 3389 // Phase 1 - acceleration. If we cross the zero point, trigger
mjr 50:40015764bbe6 3390 // the firing event. Otherwise, continue monitoring as long as we
mjr 50:40015764bbe6 3391 // see acceleration in the forward direction.
mjr 50:40015764bbe6 3392 if (r.pos <= 0)
mjr 50:40015764bbe6 3393 {
mjr 50:40015764bbe6 3394 // switch to the synthetic firing mode
mjr 50:40015764bbe6 3395 firingMode(2);
mjr 50:40015764bbe6 3396 z = f2.pos;
mjr 50:40015764bbe6 3397
mjr 50:40015764bbe6 3398 // note the start time for the firing phase
mjr 50:40015764bbe6 3399 f2.t = r.t;
mjr 53:9b2611964afc 3400
mjr 53:9b2611964afc 3401 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 3402 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 3403 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 3404 {
mjr 53:9b2611964afc 3405 // collect a new zero point for the average when we
mjr 53:9b2611964afc 3406 // come to rest
mjr 53:9b2611964afc 3407 calState = 0;
mjr 53:9b2611964afc 3408
mjr 53:9b2611964afc 3409 // collect average firing time statistics in millseconds, if
mjr 53:9b2611964afc 3410 // it's in range (20 to 255 ms)
mjr 53:9b2611964afc 3411 int dt = uint32_t(r.t - f1.t)/1000UL;
mjr 53:9b2611964afc 3412 if (dt >= 20 && dt <= 255)
mjr 53:9b2611964afc 3413 {
mjr 53:9b2611964afc 3414 calRlsTimeSum += dt;
mjr 53:9b2611964afc 3415 calRlsTimeN += 1;
mjr 53:9b2611964afc 3416 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 3417 }
mjr 53:9b2611964afc 3418 }
mjr 50:40015764bbe6 3419 }
mjr 50:40015764bbe6 3420 else if (v < vprv2)
mjr 50:40015764bbe6 3421 {
mjr 50:40015764bbe6 3422 // We're still accelerating, and we haven't crossed the zero
mjr 50:40015764bbe6 3423 // point yet - stay in phase 1. (Note that forward motion is
mjr 50:40015764bbe6 3424 // negative velocity, so accelerating means that the new
mjr 50:40015764bbe6 3425 // velocity is more negative than the previous one, which
mjr 50:40015764bbe6 3426 // is to say numerically less than - that's why the test
mjr 50:40015764bbe6 3427 // for acceleration is the seemingly backwards 'v < vprv'.)
mjr 50:40015764bbe6 3428
mjr 50:40015764bbe6 3429 // If we've been accelerating for at least 20ms, we're probably
mjr 50:40015764bbe6 3430 // really doing a release. Jump back to the recent local
mjr 50:40015764bbe6 3431 // maximum where the release *really* started. This is always
mjr 50:40015764bbe6 3432 // a bit before we started seeing sustained accleration, because
mjr 50:40015764bbe6 3433 // the plunger motion for the first few milliseconds is too slow
mjr 50:40015764bbe6 3434 // for our sensor precision to reliably detect acceleration.
mjr 50:40015764bbe6 3435 if (f1.pos != 0)
mjr 50:40015764bbe6 3436 {
mjr 50:40015764bbe6 3437 // we have a reset point - freeze there
mjr 50:40015764bbe6 3438 z = f1.pos;
mjr 50:40015764bbe6 3439 }
mjr 50:40015764bbe6 3440 else if (uint32_t(r.t - f1.t) >= 20000UL)
mjr 50:40015764bbe6 3441 {
mjr 50:40015764bbe6 3442 // it's been long enough - set a reset point.
mjr 50:40015764bbe6 3443 f1.pos = z = histLocalMax(r.t, 50000UL);
mjr 50:40015764bbe6 3444 }
mjr 50:40015764bbe6 3445 }
mjr 50:40015764bbe6 3446 else
mjr 50:40015764bbe6 3447 {
mjr 50:40015764bbe6 3448 // We're not accelerating. Cancel the firing event.
mjr 50:40015764bbe6 3449 firingMode(0);
mjr 53:9b2611964afc 3450 calState = 1;
mjr 50:40015764bbe6 3451 }
mjr 50:40015764bbe6 3452 break;
mjr 50:40015764bbe6 3453
mjr 50:40015764bbe6 3454 case 2:
mjr 50:40015764bbe6 3455 // Phase 2 - start of synthetic firing event. Report the fake
mjr 50:40015764bbe6 3456 // bounce for 25ms. VP polls the joystick about every 10ms, so
mjr 50:40015764bbe6 3457 // this should be enough time to guarantee that VP sees this
mjr 50:40015764bbe6 3458 // report at least once.
mjr 50:40015764bbe6 3459 if (uint32_t(r.t - f2.t) < 25000UL)
mjr 50:40015764bbe6 3460 {
mjr 50:40015764bbe6 3461 // report the bounce position
mjr 50:40015764bbe6 3462 z = f2.pos;
mjr 50:40015764bbe6 3463 }
mjr 50:40015764bbe6 3464 else
mjr 50:40015764bbe6 3465 {
mjr 50:40015764bbe6 3466 // it's been long enough - switch to phase 3, where we
mjr 50:40015764bbe6 3467 // report the park position until the real plunger comes
mjr 50:40015764bbe6 3468 // to rest
mjr 50:40015764bbe6 3469 firingMode(3);
mjr 50:40015764bbe6 3470 z = 0;
mjr 50:40015764bbe6 3471
mjr 50:40015764bbe6 3472 // set the start of the "stability window" to the rest position
mjr 50:40015764bbe6 3473 f3s.t = r.t;
mjr 50:40015764bbe6 3474 f3s.pos = 0;
mjr 50:40015764bbe6 3475
mjr 50:40015764bbe6 3476 // set the start of the "retraction window" to the actual position
mjr 50:40015764bbe6 3477 f3r = r;
mjr 50:40015764bbe6 3478 }
mjr 50:40015764bbe6 3479 break;
mjr 50:40015764bbe6 3480
mjr 50:40015764bbe6 3481 case 3:
mjr 50:40015764bbe6 3482 // Phase 3 - in synthetic firing event. Report the park position
mjr 50:40015764bbe6 3483 // until the plunger position stabilizes. Left to its own devices,
mjr 50:40015764bbe6 3484 // the plunger will usualy bounce off the barrel spring several
mjr 50:40015764bbe6 3485 // times before coming to rest, so we'll see oscillating motion
mjr 50:40015764bbe6 3486 // for a second or two. In the simplest case, we can aimply wait
mjr 50:40015764bbe6 3487 // for the plunger to stop moving for a short time. However, the
mjr 50:40015764bbe6 3488 // player might intervene by pulling the plunger back again, so
mjr 50:40015764bbe6 3489 // watch for that motion as well. If we're just bouncing freely,
mjr 50:40015764bbe6 3490 // we'll see the direction change frequently. If the player is
mjr 50:40015764bbe6 3491 // moving the plunger manually, the direction will be constant
mjr 50:40015764bbe6 3492 // for longer.
mjr 50:40015764bbe6 3493 if (v >= 0)
mjr 50:40015764bbe6 3494 {
mjr 50:40015764bbe6 3495 // We're moving back (or standing still). If this has been
mjr 50:40015764bbe6 3496 // going on for a while, the user must have taken control.
mjr 50:40015764bbe6 3497 if (uint32_t(r.t - f3r.t) > 65000UL)
mjr 50:40015764bbe6 3498 {
mjr 50:40015764bbe6 3499 // user has taken control - cancel firing mode
mjr 50:40015764bbe6 3500 firingMode(0);
mjr 50:40015764bbe6 3501 break;
mjr 50:40015764bbe6 3502 }
mjr 50:40015764bbe6 3503 }
mjr 50:40015764bbe6 3504 else
mjr 50:40015764bbe6 3505 {
mjr 50:40015764bbe6 3506 // forward motion - reset retraction window
mjr 50:40015764bbe6 3507 f3r.t = r.t;
mjr 50:40015764bbe6 3508 }
mjr 50:40015764bbe6 3509
mjr 53:9b2611964afc 3510 // Check if we're close to the last starting point. The joystick
mjr 53:9b2611964afc 3511 // positive axis range (0..4096) covers the retraction distance of
mjr 53:9b2611964afc 3512 // about 2.5", so 1" is about 1638 joystick units, hence 1/16" is
mjr 53:9b2611964afc 3513 // about 100 units.
mjr 53:9b2611964afc 3514 if (abs(r.pos - f3s.pos) < 100)
mjr 50:40015764bbe6 3515 {
mjr 53:9b2611964afc 3516 // It's at roughly the same position as the starting point.
mjr 53:9b2611964afc 3517 // Consider it stable if this has been true for 300ms.
mjr 50:40015764bbe6 3518 if (uint32_t(r.t - f3s.t) > 30000UL)
mjr 50:40015764bbe6 3519 {
mjr 50:40015764bbe6 3520 // we're done with the firing event
mjr 50:40015764bbe6 3521 firingMode(0);
mjr 50:40015764bbe6 3522 }
mjr 50:40015764bbe6 3523 else
mjr 50:40015764bbe6 3524 {
mjr 50:40015764bbe6 3525 // it's close to the last position but hasn't been
mjr 50:40015764bbe6 3526 // here long enough; stay in firing mode and continue
mjr 50:40015764bbe6 3527 // to report the park position
mjr 50:40015764bbe6 3528 z = 0;
mjr 50:40015764bbe6 3529 }
mjr 50:40015764bbe6 3530 }
mjr 50:40015764bbe6 3531 else
mjr 50:40015764bbe6 3532 {
mjr 50:40015764bbe6 3533 // It's not close enough to the last starting point, so use
mjr 50:40015764bbe6 3534 // this as a new starting point, and stay in firing mode.
mjr 50:40015764bbe6 3535 f3s = r;
mjr 50:40015764bbe6 3536 z = 0;
mjr 50:40015764bbe6 3537 }
mjr 50:40015764bbe6 3538 break;
mjr 50:40015764bbe6 3539 }
mjr 50:40015764bbe6 3540
mjr 50:40015764bbe6 3541 // save the velocity reading for next time
mjr 50:40015764bbe6 3542 vprv2 = vprv;
mjr 50:40015764bbe6 3543 vprv = v;
mjr 50:40015764bbe6 3544
mjr 50:40015764bbe6 3545 // add the new reading to the history
mjr 50:40015764bbe6 3546 hist[histIdx++] = r;
mjr 50:40015764bbe6 3547 histIdx %= countof(hist);
mjr 58:523fdcffbe6d 3548
mjr 69:cc5039284fac 3549 // apply the post-processing filter
mjr 69:cc5039284fac 3550 zf = applyPostFilter();
mjr 48:058ace2aed1d 3551 }
mjr 48:058ace2aed1d 3552 }
mjr 48:058ace2aed1d 3553
mjr 48:058ace2aed1d 3554 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 3555 int16_t getPosition()
mjr 58:523fdcffbe6d 3556 {
mjr 58:523fdcffbe6d 3557 // return the last filtered reading
mjr 58:523fdcffbe6d 3558 return zf;
mjr 55:4db125cd11a0 3559 }
mjr 58:523fdcffbe6d 3560
mjr 48:058ace2aed1d 3561 // Get the current velocity (joystick distance units per microsecond)
mjr 48:058ace2aed1d 3562 float getVelocity() const { return vz; }
mjr 48:058ace2aed1d 3563
mjr 48:058ace2aed1d 3564 // get the timestamp of the current joystick report (microseconds)
mjr 50:40015764bbe6 3565 uint32_t getTimestamp() const { return nthHist(0).t; }
mjr 48:058ace2aed1d 3566
mjr 48:058ace2aed1d 3567 // Set calibration mode on or off
mjr 52:8298b2a73eb2 3568 void setCalMode(bool f)
mjr 48:058ace2aed1d 3569 {
mjr 52:8298b2a73eb2 3570 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 3571 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 3572 {
mjr 52:8298b2a73eb2 3573 // reset the calibration in the configuration
mjr 48:058ace2aed1d 3574 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 3575
mjr 52:8298b2a73eb2 3576 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 3577 calState = 0;
mjr 52:8298b2a73eb2 3578 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 3579 calZeroPosN = 0;
mjr 52:8298b2a73eb2 3580 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 3581 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 3582
mjr 52:8298b2a73eb2 3583 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 3584 PlungerReading r;
mjr 52:8298b2a73eb2 3585 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 3586 {
mjr 52:8298b2a73eb2 3587 // got a reading - use it as the initial zero point
mjr 69:cc5039284fac 3588 applyPreFilter(r);
mjr 52:8298b2a73eb2 3589 cfg.plunger.cal.zero = r.pos;
mjr 52:8298b2a73eb2 3590
mjr 52:8298b2a73eb2 3591 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 3592 calZeroStart = r;
mjr 52:8298b2a73eb2 3593 }
mjr 52:8298b2a73eb2 3594 else
mjr 52:8298b2a73eb2 3595 {
mjr 52:8298b2a73eb2 3596 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 3597 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 3598
mjr 52:8298b2a73eb2 3599 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 3600 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 3601 calZeroStart.t = 0;
mjr 53:9b2611964afc 3602 }
mjr 53:9b2611964afc 3603 }
mjr 53:9b2611964afc 3604 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 3605 {
mjr 53:9b2611964afc 3606 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 3607 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 3608 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 3609 // physically meaningless.
mjr 53:9b2611964afc 3610 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 3611 {
mjr 53:9b2611964afc 3612 // bad settings - reset to defaults
mjr 53:9b2611964afc 3613 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 3614 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 3615 }
mjr 52:8298b2a73eb2 3616 }
mjr 52:8298b2a73eb2 3617
mjr 48:058ace2aed1d 3618 // remember the new mode
mjr 52:8298b2a73eb2 3619 plungerCalMode = f;
mjr 48:058ace2aed1d 3620 }
mjr 48:058ace2aed1d 3621
mjr 48:058ace2aed1d 3622 // is a firing event in progress?
mjr 53:9b2611964afc 3623 bool isFiring() { return firing == 3; }
mjr 48:058ace2aed1d 3624
mjr 48:058ace2aed1d 3625 private:
mjr 52:8298b2a73eb2 3626
mjr 69:cc5039284fac 3627 #if 1
mjr 69:cc5039284fac 3628 // Disable all filtering
mjr 69:cc5039284fac 3629 void applyPreFilter(PlungerReading &r) { }
mjr 69:cc5039284fac 3630 int applyPostFilter() { return z; }
mjr 69:cc5039284fac 3631 #elif 1
mjr 69:cc5039284fac 3632 // Apply pre-processing filter. This filter is applied to the raw
mjr 69:cc5039284fac 3633 // value coming off the sensor, before calibration or fire-event
mjr 69:cc5039284fac 3634 // processing.
mjr 69:cc5039284fac 3635 void applyPreFilter(PlungerReading &r)
mjr 69:cc5039284fac 3636 {
mjr 69:cc5039284fac 3637 // get the previous raw reading
mjr 69:cc5039284fac 3638 PlungerReading prv = pre.raw;
mjr 69:cc5039284fac 3639
mjr 69:cc5039284fac 3640 // the new reading is the previous raw reading next time, no
mjr 69:cc5039284fac 3641 // matter how we end up filtering it
mjr 69:cc5039284fac 3642 pre.raw = r;
mjr 69:cc5039284fac 3643
mjr 69:cc5039284fac 3644 // If it's too big an excursion from the previous raw reading,
mjr 69:cc5039284fac 3645 // ignore it and repeat the previous reported reading. This
mjr 69:cc5039284fac 3646 // filters out anomalous spikes where we suddenly jump to a
mjr 69:cc5039284fac 3647 // level that's too far away to be possible. Real plungers
mjr 69:cc5039284fac 3648 // take about 60ms to travel the full distance when released,
mjr 69:cc5039284fac 3649 // so assuming constant acceleration, the maximum realistic
mjr 69:cc5039284fac 3650 // speed is about 2.200 distance units (on our 0..0xffff scale)
mjr 69:cc5039284fac 3651 // per microsecond.
mjr 69:cc5039284fac 3652 //
mjr 69:cc5039284fac 3653 // On the other hand, if the new reading is too *close* to the
mjr 69:cc5039284fac 3654 // previous reading, use the previous reported reading. This
mjr 69:cc5039284fac 3655 // filters out jitter around a stationary position.
mjr 69:cc5039284fac 3656 const float maxDist = 2.184f*uint32_t(r.t - prv.t);
mjr 69:cc5039284fac 3657 const int minDist = 256;
mjr 69:cc5039284fac 3658 const int delta = abs(r.pos - prv.pos);
mjr 69:cc5039284fac 3659 if (maxDist > minDist && delta > maxDist)
mjr 69:cc5039284fac 3660 {
mjr 69:cc5039284fac 3661 // too big an excursion - discard this reading by reporting
mjr 69:cc5039284fac 3662 // the last reported reading instead
mjr 69:cc5039284fac 3663 r.pos = pre.reported;
mjr 69:cc5039284fac 3664 }
mjr 69:cc5039284fac 3665 else if (delta < minDist)
mjr 69:cc5039284fac 3666 {
mjr 69:cc5039284fac 3667 // too close to the prior reading - apply hysteresis
mjr 69:cc5039284fac 3668 r.pos = pre.reported;
mjr 69:cc5039284fac 3669 }
mjr 69:cc5039284fac 3670 else
mjr 69:cc5039284fac 3671 {
mjr 69:cc5039284fac 3672 // the reading is in range - keep it, and remember it as
mjr 69:cc5039284fac 3673 // the last reported reading
mjr 69:cc5039284fac 3674 pre.reported = r.pos;
mjr 69:cc5039284fac 3675 }
mjr 69:cc5039284fac 3676 }
mjr 69:cc5039284fac 3677
mjr 69:cc5039284fac 3678 // pre-filter data
mjr 69:cc5039284fac 3679 struct PreFilterData {
mjr 69:cc5039284fac 3680 PreFilterData()
mjr 69:cc5039284fac 3681 : reported(0)
mjr 69:cc5039284fac 3682 {
mjr 69:cc5039284fac 3683 raw.t = 0;
mjr 69:cc5039284fac 3684 raw.pos = 0;
mjr 69:cc5039284fac 3685 }
mjr 69:cc5039284fac 3686 PlungerReading raw; // previous raw sensor reading
mjr 69:cc5039284fac 3687 int reported; // previous reported reading
mjr 69:cc5039284fac 3688 } pre;
mjr 69:cc5039284fac 3689
mjr 69:cc5039284fac 3690
mjr 69:cc5039284fac 3691 // Apply the post-processing filter. This filter is applied after
mjr 69:cc5039284fac 3692 // the fire-event processing. In the past, this used hysteresis to
mjr 69:cc5039284fac 3693 // try to smooth out jittering readings for a stationary plunger.
mjr 69:cc5039284fac 3694 // We've switched to a different approach that massages the readings
mjr 69:cc5039284fac 3695 // coming off the sensor before
mjr 69:cc5039284fac 3696 int applyPostFilter()
mjr 69:cc5039284fac 3697 {
mjr 69:cc5039284fac 3698 return z;
mjr 69:cc5039284fac 3699 }
mjr 69:cc5039284fac 3700 #else
mjr 69:cc5039284fac 3701 // Apply pre-processing filter. This filter is applied to the raw
mjr 69:cc5039284fac 3702 // value coming off the sensor, before calibration or fire-event
mjr 69:cc5039284fac 3703 // processing.
mjr 69:cc5039284fac 3704 void applyPreFilter(PlungerReading &r)
mjr 69:cc5039284fac 3705 {
mjr 69:cc5039284fac 3706 }
mjr 69:cc5039284fac 3707
mjr 69:cc5039284fac 3708 // Figure the next post-processing filtered value. This applies a
mjr 69:cc5039284fac 3709 // hysteresis filter to the last raw z value and returns the
mjr 69:cc5039284fac 3710 // filtered result.
mjr 69:cc5039284fac 3711 int applyPostFilter()
mjr 58:523fdcffbe6d 3712 {
mjr 58:523fdcffbe6d 3713 if (firing <= 1)
mjr 58:523fdcffbe6d 3714 {
mjr 58:523fdcffbe6d 3715 // Filter limit - 5 samples. Once we've been moving
mjr 58:523fdcffbe6d 3716 // in the same direction for this many samples, we'll
mjr 58:523fdcffbe6d 3717 // clear the history and start over.
mjr 58:523fdcffbe6d 3718 const int filterMask = 0x1f;
mjr 58:523fdcffbe6d 3719
mjr 58:523fdcffbe6d 3720 // figure the last average
mjr 58:523fdcffbe6d 3721 int lastAvg = int(filterSum / filterN);
mjr 58:523fdcffbe6d 3722
mjr 58:523fdcffbe6d 3723 // figure the direction of this sample relative to the average,
mjr 58:523fdcffbe6d 3724 // and shift it in to our bit mask of recent direction data
mjr 58:523fdcffbe6d 3725 if (z != lastAvg)
mjr 58:523fdcffbe6d 3726 {
mjr 58:523fdcffbe6d 3727 // shift the new direction bit into the vector
mjr 58:523fdcffbe6d 3728 filterDir <<= 1;
mjr 58:523fdcffbe6d 3729 if (z > lastAvg) filterDir |= 1;
mjr 58:523fdcffbe6d 3730 }
mjr 58:523fdcffbe6d 3731
mjr 58:523fdcffbe6d 3732 // keep only the last N readings, up to the filter limit
mjr 58:523fdcffbe6d 3733 filterDir &= filterMask;
mjr 58:523fdcffbe6d 3734
mjr 58:523fdcffbe6d 3735 // if we've been moving consistently in one direction (all 1's
mjr 58:523fdcffbe6d 3736 // or all 0's in the direction history vector), reset the average
mjr 58:523fdcffbe6d 3737 if (filterDir == 0x00 || filterDir == filterMask)
mjr 58:523fdcffbe6d 3738 {
mjr 58:523fdcffbe6d 3739 // motion away from the average - reset the average
mjr 58:523fdcffbe6d 3740 filterDir = 0x5555;
mjr 58:523fdcffbe6d 3741 filterN = 1;
mjr 58:523fdcffbe6d 3742 filterSum = (lastAvg + z)/2;
mjr 58:523fdcffbe6d 3743 return int16_t(filterSum);
mjr 58:523fdcffbe6d 3744 }
mjr 58:523fdcffbe6d 3745 else
mjr 58:523fdcffbe6d 3746 {
mjr 69:cc5039284fac 3747 // we're directionless - return the new average, with the
mjr 58:523fdcffbe6d 3748 // new sample included
mjr 58:523fdcffbe6d 3749 filterSum += z;
mjr 58:523fdcffbe6d 3750 ++filterN;
mjr 58:523fdcffbe6d 3751 return int16_t(filterSum / filterN);
mjr 58:523fdcffbe6d 3752 }
mjr 58:523fdcffbe6d 3753 }
mjr 58:523fdcffbe6d 3754 else
mjr 58:523fdcffbe6d 3755 {
mjr 58:523fdcffbe6d 3756 // firing mode - skip the filter
mjr 58:523fdcffbe6d 3757 filterN = 1;
mjr 58:523fdcffbe6d 3758 filterSum = z;
mjr 58:523fdcffbe6d 3759 filterDir = 0x5555;
mjr 58:523fdcffbe6d 3760 return z;
mjr 58:523fdcffbe6d 3761 }
mjr 58:523fdcffbe6d 3762 }
mjr 69:cc5039284fac 3763 #endif
mjr 58:523fdcffbe6d 3764
mjr 58:523fdcffbe6d 3765 void initFilter()
mjr 58:523fdcffbe6d 3766 {
mjr 58:523fdcffbe6d 3767 filterSum = 0;
mjr 58:523fdcffbe6d 3768 filterN = 1;
mjr 58:523fdcffbe6d 3769 filterDir = 0x5555;
mjr 58:523fdcffbe6d 3770 }
mjr 58:523fdcffbe6d 3771 int64_t filterSum;
mjr 58:523fdcffbe6d 3772 int64_t filterN;
mjr 58:523fdcffbe6d 3773 uint16_t filterDir;
mjr 58:523fdcffbe6d 3774
mjr 58:523fdcffbe6d 3775
mjr 52:8298b2a73eb2 3776 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 3777 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 3778 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 3779 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 3780 // 0 = waiting to settle
mjr 52:8298b2a73eb2 3781 // 1 = at rest
mjr 52:8298b2a73eb2 3782 // 2 = retracting
mjr 52:8298b2a73eb2 3783 // 3 = possibly releasing
mjr 52:8298b2a73eb2 3784 uint8_t calState;
mjr 52:8298b2a73eb2 3785
mjr 52:8298b2a73eb2 3786 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 3787 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 3788 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 3789 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 3790 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 3791 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 3792 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 3793 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 3794 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 3795 long calZeroPosSum;
mjr 52:8298b2a73eb2 3796 int calZeroPosN;
mjr 52:8298b2a73eb2 3797
mjr 52:8298b2a73eb2 3798 // Calibration release time statistics.
mjr 52:8298b2a73eb2 3799 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 3800 long calRlsTimeSum;
mjr 52:8298b2a73eb2 3801 int calRlsTimeN;
mjr 52:8298b2a73eb2 3802
mjr 48:058ace2aed1d 3803 // set a firing mode
mjr 48:058ace2aed1d 3804 inline void firingMode(int m)
mjr 48:058ace2aed1d 3805 {
mjr 48:058ace2aed1d 3806 firing = m;
mjr 48:058ace2aed1d 3807 }
mjr 48:058ace2aed1d 3808
mjr 48:058ace2aed1d 3809 // Find the most recent local maximum in the history data, up to
mjr 48:058ace2aed1d 3810 // the given time limit.
mjr 48:058ace2aed1d 3811 int histLocalMax(uint32_t tcur, uint32_t dt)
mjr 48:058ace2aed1d 3812 {
mjr 48:058ace2aed1d 3813 // start with the prior entry
mjr 48:058ace2aed1d 3814 int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1;
mjr 48:058ace2aed1d 3815 int hi = hist[idx].pos;
mjr 48:058ace2aed1d 3816
mjr 48:058ace2aed1d 3817 // scan backwards for a local maximum
mjr 48:058ace2aed1d 3818 for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1)
mjr 48:058ace2aed1d 3819 {
mjr 48:058ace2aed1d 3820 // if this isn't within the time window, stop
mjr 48:058ace2aed1d 3821 if (uint32_t(tcur - hist[idx].t) > dt)
mjr 48:058ace2aed1d 3822 break;
mjr 48:058ace2aed1d 3823
mjr 48:058ace2aed1d 3824 // if this isn't above the current hith, stop
mjr 48:058ace2aed1d 3825 if (hist[idx].pos < hi)
mjr 48:058ace2aed1d 3826 break;
mjr 48:058ace2aed1d 3827
mjr 48:058ace2aed1d 3828 // this is the new high
mjr 48:058ace2aed1d 3829 hi = hist[idx].pos;
mjr 48:058ace2aed1d 3830 }
mjr 48:058ace2aed1d 3831
mjr 48:058ace2aed1d 3832 // return the local maximum
mjr 48:058ace2aed1d 3833 return hi;
mjr 48:058ace2aed1d 3834 }
mjr 48:058ace2aed1d 3835
mjr 50:40015764bbe6 3836 // velocity at previous reading, and the one before that
mjr 50:40015764bbe6 3837 float vprv, vprv2;
mjr 48:058ace2aed1d 3838
mjr 48:058ace2aed1d 3839 // Circular buffer of recent readings. We keep a short history
mjr 48:058ace2aed1d 3840 // of readings to analyze during firing events. We can only identify
mjr 48:058ace2aed1d 3841 // a firing event once it's somewhat under way, so we need a little
mjr 48:058ace2aed1d 3842 // retrospective information to accurately determine after the fact
mjr 48:058ace2aed1d 3843 // exactly when it started. We throttle our readings to no more
mjr 48:058ace2aed1d 3844 // than one every 2ms, so we have at least N*2ms of history in this
mjr 48:058ace2aed1d 3845 // array.
mjr 50:40015764bbe6 3846 PlungerReading hist[25];
mjr 48:058ace2aed1d 3847 int histIdx;
mjr 49:37bd97eb7688 3848
mjr 50:40015764bbe6 3849 // get the nth history item (0=last, 1=2nd to last, etc)
mjr 50:40015764bbe6 3850 const PlungerReading &nthHist(int n) const
mjr 50:40015764bbe6 3851 {
mjr 50:40015764bbe6 3852 // histIdx-1 is the last written; go from there
mjr 50:40015764bbe6 3853 n = histIdx - 1 - n;
mjr 50:40015764bbe6 3854
mjr 50:40015764bbe6 3855 // adjust for wrapping
mjr 50:40015764bbe6 3856 if (n < 0)
mjr 50:40015764bbe6 3857 n += countof(hist);
mjr 50:40015764bbe6 3858
mjr 50:40015764bbe6 3859 // return the item
mjr 50:40015764bbe6 3860 return hist[n];
mjr 50:40015764bbe6 3861 }
mjr 48:058ace2aed1d 3862
mjr 48:058ace2aed1d 3863 // Firing event state.
mjr 48:058ace2aed1d 3864 //
mjr 48:058ace2aed1d 3865 // 0 - Default state. We report the real instantaneous plunger
mjr 48:058ace2aed1d 3866 // position to the joystick interface.
mjr 48:058ace2aed1d 3867 //
mjr 53:9b2611964afc 3868 // 1 - Moving forward
mjr 48:058ace2aed1d 3869 //
mjr 53:9b2611964afc 3870 // 2 - Accelerating
mjr 48:058ace2aed1d 3871 //
mjr 53:9b2611964afc 3872 // 3 - Firing. We report the rest position for a minimum interval,
mjr 53:9b2611964afc 3873 // or until the real plunger comes to rest somewhere.
mjr 48:058ace2aed1d 3874 //
mjr 48:058ace2aed1d 3875 int firing;
mjr 48:058ace2aed1d 3876
mjr 51:57eb311faafa 3877 // Position/timestamp at start of firing phase 1. When we see a
mjr 51:57eb311faafa 3878 // sustained forward acceleration, we freeze joystick reports at
mjr 51:57eb311faafa 3879 // the recent local maximum, on the assumption that this was the
mjr 51:57eb311faafa 3880 // start of the release. If this is zero, it means that we're
mjr 51:57eb311faafa 3881 // monitoring accelerating motion but haven't seen it for long
mjr 51:57eb311faafa 3882 // enough yet to be confident that a release is in progress.
mjr 48:058ace2aed1d 3883 PlungerReading f1;
mjr 48:058ace2aed1d 3884
mjr 48:058ace2aed1d 3885 // Position/timestamp at start of firing phase 2. The position is
mjr 48:058ace2aed1d 3886 // the fake "bounce" position we report during this phase, and the
mjr 48:058ace2aed1d 3887 // timestamp tells us when the phase began so that we can end it
mjr 48:058ace2aed1d 3888 // after enough time elapses.
mjr 48:058ace2aed1d 3889 PlungerReading f2;
mjr 48:058ace2aed1d 3890
mjr 48:058ace2aed1d 3891 // Position/timestamp of start of stability window during phase 3.
mjr 48:058ace2aed1d 3892 // We use this to determine when the plunger comes to rest. We set
mjr 51:57eb311faafa 3893 // this at the beginning of phase 3, and then reset it when the
mjr 48:058ace2aed1d 3894 // plunger moves too far from the last position.
mjr 48:058ace2aed1d 3895 PlungerReading f3s;
mjr 48:058ace2aed1d 3896
mjr 48:058ace2aed1d 3897 // Position/timestamp of start of retraction window during phase 3.
mjr 48:058ace2aed1d 3898 // We use this to determine if the user is drawing the plunger back.
mjr 48:058ace2aed1d 3899 // If we see retraction motion for more than about 65ms, we assume
mjr 48:058ace2aed1d 3900 // that the user has taken over, because we should see forward
mjr 48:058ace2aed1d 3901 // motion within this timeframe if the plunger is just bouncing
mjr 48:058ace2aed1d 3902 // freely.
mjr 48:058ace2aed1d 3903 PlungerReading f3r;
mjr 48:058ace2aed1d 3904
mjr 58:523fdcffbe6d 3905 // next raw (unfiltered) Z value to report to the joystick interface
mjr 58:523fdcffbe6d 3906 // (in joystick distance units)
mjr 48:058ace2aed1d 3907 int z;
mjr 48:058ace2aed1d 3908
mjr 48:058ace2aed1d 3909 // velocity of this reading (joystick distance units per microsecond)
mjr 48:058ace2aed1d 3910 float vz;
mjr 58:523fdcffbe6d 3911
mjr 58:523fdcffbe6d 3912 // next filtered Z value to report to the joystick interface
mjr 58:523fdcffbe6d 3913 int zf;
mjr 48:058ace2aed1d 3914 };
mjr 48:058ace2aed1d 3915
mjr 48:058ace2aed1d 3916 // plunger reader singleton
mjr 48:058ace2aed1d 3917 PlungerReader plungerReader;
mjr 48:058ace2aed1d 3918
mjr 48:058ace2aed1d 3919 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 3920 //
mjr 48:058ace2aed1d 3921 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 3922 //
mjr 48:058ace2aed1d 3923 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 3924 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 3925 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 3926 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 3927 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 3928 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 3929 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 3930 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 3931 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 3932 //
mjr 48:058ace2aed1d 3933 // This feature has two configuration components:
mjr 48:058ace2aed1d 3934 //
mjr 48:058ace2aed1d 3935 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 3936 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 3937 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 3938 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 3939 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 3940 // plunger/launch button connection.
mjr 48:058ace2aed1d 3941 //
mjr 48:058ace2aed1d 3942 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 3943 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 3944 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 3945 // position.
mjr 48:058ace2aed1d 3946 //
mjr 48:058ace2aed1d 3947 class ZBLaunchBall
mjr 48:058ace2aed1d 3948 {
mjr 48:058ace2aed1d 3949 public:
mjr 48:058ace2aed1d 3950 ZBLaunchBall()
mjr 48:058ace2aed1d 3951 {
mjr 48:058ace2aed1d 3952 // start in the default state
mjr 48:058ace2aed1d 3953 lbState = 0;
mjr 53:9b2611964afc 3954 btnState = false;
mjr 48:058ace2aed1d 3955 }
mjr 48:058ace2aed1d 3956
mjr 48:058ace2aed1d 3957 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 3958 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 3959 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 3960 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 3961 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 3962 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 3963 void update()
mjr 48:058ace2aed1d 3964 {
mjr 53:9b2611964afc 3965 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 3966 // plunger firing event
mjr 53:9b2611964afc 3967 if (zbLaunchOn)
mjr 48:058ace2aed1d 3968 {
mjr 53:9b2611964afc 3969 // note the new position
mjr 48:058ace2aed1d 3970 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 3971
mjr 53:9b2611964afc 3972 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 3973 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 3974
mjr 53:9b2611964afc 3975 // check the state
mjr 48:058ace2aed1d 3976 switch (lbState)
mjr 48:058ace2aed1d 3977 {
mjr 48:058ace2aed1d 3978 case 0:
mjr 53:9b2611964afc 3979 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 3980 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 3981 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 3982 // the button.
mjr 53:9b2611964afc 3983 if (plungerReader.isFiring())
mjr 53:9b2611964afc 3984 {
mjr 53:9b2611964afc 3985 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 3986 lbTimer.reset();
mjr 53:9b2611964afc 3987 lbTimer.start();
mjr 53:9b2611964afc 3988 setButton(true);
mjr 53:9b2611964afc 3989
mjr 53:9b2611964afc 3990 // switch to state 1
mjr 53:9b2611964afc 3991 lbState = 1;
mjr 53:9b2611964afc 3992 }
mjr 48:058ace2aed1d 3993 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 3994 {
mjr 53:9b2611964afc 3995 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 3996 // button as long as we're pushed forward
mjr 53:9b2611964afc 3997 setButton(true);
mjr 53:9b2611964afc 3998 }
mjr 53:9b2611964afc 3999 else
mjr 53:9b2611964afc 4000 {
mjr 53:9b2611964afc 4001 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 4002 setButton(false);
mjr 53:9b2611964afc 4003 }
mjr 48:058ace2aed1d 4004 break;
mjr 48:058ace2aed1d 4005
mjr 48:058ace2aed1d 4006 case 1:
mjr 53:9b2611964afc 4007 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 4008 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 4009 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 4010 {
mjr 53:9b2611964afc 4011 // timer expired - turn off the button
mjr 53:9b2611964afc 4012 setButton(false);
mjr 53:9b2611964afc 4013
mjr 53:9b2611964afc 4014 // switch to state 2
mjr 53:9b2611964afc 4015 lbState = 2;
mjr 53:9b2611964afc 4016 }
mjr 48:058ace2aed1d 4017 break;
mjr 48:058ace2aed1d 4018
mjr 48:058ace2aed1d 4019 case 2:
mjr 53:9b2611964afc 4020 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 4021 // plunger launch event to end.
mjr 53:9b2611964afc 4022 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 4023 {
mjr 53:9b2611964afc 4024 // firing event done - return to default state
mjr 53:9b2611964afc 4025 lbState = 0;
mjr 53:9b2611964afc 4026 }
mjr 48:058ace2aed1d 4027 break;
mjr 48:058ace2aed1d 4028 }
mjr 53:9b2611964afc 4029 }
mjr 53:9b2611964afc 4030 else
mjr 53:9b2611964afc 4031 {
mjr 53:9b2611964afc 4032 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 4033 setButton(false);
mjr 48:058ace2aed1d 4034
mjr 53:9b2611964afc 4035 // return to the default state
mjr 53:9b2611964afc 4036 lbState = 0;
mjr 48:058ace2aed1d 4037 }
mjr 48:058ace2aed1d 4038 }
mjr 53:9b2611964afc 4039
mjr 53:9b2611964afc 4040 // Set the button state
mjr 53:9b2611964afc 4041 void setButton(bool on)
mjr 53:9b2611964afc 4042 {
mjr 53:9b2611964afc 4043 if (btnState != on)
mjr 53:9b2611964afc 4044 {
mjr 53:9b2611964afc 4045 // remember the new state
mjr 53:9b2611964afc 4046 btnState = on;
mjr 53:9b2611964afc 4047
mjr 53:9b2611964afc 4048 // update the virtual button state
mjr 65:739875521aae 4049 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 4050 }
mjr 53:9b2611964afc 4051 }
mjr 53:9b2611964afc 4052
mjr 48:058ace2aed1d 4053 private:
mjr 48:058ace2aed1d 4054 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 4055 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 4056 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 4057 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 4058 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 4059 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 4060 //
mjr 48:058ace2aed1d 4061 // States:
mjr 48:058ace2aed1d 4062 // 0 = default
mjr 53:9b2611964afc 4063 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 4064 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 4065 // firing event to end)
mjr 53:9b2611964afc 4066 uint8_t lbState;
mjr 48:058ace2aed1d 4067
mjr 53:9b2611964afc 4068 // button state
mjr 53:9b2611964afc 4069 bool btnState;
mjr 48:058ace2aed1d 4070
mjr 48:058ace2aed1d 4071 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 4072 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 4073 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 4074 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 4075 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 4076 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 4077 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 4078 Timer lbTimer;
mjr 48:058ace2aed1d 4079 };
mjr 48:058ace2aed1d 4080
mjr 35:e959ffba78fd 4081 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4082 //
mjr 35:e959ffba78fd 4083 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 4084 //
mjr 54:fd77a6b2f76c 4085 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 4086 {
mjr 35:e959ffba78fd 4087 // disconnect from USB
mjr 54:fd77a6b2f76c 4088 if (disconnect)
mjr 54:fd77a6b2f76c 4089 js.disconnect();
mjr 35:e959ffba78fd 4090
mjr 35:e959ffba78fd 4091 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 4092 wait_us(pause_us);
mjr 35:e959ffba78fd 4093
mjr 35:e959ffba78fd 4094 // reset the device
mjr 35:e959ffba78fd 4095 NVIC_SystemReset();
mjr 35:e959ffba78fd 4096 while (true) { }
mjr 35:e959ffba78fd 4097 }
mjr 35:e959ffba78fd 4098
mjr 35:e959ffba78fd 4099 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4100 //
mjr 35:e959ffba78fd 4101 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 4102 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 4103 //
mjr 35:e959ffba78fd 4104 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 4105 {
mjr 35:e959ffba78fd 4106 int tmp;
mjr 35:e959ffba78fd 4107 switch (cfg.orientation)
mjr 35:e959ffba78fd 4108 {
mjr 35:e959ffba78fd 4109 case OrientationFront:
mjr 35:e959ffba78fd 4110 tmp = x;
mjr 35:e959ffba78fd 4111 x = y;
mjr 35:e959ffba78fd 4112 y = tmp;
mjr 35:e959ffba78fd 4113 break;
mjr 35:e959ffba78fd 4114
mjr 35:e959ffba78fd 4115 case OrientationLeft:
mjr 35:e959ffba78fd 4116 x = -x;
mjr 35:e959ffba78fd 4117 break;
mjr 35:e959ffba78fd 4118
mjr 35:e959ffba78fd 4119 case OrientationRight:
mjr 35:e959ffba78fd 4120 y = -y;
mjr 35:e959ffba78fd 4121 break;
mjr 35:e959ffba78fd 4122
mjr 35:e959ffba78fd 4123 case OrientationRear:
mjr 35:e959ffba78fd 4124 tmp = -x;
mjr 35:e959ffba78fd 4125 x = -y;
mjr 35:e959ffba78fd 4126 y = tmp;
mjr 35:e959ffba78fd 4127 break;
mjr 35:e959ffba78fd 4128 }
mjr 35:e959ffba78fd 4129 }
mjr 35:e959ffba78fd 4130
mjr 35:e959ffba78fd 4131 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4132 //
mjr 35:e959ffba78fd 4133 // Calibration button state:
mjr 35:e959ffba78fd 4134 // 0 = not pushed
mjr 35:e959ffba78fd 4135 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 4136 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 4137 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 4138 int calBtnState = 0;
mjr 35:e959ffba78fd 4139
mjr 35:e959ffba78fd 4140 // calibration button debounce timer
mjr 35:e959ffba78fd 4141 Timer calBtnTimer;
mjr 35:e959ffba78fd 4142
mjr 35:e959ffba78fd 4143 // calibration button light state
mjr 35:e959ffba78fd 4144 int calBtnLit = false;
mjr 35:e959ffba78fd 4145
mjr 35:e959ffba78fd 4146
mjr 35:e959ffba78fd 4147 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4148 //
mjr 40:cc0d9814522b 4149 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 4150 //
mjr 40:cc0d9814522b 4151
mjr 40:cc0d9814522b 4152 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 4153 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 4154 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 4155 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 53:9b2611964afc 4156 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 4157 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 40:cc0d9814522b 4158 #define v_func configVarSet
mjr 40:cc0d9814522b 4159 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 4160
mjr 40:cc0d9814522b 4161 // redefine everything for the SET messages
mjr 40:cc0d9814522b 4162 #undef if_msg_valid
mjr 40:cc0d9814522b 4163 #undef v_byte
mjr 40:cc0d9814522b 4164 #undef v_ui16
mjr 40:cc0d9814522b 4165 #undef v_pin
mjr 53:9b2611964afc 4166 #undef v_byte_ro
mjr 40:cc0d9814522b 4167 #undef v_func
mjr 38:091e511ce8a0 4168
mjr 40:cc0d9814522b 4169 // Handle GET messages - read variable values and return in USB message daa
mjr 40:cc0d9814522b 4170 #define if_msg_valid(test)
mjr 53:9b2611964afc 4171 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 4172 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 4173 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 4174 #define v_byte_ro(val, ofs) data[ofs] = val
mjr 40:cc0d9814522b 4175 #define v_func configVarGet
mjr 40:cc0d9814522b 4176 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 4177
mjr 35:e959ffba78fd 4178
mjr 35:e959ffba78fd 4179 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4180 //
mjr 35:e959ffba78fd 4181 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 4182 // LedWiz protocol.
mjr 33:d832bcab089e 4183 //
mjr 48:058ace2aed1d 4184 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js)
mjr 35:e959ffba78fd 4185 {
mjr 38:091e511ce8a0 4186 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 4187 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 4188 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 4189 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 4190 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 4191 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 4192 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 4193 // So our full protocol is as follows:
mjr 38:091e511ce8a0 4194 //
mjr 38:091e511ce8a0 4195 // first byte =
mjr 38:091e511ce8a0 4196 // 0-48 -> LWZ-PBA
mjr 38:091e511ce8a0 4197 // 64 -> LWZ SBA
mjr 38:091e511ce8a0 4198 // 65 -> private control message; second byte specifies subtype
mjr 38:091e511ce8a0 4199 // 129-132 -> LWZ-PBA
mjr 38:091e511ce8a0 4200 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 4201 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 4202 // other -> reserved for future use
mjr 38:091e511ce8a0 4203 //
mjr 39:b3815a1c3802 4204 uint8_t *data = lwm.data;
mjr 38:091e511ce8a0 4205 if (data[0] == 64)
mjr 35:e959ffba78fd 4206 {
mjr 38:091e511ce8a0 4207 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 38:091e511ce8a0 4208 // for the outputs; 5th byte is the pulse speed (1-7)
mjr 38:091e511ce8a0 4209 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 38:091e511ce8a0 4210 // data[1], data[2], data[3], data[4], data[5]);
mjr 38:091e511ce8a0 4211
mjr 63:5cd1a5f3a41b 4212 // switch to LedWiz protocol mode
mjr 63:5cd1a5f3a41b 4213 ledWizMode = true;
mjr 63:5cd1a5f3a41b 4214
mjr 38:091e511ce8a0 4215 // update all on/off states
mjr 38:091e511ce8a0 4216 for (int i = 0, bit = 1, ri = 1 ; i < numLwOutputs ; ++i, bit <<= 1)
mjr 35:e959ffba78fd 4217 {
mjr 38:091e511ce8a0 4218 // figure the on/off state bit for this output
mjr 38:091e511ce8a0 4219 if (bit == 0x100) {
mjr 38:091e511ce8a0 4220 bit = 1;
mjr 38:091e511ce8a0 4221 ++ri;
mjr 35:e959ffba78fd 4222 }
mjr 35:e959ffba78fd 4223
mjr 38:091e511ce8a0 4224 // set the on/off state
mjr 38:091e511ce8a0 4225 wizOn[i] = ((data[ri] & bit) != 0);
mjr 38:091e511ce8a0 4226 }
mjr 38:091e511ce8a0 4227
mjr 38:091e511ce8a0 4228 // set the flash speed - enforce the value range 1-7
mjr 38:091e511ce8a0 4229 wizSpeed = data[5];
mjr 38:091e511ce8a0 4230 if (wizSpeed < 1)
mjr 38:091e511ce8a0 4231 wizSpeed = 1;
mjr 38:091e511ce8a0 4232 else if (wizSpeed > 7)
mjr 38:091e511ce8a0 4233 wizSpeed = 7;
mjr 38:091e511ce8a0 4234
mjr 38:091e511ce8a0 4235 // update the physical outputs
mjr 38:091e511ce8a0 4236 updateWizOuts();
mjr 38:091e511ce8a0 4237 if (hc595 != 0)
mjr 38:091e511ce8a0 4238 hc595->update();
mjr 38:091e511ce8a0 4239
mjr 38:091e511ce8a0 4240 // reset the PBA counter
mjr 38:091e511ce8a0 4241 pbaIdx = 0;
mjr 38:091e511ce8a0 4242 }
mjr 38:091e511ce8a0 4243 else if (data[0] == 65)
mjr 38:091e511ce8a0 4244 {
mjr 38:091e511ce8a0 4245 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 4246 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 4247 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 4248 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 4249 // message type.
mjr 39:b3815a1c3802 4250 switch (data[1])
mjr 38:091e511ce8a0 4251 {
mjr 39:b3815a1c3802 4252 case 0:
mjr 39:b3815a1c3802 4253 // No Op
mjr 39:b3815a1c3802 4254 break;
mjr 39:b3815a1c3802 4255
mjr 39:b3815a1c3802 4256 case 1:
mjr 38:091e511ce8a0 4257 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 4258 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 4259 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 4260 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 4261 {
mjr 39:b3815a1c3802 4262
mjr 39:b3815a1c3802 4263 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 4264 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 4265 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 4266
mjr 39:b3815a1c3802 4267 // we'll need a reset if the LedWiz unit number is changing
mjr 39:b3815a1c3802 4268 bool needReset = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 4269
mjr 39:b3815a1c3802 4270 // set the configuration parameters from the message
mjr 39:b3815a1c3802 4271 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 4272 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 4273
mjr 39:b3815a1c3802 4274 // save the configuration
mjr 39:b3815a1c3802 4275 saveConfigToFlash();
mjr 39:b3815a1c3802 4276
mjr 39:b3815a1c3802 4277 // reboot if necessary
mjr 39:b3815a1c3802 4278 if (needReset)
mjr 39:b3815a1c3802 4279 reboot(js);
mjr 39:b3815a1c3802 4280 }
mjr 39:b3815a1c3802 4281 break;
mjr 38:091e511ce8a0 4282
mjr 39:b3815a1c3802 4283 case 2:
mjr 38:091e511ce8a0 4284 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 4285 // (No parameters)
mjr 38:091e511ce8a0 4286
mjr 38:091e511ce8a0 4287 // enter calibration mode
mjr 38:091e511ce8a0 4288 calBtnState = 3;
mjr 52:8298b2a73eb2 4289 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 4290 calBtnTimer.reset();
mjr 39:b3815a1c3802 4291 break;
mjr 39:b3815a1c3802 4292
mjr 39:b3815a1c3802 4293 case 3:
mjr 52:8298b2a73eb2 4294 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 4295 // data[2] = flag bits
mjr 53:9b2611964afc 4296 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 4297 reportPlungerStat = true;
mjr 53:9b2611964afc 4298 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 4299 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 4300
mjr 38:091e511ce8a0 4301 // show purple until we finish sending the report
mjr 38:091e511ce8a0 4302 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 4303 break;
mjr 39:b3815a1c3802 4304
mjr 39:b3815a1c3802 4305 case 4:
mjr 38:091e511ce8a0 4306 // 4 = hardware configuration query
mjr 38:091e511ce8a0 4307 // (No parameters)
mjr 38:091e511ce8a0 4308 js.reportConfig(
mjr 38:091e511ce8a0 4309 numOutputs,
mjr 38:091e511ce8a0 4310 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 4311 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 40:cc0d9814522b 4312 nvm.valid());
mjr 39:b3815a1c3802 4313 break;
mjr 39:b3815a1c3802 4314
mjr 39:b3815a1c3802 4315 case 5:
mjr 38:091e511ce8a0 4316 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 4317 allOutputsOff();
mjr 39:b3815a1c3802 4318 break;
mjr 39:b3815a1c3802 4319
mjr 39:b3815a1c3802 4320 case 6:
mjr 38:091e511ce8a0 4321 // 6 = Save configuration to flash.
mjr 38:091e511ce8a0 4322 saveConfigToFlash();
mjr 38:091e511ce8a0 4323
mjr 53:9b2611964afc 4324 // before disconnecting, pause for the delay time specified in
mjr 53:9b2611964afc 4325 // the parameter byte (in seconds)
mjr 53:9b2611964afc 4326 rebootTime_us = data[2] * 1000000L;
mjr 53:9b2611964afc 4327 rebootTimer.start();
mjr 39:b3815a1c3802 4328 break;
mjr 40:cc0d9814522b 4329
mjr 40:cc0d9814522b 4330 case 7:
mjr 40:cc0d9814522b 4331 // 7 = Device ID report
mjr 53:9b2611964afc 4332 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 4333 js.reportID(data[2]);
mjr 40:cc0d9814522b 4334 break;
mjr 40:cc0d9814522b 4335
mjr 40:cc0d9814522b 4336 case 8:
mjr 40:cc0d9814522b 4337 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 4338 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 4339 setNightMode(data[2]);
mjr 40:cc0d9814522b 4340 break;
mjr 52:8298b2a73eb2 4341
mjr 52:8298b2a73eb2 4342 case 9:
mjr 52:8298b2a73eb2 4343 // 9 = Config variable query.
mjr 52:8298b2a73eb2 4344 // data[2] = config var ID
mjr 52:8298b2a73eb2 4345 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 4346 {
mjr 53:9b2611964afc 4347 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 4348 // the rest of the buffer
mjr 52:8298b2a73eb2 4349 uint8_t reply[8];
mjr 52:8298b2a73eb2 4350 reply[1] = data[2];
mjr 52:8298b2a73eb2 4351 reply[2] = data[3];
mjr 53:9b2611964afc 4352 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 4353
mjr 52:8298b2a73eb2 4354 // query the value
mjr 52:8298b2a73eb2 4355 configVarGet(reply);
mjr 52:8298b2a73eb2 4356
mjr 52:8298b2a73eb2 4357 // send the reply
mjr 52:8298b2a73eb2 4358 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 4359 }
mjr 52:8298b2a73eb2 4360 break;
mjr 53:9b2611964afc 4361
mjr 53:9b2611964afc 4362 case 10:
mjr 53:9b2611964afc 4363 // 10 = Build ID query.
mjr 53:9b2611964afc 4364 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 4365 break;
mjr 38:091e511ce8a0 4366 }
mjr 38:091e511ce8a0 4367 }
mjr 38:091e511ce8a0 4368 else if (data[0] == 66)
mjr 38:091e511ce8a0 4369 {
mjr 38:091e511ce8a0 4370 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 4371 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 4372 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 4373 // in a variable-dependent format.
mjr 40:cc0d9814522b 4374 configVarSet(data);
mjr 38:091e511ce8a0 4375 }
mjr 38:091e511ce8a0 4376 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 4377 {
mjr 38:091e511ce8a0 4378 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 4379 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 4380 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 4381 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 4382 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 4383 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 4384 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 4385 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 4386 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 4387 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 4388 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 4389 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 4390 //
mjr 38:091e511ce8a0 4391 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 4392 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 4393 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 4394 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 4395 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 4396 // address those ports anyway.
mjr 63:5cd1a5f3a41b 4397
mjr 63:5cd1a5f3a41b 4398 // flag that we're in extended protocol mode
mjr 63:5cd1a5f3a41b 4399 ledWizMode = false;
mjr 63:5cd1a5f3a41b 4400
mjr 63:5cd1a5f3a41b 4401 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 4402 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 4403 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 4404
mjr 63:5cd1a5f3a41b 4405 // update each port
mjr 38:091e511ce8a0 4406 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 4407 {
mjr 38:091e511ce8a0 4408 // set the brightness level for the output
mjr 40:cc0d9814522b 4409 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 4410 outLevel[i] = b;
mjr 38:091e511ce8a0 4411
mjr 38:091e511ce8a0 4412 // set the output
mjr 40:cc0d9814522b 4413 lwPin[i]->set(b);
mjr 38:091e511ce8a0 4414 }
mjr 38:091e511ce8a0 4415
mjr 38:091e511ce8a0 4416 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 4417 if (hc595 != 0)
mjr 38:091e511ce8a0 4418 hc595->update();
mjr 38:091e511ce8a0 4419 }
mjr 38:091e511ce8a0 4420 else
mjr 38:091e511ce8a0 4421 {
mjr 38:091e511ce8a0 4422 // Everything else is LWZ-PBA. This is a full "profile"
mjr 38:091e511ce8a0 4423 // dump from the host for one bank of 8 outputs. Each
mjr 38:091e511ce8a0 4424 // byte sets one output in the current bank. The current
mjr 38:091e511ce8a0 4425 // bank is implied; the bank starts at 0 and is reset to 0
mjr 38:091e511ce8a0 4426 // by any LWZ-SBA message, and is incremented to the next
mjr 38:091e511ce8a0 4427 // bank by each LWZ-PBA message. Our variable pbaIdx keeps
mjr 38:091e511ce8a0 4428 // track of our notion of the current bank. There's no direct
mjr 38:091e511ce8a0 4429 // way for the host to select the bank; it just has to count
mjr 38:091e511ce8a0 4430 // on us staying in sync. In practice, the host will always
mjr 38:091e511ce8a0 4431 // send a full set of 4 PBA messages in a row to set all 32
mjr 38:091e511ce8a0 4432 // outputs.
mjr 38:091e511ce8a0 4433 //
mjr 38:091e511ce8a0 4434 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 4435 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 4436 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 4437 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 4438 // protocol mode.
mjr 38:091e511ce8a0 4439 //
mjr 38:091e511ce8a0 4440 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 4441 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 4442
mjr 63:5cd1a5f3a41b 4443 // flag that we received an LedWiz message
mjr 63:5cd1a5f3a41b 4444 ledWizMode = true;
mjr 63:5cd1a5f3a41b 4445
mjr 38:091e511ce8a0 4446 // Update all output profile settings
mjr 38:091e511ce8a0 4447 for (int i = 0 ; i < 8 ; ++i)
mjr 38:091e511ce8a0 4448 wizVal[pbaIdx + i] = data[i];
mjr 38:091e511ce8a0 4449
mjr 38:091e511ce8a0 4450 // Update the physical LED state if this is the last bank.
mjr 38:091e511ce8a0 4451 // Note that hosts always send a full set of four PBA
mjr 38:091e511ce8a0 4452 // messages, so there's no need to do a physical update
mjr 38:091e511ce8a0 4453 // until we've received the last bank's PBA message.
mjr 38:091e511ce8a0 4454 if (pbaIdx == 24)
mjr 38:091e511ce8a0 4455 {
mjr 35:e959ffba78fd 4456 updateWizOuts();
mjr 35:e959ffba78fd 4457 if (hc595 != 0)
mjr 35:e959ffba78fd 4458 hc595->update();
mjr 35:e959ffba78fd 4459 pbaIdx = 0;
mjr 35:e959ffba78fd 4460 }
mjr 38:091e511ce8a0 4461 else
mjr 38:091e511ce8a0 4462 pbaIdx += 8;
mjr 38:091e511ce8a0 4463 }
mjr 38:091e511ce8a0 4464 }
mjr 35:e959ffba78fd 4465
mjr 33:d832bcab089e 4466
mjr 38:091e511ce8a0 4467 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 4468 //
mjr 5:a70c0bce770d 4469 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 4470 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 4471 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 4472 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 4473 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 4474 // port outputs.
mjr 5:a70c0bce770d 4475 //
mjr 0:5acbbe3f4cf4 4476 int main(void)
mjr 0:5acbbe3f4cf4 4477 {
mjr 60:f38da020aa13 4478 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 4479 printf("\r\nPinscape Controller starting\r\n");
mjr 60:f38da020aa13 4480
mjr 60:f38da020aa13 4481 // debugging: print memory config info
mjr 59:94eb9265b6d7 4482 // -> no longer very useful, since we use our own custom malloc/new allocator (see xmalloc() above)
mjr 60:f38da020aa13 4483 // {int *a = new int; printf("Stack=%lx, heap=%lx, free=%ld\r\n", (long)&a, (long)a, (long)&a - (long)a);}
mjr 1:d913e0afb2ac 4484
mjr 39:b3815a1c3802 4485 // clear the I2C bus (for the accelerometer)
mjr 35:e959ffba78fd 4486 clear_i2c();
mjr 38:091e511ce8a0 4487
mjr 43:7a6364d82a41 4488 // load the saved configuration (or set factory defaults if no flash
mjr 43:7a6364d82a41 4489 // configuration has ever been saved)
mjr 35:e959ffba78fd 4490 loadConfigFromFlash();
mjr 35:e959ffba78fd 4491
mjr 38:091e511ce8a0 4492 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 4493 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 4494
mjr 33:d832bcab089e 4495 // we're not connected/awake yet
mjr 33:d832bcab089e 4496 bool connected = false;
mjr 40:cc0d9814522b 4497 Timer connectChangeTimer;
mjr 33:d832bcab089e 4498
mjr 35:e959ffba78fd 4499 // create the plunger sensor interface
mjr 35:e959ffba78fd 4500 createPlunger();
mjr 33:d832bcab089e 4501
mjr 60:f38da020aa13 4502 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 4503 init_tlc5940(cfg);
mjr 34:6b981a2afab7 4504
mjr 60:f38da020aa13 4505 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 4506 init_hc595(cfg);
mjr 6:cc35eb643e8f 4507
mjr 54:fd77a6b2f76c 4508 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 4509 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 4510 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 4511 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 4512 initLwOut(cfg);
mjr 48:058ace2aed1d 4513
mjr 60:f38da020aa13 4514 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 4515 if (tlc5940 != 0)
mjr 35:e959ffba78fd 4516 tlc5940->start();
mjr 35:e959ffba78fd 4517
mjr 40:cc0d9814522b 4518 // start the TV timer, if applicable
mjr 40:cc0d9814522b 4519 startTVTimer(cfg);
mjr 48:058ace2aed1d 4520
mjr 35:e959ffba78fd 4521 // initialize the button input ports
mjr 35:e959ffba78fd 4522 bool kbKeys = false;
mjr 35:e959ffba78fd 4523 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 4524
mjr 60:f38da020aa13 4525 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 4526 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 4527 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 4528 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 4529 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 4530 // to the joystick interface.
mjr 51:57eb311faafa 4531 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 51:57eb311faafa 4532 cfg.joystickEnabled, kbKeys);
mjr 51:57eb311faafa 4533
mjr 60:f38da020aa13 4534 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 4535 // flash pattern while waiting.
mjr 51:57eb311faafa 4536 Timer connectTimer;
mjr 51:57eb311faafa 4537 connectTimer.start();
mjr 51:57eb311faafa 4538 while (!js.configured())
mjr 51:57eb311faafa 4539 {
mjr 51:57eb311faafa 4540 // show one short yellow flash at 2-second intervals
mjr 51:57eb311faafa 4541 if (connectTimer.read_us() > 2000000)
mjr 51:57eb311faafa 4542 {
mjr 51:57eb311faafa 4543 // short yellow flash
mjr 51:57eb311faafa 4544 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 4545 wait_us(50000);
mjr 51:57eb311faafa 4546 diagLED(0, 0, 0);
mjr 51:57eb311faafa 4547
mjr 51:57eb311faafa 4548 // reset the flash timer
mjr 51:57eb311faafa 4549 connectTimer.reset();
mjr 51:57eb311faafa 4550 }
mjr 51:57eb311faafa 4551 }
mjr 60:f38da020aa13 4552
mjr 60:f38da020aa13 4553 // we're now connected to the host
mjr 54:fd77a6b2f76c 4554 connected = true;
mjr 40:cc0d9814522b 4555
mjr 60:f38da020aa13 4556 // Last report timer for the joytick interface. We use this timer to
mjr 60:f38da020aa13 4557 // throttle the report rate to a pace that's suitable for VP. Without
mjr 60:f38da020aa13 4558 // any artificial delays, we could generate data to send on the joystick
mjr 60:f38da020aa13 4559 // interface on every loop iteration. The loop iteration time depends
mjr 60:f38da020aa13 4560 // on which devices are attached, since most of the work in our main
mjr 60:f38da020aa13 4561 // loop is simply polling our devices. For typical setups, the loop
mjr 60:f38da020aa13 4562 // time ranges from about 0.25ms to 2.5ms; the biggest factor is the
mjr 60:f38da020aa13 4563 // plunger sensor. But VP polls for input about every 10ms, so there's
mjr 60:f38da020aa13 4564 // no benefit in sending data faster than that, and there's some harm,
mjr 60:f38da020aa13 4565 // in that it creates USB overhead (both on the wire and on the host
mjr 60:f38da020aa13 4566 // CPU). We therefore use this timer to pace our reports to roughly
mjr 60:f38da020aa13 4567 // the VP input polling rate. Note that there's no way to actually
mjr 60:f38da020aa13 4568 // synchronize with VP's polling, but there's also no need to, as the
mjr 60:f38da020aa13 4569 // input model is designed to reflect the overall current state at any
mjr 60:f38da020aa13 4570 // given time rather than events or deltas. If VP polls twice between
mjr 60:f38da020aa13 4571 // two updates, it simply sees no state change; if we send two updates
mjr 60:f38da020aa13 4572 // between VP polls, VP simply sees the latest state when it does get
mjr 60:f38da020aa13 4573 // around to polling.
mjr 38:091e511ce8a0 4574 Timer jsReportTimer;
mjr 38:091e511ce8a0 4575 jsReportTimer.start();
mjr 38:091e511ce8a0 4576
mjr 60:f38da020aa13 4577 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 4578 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 4579 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 4580 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 4581 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 4582 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 4583 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 4584 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 4585 Timer jsOKTimer;
mjr 38:091e511ce8a0 4586 jsOKTimer.start();
mjr 35:e959ffba78fd 4587
mjr 55:4db125cd11a0 4588 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 4589 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 4590 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 4591 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 4592 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 4593
mjr 55:4db125cd11a0 4594 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 4595 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 4596 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 4597
mjr 55:4db125cd11a0 4598 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 4599 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 4600 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 4601
mjr 35:e959ffba78fd 4602 // initialize the calibration button
mjr 1:d913e0afb2ac 4603 calBtnTimer.start();
mjr 35:e959ffba78fd 4604 calBtnState = 0;
mjr 1:d913e0afb2ac 4605
mjr 1:d913e0afb2ac 4606 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 4607 Timer hbTimer;
mjr 1:d913e0afb2ac 4608 hbTimer.start();
mjr 1:d913e0afb2ac 4609 int hb = 0;
mjr 5:a70c0bce770d 4610 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 4611
mjr 1:d913e0afb2ac 4612 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 4613 Timer acTimer;
mjr 1:d913e0afb2ac 4614 acTimer.start();
mjr 1:d913e0afb2ac 4615
mjr 0:5acbbe3f4cf4 4616 // create the accelerometer object
mjr 5:a70c0bce770d 4617 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 48:058ace2aed1d 4618
mjr 17:ab3cec0c8bf4 4619 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 4620 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 4621 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 4622
mjr 48:058ace2aed1d 4623 // initialize the plunger sensor
mjr 35:e959ffba78fd 4624 plungerSensor->init();
mjr 10:976666ffa4ef 4625
mjr 48:058ace2aed1d 4626 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 4627 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 4628
mjr 54:fd77a6b2f76c 4629 // enable the peripheral chips
mjr 54:fd77a6b2f76c 4630 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 4631 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 4632 if (hc595 != 0)
mjr 54:fd77a6b2f76c 4633 hc595->enable(true);
mjr 43:7a6364d82a41 4634
mjr 1:d913e0afb2ac 4635 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 4636 // host requests
mjr 0:5acbbe3f4cf4 4637 for (;;)
mjr 0:5acbbe3f4cf4 4638 {
mjr 48:058ace2aed1d 4639 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 4640 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 4641 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 4642 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 4643 LedWizMsg lwm;
mjr 48:058ace2aed1d 4644 Timer lwt;
mjr 48:058ace2aed1d 4645 lwt.start();
mjr 48:058ace2aed1d 4646 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 48:058ace2aed1d 4647 handleInputMsg(lwm, js);
mjr 55:4db125cd11a0 4648
mjr 55:4db125cd11a0 4649 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 4650 if (tlc5940 != 0)
mjr 55:4db125cd11a0 4651 tlc5940->send();
mjr 1:d913e0afb2ac 4652
mjr 1:d913e0afb2ac 4653 // check for plunger calibration
mjr 17:ab3cec0c8bf4 4654 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 4655 {
mjr 1:d913e0afb2ac 4656 // check the state
mjr 1:d913e0afb2ac 4657 switch (calBtnState)
mjr 0:5acbbe3f4cf4 4658 {
mjr 1:d913e0afb2ac 4659 case 0:
mjr 1:d913e0afb2ac 4660 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 4661 calBtnTimer.reset();
mjr 1:d913e0afb2ac 4662 calBtnState = 1;
mjr 1:d913e0afb2ac 4663 break;
mjr 1:d913e0afb2ac 4664
mjr 1:d913e0afb2ac 4665 case 1:
mjr 1:d913e0afb2ac 4666 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 4667 // passed, start the hold period
mjr 48:058ace2aed1d 4668 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 4669 calBtnState = 2;
mjr 1:d913e0afb2ac 4670 break;
mjr 1:d913e0afb2ac 4671
mjr 1:d913e0afb2ac 4672 case 2:
mjr 1:d913e0afb2ac 4673 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 4674 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 4675 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 4676 {
mjr 1:d913e0afb2ac 4677 // enter calibration mode
mjr 1:d913e0afb2ac 4678 calBtnState = 3;
mjr 9:fd65b0a94720 4679 calBtnTimer.reset();
mjr 35:e959ffba78fd 4680
mjr 44:b5ac89b9cd5d 4681 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 4682 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 4683 }
mjr 1:d913e0afb2ac 4684 break;
mjr 2:c174f9ee414a 4685
mjr 2:c174f9ee414a 4686 case 3:
mjr 9:fd65b0a94720 4687 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 4688 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 4689 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 4690 break;
mjr 0:5acbbe3f4cf4 4691 }
mjr 0:5acbbe3f4cf4 4692 }
mjr 1:d913e0afb2ac 4693 else
mjr 1:d913e0afb2ac 4694 {
mjr 2:c174f9ee414a 4695 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 4696 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 4697 // and save the results to flash.
mjr 2:c174f9ee414a 4698 //
mjr 2:c174f9ee414a 4699 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 4700 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 4701 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 4702 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 4703 {
mjr 2:c174f9ee414a 4704 // exit calibration mode
mjr 1:d913e0afb2ac 4705 calBtnState = 0;
mjr 52:8298b2a73eb2 4706 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 4707
mjr 6:cc35eb643e8f 4708 // save the updated configuration
mjr 35:e959ffba78fd 4709 cfg.plunger.cal.calibrated = 1;
mjr 35:e959ffba78fd 4710 saveConfigToFlash();
mjr 2:c174f9ee414a 4711 }
mjr 2:c174f9ee414a 4712 else if (calBtnState != 3)
mjr 2:c174f9ee414a 4713 {
mjr 2:c174f9ee414a 4714 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 4715 calBtnState = 0;
mjr 2:c174f9ee414a 4716 }
mjr 1:d913e0afb2ac 4717 }
mjr 1:d913e0afb2ac 4718
mjr 1:d913e0afb2ac 4719 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 4720 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 4721 switch (calBtnState)
mjr 0:5acbbe3f4cf4 4722 {
mjr 1:d913e0afb2ac 4723 case 2:
mjr 1:d913e0afb2ac 4724 // in the hold period - flash the light
mjr 48:058ace2aed1d 4725 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 4726 break;
mjr 1:d913e0afb2ac 4727
mjr 1:d913e0afb2ac 4728 case 3:
mjr 1:d913e0afb2ac 4729 // calibration mode - show steady on
mjr 1:d913e0afb2ac 4730 newCalBtnLit = true;
mjr 1:d913e0afb2ac 4731 break;
mjr 1:d913e0afb2ac 4732
mjr 1:d913e0afb2ac 4733 default:
mjr 1:d913e0afb2ac 4734 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 4735 newCalBtnLit = false;
mjr 1:d913e0afb2ac 4736 break;
mjr 1:d913e0afb2ac 4737 }
mjr 3:3514575d4f86 4738
mjr 3:3514575d4f86 4739 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 4740 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 4741 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 4742 {
mjr 1:d913e0afb2ac 4743 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 4744 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 4745 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 4746 calBtnLed->write(1);
mjr 38:091e511ce8a0 4747 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 4748 }
mjr 2:c174f9ee414a 4749 else {
mjr 17:ab3cec0c8bf4 4750 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 4751 calBtnLed->write(0);
mjr 38:091e511ce8a0 4752 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 4753 }
mjr 1:d913e0afb2ac 4754 }
mjr 35:e959ffba78fd 4755
mjr 48:058ace2aed1d 4756 // read the plunger sensor
mjr 48:058ace2aed1d 4757 plungerReader.read();
mjr 48:058ace2aed1d 4758
mjr 53:9b2611964afc 4759 // update the ZB Launch Ball status
mjr 53:9b2611964afc 4760 zbLaunchBall.update();
mjr 37:ed52738445fc 4761
mjr 53:9b2611964afc 4762 // process button updates
mjr 53:9b2611964afc 4763 processButtons(cfg);
mjr 53:9b2611964afc 4764
mjr 38:091e511ce8a0 4765 // send a keyboard report if we have new data
mjr 37:ed52738445fc 4766 if (kbState.changed)
mjr 37:ed52738445fc 4767 {
mjr 38:091e511ce8a0 4768 // send a keyboard report
mjr 37:ed52738445fc 4769 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 4770 kbState.changed = false;
mjr 37:ed52738445fc 4771 }
mjr 38:091e511ce8a0 4772
mjr 38:091e511ce8a0 4773 // likewise for the media controller
mjr 37:ed52738445fc 4774 if (mediaState.changed)
mjr 37:ed52738445fc 4775 {
mjr 38:091e511ce8a0 4776 // send a media report
mjr 37:ed52738445fc 4777 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 4778 mediaState.changed = false;
mjr 37:ed52738445fc 4779 }
mjr 38:091e511ce8a0 4780
mjr 38:091e511ce8a0 4781 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 4782 bool jsOK = false;
mjr 55:4db125cd11a0 4783
mjr 55:4db125cd11a0 4784 // figure the current status flags for joystick reports
mjr 55:4db125cd11a0 4785 uint16_t statusFlags =
mjr 55:4db125cd11a0 4786 (cfg.plunger.enabled ? 0x01 : 0x00)
mjr 55:4db125cd11a0 4787 | (nightMode ? 0x02 : 0x00);
mjr 17:ab3cec0c8bf4 4788
mjr 50:40015764bbe6 4789 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 4790 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 4791 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 4792 // More frequent reporting would only add USB I/O overhead.
mjr 50:40015764bbe6 4793 if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 17:ab3cec0c8bf4 4794 {
mjr 17:ab3cec0c8bf4 4795 // read the accelerometer
mjr 17:ab3cec0c8bf4 4796 int xa, ya;
mjr 17:ab3cec0c8bf4 4797 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 4798
mjr 17:ab3cec0c8bf4 4799 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 4800 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 4801 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 4802 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 4803 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 4804
mjr 17:ab3cec0c8bf4 4805 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 4806 x = xa;
mjr 17:ab3cec0c8bf4 4807 y = ya;
mjr 17:ab3cec0c8bf4 4808
mjr 48:058ace2aed1d 4809 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 4810 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 4811 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 4812 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 4813 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 4814 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 4815 // regular plunger inputs.
mjr 48:058ace2aed1d 4816 int z = plungerReader.getPosition();
mjr 53:9b2611964afc 4817 int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z);
mjr 35:e959ffba78fd 4818
mjr 35:e959ffba78fd 4819 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 4820 accelRotate(x, y);
mjr 35:e959ffba78fd 4821
mjr 35:e959ffba78fd 4822 // send the joystick report
mjr 53:9b2611964afc 4823 jsOK = js.update(x, y, zrep, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 4824
mjr 17:ab3cec0c8bf4 4825 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 4826 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 4827 }
mjr 21:5048e16cc9ef 4828
mjr 52:8298b2a73eb2 4829 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 4830 if (reportPlungerStat)
mjr 10:976666ffa4ef 4831 {
mjr 17:ab3cec0c8bf4 4832 // send the report
mjr 53:9b2611964afc 4833 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 4834
mjr 10:976666ffa4ef 4835 // we have satisfied this request
mjr 52:8298b2a73eb2 4836 reportPlungerStat = false;
mjr 10:976666ffa4ef 4837 }
mjr 10:976666ffa4ef 4838
mjr 35:e959ffba78fd 4839 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 4840 // periodically for the sake of the Windows config tool.
mjr 55:4db125cd11a0 4841 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 5000)
mjr 21:5048e16cc9ef 4842 {
mjr 55:4db125cd11a0 4843 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 4844 jsReportTimer.reset();
mjr 38:091e511ce8a0 4845 }
mjr 38:091e511ce8a0 4846
mjr 38:091e511ce8a0 4847 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 4848 if (jsOK)
mjr 38:091e511ce8a0 4849 {
mjr 38:091e511ce8a0 4850 jsOKTimer.reset();
mjr 38:091e511ce8a0 4851 jsOKTimer.start();
mjr 21:5048e16cc9ef 4852 }
mjr 21:5048e16cc9ef 4853
mjr 6:cc35eb643e8f 4854 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 4855 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 4856 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 4857 #endif
mjr 6:cc35eb643e8f 4858
mjr 33:d832bcab089e 4859 // check for connection status changes
mjr 54:fd77a6b2f76c 4860 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 4861 if (newConnected != connected)
mjr 33:d832bcab089e 4862 {
mjr 54:fd77a6b2f76c 4863 // give it a moment to stabilize
mjr 40:cc0d9814522b 4864 connectChangeTimer.start();
mjr 55:4db125cd11a0 4865 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 4866 {
mjr 33:d832bcab089e 4867 // note the new status
mjr 33:d832bcab089e 4868 connected = newConnected;
mjr 40:cc0d9814522b 4869
mjr 40:cc0d9814522b 4870 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 4871 connectChangeTimer.stop();
mjr 40:cc0d9814522b 4872 connectChangeTimer.reset();
mjr 33:d832bcab089e 4873
mjr 54:fd77a6b2f76c 4874 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 4875 if (!connected)
mjr 40:cc0d9814522b 4876 {
mjr 54:fd77a6b2f76c 4877 // turn off all outputs
mjr 33:d832bcab089e 4878 allOutputsOff();
mjr 40:cc0d9814522b 4879
mjr 40:cc0d9814522b 4880 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 4881 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 4882 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 4883 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 4884 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 4885 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 4886 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 4887 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 4888 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 4889 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 4890 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 4891 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 4892 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 4893 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 4894 // the power first comes on.
mjr 40:cc0d9814522b 4895 if (tlc5940 != 0)
mjr 40:cc0d9814522b 4896 tlc5940->enable(false);
mjr 40:cc0d9814522b 4897 if (hc595 != 0)
mjr 40:cc0d9814522b 4898 hc595->enable(false);
mjr 40:cc0d9814522b 4899 }
mjr 33:d832bcab089e 4900 }
mjr 33:d832bcab089e 4901 }
mjr 48:058ace2aed1d 4902
mjr 53:9b2611964afc 4903 // if we have a reboot timer pending, check for completion
mjr 53:9b2611964afc 4904 if (rebootTimer.isRunning() && rebootTimer.read_us() > rebootTime_us)
mjr 53:9b2611964afc 4905 reboot(js);
mjr 53:9b2611964afc 4906
mjr 48:058ace2aed1d 4907 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 4908 if (!connected)
mjr 48:058ace2aed1d 4909 {
mjr 54:fd77a6b2f76c 4910 // show USB HAL debug events
mjr 54:fd77a6b2f76c 4911 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 4912 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 4913
mjr 54:fd77a6b2f76c 4914 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 4915 js.diagFlash();
mjr 54:fd77a6b2f76c 4916
mjr 54:fd77a6b2f76c 4917 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 4918 diagLED(0, 0, 0);
mjr 51:57eb311faafa 4919
mjr 51:57eb311faafa 4920 // set up a timer to monitor the reboot timeout
mjr 51:57eb311faafa 4921 Timer rebootTimer;
mjr 51:57eb311faafa 4922 rebootTimer.start();
mjr 48:058ace2aed1d 4923
mjr 54:fd77a6b2f76c 4924 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 4925 Timer diagTimer;
mjr 54:fd77a6b2f76c 4926 diagTimer.reset();
mjr 54:fd77a6b2f76c 4927 diagTimer.start();
mjr 54:fd77a6b2f76c 4928
mjr 54:fd77a6b2f76c 4929 // loop until we get our connection back
mjr 54:fd77a6b2f76c 4930 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 4931 {
mjr 54:fd77a6b2f76c 4932 // try to recover the connection
mjr 54:fd77a6b2f76c 4933 js.recoverConnection();
mjr 54:fd77a6b2f76c 4934
mjr 55:4db125cd11a0 4935 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 4936 if (tlc5940 != 0)
mjr 55:4db125cd11a0 4937 tlc5940->send();
mjr 55:4db125cd11a0 4938
mjr 54:fd77a6b2f76c 4939 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 4940 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 4941 {
mjr 54:fd77a6b2f76c 4942 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 4943 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 4944
mjr 54:fd77a6b2f76c 4945 // show diagnostic feedback
mjr 54:fd77a6b2f76c 4946 js.diagFlash();
mjr 51:57eb311faafa 4947
mjr 51:57eb311faafa 4948 // reset the flash timer
mjr 54:fd77a6b2f76c 4949 diagTimer.reset();
mjr 51:57eb311faafa 4950 }
mjr 51:57eb311faafa 4951
mjr 51:57eb311faafa 4952 // if the disconnect reboot timeout has expired, reboot
mjr 51:57eb311faafa 4953 if (cfg.disconnectRebootTimeout != 0
mjr 51:57eb311faafa 4954 && rebootTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 4955 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 4956 }
mjr 54:fd77a6b2f76c 4957
mjr 54:fd77a6b2f76c 4958 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 4959 connected = true;
mjr 54:fd77a6b2f76c 4960 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 4961
mjr 54:fd77a6b2f76c 4962 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 4963 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 4964 {
mjr 55:4db125cd11a0 4965 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 4966 tlc5940->update(true);
mjr 54:fd77a6b2f76c 4967 }
mjr 54:fd77a6b2f76c 4968 if (hc595 != 0)
mjr 54:fd77a6b2f76c 4969 {
mjr 55:4db125cd11a0 4970 hc595->enable(true);
mjr 54:fd77a6b2f76c 4971 hc595->update(true);
mjr 51:57eb311faafa 4972 }
mjr 48:058ace2aed1d 4973 }
mjr 43:7a6364d82a41 4974
mjr 6:cc35eb643e8f 4975 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 4976 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 4977 {
mjr 54:fd77a6b2f76c 4978 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 4979 {
mjr 39:b3815a1c3802 4980 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 4981 //
mjr 54:fd77a6b2f76c 4982 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 4983 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 4984 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 4985 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 4986 hb = !hb;
mjr 38:091e511ce8a0 4987 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 4988
mjr 54:fd77a6b2f76c 4989 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 4990 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 4991 // with the USB connection.
mjr 54:fd77a6b2f76c 4992 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 4993 {
mjr 54:fd77a6b2f76c 4994 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 4995 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 4996 // limit, keep running for now, and leave the OK timer running so
mjr 54:fd77a6b2f76c 4997 // that we can continue to monitor this.
mjr 54:fd77a6b2f76c 4998 if (jsOKTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 4999 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 5000 }
mjr 54:fd77a6b2f76c 5001 else
mjr 54:fd77a6b2f76c 5002 {
mjr 54:fd77a6b2f76c 5003 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 5004 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 5005 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 5006 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 5007 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 5008 }
mjr 38:091e511ce8a0 5009 }
mjr 35:e959ffba78fd 5010 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 5011 {
mjr 6:cc35eb643e8f 5012 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 5013 hb = !hb;
mjr 38:091e511ce8a0 5014 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 5015 }
mjr 6:cc35eb643e8f 5016 else
mjr 6:cc35eb643e8f 5017 {
mjr 6:cc35eb643e8f 5018 // connected - flash blue/green
mjr 2:c174f9ee414a 5019 hb = !hb;
mjr 38:091e511ce8a0 5020 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 5021 }
mjr 1:d913e0afb2ac 5022
mjr 1:d913e0afb2ac 5023 // reset the heartbeat timer
mjr 1:d913e0afb2ac 5024 hbTimer.reset();
mjr 5:a70c0bce770d 5025 ++hbcnt;
mjr 1:d913e0afb2ac 5026 }
mjr 1:d913e0afb2ac 5027 }
mjr 0:5acbbe3f4cf4 5028 }