Mirror with some correction
Dependencies: mbed FastIO FastPWM USBDevice
main.cpp@57:cc03231f676b, 2016-05-07 (annotated)
- Committer:
- mjr
- Date:
- Sat May 07 18:45:31 2016 +0000
- Revision:
- 57:cc03231f676b
- Parent:
- 55:4db125cd11a0
- Child:
- 58:523fdcffbe6d
Fix keyboard input bug
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
mjr | 51:57eb311faafa | 1 | /* Copyright 2014, 2016 M J Roberts, MIT License |
mjr | 5:a70c0bce770d | 2 | * |
mjr | 5:a70c0bce770d | 3 | * Permission is hereby granted, free of charge, to any person obtaining a copy of this software |
mjr | 5:a70c0bce770d | 4 | * and associated documentation files (the "Software"), to deal in the Software without |
mjr | 5:a70c0bce770d | 5 | * restriction, including without limitation the rights to use, copy, modify, merge, publish, |
mjr | 5:a70c0bce770d | 6 | * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the |
mjr | 5:a70c0bce770d | 7 | * Software is furnished to do so, subject to the following conditions: |
mjr | 5:a70c0bce770d | 8 | * |
mjr | 5:a70c0bce770d | 9 | * The above copyright notice and this permission notice shall be included in all copies or |
mjr | 5:a70c0bce770d | 10 | * substantial portions of the Software. |
mjr | 5:a70c0bce770d | 11 | * |
mjr | 5:a70c0bce770d | 12 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING |
mjr | 48:058ace2aed1d | 13 | * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND |
mjr | 5:a70c0bce770d | 14 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, |
mjr | 5:a70c0bce770d | 15 | * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
mjr | 5:a70c0bce770d | 16 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
mjr | 5:a70c0bce770d | 17 | */ |
mjr | 5:a70c0bce770d | 18 | |
mjr | 5:a70c0bce770d | 19 | // |
mjr | 35:e959ffba78fd | 20 | // The Pinscape Controller |
mjr | 35:e959ffba78fd | 21 | // A comprehensive input/output controller for virtual pinball machines |
mjr | 5:a70c0bce770d | 22 | // |
mjr | 48:058ace2aed1d | 23 | // This project implements an I/O controller for virtual pinball cabinets. The |
mjr | 48:058ace2aed1d | 24 | // controller's function is to connect Visual Pinball (and other Windows pinball |
mjr | 48:058ace2aed1d | 25 | // emulators) with physical devices in the cabinet: buttons, sensors, and |
mjr | 48:058ace2aed1d | 26 | // feedback devices that create visual or mechanical effects during play. |
mjr | 38:091e511ce8a0 | 27 | // |
mjr | 48:058ace2aed1d | 28 | // The controller can perform several different functions, which can be used |
mjr | 38:091e511ce8a0 | 29 | // individually or in any combination: |
mjr | 5:a70c0bce770d | 30 | // |
mjr | 38:091e511ce8a0 | 31 | // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the |
mjr | 38:091e511ce8a0 | 32 | // motion of the cabinet when you nudge it. Visual Pinball and other pinball |
mjr | 38:091e511ce8a0 | 33 | // emulators on the PC have native handling for this type of input, so that |
mjr | 38:091e511ce8a0 | 34 | // physical nudges on the cabinet turn into simulated effects on the virtual |
mjr | 38:091e511ce8a0 | 35 | // ball. The KL25Z measures accelerations as analog readings and is quite |
mjr | 38:091e511ce8a0 | 36 | // sensitive, so the effect of a nudge on the simulation is proportional |
mjr | 38:091e511ce8a0 | 37 | // to the strength of the nudge. Accelerations are reported to the PC via a |
mjr | 38:091e511ce8a0 | 38 | // simulated joystick (using the X and Y axes); you just have to set some |
mjr | 38:091e511ce8a0 | 39 | // preferences in your pinball software to tell it that an accelerometer |
mjr | 38:091e511ce8a0 | 40 | // is attached. |
mjr | 5:a70c0bce770d | 41 | // |
mjr | 38:091e511ce8a0 | 42 | // - Plunger position sensing, with mulitple sensor options. To use this feature, |
mjr | 35:e959ffba78fd | 43 | // you need to choose a sensor and set it up, connect the sensor electrically to |
mjr | 35:e959ffba78fd | 44 | // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how |
mjr | 35:e959ffba78fd | 45 | // the sensor is hooked up. The Pinscape software monitors the sensor and sends |
mjr | 35:e959ffba78fd | 46 | // readings to Visual Pinball via the joystick Z axis. VP and other PC software |
mjr | 38:091e511ce8a0 | 47 | // have native support for this type of input; as with the nudge setup, you just |
mjr | 38:091e511ce8a0 | 48 | // have to set some options in VP to activate the plunger. |
mjr | 17:ab3cec0c8bf4 | 49 | // |
mjr | 35:e959ffba78fd | 50 | // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R |
mjr | 35:e959ffba78fd | 51 | // linear sensor arrays) as well as slide potentiometers. The specific equipment |
mjr | 35:e959ffba78fd | 52 | // that's supported, along with physical mounting and wiring details, can be found |
mjr | 35:e959ffba78fd | 53 | // in the Build Guide. |
mjr | 35:e959ffba78fd | 54 | // |
mjr | 38:091e511ce8a0 | 55 | // Note VP has built-in support for plunger devices like this one, but some VP |
mjr | 38:091e511ce8a0 | 56 | // tables can't use it without some additional scripting work. The Build Guide has |
mjr | 38:091e511ce8a0 | 57 | // advice on adjusting tables to add plunger support when necessary. |
mjr | 5:a70c0bce770d | 58 | // |
mjr | 6:cc35eb643e8f | 59 | // For best results, the plunger sensor should be calibrated. The calibration |
mjr | 6:cc35eb643e8f | 60 | // is stored in non-volatile memory on board the KL25Z, so it's only necessary |
mjr | 6:cc35eb643e8f | 61 | // to do the calibration once, when you first install everything. (You might |
mjr | 6:cc35eb643e8f | 62 | // also want to re-calibrate if you physically remove and reinstall the CCD |
mjr | 17:ab3cec0c8bf4 | 63 | // sensor or the mechanical plunger, since their alignment shift change slightly |
mjr | 17:ab3cec0c8bf4 | 64 | // when you put everything back together.) You can optionally install a |
mjr | 17:ab3cec0c8bf4 | 65 | // dedicated momentary switch or pushbutton to activate the calibration mode; |
mjr | 17:ab3cec0c8bf4 | 66 | // this is describe in the project documentation. If you don't want to bother |
mjr | 17:ab3cec0c8bf4 | 67 | // with the extra button, you can also trigger calibration using the Windows |
mjr | 17:ab3cec0c8bf4 | 68 | // setup software, which you can find on the Pinscape project page. |
mjr | 6:cc35eb643e8f | 69 | // |
mjr | 17:ab3cec0c8bf4 | 70 | // The calibration procedure is described in the project documentation. Briefly, |
mjr | 17:ab3cec0c8bf4 | 71 | // when you trigger calibration mode, the software will scan the CCD for about |
mjr | 17:ab3cec0c8bf4 | 72 | // 15 seconds, during which you should simply pull the physical plunger back |
mjr | 17:ab3cec0c8bf4 | 73 | // all the way, hold it for a moment, and then slowly return it to the rest |
mjr | 17:ab3cec0c8bf4 | 74 | // position. (DON'T just release it from the retracted position, since that |
mjr | 17:ab3cec0c8bf4 | 75 | // let it shoot forward too far. We want to measure the range from the park |
mjr | 17:ab3cec0c8bf4 | 76 | // position to the fully retracted position only.) |
mjr | 5:a70c0bce770d | 77 | // |
mjr | 13:72dda449c3c0 | 78 | // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs |
mjr | 38:091e511ce8a0 | 79 | // for buttons and switches. You can wire each input to a physical pinball-style |
mjr | 38:091e511ce8a0 | 80 | // button or switch, such as flipper buttons, Start buttons, coin chute switches, |
mjr | 38:091e511ce8a0 | 81 | // tilt bobs, and service buttons. Each button can be configured to be reported |
mjr | 38:091e511ce8a0 | 82 | // to the PC as a joystick button or as a keyboard key (you can select which key |
mjr | 38:091e511ce8a0 | 83 | // is used for each button). |
mjr | 13:72dda449c3c0 | 84 | // |
mjr | 53:9b2611964afc | 85 | // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets |
mjr | 53:9b2611964afc | 86 | // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the |
mjr | 53:9b2611964afc | 87 | // KL25Z, and lets PC software (such as Visual Pinball) control them during game |
mjr | 53:9b2611964afc | 88 | // play to create a more immersive playing experience. The Pinscape software |
mjr | 53:9b2611964afc | 89 | // presents itself to the host as an LedWiz device and accepts the full LedWiz |
mjr | 53:9b2611964afc | 90 | // command set, so software on the PC designed for real LedWiz'es can control |
mjr | 53:9b2611964afc | 91 | // attached devices without any modifications. |
mjr | 5:a70c0bce770d | 92 | // |
mjr | 53:9b2611964afc | 93 | // Even though the software provides a very thorough LedWiz emulation, the KL25Z |
mjr | 53:9b2611964afc | 94 | // GPIO hardware design imposes some serious limitations. The big one is that |
mjr | 53:9b2611964afc | 95 | // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have |
mjr | 53:9b2611964afc | 96 | // varying-intensity outputs (e.g., for controlling the brightness level of an |
mjr | 53:9b2611964afc | 97 | // LED or the speed or a motor). You can control more than 10 output ports, but |
mjr | 53:9b2611964afc | 98 | // only 10 can have PWM control; the rest are simple "digital" ports that can only |
mjr | 53:9b2611964afc | 99 | // be switched fully on or fully off. The second limitation is that the KL25Z |
mjr | 53:9b2611964afc | 100 | // just doesn't have that many GPIO ports overall. There are enough to populate |
mjr | 53:9b2611964afc | 101 | // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is |
mjr | 53:9b2611964afc | 102 | // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade |
mjr | 53:9b2611964afc | 103 | // off more outputs for fewer inputs, or vice versa. The third limitation is that |
mjr | 53:9b2611964afc | 104 | // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't |
mjr | 53:9b2611964afc | 105 | // even enough to control a small LED. So in order to connect any kind of feedback |
mjr | 53:9b2611964afc | 106 | // device to an output, you *must* build some external circuitry to boost the |
mjr | 53:9b2611964afc | 107 | // current handing. The Build Guide has a reference circuit design for this |
mjr | 53:9b2611964afc | 108 | // purpose that's simple and inexpensive to build. |
mjr | 6:cc35eb643e8f | 109 | // |
mjr | 26:cb71c4af2912 | 110 | // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach |
mjr | 26:cb71c4af2912 | 111 | // external PWM controller chips for controlling device outputs, instead of using |
mjr | 53:9b2611964afc | 112 | // the on-board GPIO ports as described above. The software can control a set of |
mjr | 53:9b2611964afc | 113 | // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just |
mjr | 53:9b2611964afc | 114 | // need two of them to get the full complement of 32 output ports of a real LedWiz. |
mjr | 53:9b2611964afc | 115 | // You can hook up even more, though. Four chips gives you 64 ports, which should |
mjr | 53:9b2611964afc | 116 | // be plenty for nearly any virtual pinball project. To accommodate the larger |
mjr | 53:9b2611964afc | 117 | // supply of ports possible with the PWM chips, the controller software provides |
mjr | 53:9b2611964afc | 118 | // a custom, extended version of the LedWiz protocol that can handle up to 128 |
mjr | 53:9b2611964afc | 119 | // ports. PC software designed only for the real LedWiz obviously won't know |
mjr | 53:9b2611964afc | 120 | // about the extended protocol and won't be able to take advantage of its extra |
mjr | 53:9b2611964afc | 121 | // capabilities, but the latest version of DOF (DirectOutput Framework) *does* |
mjr | 53:9b2611964afc | 122 | // know the new language and can take full advantage. Older software will still |
mjr | 53:9b2611964afc | 123 | // work, though - the new extensions are all backward compatible, so old software |
mjr | 53:9b2611964afc | 124 | // that only knows about the original LedWiz protocol will still work, with the |
mjr | 53:9b2611964afc | 125 | // obvious limitation that it can only access the first 32 ports. |
mjr | 53:9b2611964afc | 126 | // |
mjr | 53:9b2611964afc | 127 | // The Pinscape Expansion Board project (which appeared in early 2016) provides |
mjr | 53:9b2611964afc | 128 | // a reference hardware design, with EAGLE circuit board layouts, that takes full |
mjr | 53:9b2611964afc | 129 | // advantage of the TLC5940 capability. It lets you create a customized set of |
mjr | 53:9b2611964afc | 130 | // outputs with full PWM control and power handling for high-current devices |
mjr | 53:9b2611964afc | 131 | // built in to the boards. |
mjr | 26:cb71c4af2912 | 132 | // |
mjr | 38:091e511ce8a0 | 133 | // - Night Mode control for output devices. You can connect a switch or button |
mjr | 38:091e511ce8a0 | 134 | // to the controller to activate "Night Mode", which disables feedback devices |
mjr | 38:091e511ce8a0 | 135 | // that you designate as noisy. You can designate outputs individually as being |
mjr | 38:091e511ce8a0 | 136 | // included in this set or not. This is useful if you want to play a game on |
mjr | 38:091e511ce8a0 | 137 | // your cabinet late at night without waking the kids and annoying the neighbors. |
mjr | 38:091e511ce8a0 | 138 | // |
mjr | 38:091e511ce8a0 | 139 | // - TV ON switch. The controller can pulse a relay to turn on your TVs after |
mjr | 38:091e511ce8a0 | 140 | // power to the cabinet comes on, with a configurable delay timer. This feature |
mjr | 38:091e511ce8a0 | 141 | // is for TVs that don't turn themselves on automatically when first plugged in. |
mjr | 38:091e511ce8a0 | 142 | // To use this feature, you have to build some external circuitry to allow the |
mjr | 38:091e511ce8a0 | 143 | // software to sense the power supply status, and you have to run wires to your |
mjr | 38:091e511ce8a0 | 144 | // TV's on/off button, which requires opening the case on your TV. The Build |
mjr | 38:091e511ce8a0 | 145 | // Guide has details on the necessary circuitry and connections to the TV. |
mjr | 38:091e511ce8a0 | 146 | // |
mjr | 35:e959ffba78fd | 147 | // |
mjr | 35:e959ffba78fd | 148 | // |
mjr | 33:d832bcab089e | 149 | // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current |
mjr | 33:d832bcab089e | 150 | // device status. The flash patterns are: |
mjr | 6:cc35eb643e8f | 151 | // |
mjr | 48:058ace2aed1d | 152 | // short yellow flash = waiting to connect |
mjr | 6:cc35eb643e8f | 153 | // |
mjr | 48:058ace2aed1d | 154 | // short red flash = the connection is suspended (the host is in sleep |
mjr | 48:058ace2aed1d | 155 | // or suspend mode, the USB cable is unplugged after a connection |
mjr | 48:058ace2aed1d | 156 | // has been established) |
mjr | 48:058ace2aed1d | 157 | // |
mjr | 48:058ace2aed1d | 158 | // two short red flashes = connection lost (the device should immediately |
mjr | 48:058ace2aed1d | 159 | // go back to short-yellow "waiting to reconnect" mode when a connection |
mjr | 48:058ace2aed1d | 160 | // is lost, so this display shouldn't normally appear) |
mjr | 6:cc35eb643e8f | 161 | // |
mjr | 38:091e511ce8a0 | 162 | // long red/yellow = USB connection problem. The device still has a USB |
mjr | 48:058ace2aed1d | 163 | // connection to the host (or so it appears to the device), but data |
mjr | 48:058ace2aed1d | 164 | // transmissions are failing. |
mjr | 38:091e511ce8a0 | 165 | // |
mjr | 6:cc35eb643e8f | 166 | // long yellow/green = everything's working, but the plunger hasn't |
mjr | 38:091e511ce8a0 | 167 | // been calibrated. Follow the calibration procedure described in |
mjr | 38:091e511ce8a0 | 168 | // the project documentation. This flash mode won't appear if there's |
mjr | 38:091e511ce8a0 | 169 | // no plunger sensor configured. |
mjr | 6:cc35eb643e8f | 170 | // |
mjr | 38:091e511ce8a0 | 171 | // alternating blue/green = everything's working normally, and plunger |
mjr | 38:091e511ce8a0 | 172 | // calibration has been completed (or there's no plunger attached) |
mjr | 10:976666ffa4ef | 173 | // |
mjr | 48:058ace2aed1d | 174 | // fast red/purple = out of memory. The controller halts and displays |
mjr | 48:058ace2aed1d | 175 | // this diagnostic code until you manually reset it. If this happens, |
mjr | 48:058ace2aed1d | 176 | // it's probably because the configuration is too complex, in which |
mjr | 48:058ace2aed1d | 177 | // case the same error will occur after the reset. If it's stuck |
mjr | 48:058ace2aed1d | 178 | // in this cycle, you'll have to restore the default configuration |
mjr | 48:058ace2aed1d | 179 | // by re-installing the controller software (the Pinscape .bin file). |
mjr | 10:976666ffa4ef | 180 | // |
mjr | 48:058ace2aed1d | 181 | // |
mjr | 48:058ace2aed1d | 182 | // USB PROTOCOL: Most of our USB messaging is through standard USB HID |
mjr | 48:058ace2aed1d | 183 | // classes (joystick, keyboard). We also accept control messages on our |
mjr | 48:058ace2aed1d | 184 | // primary HID interface "OUT endpoint" using a custom protocol that's |
mjr | 48:058ace2aed1d | 185 | // not defined in any USB standards (we do have to provide a USB HID |
mjr | 48:058ace2aed1d | 186 | // Report Descriptor for it, but this just describes the protocol as |
mjr | 48:058ace2aed1d | 187 | // opaque vendor-defined bytes). The control protocol incorporates the |
mjr | 48:058ace2aed1d | 188 | // LedWiz protocol as a subset, and adds our own private extensions. |
mjr | 48:058ace2aed1d | 189 | // For full details, see USBProtocol.h. |
mjr | 33:d832bcab089e | 190 | |
mjr | 33:d832bcab089e | 191 | |
mjr | 0:5acbbe3f4cf4 | 192 | #include "mbed.h" |
mjr | 6:cc35eb643e8f | 193 | #include "math.h" |
mjr | 48:058ace2aed1d | 194 | #include "pinscape.h" |
mjr | 0:5acbbe3f4cf4 | 195 | #include "USBJoystick.h" |
mjr | 0:5acbbe3f4cf4 | 196 | #include "MMA8451Q.h" |
mjr | 1:d913e0afb2ac | 197 | #include "tsl1410r.h" |
mjr | 1:d913e0afb2ac | 198 | #include "FreescaleIAP.h" |
mjr | 2:c174f9ee414a | 199 | #include "crc32.h" |
mjr | 26:cb71c4af2912 | 200 | #include "TLC5940.h" |
mjr | 34:6b981a2afab7 | 201 | #include "74HC595.h" |
mjr | 35:e959ffba78fd | 202 | #include "nvm.h" |
mjr | 35:e959ffba78fd | 203 | #include "plunger.h" |
mjr | 35:e959ffba78fd | 204 | #include "ccdSensor.h" |
mjr | 35:e959ffba78fd | 205 | #include "potSensor.h" |
mjr | 35:e959ffba78fd | 206 | #include "nullSensor.h" |
mjr | 48:058ace2aed1d | 207 | #include "TinyDigitalIn.h" |
mjr | 2:c174f9ee414a | 208 | |
mjr | 21:5048e16cc9ef | 209 | #define DECL_EXTERNS |
mjr | 17:ab3cec0c8bf4 | 210 | #include "config.h" |
mjr | 17:ab3cec0c8bf4 | 211 | |
mjr | 53:9b2611964afc | 212 | |
mjr | 53:9b2611964afc | 213 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 214 | // |
mjr | 53:9b2611964afc | 215 | // OpenSDA module identifier. This is for the benefit of the Windows |
mjr | 53:9b2611964afc | 216 | // configuration tool. When the config tool installs a .bin file onto |
mjr | 53:9b2611964afc | 217 | // the KL25Z, it will first find the sentinel string within the .bin file, |
mjr | 53:9b2611964afc | 218 | // and patch the "\0" bytes that follow the sentinel string with the |
mjr | 53:9b2611964afc | 219 | // OpenSDA module ID data. This allows us to report the OpenSDA |
mjr | 53:9b2611964afc | 220 | // identifiers back to the host system via USB, which in turn allows the |
mjr | 53:9b2611964afc | 221 | // config tool to figure out which OpenSDA MSD (mass storage device - a |
mjr | 53:9b2611964afc | 222 | // virtual disk drive) correlates to which Pinscape controller USB |
mjr | 53:9b2611964afc | 223 | // interface. |
mjr | 53:9b2611964afc | 224 | // |
mjr | 53:9b2611964afc | 225 | // This is only important if multiple Pinscape devices are attached to |
mjr | 53:9b2611964afc | 226 | // the same host. There doesn't seem to be any other way to figure out |
mjr | 53:9b2611964afc | 227 | // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA |
mjr | 53:9b2611964afc | 228 | // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't |
mjr | 53:9b2611964afc | 229 | // have any way to learn about the OpenSDA module it's connected to. The |
mjr | 53:9b2611964afc | 230 | // only way to pass this information to the KL25Z side that I can come up |
mjr | 53:9b2611964afc | 231 | // with is to have the Windows host embed it in the .bin file before |
mjr | 53:9b2611964afc | 232 | // downloading it to the OpenSDA MSD. |
mjr | 53:9b2611964afc | 233 | // |
mjr | 53:9b2611964afc | 234 | // We initialize the const data buffer (the part after the sentinel string) |
mjr | 53:9b2611964afc | 235 | // with all "\0" bytes, so that's what will be in the executable image that |
mjr | 53:9b2611964afc | 236 | // comes out of the mbed compiler. If you manually install the resulting |
mjr | 53:9b2611964afc | 237 | // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes |
mjr | 53:9b2611964afc | 238 | // will stay this way and read as all 0's at run-time. Since a real TUID |
mjr | 53:9b2611964afc | 239 | // would never be all 0's, that tells us that we were never patched and |
mjr | 53:9b2611964afc | 240 | // thus don't have any information on the OpenSDA module. |
mjr | 53:9b2611964afc | 241 | // |
mjr | 53:9b2611964afc | 242 | const char *getOpenSDAID() |
mjr | 53:9b2611964afc | 243 | { |
mjr | 53:9b2611964afc | 244 | #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///" |
mjr | 53:9b2611964afc | 245 | static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///"; |
mjr | 53:9b2611964afc | 246 | const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1; |
mjr | 53:9b2611964afc | 247 | |
mjr | 53:9b2611964afc | 248 | return OpenSDA + OpenSDA_prefix_length; |
mjr | 53:9b2611964afc | 249 | } |
mjr | 53:9b2611964afc | 250 | |
mjr | 53:9b2611964afc | 251 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 252 | // |
mjr | 53:9b2611964afc | 253 | // Build ID. We use the date and time of compiling the program as a build |
mjr | 53:9b2611964afc | 254 | // identifier. It would be a little nicer to use a simple serial number |
mjr | 53:9b2611964afc | 255 | // instead, but the mbed platform doesn't have a way to automate that. The |
mjr | 53:9b2611964afc | 256 | // timestamp is a pretty good proxy for a serial number in that it will |
mjr | 53:9b2611964afc | 257 | // naturally increase on each new build, which is the primary property we |
mjr | 53:9b2611964afc | 258 | // want from this. |
mjr | 53:9b2611964afc | 259 | // |
mjr | 53:9b2611964afc | 260 | // As with the embedded OpenSDA ID, we store the build timestamp with a |
mjr | 53:9b2611964afc | 261 | // sentinel string prefix, to allow automated tools to find the static data |
mjr | 53:9b2611964afc | 262 | // in the .bin file by searching for the sentinel string. In contrast to |
mjr | 53:9b2611964afc | 263 | // the OpenSDA ID, the value we store here is for tools to extract rather |
mjr | 53:9b2611964afc | 264 | // than store, since we automatically populate it via the preprocessor |
mjr | 53:9b2611964afc | 265 | // macros. |
mjr | 53:9b2611964afc | 266 | // |
mjr | 53:9b2611964afc | 267 | const char *getBuildID() |
mjr | 53:9b2611964afc | 268 | { |
mjr | 53:9b2611964afc | 269 | #define BUILDID_PREFIX "///Pinscape.Build.ID///" |
mjr | 53:9b2611964afc | 270 | static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///"; |
mjr | 53:9b2611964afc | 271 | const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1; |
mjr | 53:9b2611964afc | 272 | |
mjr | 53:9b2611964afc | 273 | return BuildID + BuildID_prefix_length; |
mjr | 53:9b2611964afc | 274 | } |
mjr | 53:9b2611964afc | 275 | |
mjr | 53:9b2611964afc | 276 | |
mjr | 48:058ace2aed1d | 277 | // -------------------------------------------------------------------------- |
mjr | 48:058ace2aed1d | 278 | // |
mjr | 48:058ace2aed1d | 279 | // Custom memory allocator. We use our own version of malloc() to provide |
mjr | 48:058ace2aed1d | 280 | // diagnostics if we run out of heap. |
mjr | 48:058ace2aed1d | 281 | // |
mjr | 48:058ace2aed1d | 282 | void *xmalloc(size_t siz) |
mjr | 48:058ace2aed1d | 283 | { |
mjr | 48:058ace2aed1d | 284 | // allocate through the normal library malloc; if that succeeds, |
mjr | 48:058ace2aed1d | 285 | // simply return the pointer we got from malloc |
mjr | 48:058ace2aed1d | 286 | void *ptr = malloc(siz); |
mjr | 48:058ace2aed1d | 287 | if (ptr != 0) |
mjr | 48:058ace2aed1d | 288 | return ptr; |
mjr | 48:058ace2aed1d | 289 | |
mjr | 48:058ace2aed1d | 290 | // failed - display diagnostics |
mjr | 48:058ace2aed1d | 291 | for (;;) |
mjr | 48:058ace2aed1d | 292 | { |
mjr | 48:058ace2aed1d | 293 | diagLED(1, 0, 0); |
mjr | 54:fd77a6b2f76c | 294 | wait_us(200000); |
mjr | 48:058ace2aed1d | 295 | diagLED(1, 0, 1); |
mjr | 54:fd77a6b2f76c | 296 | wait_us(200000); |
mjr | 48:058ace2aed1d | 297 | } |
mjr | 48:058ace2aed1d | 298 | } |
mjr | 48:058ace2aed1d | 299 | |
mjr | 48:058ace2aed1d | 300 | // overload operator new to call our custom malloc |
mjr | 48:058ace2aed1d | 301 | void *operator new(size_t siz) { return xmalloc(siz); } |
mjr | 48:058ace2aed1d | 302 | void *operator new[](size_t siz) { return xmalloc(siz); } |
mjr | 5:a70c0bce770d | 303 | |
mjr | 5:a70c0bce770d | 304 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 305 | // |
mjr | 38:091e511ce8a0 | 306 | // Forward declarations |
mjr | 38:091e511ce8a0 | 307 | // |
mjr | 38:091e511ce8a0 | 308 | void setNightMode(bool on); |
mjr | 38:091e511ce8a0 | 309 | void toggleNightMode(); |
mjr | 38:091e511ce8a0 | 310 | |
mjr | 38:091e511ce8a0 | 311 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 312 | // utilities |
mjr | 17:ab3cec0c8bf4 | 313 | |
mjr | 26:cb71c4af2912 | 314 | // floating point square of a number |
mjr | 26:cb71c4af2912 | 315 | inline float square(float x) { return x*x; } |
mjr | 26:cb71c4af2912 | 316 | |
mjr | 26:cb71c4af2912 | 317 | // floating point rounding |
mjr | 26:cb71c4af2912 | 318 | inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); } |
mjr | 26:cb71c4af2912 | 319 | |
mjr | 17:ab3cec0c8bf4 | 320 | |
mjr | 33:d832bcab089e | 321 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 322 | // |
mjr | 40:cc0d9814522b | 323 | // Extended verison of Timer class. This adds the ability to interrogate |
mjr | 40:cc0d9814522b | 324 | // the running state. |
mjr | 40:cc0d9814522b | 325 | // |
mjr | 40:cc0d9814522b | 326 | class Timer2: public Timer |
mjr | 40:cc0d9814522b | 327 | { |
mjr | 40:cc0d9814522b | 328 | public: |
mjr | 40:cc0d9814522b | 329 | Timer2() : running(false) { } |
mjr | 40:cc0d9814522b | 330 | |
mjr | 40:cc0d9814522b | 331 | void start() { running = true; Timer::start(); } |
mjr | 40:cc0d9814522b | 332 | void stop() { running = false; Timer::stop(); } |
mjr | 40:cc0d9814522b | 333 | |
mjr | 40:cc0d9814522b | 334 | bool isRunning() const { return running; } |
mjr | 40:cc0d9814522b | 335 | |
mjr | 40:cc0d9814522b | 336 | private: |
mjr | 40:cc0d9814522b | 337 | bool running; |
mjr | 40:cc0d9814522b | 338 | }; |
mjr | 40:cc0d9814522b | 339 | |
mjr | 53:9b2611964afc | 340 | |
mjr | 53:9b2611964afc | 341 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 342 | // |
mjr | 53:9b2611964afc | 343 | // Reboot timer. When we have a deferred reboot operation pending, we |
mjr | 53:9b2611964afc | 344 | // set the target time and start the timer. |
mjr | 53:9b2611964afc | 345 | Timer2 rebootTimer; |
mjr | 53:9b2611964afc | 346 | long rebootTime_us; |
mjr | 53:9b2611964afc | 347 | |
mjr | 40:cc0d9814522b | 348 | // -------------------------------------------------------------------------- |
mjr | 40:cc0d9814522b | 349 | // |
mjr | 33:d832bcab089e | 350 | // USB product version number |
mjr | 5:a70c0bce770d | 351 | // |
mjr | 47:df7a88cd249c | 352 | const uint16_t USB_VERSION_NO = 0x000A; |
mjr | 33:d832bcab089e | 353 | |
mjr | 33:d832bcab089e | 354 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 355 | // |
mjr | 6:cc35eb643e8f | 356 | // Joystick axis report range - we report from -JOYMAX to +JOYMAX |
mjr | 33:d832bcab089e | 357 | // |
mjr | 6:cc35eb643e8f | 358 | #define JOYMAX 4096 |
mjr | 6:cc35eb643e8f | 359 | |
mjr | 9:fd65b0a94720 | 360 | |
mjr | 17:ab3cec0c8bf4 | 361 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 362 | // |
mjr | 40:cc0d9814522b | 363 | // Wire protocol value translations. These translate byte values to and |
mjr | 40:cc0d9814522b | 364 | // from the USB protocol to local native format. |
mjr | 35:e959ffba78fd | 365 | // |
mjr | 35:e959ffba78fd | 366 | |
mjr | 35:e959ffba78fd | 367 | // unsigned 16-bit integer |
mjr | 35:e959ffba78fd | 368 | inline uint16_t wireUI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 369 | { |
mjr | 35:e959ffba78fd | 370 | return b[0] | ((uint16_t)b[1] << 8); |
mjr | 35:e959ffba78fd | 371 | } |
mjr | 40:cc0d9814522b | 372 | inline void ui16Wire(uint8_t *b, uint16_t val) |
mjr | 40:cc0d9814522b | 373 | { |
mjr | 40:cc0d9814522b | 374 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 375 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 376 | } |
mjr | 35:e959ffba78fd | 377 | |
mjr | 35:e959ffba78fd | 378 | inline int16_t wireI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 379 | { |
mjr | 35:e959ffba78fd | 380 | return (int16_t)wireUI16(b); |
mjr | 35:e959ffba78fd | 381 | } |
mjr | 40:cc0d9814522b | 382 | inline void i16Wire(uint8_t *b, int16_t val) |
mjr | 40:cc0d9814522b | 383 | { |
mjr | 40:cc0d9814522b | 384 | ui16Wire(b, (uint16_t)val); |
mjr | 40:cc0d9814522b | 385 | } |
mjr | 35:e959ffba78fd | 386 | |
mjr | 35:e959ffba78fd | 387 | inline uint32_t wireUI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 388 | { |
mjr | 35:e959ffba78fd | 389 | return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24); |
mjr | 35:e959ffba78fd | 390 | } |
mjr | 40:cc0d9814522b | 391 | inline void ui32Wire(uint8_t *b, uint32_t val) |
mjr | 40:cc0d9814522b | 392 | { |
mjr | 40:cc0d9814522b | 393 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 394 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 395 | b[2] = (uint8_t)((val >> 16) & 0xff); |
mjr | 40:cc0d9814522b | 396 | b[3] = (uint8_t)((val >> 24) & 0xff); |
mjr | 40:cc0d9814522b | 397 | } |
mjr | 35:e959ffba78fd | 398 | |
mjr | 35:e959ffba78fd | 399 | inline int32_t wireI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 400 | { |
mjr | 35:e959ffba78fd | 401 | return (int32_t)wireUI32(b); |
mjr | 35:e959ffba78fd | 402 | } |
mjr | 35:e959ffba78fd | 403 | |
mjr | 53:9b2611964afc | 404 | // Convert "wire" (USB) pin codes to/from PinName values. |
mjr | 53:9b2611964afc | 405 | // |
mjr | 53:9b2611964afc | 406 | // The internal mbed PinName format is |
mjr | 53:9b2611964afc | 407 | // |
mjr | 53:9b2611964afc | 408 | // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT |
mjr | 53:9b2611964afc | 409 | // |
mjr | 53:9b2611964afc | 410 | // where 'port' is 0-4 for Port A to Port E, and 'pin' is |
mjr | 53:9b2611964afc | 411 | // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2). |
mjr | 53:9b2611964afc | 412 | // |
mjr | 53:9b2611964afc | 413 | // We remap this to our more compact wire format where each |
mjr | 53:9b2611964afc | 414 | // pin name fits in 8 bits: |
mjr | 53:9b2611964afc | 415 | // |
mjr | 53:9b2611964afc | 416 | // ((port) << 5) | pin) // WIRE FORMAT |
mjr | 53:9b2611964afc | 417 | // |
mjr | 53:9b2611964afc | 418 | // E.g., E31 is (4 << 5) | 31. |
mjr | 53:9b2611964afc | 419 | // |
mjr | 53:9b2611964afc | 420 | // Wire code FF corresponds to PinName NC (not connected). |
mjr | 53:9b2611964afc | 421 | // |
mjr | 53:9b2611964afc | 422 | inline PinName wirePinName(uint8_t c) |
mjr | 35:e959ffba78fd | 423 | { |
mjr | 53:9b2611964afc | 424 | if (c == 0xFF) |
mjr | 53:9b2611964afc | 425 | return NC; // 0xFF -> NC |
mjr | 53:9b2611964afc | 426 | else |
mjr | 53:9b2611964afc | 427 | return PinName( |
mjr | 53:9b2611964afc | 428 | (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port |
mjr | 53:9b2611964afc | 429 | | (int(c & 0x1F) << 2)); // bottom five bits are pin |
mjr | 40:cc0d9814522b | 430 | } |
mjr | 40:cc0d9814522b | 431 | inline void pinNameWire(uint8_t *b, PinName n) |
mjr | 40:cc0d9814522b | 432 | { |
mjr | 53:9b2611964afc | 433 | *b = PINNAME_TO_WIRE(n); |
mjr | 35:e959ffba78fd | 434 | } |
mjr | 35:e959ffba78fd | 435 | |
mjr | 35:e959ffba78fd | 436 | |
mjr | 35:e959ffba78fd | 437 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 438 | // |
mjr | 38:091e511ce8a0 | 439 | // On-board RGB LED elements - we use these for diagnostic displays. |
mjr | 38:091e511ce8a0 | 440 | // |
mjr | 38:091e511ce8a0 | 441 | // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1, |
mjr | 38:091e511ce8a0 | 442 | // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard |
mjr | 38:091e511ce8a0 | 443 | // input or a device output). This is kind of unfortunate in that it's |
mjr | 38:091e511ce8a0 | 444 | // one of only two ports exposed on the jumper pins that can be muxed to |
mjr | 38:091e511ce8a0 | 445 | // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the |
mjr | 38:091e511ce8a0 | 446 | // SPI capability. |
mjr | 38:091e511ce8a0 | 447 | // |
mjr | 38:091e511ce8a0 | 448 | DigitalOut *ledR, *ledG, *ledB; |
mjr | 38:091e511ce8a0 | 449 | |
mjr | 38:091e511ce8a0 | 450 | // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is |
mjr | 38:091e511ce8a0 | 451 | // on, and -1 is no change (leaves the current setting intact). |
mjr | 38:091e511ce8a0 | 452 | void diagLED(int r, int g, int b) |
mjr | 38:091e511ce8a0 | 453 | { |
mjr | 38:091e511ce8a0 | 454 | if (ledR != 0 && r != -1) ledR->write(!r); |
mjr | 38:091e511ce8a0 | 455 | if (ledG != 0 && g != -1) ledG->write(!g); |
mjr | 38:091e511ce8a0 | 456 | if (ledB != 0 && b != -1) ledB->write(!b); |
mjr | 38:091e511ce8a0 | 457 | } |
mjr | 38:091e511ce8a0 | 458 | |
mjr | 38:091e511ce8a0 | 459 | // check an output port assignment to see if it conflicts with |
mjr | 38:091e511ce8a0 | 460 | // an on-board LED segment |
mjr | 38:091e511ce8a0 | 461 | struct LedSeg |
mjr | 38:091e511ce8a0 | 462 | { |
mjr | 38:091e511ce8a0 | 463 | bool r, g, b; |
mjr | 38:091e511ce8a0 | 464 | LedSeg() { r = g = b = false; } |
mjr | 38:091e511ce8a0 | 465 | |
mjr | 38:091e511ce8a0 | 466 | void check(LedWizPortCfg &pc) |
mjr | 38:091e511ce8a0 | 467 | { |
mjr | 38:091e511ce8a0 | 468 | // if it's a GPIO, check to see if it's assigned to one of |
mjr | 38:091e511ce8a0 | 469 | // our on-board LED segments |
mjr | 38:091e511ce8a0 | 470 | int t = pc.typ; |
mjr | 38:091e511ce8a0 | 471 | if (t == PortTypeGPIOPWM || t == PortTypeGPIODig) |
mjr | 38:091e511ce8a0 | 472 | { |
mjr | 38:091e511ce8a0 | 473 | // it's a GPIO port - check for a matching pin assignment |
mjr | 38:091e511ce8a0 | 474 | PinName pin = wirePinName(pc.pin); |
mjr | 38:091e511ce8a0 | 475 | if (pin == LED1) |
mjr | 38:091e511ce8a0 | 476 | r = true; |
mjr | 38:091e511ce8a0 | 477 | else if (pin == LED2) |
mjr | 38:091e511ce8a0 | 478 | g = true; |
mjr | 38:091e511ce8a0 | 479 | else if (pin == LED3) |
mjr | 38:091e511ce8a0 | 480 | b = true; |
mjr | 38:091e511ce8a0 | 481 | } |
mjr | 38:091e511ce8a0 | 482 | } |
mjr | 38:091e511ce8a0 | 483 | }; |
mjr | 38:091e511ce8a0 | 484 | |
mjr | 38:091e511ce8a0 | 485 | // Initialize the diagnostic LEDs. By default, we use the on-board |
mjr | 38:091e511ce8a0 | 486 | // RGB LED to display the microcontroller status. However, we allow |
mjr | 38:091e511ce8a0 | 487 | // the user to commandeer the on-board LED as an LedWiz output device, |
mjr | 38:091e511ce8a0 | 488 | // which can be useful for testing a new installation. So we'll check |
mjr | 38:091e511ce8a0 | 489 | // for LedWiz outputs assigned to the on-board LED segments, and turn |
mjr | 38:091e511ce8a0 | 490 | // off the diagnostic use for any so assigned. |
mjr | 38:091e511ce8a0 | 491 | void initDiagLEDs(Config &cfg) |
mjr | 38:091e511ce8a0 | 492 | { |
mjr | 38:091e511ce8a0 | 493 | // run through the configuration list and cross off any of the |
mjr | 38:091e511ce8a0 | 494 | // LED segments assigned to LedWiz ports |
mjr | 38:091e511ce8a0 | 495 | LedSeg l; |
mjr | 38:091e511ce8a0 | 496 | for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i) |
mjr | 38:091e511ce8a0 | 497 | l.check(cfg.outPort[i]); |
mjr | 38:091e511ce8a0 | 498 | |
mjr | 38:091e511ce8a0 | 499 | // We now know which segments are taken for LedWiz use and which |
mjr | 38:091e511ce8a0 | 500 | // are free. Create diagnostic ports for the ones not claimed for |
mjr | 38:091e511ce8a0 | 501 | // LedWiz use. |
mjr | 38:091e511ce8a0 | 502 | if (!l.r) ledR = new DigitalOut(LED1, 1); |
mjr | 38:091e511ce8a0 | 503 | if (!l.g) ledG = new DigitalOut(LED2, 1); |
mjr | 38:091e511ce8a0 | 504 | if (!l.b) ledB = new DigitalOut(LED3, 1); |
mjr | 38:091e511ce8a0 | 505 | } |
mjr | 38:091e511ce8a0 | 506 | |
mjr | 38:091e511ce8a0 | 507 | |
mjr | 38:091e511ce8a0 | 508 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 509 | // |
mjr | 29:582472d0bc57 | 510 | // LedWiz emulation, and enhanced TLC5940 output controller |
mjr | 5:a70c0bce770d | 511 | // |
mjr | 26:cb71c4af2912 | 512 | // There are two modes for this feature. The default mode uses the on-board |
mjr | 26:cb71c4af2912 | 513 | // GPIO ports to implement device outputs - each LedWiz software port is |
mjr | 26:cb71c4af2912 | 514 | // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10 |
mjr | 26:cb71c4af2912 | 515 | // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the |
mjr | 26:cb71c4af2912 | 516 | // rest are strictly on/off. The KL25Z also has a limited number of GPIO |
mjr | 26:cb71c4af2912 | 517 | // ports overall - not enough for the full complement of 32 LedWiz ports |
mjr | 26:cb71c4af2912 | 518 | // and 24 VP joystick inputs, so it's necessary to trade one against the |
mjr | 26:cb71c4af2912 | 519 | // other if both features are to be used. |
mjr | 26:cb71c4af2912 | 520 | // |
mjr | 26:cb71c4af2912 | 521 | // The alternative, enhanced mode uses external TLC5940 PWM controller |
mjr | 26:cb71c4af2912 | 522 | // chips to control device outputs. In this mode, each LedWiz software |
mjr | 26:cb71c4af2912 | 523 | // port is mapped to an output on one of the external TLC5940 chips. |
mjr | 26:cb71c4af2912 | 524 | // Two 5940s is enough for the full set of 32 LedWiz ports, and we can |
mjr | 26:cb71c4af2912 | 525 | // support even more chips for even more outputs (although doing so requires |
mjr | 26:cb71c4af2912 | 526 | // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired |
mjr | 26:cb71c4af2912 | 527 | // for 32 outputs). Every port in this mode has full PWM support. |
mjr | 26:cb71c4af2912 | 528 | // |
mjr | 5:a70c0bce770d | 529 | |
mjr | 29:582472d0bc57 | 530 | |
mjr | 26:cb71c4af2912 | 531 | // Current starting output index for "PBA" messages from the PC (using |
mjr | 26:cb71c4af2912 | 532 | // the LedWiz USB protocol). Each PBA message implicitly uses the |
mjr | 26:cb71c4af2912 | 533 | // current index as the starting point for the ports referenced in |
mjr | 26:cb71c4af2912 | 534 | // the message, and increases it (by 8) for the next call. |
mjr | 0:5acbbe3f4cf4 | 535 | static int pbaIdx = 0; |
mjr | 0:5acbbe3f4cf4 | 536 | |
mjr | 26:cb71c4af2912 | 537 | // Generic LedWiz output port interface. We create a cover class to |
mjr | 26:cb71c4af2912 | 538 | // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external |
mjr | 26:cb71c4af2912 | 539 | // TLC5940 outputs, and give them all a common interface. |
mjr | 6:cc35eb643e8f | 540 | class LwOut |
mjr | 6:cc35eb643e8f | 541 | { |
mjr | 6:cc35eb643e8f | 542 | public: |
mjr | 40:cc0d9814522b | 543 | // Set the output intensity. 'val' is 0 for fully off, 255 for |
mjr | 40:cc0d9814522b | 544 | // fully on, with values in between signifying lower intensity. |
mjr | 40:cc0d9814522b | 545 | virtual void set(uint8_t val) = 0; |
mjr | 6:cc35eb643e8f | 546 | }; |
mjr | 26:cb71c4af2912 | 547 | |
mjr | 35:e959ffba78fd | 548 | // LwOut class for virtual ports. This type of port is visible to |
mjr | 35:e959ffba78fd | 549 | // the host software, but isn't connected to any physical output. |
mjr | 35:e959ffba78fd | 550 | // This can be used for special software-only ports like the ZB |
mjr | 35:e959ffba78fd | 551 | // Launch Ball output, or simply for placeholders in the LedWiz port |
mjr | 35:e959ffba78fd | 552 | // numbering. |
mjr | 35:e959ffba78fd | 553 | class LwVirtualOut: public LwOut |
mjr | 33:d832bcab089e | 554 | { |
mjr | 33:d832bcab089e | 555 | public: |
mjr | 35:e959ffba78fd | 556 | LwVirtualOut() { } |
mjr | 40:cc0d9814522b | 557 | virtual void set(uint8_t ) { } |
mjr | 33:d832bcab089e | 558 | }; |
mjr | 26:cb71c4af2912 | 559 | |
mjr | 34:6b981a2afab7 | 560 | // Active Low out. For any output marked as active low, we layer this |
mjr | 34:6b981a2afab7 | 561 | // on top of the physical pin interface. This simply inverts the value of |
mjr | 40:cc0d9814522b | 562 | // the output value, so that 255 means fully off and 0 means fully on. |
mjr | 34:6b981a2afab7 | 563 | class LwInvertedOut: public LwOut |
mjr | 34:6b981a2afab7 | 564 | { |
mjr | 34:6b981a2afab7 | 565 | public: |
mjr | 34:6b981a2afab7 | 566 | LwInvertedOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 567 | virtual void set(uint8_t val) { out->set(255 - val); } |
mjr | 34:6b981a2afab7 | 568 | |
mjr | 34:6b981a2afab7 | 569 | private: |
mjr | 53:9b2611964afc | 570 | // underlying physical output |
mjr | 34:6b981a2afab7 | 571 | LwOut *out; |
mjr | 34:6b981a2afab7 | 572 | }; |
mjr | 34:6b981a2afab7 | 573 | |
mjr | 53:9b2611964afc | 574 | // Global ZB Launch Ball state |
mjr | 53:9b2611964afc | 575 | bool zbLaunchOn = false; |
mjr | 53:9b2611964afc | 576 | |
mjr | 53:9b2611964afc | 577 | // ZB Launch Ball output. This is layered on a port (physical or virtual) |
mjr | 53:9b2611964afc | 578 | // to track the ZB Launch Ball signal. |
mjr | 53:9b2611964afc | 579 | class LwZbLaunchOut: public LwOut |
mjr | 53:9b2611964afc | 580 | { |
mjr | 53:9b2611964afc | 581 | public: |
mjr | 53:9b2611964afc | 582 | LwZbLaunchOut(LwOut *o) : out(o) { } |
mjr | 53:9b2611964afc | 583 | virtual void set(uint8_t val) |
mjr | 53:9b2611964afc | 584 | { |
mjr | 53:9b2611964afc | 585 | // update the global ZB Launch Ball state |
mjr | 53:9b2611964afc | 586 | zbLaunchOn = (val != 0); |
mjr | 53:9b2611964afc | 587 | |
mjr | 53:9b2611964afc | 588 | // pass it along to the underlying port, in case it's a physical output |
mjr | 53:9b2611964afc | 589 | out->set(val); |
mjr | 53:9b2611964afc | 590 | } |
mjr | 53:9b2611964afc | 591 | |
mjr | 53:9b2611964afc | 592 | private: |
mjr | 53:9b2611964afc | 593 | // underlying physical or virtual output |
mjr | 53:9b2611964afc | 594 | LwOut *out; |
mjr | 53:9b2611964afc | 595 | }; |
mjr | 53:9b2611964afc | 596 | |
mjr | 53:9b2611964afc | 597 | |
mjr | 40:cc0d9814522b | 598 | // Gamma correction table for 8-bit input values |
mjr | 40:cc0d9814522b | 599 | static const uint8_t gamma[] = { |
mjr | 40:cc0d9814522b | 600 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
mjr | 40:cc0d9814522b | 601 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 602 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, |
mjr | 40:cc0d9814522b | 603 | 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, |
mjr | 40:cc0d9814522b | 604 | 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, |
mjr | 40:cc0d9814522b | 605 | 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, |
mjr | 40:cc0d9814522b | 606 | 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, |
mjr | 40:cc0d9814522b | 607 | 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, |
mjr | 40:cc0d9814522b | 608 | 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, |
mjr | 40:cc0d9814522b | 609 | 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, |
mjr | 40:cc0d9814522b | 610 | 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, |
mjr | 40:cc0d9814522b | 611 | 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114, |
mjr | 40:cc0d9814522b | 612 | 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142, |
mjr | 40:cc0d9814522b | 613 | 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175, |
mjr | 40:cc0d9814522b | 614 | 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, |
mjr | 40:cc0d9814522b | 615 | 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255 |
mjr | 40:cc0d9814522b | 616 | }; |
mjr | 40:cc0d9814522b | 617 | |
mjr | 40:cc0d9814522b | 618 | // Gamma-corrected out. This is a filter object that we layer on top |
mjr | 40:cc0d9814522b | 619 | // of a physical pin interface. This applies gamma correction to the |
mjr | 40:cc0d9814522b | 620 | // input value and then passes it along to the underlying pin object. |
mjr | 40:cc0d9814522b | 621 | class LwGammaOut: public LwOut |
mjr | 40:cc0d9814522b | 622 | { |
mjr | 40:cc0d9814522b | 623 | public: |
mjr | 40:cc0d9814522b | 624 | LwGammaOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 625 | virtual void set(uint8_t val) { out->set(gamma[val]); } |
mjr | 40:cc0d9814522b | 626 | |
mjr | 40:cc0d9814522b | 627 | private: |
mjr | 40:cc0d9814522b | 628 | LwOut *out; |
mjr | 40:cc0d9814522b | 629 | }; |
mjr | 40:cc0d9814522b | 630 | |
mjr | 53:9b2611964afc | 631 | // global night mode flag |
mjr | 53:9b2611964afc | 632 | static bool nightMode = false; |
mjr | 53:9b2611964afc | 633 | |
mjr | 40:cc0d9814522b | 634 | // Noisy output. This is a filter object that we layer on top of |
mjr | 40:cc0d9814522b | 635 | // a physical pin output. This filter disables the port when night |
mjr | 40:cc0d9814522b | 636 | // mode is engaged. |
mjr | 40:cc0d9814522b | 637 | class LwNoisyOut: public LwOut |
mjr | 40:cc0d9814522b | 638 | { |
mjr | 40:cc0d9814522b | 639 | public: |
mjr | 40:cc0d9814522b | 640 | LwNoisyOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 641 | virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); } |
mjr | 40:cc0d9814522b | 642 | |
mjr | 53:9b2611964afc | 643 | private: |
mjr | 53:9b2611964afc | 644 | LwOut *out; |
mjr | 53:9b2611964afc | 645 | }; |
mjr | 53:9b2611964afc | 646 | |
mjr | 53:9b2611964afc | 647 | // Night Mode indicator output. This is a filter object that we |
mjr | 53:9b2611964afc | 648 | // layer on top of a physical pin output. This filter ignores the |
mjr | 53:9b2611964afc | 649 | // host value and simply shows the night mode status. |
mjr | 53:9b2611964afc | 650 | class LwNightModeIndicatorOut: public LwOut |
mjr | 53:9b2611964afc | 651 | { |
mjr | 53:9b2611964afc | 652 | public: |
mjr | 53:9b2611964afc | 653 | LwNightModeIndicatorOut(LwOut *o) : out(o) { } |
mjr | 53:9b2611964afc | 654 | virtual void set(uint8_t) |
mjr | 53:9b2611964afc | 655 | { |
mjr | 53:9b2611964afc | 656 | // ignore the host value and simply show the current |
mjr | 53:9b2611964afc | 657 | // night mode setting |
mjr | 53:9b2611964afc | 658 | out->set(nightMode ? 255 : 0); |
mjr | 53:9b2611964afc | 659 | } |
mjr | 40:cc0d9814522b | 660 | |
mjr | 40:cc0d9814522b | 661 | private: |
mjr | 40:cc0d9814522b | 662 | LwOut *out; |
mjr | 40:cc0d9814522b | 663 | }; |
mjr | 40:cc0d9814522b | 664 | |
mjr | 26:cb71c4af2912 | 665 | |
mjr | 35:e959ffba78fd | 666 | // |
mjr | 35:e959ffba78fd | 667 | // The TLC5940 interface object. We'll set this up with the port |
mjr | 35:e959ffba78fd | 668 | // assignments set in config.h. |
mjr | 33:d832bcab089e | 669 | // |
mjr | 35:e959ffba78fd | 670 | TLC5940 *tlc5940 = 0; |
mjr | 35:e959ffba78fd | 671 | void init_tlc5940(Config &cfg) |
mjr | 35:e959ffba78fd | 672 | { |
mjr | 35:e959ffba78fd | 673 | if (cfg.tlc5940.nchips != 0) |
mjr | 35:e959ffba78fd | 674 | { |
mjr | 53:9b2611964afc | 675 | tlc5940 = new TLC5940( |
mjr | 53:9b2611964afc | 676 | wirePinName(cfg.tlc5940.sclk), |
mjr | 53:9b2611964afc | 677 | wirePinName(cfg.tlc5940.sin), |
mjr | 53:9b2611964afc | 678 | wirePinName(cfg.tlc5940.gsclk), |
mjr | 53:9b2611964afc | 679 | wirePinName(cfg.tlc5940.blank), |
mjr | 53:9b2611964afc | 680 | wirePinName(cfg.tlc5940.xlat), |
mjr | 53:9b2611964afc | 681 | cfg.tlc5940.nchips); |
mjr | 35:e959ffba78fd | 682 | } |
mjr | 35:e959ffba78fd | 683 | } |
mjr | 26:cb71c4af2912 | 684 | |
mjr | 40:cc0d9814522b | 685 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level |
mjr | 40:cc0d9814522b | 686 | static const uint16_t dof_to_tlc[] = { |
mjr | 40:cc0d9814522b | 687 | 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241, |
mjr | 40:cc0d9814522b | 688 | 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498, |
mjr | 40:cc0d9814522b | 689 | 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755, |
mjr | 40:cc0d9814522b | 690 | 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012, |
mjr | 40:cc0d9814522b | 691 | 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269, |
mjr | 40:cc0d9814522b | 692 | 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526, |
mjr | 40:cc0d9814522b | 693 | 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783, |
mjr | 40:cc0d9814522b | 694 | 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039, |
mjr | 40:cc0d9814522b | 695 | 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296, |
mjr | 40:cc0d9814522b | 696 | 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553, |
mjr | 40:cc0d9814522b | 697 | 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810, |
mjr | 40:cc0d9814522b | 698 | 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067, |
mjr | 40:cc0d9814522b | 699 | 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324, |
mjr | 40:cc0d9814522b | 700 | 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581, |
mjr | 40:cc0d9814522b | 701 | 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838, |
mjr | 40:cc0d9814522b | 702 | 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095 |
mjr | 40:cc0d9814522b | 703 | }; |
mjr | 40:cc0d9814522b | 704 | |
mjr | 40:cc0d9814522b | 705 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with |
mjr | 40:cc0d9814522b | 706 | // gamma correction. Note that the output layering scheme can handle |
mjr | 40:cc0d9814522b | 707 | // this without a separate table, by first applying gamma to the DOF |
mjr | 40:cc0d9814522b | 708 | // level to produce an 8-bit gamma-corrected value, then convert that |
mjr | 40:cc0d9814522b | 709 | // to the 12-bit TLC5940 value. But we get better precision by doing |
mjr | 40:cc0d9814522b | 710 | // the gamma correction in the 12-bit TLC5940 domain. We can only |
mjr | 40:cc0d9814522b | 711 | // get the 12-bit domain by combining both steps into one layering |
mjr | 40:cc0d9814522b | 712 | // object, though, since the intermediate values in the layering system |
mjr | 40:cc0d9814522b | 713 | // are always 8 bits. |
mjr | 40:cc0d9814522b | 714 | static const uint16_t dof_to_gamma_tlc[] = { |
mjr | 40:cc0d9814522b | 715 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 716 | 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11, |
mjr | 40:cc0d9814522b | 717 | 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36, |
mjr | 40:cc0d9814522b | 718 | 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82, |
mjr | 40:cc0d9814522b | 719 | 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154, |
mjr | 40:cc0d9814522b | 720 | 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258, |
mjr | 40:cc0d9814522b | 721 | 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399, |
mjr | 40:cc0d9814522b | 722 | 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582, |
mjr | 40:cc0d9814522b | 723 | 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811, |
mjr | 40:cc0d9814522b | 724 | 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091, |
mjr | 40:cc0d9814522b | 725 | 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427, |
mjr | 40:cc0d9814522b | 726 | 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823, |
mjr | 40:cc0d9814522b | 727 | 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284, |
mjr | 40:cc0d9814522b | 728 | 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813, |
mjr | 40:cc0d9814522b | 729 | 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416, |
mjr | 40:cc0d9814522b | 730 | 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095 |
mjr | 40:cc0d9814522b | 731 | }; |
mjr | 40:cc0d9814522b | 732 | |
mjr | 40:cc0d9814522b | 733 | |
mjr | 26:cb71c4af2912 | 734 | // LwOut class for TLC5940 outputs. These are fully PWM capable. |
mjr | 26:cb71c4af2912 | 735 | // The 'idx' value in the constructor is the output index in the |
mjr | 26:cb71c4af2912 | 736 | // daisy-chained TLC5940 array. 0 is output #0 on the first chip, |
mjr | 26:cb71c4af2912 | 737 | // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is |
mjr | 26:cb71c4af2912 | 738 | // #0 on the second chip, 32 is #0 on the third chip, etc. |
mjr | 26:cb71c4af2912 | 739 | class Lw5940Out: public LwOut |
mjr | 26:cb71c4af2912 | 740 | { |
mjr | 26:cb71c4af2912 | 741 | public: |
mjr | 40:cc0d9814522b | 742 | Lw5940Out(int idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 743 | virtual void set(uint8_t val) |
mjr | 26:cb71c4af2912 | 744 | { |
mjr | 26:cb71c4af2912 | 745 | if (val != prv) |
mjr | 40:cc0d9814522b | 746 | tlc5940->set(idx, dof_to_tlc[prv = val]); |
mjr | 26:cb71c4af2912 | 747 | } |
mjr | 26:cb71c4af2912 | 748 | int idx; |
mjr | 40:cc0d9814522b | 749 | uint8_t prv; |
mjr | 26:cb71c4af2912 | 750 | }; |
mjr | 26:cb71c4af2912 | 751 | |
mjr | 40:cc0d9814522b | 752 | // LwOut class for TLC5940 gamma-corrected outputs. |
mjr | 40:cc0d9814522b | 753 | class Lw5940GammaOut: public LwOut |
mjr | 40:cc0d9814522b | 754 | { |
mjr | 40:cc0d9814522b | 755 | public: |
mjr | 40:cc0d9814522b | 756 | Lw5940GammaOut(int idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 757 | virtual void set(uint8_t val) |
mjr | 40:cc0d9814522b | 758 | { |
mjr | 40:cc0d9814522b | 759 | if (val != prv) |
mjr | 40:cc0d9814522b | 760 | tlc5940->set(idx, dof_to_gamma_tlc[prv = val]); |
mjr | 40:cc0d9814522b | 761 | } |
mjr | 40:cc0d9814522b | 762 | int idx; |
mjr | 40:cc0d9814522b | 763 | uint8_t prv; |
mjr | 40:cc0d9814522b | 764 | }; |
mjr | 40:cc0d9814522b | 765 | |
mjr | 40:cc0d9814522b | 766 | |
mjr | 33:d832bcab089e | 767 | |
mjr | 34:6b981a2afab7 | 768 | // 74HC595 interface object. Set this up with the port assignments in |
mjr | 34:6b981a2afab7 | 769 | // config.h. |
mjr | 35:e959ffba78fd | 770 | HC595 *hc595 = 0; |
mjr | 35:e959ffba78fd | 771 | |
mjr | 35:e959ffba78fd | 772 | // initialize the 74HC595 interface |
mjr | 35:e959ffba78fd | 773 | void init_hc595(Config &cfg) |
mjr | 35:e959ffba78fd | 774 | { |
mjr | 35:e959ffba78fd | 775 | if (cfg.hc595.nchips != 0) |
mjr | 35:e959ffba78fd | 776 | { |
mjr | 53:9b2611964afc | 777 | hc595 = new HC595( |
mjr | 53:9b2611964afc | 778 | wirePinName(cfg.hc595.nchips), |
mjr | 53:9b2611964afc | 779 | wirePinName(cfg.hc595.sin), |
mjr | 53:9b2611964afc | 780 | wirePinName(cfg.hc595.sclk), |
mjr | 53:9b2611964afc | 781 | wirePinName(cfg.hc595.latch), |
mjr | 53:9b2611964afc | 782 | wirePinName(cfg.hc595.ena)); |
mjr | 35:e959ffba78fd | 783 | hc595->init(); |
mjr | 35:e959ffba78fd | 784 | hc595->update(); |
mjr | 35:e959ffba78fd | 785 | } |
mjr | 35:e959ffba78fd | 786 | } |
mjr | 34:6b981a2afab7 | 787 | |
mjr | 34:6b981a2afab7 | 788 | // LwOut class for 74HC595 outputs. These are simple digial outs. |
mjr | 34:6b981a2afab7 | 789 | // The 'idx' value in the constructor is the output index in the |
mjr | 34:6b981a2afab7 | 790 | // daisy-chained 74HC595 array. 0 is output #0 on the first chip, |
mjr | 34:6b981a2afab7 | 791 | // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is |
mjr | 34:6b981a2afab7 | 792 | // #0 on the second chip, etc. |
mjr | 34:6b981a2afab7 | 793 | class Lw595Out: public LwOut |
mjr | 33:d832bcab089e | 794 | { |
mjr | 33:d832bcab089e | 795 | public: |
mjr | 40:cc0d9814522b | 796 | Lw595Out(int idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 797 | virtual void set(uint8_t val) |
mjr | 34:6b981a2afab7 | 798 | { |
mjr | 34:6b981a2afab7 | 799 | if (val != prv) |
mjr | 40:cc0d9814522b | 800 | hc595->set(idx, (prv = val) == 0 ? 0 : 1); |
mjr | 34:6b981a2afab7 | 801 | } |
mjr | 34:6b981a2afab7 | 802 | int idx; |
mjr | 40:cc0d9814522b | 803 | uint8_t prv; |
mjr | 33:d832bcab089e | 804 | }; |
mjr | 33:d832bcab089e | 805 | |
mjr | 26:cb71c4af2912 | 806 | |
mjr | 40:cc0d9814522b | 807 | |
mjr | 40:cc0d9814522b | 808 | // Conversion table - 8-bit DOF output level to PWM float level |
mjr | 40:cc0d9814522b | 809 | // (normalized to 0.0..1.0 scale) |
mjr | 40:cc0d9814522b | 810 | static const float pwm_level[] = { |
mjr | 40:cc0d9814522b | 811 | 0.000000, 0.003922, 0.007843, 0.011765, 0.015686, 0.019608, 0.023529, 0.027451, |
mjr | 40:cc0d9814522b | 812 | 0.031373, 0.035294, 0.039216, 0.043137, 0.047059, 0.050980, 0.054902, 0.058824, |
mjr | 40:cc0d9814522b | 813 | 0.062745, 0.066667, 0.070588, 0.074510, 0.078431, 0.082353, 0.086275, 0.090196, |
mjr | 40:cc0d9814522b | 814 | 0.094118, 0.098039, 0.101961, 0.105882, 0.109804, 0.113725, 0.117647, 0.121569, |
mjr | 40:cc0d9814522b | 815 | 0.125490, 0.129412, 0.133333, 0.137255, 0.141176, 0.145098, 0.149020, 0.152941, |
mjr | 40:cc0d9814522b | 816 | 0.156863, 0.160784, 0.164706, 0.168627, 0.172549, 0.176471, 0.180392, 0.184314, |
mjr | 40:cc0d9814522b | 817 | 0.188235, 0.192157, 0.196078, 0.200000, 0.203922, 0.207843, 0.211765, 0.215686, |
mjr | 40:cc0d9814522b | 818 | 0.219608, 0.223529, 0.227451, 0.231373, 0.235294, 0.239216, 0.243137, 0.247059, |
mjr | 40:cc0d9814522b | 819 | 0.250980, 0.254902, 0.258824, 0.262745, 0.266667, 0.270588, 0.274510, 0.278431, |
mjr | 40:cc0d9814522b | 820 | 0.282353, 0.286275, 0.290196, 0.294118, 0.298039, 0.301961, 0.305882, 0.309804, |
mjr | 40:cc0d9814522b | 821 | 0.313725, 0.317647, 0.321569, 0.325490, 0.329412, 0.333333, 0.337255, 0.341176, |
mjr | 40:cc0d9814522b | 822 | 0.345098, 0.349020, 0.352941, 0.356863, 0.360784, 0.364706, 0.368627, 0.372549, |
mjr | 40:cc0d9814522b | 823 | 0.376471, 0.380392, 0.384314, 0.388235, 0.392157, 0.396078, 0.400000, 0.403922, |
mjr | 40:cc0d9814522b | 824 | 0.407843, 0.411765, 0.415686, 0.419608, 0.423529, 0.427451, 0.431373, 0.435294, |
mjr | 40:cc0d9814522b | 825 | 0.439216, 0.443137, 0.447059, 0.450980, 0.454902, 0.458824, 0.462745, 0.466667, |
mjr | 40:cc0d9814522b | 826 | 0.470588, 0.474510, 0.478431, 0.482353, 0.486275, 0.490196, 0.494118, 0.498039, |
mjr | 40:cc0d9814522b | 827 | 0.501961, 0.505882, 0.509804, 0.513725, 0.517647, 0.521569, 0.525490, 0.529412, |
mjr | 40:cc0d9814522b | 828 | 0.533333, 0.537255, 0.541176, 0.545098, 0.549020, 0.552941, 0.556863, 0.560784, |
mjr | 40:cc0d9814522b | 829 | 0.564706, 0.568627, 0.572549, 0.576471, 0.580392, 0.584314, 0.588235, 0.592157, |
mjr | 40:cc0d9814522b | 830 | 0.596078, 0.600000, 0.603922, 0.607843, 0.611765, 0.615686, 0.619608, 0.623529, |
mjr | 40:cc0d9814522b | 831 | 0.627451, 0.631373, 0.635294, 0.639216, 0.643137, 0.647059, 0.650980, 0.654902, |
mjr | 40:cc0d9814522b | 832 | 0.658824, 0.662745, 0.666667, 0.670588, 0.674510, 0.678431, 0.682353, 0.686275, |
mjr | 40:cc0d9814522b | 833 | 0.690196, 0.694118, 0.698039, 0.701961, 0.705882, 0.709804, 0.713725, 0.717647, |
mjr | 40:cc0d9814522b | 834 | 0.721569, 0.725490, 0.729412, 0.733333, 0.737255, 0.741176, 0.745098, 0.749020, |
mjr | 40:cc0d9814522b | 835 | 0.752941, 0.756863, 0.760784, 0.764706, 0.768627, 0.772549, 0.776471, 0.780392, |
mjr | 40:cc0d9814522b | 836 | 0.784314, 0.788235, 0.792157, 0.796078, 0.800000, 0.803922, 0.807843, 0.811765, |
mjr | 40:cc0d9814522b | 837 | 0.815686, 0.819608, 0.823529, 0.827451, 0.831373, 0.835294, 0.839216, 0.843137, |
mjr | 40:cc0d9814522b | 838 | 0.847059, 0.850980, 0.854902, 0.858824, 0.862745, 0.866667, 0.870588, 0.874510, |
mjr | 40:cc0d9814522b | 839 | 0.878431, 0.882353, 0.886275, 0.890196, 0.894118, 0.898039, 0.901961, 0.905882, |
mjr | 40:cc0d9814522b | 840 | 0.909804, 0.913725, 0.917647, 0.921569, 0.925490, 0.929412, 0.933333, 0.937255, |
mjr | 40:cc0d9814522b | 841 | 0.941176, 0.945098, 0.949020, 0.952941, 0.956863, 0.960784, 0.964706, 0.968627, |
mjr | 40:cc0d9814522b | 842 | 0.972549, 0.976471, 0.980392, 0.984314, 0.988235, 0.992157, 0.996078, 1.000000 |
mjr | 40:cc0d9814522b | 843 | }; |
mjr | 26:cb71c4af2912 | 844 | |
mjr | 26:cb71c4af2912 | 845 | // LwOut class for a PWM-capable GPIO port |
mjr | 6:cc35eb643e8f | 846 | class LwPwmOut: public LwOut |
mjr | 6:cc35eb643e8f | 847 | { |
mjr | 6:cc35eb643e8f | 848 | public: |
mjr | 43:7a6364d82a41 | 849 | LwPwmOut(PinName pin, uint8_t initVal) : p(pin) |
mjr | 43:7a6364d82a41 | 850 | { |
mjr | 43:7a6364d82a41 | 851 | prv = initVal ^ 0xFF; |
mjr | 43:7a6364d82a41 | 852 | set(initVal); |
mjr | 43:7a6364d82a41 | 853 | } |
mjr | 40:cc0d9814522b | 854 | virtual void set(uint8_t val) |
mjr | 13:72dda449c3c0 | 855 | { |
mjr | 13:72dda449c3c0 | 856 | if (val != prv) |
mjr | 40:cc0d9814522b | 857 | p.write(pwm_level[prv = val]); |
mjr | 13:72dda449c3c0 | 858 | } |
mjr | 6:cc35eb643e8f | 859 | PwmOut p; |
mjr | 40:cc0d9814522b | 860 | uint8_t prv; |
mjr | 6:cc35eb643e8f | 861 | }; |
mjr | 26:cb71c4af2912 | 862 | |
mjr | 26:cb71c4af2912 | 863 | // LwOut class for a Digital-Only (Non-PWM) GPIO port |
mjr | 6:cc35eb643e8f | 864 | class LwDigOut: public LwOut |
mjr | 6:cc35eb643e8f | 865 | { |
mjr | 6:cc35eb643e8f | 866 | public: |
mjr | 43:7a6364d82a41 | 867 | LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; } |
mjr | 40:cc0d9814522b | 868 | virtual void set(uint8_t val) |
mjr | 13:72dda449c3c0 | 869 | { |
mjr | 13:72dda449c3c0 | 870 | if (val != prv) |
mjr | 40:cc0d9814522b | 871 | p.write((prv = val) == 0 ? 0 : 1); |
mjr | 13:72dda449c3c0 | 872 | } |
mjr | 6:cc35eb643e8f | 873 | DigitalOut p; |
mjr | 40:cc0d9814522b | 874 | uint8_t prv; |
mjr | 6:cc35eb643e8f | 875 | }; |
mjr | 26:cb71c4af2912 | 876 | |
mjr | 29:582472d0bc57 | 877 | // Array of output physical pin assignments. This array is indexed |
mjr | 29:582472d0bc57 | 878 | // by LedWiz logical port number - lwPin[n] is the maping for LedWiz |
mjr | 35:e959ffba78fd | 879 | // port n (0-based). |
mjr | 35:e959ffba78fd | 880 | // |
mjr | 35:e959ffba78fd | 881 | // Each pin is handled by an interface object for the physical output |
mjr | 35:e959ffba78fd | 882 | // type for the port, as set in the configuration. The interface |
mjr | 35:e959ffba78fd | 883 | // objects handle the specifics of addressing the different hardware |
mjr | 35:e959ffba78fd | 884 | // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and |
mjr | 35:e959ffba78fd | 885 | // 74HC595 ports). |
mjr | 33:d832bcab089e | 886 | static int numOutputs; |
mjr | 33:d832bcab089e | 887 | static LwOut **lwPin; |
mjr | 33:d832bcab089e | 888 | |
mjr | 38:091e511ce8a0 | 889 | |
mjr | 35:e959ffba78fd | 890 | // Number of LedWiz emulation outputs. This is the number of ports |
mjr | 35:e959ffba78fd | 891 | // accessible through the standard (non-extended) LedWiz protocol |
mjr | 35:e959ffba78fd | 892 | // messages. The protocol has a fixed set of 32 outputs, but we |
mjr | 35:e959ffba78fd | 893 | // might have fewer actual outputs. This is therefore set to the |
mjr | 35:e959ffba78fd | 894 | // lower of 32 or the actual number of outputs. |
mjr | 35:e959ffba78fd | 895 | static int numLwOutputs; |
mjr | 35:e959ffba78fd | 896 | |
mjr | 40:cc0d9814522b | 897 | // Current absolute brightness level for an output. This is a DOF |
mjr | 40:cc0d9814522b | 898 | // brightness level value, from 0 for fully off to 255 for fully on. |
mjr | 40:cc0d9814522b | 899 | // This is used for all extended ports (33 and above), and for any |
mjr | 40:cc0d9814522b | 900 | // LedWiz port with wizVal == 255. |
mjr | 40:cc0d9814522b | 901 | static uint8_t *outLevel; |
mjr | 38:091e511ce8a0 | 902 | |
mjr | 38:091e511ce8a0 | 903 | // create a single output pin |
mjr | 53:9b2611964afc | 904 | LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg) |
mjr | 38:091e511ce8a0 | 905 | { |
mjr | 38:091e511ce8a0 | 906 | // get this item's values |
mjr | 38:091e511ce8a0 | 907 | int typ = pc.typ; |
mjr | 38:091e511ce8a0 | 908 | int pin = pc.pin; |
mjr | 38:091e511ce8a0 | 909 | int flags = pc.flags; |
mjr | 40:cc0d9814522b | 910 | int noisy = flags & PortFlagNoisemaker; |
mjr | 38:091e511ce8a0 | 911 | int activeLow = flags & PortFlagActiveLow; |
mjr | 40:cc0d9814522b | 912 | int gamma = flags & PortFlagGamma; |
mjr | 38:091e511ce8a0 | 913 | |
mjr | 38:091e511ce8a0 | 914 | // create the pin interface object according to the port type |
mjr | 38:091e511ce8a0 | 915 | LwOut *lwp; |
mjr | 38:091e511ce8a0 | 916 | switch (typ) |
mjr | 38:091e511ce8a0 | 917 | { |
mjr | 38:091e511ce8a0 | 918 | case PortTypeGPIOPWM: |
mjr | 48:058ace2aed1d | 919 | // PWM GPIO port - assign if we have a valid pin |
mjr | 48:058ace2aed1d | 920 | if (pin != 0) |
mjr | 48:058ace2aed1d | 921 | lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 48:058ace2aed1d | 922 | else |
mjr | 48:058ace2aed1d | 923 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 924 | break; |
mjr | 38:091e511ce8a0 | 925 | |
mjr | 38:091e511ce8a0 | 926 | case PortTypeGPIODig: |
mjr | 38:091e511ce8a0 | 927 | // Digital GPIO port |
mjr | 48:058ace2aed1d | 928 | if (pin != 0) |
mjr | 48:058ace2aed1d | 929 | lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 48:058ace2aed1d | 930 | else |
mjr | 48:058ace2aed1d | 931 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 932 | break; |
mjr | 38:091e511ce8a0 | 933 | |
mjr | 38:091e511ce8a0 | 934 | case PortTypeTLC5940: |
mjr | 38:091e511ce8a0 | 935 | // TLC5940 port (if we don't have a TLC controller object, or it's not a valid |
mjr | 38:091e511ce8a0 | 936 | // output port number on the chips we have, create a virtual port) |
mjr | 38:091e511ce8a0 | 937 | if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16) |
mjr | 40:cc0d9814522b | 938 | { |
mjr | 40:cc0d9814522b | 939 | // If gamma correction is to be used, and we're not inverting the output, |
mjr | 40:cc0d9814522b | 940 | // use the combined TLC4950 + Gamma output class. Otherwise use the plain |
mjr | 40:cc0d9814522b | 941 | // TLC5940 output. We skip the combined class if the output is inverted |
mjr | 40:cc0d9814522b | 942 | // because we need to apply gamma BEFORE the inversion to get the right |
mjr | 40:cc0d9814522b | 943 | // results, but the combined class would apply it after because of the |
mjr | 40:cc0d9814522b | 944 | // layering scheme - the combined class is a physical device output class, |
mjr | 40:cc0d9814522b | 945 | // and a physical device output class is necessarily at the bottom of |
mjr | 40:cc0d9814522b | 946 | // the stack. We don't have a combined inverted+gamma+TLC class, because |
mjr | 40:cc0d9814522b | 947 | // inversion isn't recommended for TLC5940 chips in the first place, so |
mjr | 40:cc0d9814522b | 948 | // it's not worth the extra memory footprint to have a dedicated table |
mjr | 40:cc0d9814522b | 949 | // for this unlikely case. |
mjr | 40:cc0d9814522b | 950 | if (gamma && !activeLow) |
mjr | 40:cc0d9814522b | 951 | { |
mjr | 40:cc0d9814522b | 952 | // use the gamma-corrected 5940 output mapper |
mjr | 40:cc0d9814522b | 953 | lwp = new Lw5940GammaOut(pin); |
mjr | 40:cc0d9814522b | 954 | |
mjr | 40:cc0d9814522b | 955 | // DON'T apply further gamma correction to this output |
mjr | 40:cc0d9814522b | 956 | gamma = false; |
mjr | 40:cc0d9814522b | 957 | } |
mjr | 40:cc0d9814522b | 958 | else |
mjr | 40:cc0d9814522b | 959 | { |
mjr | 40:cc0d9814522b | 960 | // no gamma - use the plain (linear) 5940 output class |
mjr | 40:cc0d9814522b | 961 | lwp = new Lw5940Out(pin); |
mjr | 40:cc0d9814522b | 962 | } |
mjr | 40:cc0d9814522b | 963 | } |
mjr | 38:091e511ce8a0 | 964 | else |
mjr | 40:cc0d9814522b | 965 | { |
mjr | 40:cc0d9814522b | 966 | // no TLC5940 chips, or invalid port number - use a virtual out |
mjr | 38:091e511ce8a0 | 967 | lwp = new LwVirtualOut(); |
mjr | 40:cc0d9814522b | 968 | } |
mjr | 38:091e511ce8a0 | 969 | break; |
mjr | 38:091e511ce8a0 | 970 | |
mjr | 38:091e511ce8a0 | 971 | case PortType74HC595: |
mjr | 38:091e511ce8a0 | 972 | // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid |
mjr | 38:091e511ce8a0 | 973 | // output number, create a virtual port) |
mjr | 38:091e511ce8a0 | 974 | if (hc595 != 0 && pin < cfg.hc595.nchips*8) |
mjr | 38:091e511ce8a0 | 975 | lwp = new Lw595Out(pin); |
mjr | 38:091e511ce8a0 | 976 | else |
mjr | 38:091e511ce8a0 | 977 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 978 | break; |
mjr | 38:091e511ce8a0 | 979 | |
mjr | 38:091e511ce8a0 | 980 | case PortTypeVirtual: |
mjr | 43:7a6364d82a41 | 981 | case PortTypeDisabled: |
mjr | 38:091e511ce8a0 | 982 | default: |
mjr | 38:091e511ce8a0 | 983 | // virtual or unknown |
mjr | 38:091e511ce8a0 | 984 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 985 | break; |
mjr | 38:091e511ce8a0 | 986 | } |
mjr | 38:091e511ce8a0 | 987 | |
mjr | 40:cc0d9814522b | 988 | // If it's Active Low, layer on an inverter. Note that an inverter |
mjr | 40:cc0d9814522b | 989 | // needs to be the bottom-most layer, since all of the other filters |
mjr | 40:cc0d9814522b | 990 | // assume that they're working with normal (non-inverted) values. |
mjr | 38:091e511ce8a0 | 991 | if (activeLow) |
mjr | 38:091e511ce8a0 | 992 | lwp = new LwInvertedOut(lwp); |
mjr | 40:cc0d9814522b | 993 | |
mjr | 40:cc0d9814522b | 994 | // If it's a noisemaker, layer on a night mode switch. Note that this |
mjr | 40:cc0d9814522b | 995 | // needs to be |
mjr | 40:cc0d9814522b | 996 | if (noisy) |
mjr | 40:cc0d9814522b | 997 | lwp = new LwNoisyOut(lwp); |
mjr | 40:cc0d9814522b | 998 | |
mjr | 40:cc0d9814522b | 999 | // If it's gamma-corrected, layer on a gamma corrector |
mjr | 40:cc0d9814522b | 1000 | if (gamma) |
mjr | 40:cc0d9814522b | 1001 | lwp = new LwGammaOut(lwp); |
mjr | 53:9b2611964afc | 1002 | |
mjr | 53:9b2611964afc | 1003 | // If this is the ZB Launch Ball port, layer a monitor object. Note |
mjr | 53:9b2611964afc | 1004 | // that the nominal port numbering in the cofnig starts at 1, but we're |
mjr | 53:9b2611964afc | 1005 | // using an array index, so test against portno+1. |
mjr | 53:9b2611964afc | 1006 | if (portno + 1 == cfg.plunger.zbLaunchBall.port) |
mjr | 53:9b2611964afc | 1007 | lwp = new LwZbLaunchOut(lwp); |
mjr | 53:9b2611964afc | 1008 | |
mjr | 53:9b2611964afc | 1009 | // If this is the Night Mode indicator port, layer a night mode object. |
mjr | 53:9b2611964afc | 1010 | if (portno + 1 == cfg.nightMode.port) |
mjr | 53:9b2611964afc | 1011 | lwp = new LwNightModeIndicatorOut(lwp); |
mjr | 38:091e511ce8a0 | 1012 | |
mjr | 38:091e511ce8a0 | 1013 | // turn it off initially |
mjr | 38:091e511ce8a0 | 1014 | lwp->set(0); |
mjr | 38:091e511ce8a0 | 1015 | |
mjr | 38:091e511ce8a0 | 1016 | // return the pin |
mjr | 38:091e511ce8a0 | 1017 | return lwp; |
mjr | 38:091e511ce8a0 | 1018 | } |
mjr | 38:091e511ce8a0 | 1019 | |
mjr | 6:cc35eb643e8f | 1020 | // initialize the output pin array |
mjr | 35:e959ffba78fd | 1021 | void initLwOut(Config &cfg) |
mjr | 6:cc35eb643e8f | 1022 | { |
mjr | 35:e959ffba78fd | 1023 | // Count the outputs. The first disabled output determines the |
mjr | 35:e959ffba78fd | 1024 | // total number of ports. |
mjr | 35:e959ffba78fd | 1025 | numOutputs = MAX_OUT_PORTS; |
mjr | 33:d832bcab089e | 1026 | int i; |
mjr | 35:e959ffba78fd | 1027 | for (i = 0 ; i < MAX_OUT_PORTS ; ++i) |
mjr | 6:cc35eb643e8f | 1028 | { |
mjr | 35:e959ffba78fd | 1029 | if (cfg.outPort[i].typ == PortTypeDisabled) |
mjr | 34:6b981a2afab7 | 1030 | { |
mjr | 35:e959ffba78fd | 1031 | numOutputs = i; |
mjr | 34:6b981a2afab7 | 1032 | break; |
mjr | 34:6b981a2afab7 | 1033 | } |
mjr | 33:d832bcab089e | 1034 | } |
mjr | 33:d832bcab089e | 1035 | |
mjr | 35:e959ffba78fd | 1036 | // the real LedWiz protocol can access at most 32 ports, or the |
mjr | 35:e959ffba78fd | 1037 | // actual number of outputs, whichever is lower |
mjr | 35:e959ffba78fd | 1038 | numLwOutputs = (numOutputs < 32 ? numOutputs : 32); |
mjr | 35:e959ffba78fd | 1039 | |
mjr | 33:d832bcab089e | 1040 | // allocate the pin array |
mjr | 33:d832bcab089e | 1041 | lwPin = new LwOut*[numOutputs]; |
mjr | 33:d832bcab089e | 1042 | |
mjr | 38:091e511ce8a0 | 1043 | // Allocate the current brightness array. For these, allocate at |
mjr | 38:091e511ce8a0 | 1044 | // least 32, so that we have enough for all LedWiz messages, but |
mjr | 38:091e511ce8a0 | 1045 | // allocate the full set of actual ports if we have more than the |
mjr | 38:091e511ce8a0 | 1046 | // LedWiz complement. |
mjr | 38:091e511ce8a0 | 1047 | int minOuts = numOutputs < 32 ? 32 : numOutputs; |
mjr | 40:cc0d9814522b | 1048 | outLevel = new uint8_t[minOuts]; |
mjr | 33:d832bcab089e | 1049 | |
mjr | 35:e959ffba78fd | 1050 | // create the pin interface object for each port |
mjr | 35:e959ffba78fd | 1051 | for (i = 0 ; i < numOutputs ; ++i) |
mjr | 53:9b2611964afc | 1052 | lwPin[i] = createLwPin(i, cfg.outPort[i], cfg); |
mjr | 6:cc35eb643e8f | 1053 | } |
mjr | 6:cc35eb643e8f | 1054 | |
mjr | 29:582472d0bc57 | 1055 | // LedWiz output states. |
mjr | 29:582472d0bc57 | 1056 | // |
mjr | 29:582472d0bc57 | 1057 | // The LedWiz protocol has two separate control axes for each output. |
mjr | 29:582472d0bc57 | 1058 | // One axis is its on/off state; the other is its "profile" state, which |
mjr | 29:582472d0bc57 | 1059 | // is either a fixed brightness or a blinking pattern for the light. |
mjr | 29:582472d0bc57 | 1060 | // The two axes are independent. |
mjr | 29:582472d0bc57 | 1061 | // |
mjr | 29:582472d0bc57 | 1062 | // Note that the LedWiz protocol can only address 32 outputs, so the |
mjr | 29:582472d0bc57 | 1063 | // wizOn and wizVal arrays have fixed sizes of 32 elements no matter |
mjr | 29:582472d0bc57 | 1064 | // how many physical outputs we're using. |
mjr | 29:582472d0bc57 | 1065 | |
mjr | 0:5acbbe3f4cf4 | 1066 | // on/off state for each LedWiz output |
mjr | 1:d913e0afb2ac | 1067 | static uint8_t wizOn[32]; |
mjr | 0:5acbbe3f4cf4 | 1068 | |
mjr | 40:cc0d9814522b | 1069 | // LedWiz "Profile State" (the LedWiz brightness level or blink mode) |
mjr | 40:cc0d9814522b | 1070 | // for each LedWiz output. If the output was last updated through an |
mjr | 40:cc0d9814522b | 1071 | // LedWiz protocol message, it will have one of these values: |
mjr | 29:582472d0bc57 | 1072 | // |
mjr | 29:582472d0bc57 | 1073 | // 0-48 = fixed brightness 0% to 100% |
mjr | 40:cc0d9814522b | 1074 | // 49 = fixed brightness 100% (equivalent to 48) |
mjr | 29:582472d0bc57 | 1075 | // 129 = ramp up / ramp down |
mjr | 29:582472d0bc57 | 1076 | // 130 = flash on / off |
mjr | 29:582472d0bc57 | 1077 | // 131 = on / ramp down |
mjr | 29:582472d0bc57 | 1078 | // 132 = ramp up / on |
mjr | 29:582472d0bc57 | 1079 | // |
mjr | 40:cc0d9814522b | 1080 | // If the output was last updated through an extended protocol message, |
mjr | 40:cc0d9814522b | 1081 | // it will have the special value 255. This means that we use the |
mjr | 40:cc0d9814522b | 1082 | // outLevel[] value for the port instead of an LedWiz setting. |
mjr | 29:582472d0bc57 | 1083 | // |
mjr | 40:cc0d9814522b | 1084 | // (Note that value 49 isn't documented in the LedWiz spec, but real |
mjr | 40:cc0d9814522b | 1085 | // LedWiz units treat it as equivalent to 48, and some PC software uses |
mjr | 40:cc0d9814522b | 1086 | // it, so we need to accept it for compatibility.) |
mjr | 1:d913e0afb2ac | 1087 | static uint8_t wizVal[32] = { |
mjr | 13:72dda449c3c0 | 1088 | 48, 48, 48, 48, 48, 48, 48, 48, |
mjr | 13:72dda449c3c0 | 1089 | 48, 48, 48, 48, 48, 48, 48, 48, |
mjr | 13:72dda449c3c0 | 1090 | 48, 48, 48, 48, 48, 48, 48, 48, |
mjr | 13:72dda449c3c0 | 1091 | 48, 48, 48, 48, 48, 48, 48, 48 |
mjr | 0:5acbbe3f4cf4 | 1092 | }; |
mjr | 0:5acbbe3f4cf4 | 1093 | |
mjr | 29:582472d0bc57 | 1094 | // LedWiz flash speed. This is a value from 1 to 7 giving the pulse |
mjr | 29:582472d0bc57 | 1095 | // rate for lights in blinking states. |
mjr | 29:582472d0bc57 | 1096 | static uint8_t wizSpeed = 2; |
mjr | 29:582472d0bc57 | 1097 | |
mjr | 40:cc0d9814522b | 1098 | // Current LedWiz flash cycle counter. This runs from 0 to 255 |
mjr | 40:cc0d9814522b | 1099 | // during each cycle. |
mjr | 29:582472d0bc57 | 1100 | static uint8_t wizFlashCounter = 0; |
mjr | 29:582472d0bc57 | 1101 | |
mjr | 40:cc0d9814522b | 1102 | // translate an LedWiz brightness level (0-49) to a DOF brightness |
mjr | 40:cc0d9814522b | 1103 | // level (0-255) |
mjr | 40:cc0d9814522b | 1104 | static const uint8_t lw_to_dof[] = { |
mjr | 40:cc0d9814522b | 1105 | 0, 5, 11, 16, 21, 27, 32, 37, |
mjr | 40:cc0d9814522b | 1106 | 43, 48, 53, 58, 64, 69, 74, 80, |
mjr | 40:cc0d9814522b | 1107 | 85, 90, 96, 101, 106, 112, 117, 122, |
mjr | 40:cc0d9814522b | 1108 | 128, 133, 138, 143, 149, 154, 159, 165, |
mjr | 40:cc0d9814522b | 1109 | 170, 175, 181, 186, 191, 197, 202, 207, |
mjr | 40:cc0d9814522b | 1110 | 213, 218, 223, 228, 234, 239, 244, 250, |
mjr | 40:cc0d9814522b | 1111 | 255, 255 |
mjr | 40:cc0d9814522b | 1112 | }; |
mjr | 40:cc0d9814522b | 1113 | |
mjr | 40:cc0d9814522b | 1114 | // Translate an LedWiz output (ports 1-32) to a DOF brightness level. |
mjr | 40:cc0d9814522b | 1115 | static uint8_t wizState(int idx) |
mjr | 0:5acbbe3f4cf4 | 1116 | { |
mjr | 29:582472d0bc57 | 1117 | // if the output was last set with an extended protocol message, |
mjr | 29:582472d0bc57 | 1118 | // use the value set there, ignoring the output's LedWiz state |
mjr | 29:582472d0bc57 | 1119 | if (wizVal[idx] == 255) |
mjr | 29:582472d0bc57 | 1120 | return outLevel[idx]; |
mjr | 29:582472d0bc57 | 1121 | |
mjr | 29:582472d0bc57 | 1122 | // if it's off, show at zero intensity |
mjr | 29:582472d0bc57 | 1123 | if (!wizOn[idx]) |
mjr | 29:582472d0bc57 | 1124 | return 0; |
mjr | 29:582472d0bc57 | 1125 | |
mjr | 29:582472d0bc57 | 1126 | // check the state |
mjr | 29:582472d0bc57 | 1127 | uint8_t val = wizVal[idx]; |
mjr | 40:cc0d9814522b | 1128 | if (val <= 49) |
mjr | 29:582472d0bc57 | 1129 | { |
mjr | 29:582472d0bc57 | 1130 | // PWM brightness/intensity level. Rescale from the LedWiz |
mjr | 29:582472d0bc57 | 1131 | // 0..48 integer range to our internal PwmOut 0..1 float range. |
mjr | 29:582472d0bc57 | 1132 | // Note that on the actual LedWiz, level 48 is actually about |
mjr | 29:582472d0bc57 | 1133 | // 98% on - contrary to the LedWiz documentation, level 49 is |
mjr | 29:582472d0bc57 | 1134 | // the true 100% level. (In the documentation, level 49 is |
mjr | 29:582472d0bc57 | 1135 | // simply not a valid setting.) Even so, we treat level 48 as |
mjr | 29:582472d0bc57 | 1136 | // 100% on to match the documentation. This won't be perfectly |
mjr | 29:582472d0bc57 | 1137 | // ocmpatible with the actual LedWiz, but it makes for such a |
mjr | 29:582472d0bc57 | 1138 | // small difference in brightness (if the output device is an |
mjr | 29:582472d0bc57 | 1139 | // LED, say) that no one should notice. It seems better to |
mjr | 29:582472d0bc57 | 1140 | // err in this direction, because while the difference in |
mjr | 29:582472d0bc57 | 1141 | // brightness when attached to an LED won't be noticeable, the |
mjr | 29:582472d0bc57 | 1142 | // difference in duty cycle when attached to something like a |
mjr | 29:582472d0bc57 | 1143 | // contactor *can* be noticeable - anything less than 100% |
mjr | 29:582472d0bc57 | 1144 | // can cause a contactor or relay to chatter. There's almost |
mjr | 29:582472d0bc57 | 1145 | // never a situation where you'd want values other than 0% and |
mjr | 29:582472d0bc57 | 1146 | // 100% for a contactor or relay, so treating level 48 as 100% |
mjr | 29:582472d0bc57 | 1147 | // makes us work properly with software that's expecting the |
mjr | 29:582472d0bc57 | 1148 | // documented LedWiz behavior and therefore uses level 48 to |
mjr | 29:582472d0bc57 | 1149 | // turn a contactor or relay fully on. |
mjr | 40:cc0d9814522b | 1150 | // |
mjr | 40:cc0d9814522b | 1151 | // Note that value 49 is undefined in the LedWiz documentation, |
mjr | 40:cc0d9814522b | 1152 | // but real LedWiz units treat it as 100%, equivalent to 48. |
mjr | 40:cc0d9814522b | 1153 | // Some software on the PC side uses this, so we need to treat |
mjr | 40:cc0d9814522b | 1154 | // it the same way for compatibility. |
mjr | 40:cc0d9814522b | 1155 | return lw_to_dof[val]; |
mjr | 29:582472d0bc57 | 1156 | } |
mjr | 29:582472d0bc57 | 1157 | else if (val == 129) |
mjr | 29:582472d0bc57 | 1158 | { |
mjr | 40:cc0d9814522b | 1159 | // 129 = ramp up / ramp down |
mjr | 30:6e9902f06f48 | 1160 | return wizFlashCounter < 128 |
mjr | 40:cc0d9814522b | 1161 | ? wizFlashCounter*2 + 1 |
mjr | 40:cc0d9814522b | 1162 | : (255 - wizFlashCounter)*2; |
mjr | 29:582472d0bc57 | 1163 | } |
mjr | 29:582472d0bc57 | 1164 | else if (val == 130) |
mjr | 29:582472d0bc57 | 1165 | { |
mjr | 40:cc0d9814522b | 1166 | // 130 = flash on / off |
mjr | 40:cc0d9814522b | 1167 | return wizFlashCounter < 128 ? 255 : 0; |
mjr | 29:582472d0bc57 | 1168 | } |
mjr | 29:582472d0bc57 | 1169 | else if (val == 131) |
mjr | 29:582472d0bc57 | 1170 | { |
mjr | 40:cc0d9814522b | 1171 | // 131 = on / ramp down |
mjr | 40:cc0d9814522b | 1172 | return wizFlashCounter < 128 ? 255 : (255 - wizFlashCounter)*2; |
mjr | 0:5acbbe3f4cf4 | 1173 | } |
mjr | 29:582472d0bc57 | 1174 | else if (val == 132) |
mjr | 29:582472d0bc57 | 1175 | { |
mjr | 40:cc0d9814522b | 1176 | // 132 = ramp up / on |
mjr | 40:cc0d9814522b | 1177 | return wizFlashCounter < 128 ? wizFlashCounter*2 : 255; |
mjr | 29:582472d0bc57 | 1178 | } |
mjr | 29:582472d0bc57 | 1179 | else |
mjr | 13:72dda449c3c0 | 1180 | { |
mjr | 29:582472d0bc57 | 1181 | // Other values are undefined in the LedWiz documentation. Hosts |
mjr | 29:582472d0bc57 | 1182 | // *should* never send undefined values, since whatever behavior an |
mjr | 29:582472d0bc57 | 1183 | // LedWiz unit exhibits in response is accidental and could change |
mjr | 29:582472d0bc57 | 1184 | // in a future version. We'll treat all undefined values as equivalent |
mjr | 29:582472d0bc57 | 1185 | // to 48 (fully on). |
mjr | 40:cc0d9814522b | 1186 | return 255; |
mjr | 0:5acbbe3f4cf4 | 1187 | } |
mjr | 0:5acbbe3f4cf4 | 1188 | } |
mjr | 0:5acbbe3f4cf4 | 1189 | |
mjr | 29:582472d0bc57 | 1190 | // LedWiz flash timer pulse. This fires periodically to update |
mjr | 29:582472d0bc57 | 1191 | // LedWiz flashing outputs. At the slowest pulse speed set via |
mjr | 29:582472d0bc57 | 1192 | // the SBA command, each waveform cycle has 256 steps, so we |
mjr | 29:582472d0bc57 | 1193 | // choose the pulse time base so that the slowest cycle completes |
mjr | 29:582472d0bc57 | 1194 | // in 2 seconds. This seems to roughly match the real LedWiz |
mjr | 29:582472d0bc57 | 1195 | // behavior. We run the pulse timer at the same rate regardless |
mjr | 29:582472d0bc57 | 1196 | // of the pulse speed; at higher pulse speeds, we simply use |
mjr | 29:582472d0bc57 | 1197 | // larger steps through the cycle on each interrupt. Running |
mjr | 29:582472d0bc57 | 1198 | // every 1/127 of a second = 8ms seems to be a pretty light load. |
mjr | 29:582472d0bc57 | 1199 | Timeout wizPulseTimer; |
mjr | 38:091e511ce8a0 | 1200 | #define WIZ_PULSE_TIME_BASE (1.0f/127.0f) |
mjr | 29:582472d0bc57 | 1201 | static void wizPulse() |
mjr | 29:582472d0bc57 | 1202 | { |
mjr | 29:582472d0bc57 | 1203 | // increase the counter by the speed increment, and wrap at 256 |
mjr | 29:582472d0bc57 | 1204 | wizFlashCounter += wizSpeed; |
mjr | 29:582472d0bc57 | 1205 | wizFlashCounter &= 0xff; |
mjr | 29:582472d0bc57 | 1206 | |
mjr | 29:582472d0bc57 | 1207 | // if we have any flashing lights, update them |
mjr | 29:582472d0bc57 | 1208 | int ena = false; |
mjr | 35:e959ffba78fd | 1209 | for (int i = 0 ; i < numLwOutputs ; ++i) |
mjr | 29:582472d0bc57 | 1210 | { |
mjr | 29:582472d0bc57 | 1211 | if (wizOn[i]) |
mjr | 29:582472d0bc57 | 1212 | { |
mjr | 29:582472d0bc57 | 1213 | uint8_t s = wizVal[i]; |
mjr | 29:582472d0bc57 | 1214 | if (s >= 129 && s <= 132) |
mjr | 29:582472d0bc57 | 1215 | { |
mjr | 40:cc0d9814522b | 1216 | lwPin[i]->set(wizState(i)); |
mjr | 29:582472d0bc57 | 1217 | ena = true; |
mjr | 29:582472d0bc57 | 1218 | } |
mjr | 29:582472d0bc57 | 1219 | } |
mjr | 29:582472d0bc57 | 1220 | } |
mjr | 29:582472d0bc57 | 1221 | |
mjr | 29:582472d0bc57 | 1222 | // Set up the next timer pulse only if we found anything flashing. |
mjr | 29:582472d0bc57 | 1223 | // To minimize overhead from this feature, we only enable the interrupt |
mjr | 29:582472d0bc57 | 1224 | // when we need it. This eliminates any performance penalty to other |
mjr | 29:582472d0bc57 | 1225 | // features when the host software doesn't care about the flashing |
mjr | 29:582472d0bc57 | 1226 | // modes. For example, DOF never uses these modes, so there's no |
mjr | 29:582472d0bc57 | 1227 | // need for them when running Visual Pinball. |
mjr | 29:582472d0bc57 | 1228 | if (ena) |
mjr | 29:582472d0bc57 | 1229 | wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE); |
mjr | 29:582472d0bc57 | 1230 | } |
mjr | 29:582472d0bc57 | 1231 | |
mjr | 29:582472d0bc57 | 1232 | // Update the physical outputs connected to the LedWiz ports. This is |
mjr | 29:582472d0bc57 | 1233 | // called after any update from an LedWiz protocol message. |
mjr | 1:d913e0afb2ac | 1234 | static void updateWizOuts() |
mjr | 1:d913e0afb2ac | 1235 | { |
mjr | 29:582472d0bc57 | 1236 | // update each output |
mjr | 29:582472d0bc57 | 1237 | int pulse = false; |
mjr | 35:e959ffba78fd | 1238 | for (int i = 0 ; i < numLwOutputs ; ++i) |
mjr | 29:582472d0bc57 | 1239 | { |
mjr | 29:582472d0bc57 | 1240 | pulse |= (wizVal[i] >= 129 && wizVal[i] <= 132); |
mjr | 40:cc0d9814522b | 1241 | lwPin[i]->set(wizState(i)); |
mjr | 29:582472d0bc57 | 1242 | } |
mjr | 29:582472d0bc57 | 1243 | |
mjr | 29:582472d0bc57 | 1244 | // if any outputs are set to flashing mode, and the pulse timer |
mjr | 29:582472d0bc57 | 1245 | // isn't running, turn it on |
mjr | 29:582472d0bc57 | 1246 | if (pulse) |
mjr | 29:582472d0bc57 | 1247 | wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE); |
mjr | 34:6b981a2afab7 | 1248 | |
mjr | 34:6b981a2afab7 | 1249 | // flush changes to 74HC595 chips, if attached |
mjr | 35:e959ffba78fd | 1250 | if (hc595 != 0) |
mjr | 35:e959ffba78fd | 1251 | hc595->update(); |
mjr | 1:d913e0afb2ac | 1252 | } |
mjr | 38:091e511ce8a0 | 1253 | |
mjr | 38:091e511ce8a0 | 1254 | // Update all physical outputs. This is called after a change to a global |
mjr | 38:091e511ce8a0 | 1255 | // setting that affects all outputs, such as engaging or canceling Night Mode. |
mjr | 38:091e511ce8a0 | 1256 | static void updateAllOuts() |
mjr | 38:091e511ce8a0 | 1257 | { |
mjr | 38:091e511ce8a0 | 1258 | // uddate each LedWiz output |
mjr | 38:091e511ce8a0 | 1259 | for (int i = 0 ; i < numLwOutputs ; ++i) |
mjr | 40:cc0d9814522b | 1260 | lwPin[i]->set(wizState(i)); |
mjr | 34:6b981a2afab7 | 1261 | |
mjr | 38:091e511ce8a0 | 1262 | // update each extended output |
mjr | 38:091e511ce8a0 | 1263 | for (int i = 33 ; i < numOutputs ; ++i) |
mjr | 40:cc0d9814522b | 1264 | lwPin[i]->set(outLevel[i]); |
mjr | 38:091e511ce8a0 | 1265 | |
mjr | 38:091e511ce8a0 | 1266 | // flush 74HC595 changes, if necessary |
mjr | 38:091e511ce8a0 | 1267 | if (hc595 != 0) |
mjr | 38:091e511ce8a0 | 1268 | hc595->update(); |
mjr | 38:091e511ce8a0 | 1269 | } |
mjr | 38:091e511ce8a0 | 1270 | |
mjr | 11:bd9da7088e6e | 1271 | // --------------------------------------------------------------------------- |
mjr | 11:bd9da7088e6e | 1272 | // |
mjr | 11:bd9da7088e6e | 1273 | // Button input |
mjr | 11:bd9da7088e6e | 1274 | // |
mjr | 11:bd9da7088e6e | 1275 | |
mjr | 18:5e890ebd0023 | 1276 | // button state |
mjr | 18:5e890ebd0023 | 1277 | struct ButtonState |
mjr | 18:5e890ebd0023 | 1278 | { |
mjr | 38:091e511ce8a0 | 1279 | ButtonState() |
mjr | 38:091e511ce8a0 | 1280 | { |
mjr | 38:091e511ce8a0 | 1281 | di = NULL; |
mjr | 53:9b2611964afc | 1282 | physState = logState = prevLogState = 0; |
mjr | 53:9b2611964afc | 1283 | virtState = 0; |
mjr | 53:9b2611964afc | 1284 | dbState = 0; |
mjr | 38:091e511ce8a0 | 1285 | pulseState = 0; |
mjr | 53:9b2611964afc | 1286 | pulseTime = 0; |
mjr | 38:091e511ce8a0 | 1287 | } |
mjr | 35:e959ffba78fd | 1288 | |
mjr | 53:9b2611964afc | 1289 | // "Virtually" press or un-press the button. This can be used to |
mjr | 53:9b2611964afc | 1290 | // control the button state via a software (virtual) source, such as |
mjr | 53:9b2611964afc | 1291 | // the ZB Launch Ball feature. |
mjr | 53:9b2611964afc | 1292 | // |
mjr | 53:9b2611964afc | 1293 | // To allow sharing of one button by multiple virtual sources, each |
mjr | 53:9b2611964afc | 1294 | // virtual source must keep track of its own state internally, and |
mjr | 53:9b2611964afc | 1295 | // only call this routine to CHANGE the state. This is because calls |
mjr | 53:9b2611964afc | 1296 | // to this routine are additive: turning the button ON twice will |
mjr | 53:9b2611964afc | 1297 | // require turning it OFF twice before it actually turns off. |
mjr | 53:9b2611964afc | 1298 | void virtPress(bool on) |
mjr | 53:9b2611964afc | 1299 | { |
mjr | 53:9b2611964afc | 1300 | // Increment or decrement the current state |
mjr | 53:9b2611964afc | 1301 | virtState += on ? 1 : -1; |
mjr | 53:9b2611964afc | 1302 | } |
mjr | 53:9b2611964afc | 1303 | |
mjr | 53:9b2611964afc | 1304 | // DigitalIn for the button, if connected to a physical input |
mjr | 48:058ace2aed1d | 1305 | TinyDigitalIn *di; |
mjr | 38:091e511ce8a0 | 1306 | |
mjr | 38:091e511ce8a0 | 1307 | // current PHYSICAL on/off state, after debouncing |
mjr | 53:9b2611964afc | 1308 | uint8_t physState : 1; |
mjr | 18:5e890ebd0023 | 1309 | |
mjr | 38:091e511ce8a0 | 1310 | // current LOGICAL on/off state as reported to the host. |
mjr | 53:9b2611964afc | 1311 | uint8_t logState : 1; |
mjr | 38:091e511ce8a0 | 1312 | |
mjr | 38:091e511ce8a0 | 1313 | // previous logical on/off state, when keys were last processed for USB |
mjr | 38:091e511ce8a0 | 1314 | // reports and local effects |
mjr | 53:9b2611964afc | 1315 | uint8_t prevLogState : 1; |
mjr | 53:9b2611964afc | 1316 | |
mjr | 53:9b2611964afc | 1317 | // Virtual press state. This is used to simulate pressing the button via |
mjr | 53:9b2611964afc | 1318 | // software inputs rather than physical inputs. To allow one button to be |
mjr | 53:9b2611964afc | 1319 | // controlled by mulitple software sources, each source should keep track |
mjr | 53:9b2611964afc | 1320 | // of its own virtual state for the button independently, and then INCREMENT |
mjr | 53:9b2611964afc | 1321 | // this variable when the source's state transitions from off to on, and |
mjr | 53:9b2611964afc | 1322 | // DECREMENT it when the source's state transitions from on to off. That |
mjr | 53:9b2611964afc | 1323 | // will make the button's pressed state the logical OR of all of the virtual |
mjr | 53:9b2611964afc | 1324 | // and physical source states. |
mjr | 53:9b2611964afc | 1325 | uint8_t virtState; |
mjr | 38:091e511ce8a0 | 1326 | |
mjr | 38:091e511ce8a0 | 1327 | // Debounce history. On each scan, we shift in a 1 bit to the lsb if |
mjr | 38:091e511ce8a0 | 1328 | // the physical key is reporting ON, and shift in a 0 bit if the physical |
mjr | 38:091e511ce8a0 | 1329 | // key is reporting OFF. We consider the key to have a new stable state |
mjr | 38:091e511ce8a0 | 1330 | // if we have N consecutive 0's or 1's in the low N bits (where N is |
mjr | 38:091e511ce8a0 | 1331 | // a parameter that determines how long we wait for transients to settle). |
mjr | 53:9b2611964afc | 1332 | uint8_t dbState; |
mjr | 38:091e511ce8a0 | 1333 | |
mjr | 38:091e511ce8a0 | 1334 | // Pulse mode: a button in pulse mode transmits a brief logical button press and |
mjr | 38:091e511ce8a0 | 1335 | // release each time the attached physical switch changes state. This is useful |
mjr | 38:091e511ce8a0 | 1336 | // for cases where the host expects a key press for each change in the state of |
mjr | 38:091e511ce8a0 | 1337 | // the physical switch. The canonical example is the Coin Door switch in VPinMAME, |
mjr | 38:091e511ce8a0 | 1338 | // which requires pressing the END key to toggle the open/closed state. This |
mjr | 38:091e511ce8a0 | 1339 | // software design isn't easily implemented in a physical coin door, though - |
mjr | 38:091e511ce8a0 | 1340 | // the easiest way to sense a physical coin door's state is with a simple on/off |
mjr | 38:091e511ce8a0 | 1341 | // switch. Pulse mode bridges that divide by converting a physical switch state |
mjr | 38:091e511ce8a0 | 1342 | // to on/off toggle key reports to the host. |
mjr | 38:091e511ce8a0 | 1343 | // |
mjr | 38:091e511ce8a0 | 1344 | // Pulse state: |
mjr | 38:091e511ce8a0 | 1345 | // 0 -> not a pulse switch - logical key state equals physical switch state |
mjr | 38:091e511ce8a0 | 1346 | // 1 -> off |
mjr | 38:091e511ce8a0 | 1347 | // 2 -> transitioning off-on |
mjr | 38:091e511ce8a0 | 1348 | // 3 -> on |
mjr | 38:091e511ce8a0 | 1349 | // 4 -> transitioning on-off |
mjr | 38:091e511ce8a0 | 1350 | // |
mjr | 38:091e511ce8a0 | 1351 | // Each state change sticks for a minimum period; when the timer expires, |
mjr | 38:091e511ce8a0 | 1352 | // if the underlying physical switch is in a different state, we switch |
mjr | 53:9b2611964afc | 1353 | // to the next state and restart the timer. pulseTime is the time remaining |
mjr | 53:9b2611964afc | 1354 | // remaining before we can make another state transition, in microseconds. |
mjr | 53:9b2611964afc | 1355 | // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...; |
mjr | 53:9b2611964afc | 1356 | // this guarantees that the parity of the pulse count always matches the |
mjr | 38:091e511ce8a0 | 1357 | // current physical switch state when the latter is stable, which makes |
mjr | 38:091e511ce8a0 | 1358 | // it impossible to "trick" the host by rapidly toggling the switch state. |
mjr | 38:091e511ce8a0 | 1359 | // (On my original Pinscape cabinet, I had a hardware pulse generator |
mjr | 38:091e511ce8a0 | 1360 | // for coin door, and that *was* possible to trick by rapid toggling. |
mjr | 38:091e511ce8a0 | 1361 | // This software system can't be fooled that way.) |
mjr | 38:091e511ce8a0 | 1362 | uint8_t pulseState; |
mjr | 53:9b2611964afc | 1363 | uint32_t pulseTime; |
mjr | 38:091e511ce8a0 | 1364 | |
mjr | 48:058ace2aed1d | 1365 | } __attribute__((packed)) buttonState[MAX_BUTTONS]; |
mjr | 18:5e890ebd0023 | 1366 | |
mjr | 38:091e511ce8a0 | 1367 | |
mjr | 38:091e511ce8a0 | 1368 | // Button data |
mjr | 38:091e511ce8a0 | 1369 | uint32_t jsButtons = 0; |
mjr | 38:091e511ce8a0 | 1370 | |
mjr | 38:091e511ce8a0 | 1371 | // Keyboard report state. This tracks the USB keyboard state. We can |
mjr | 38:091e511ce8a0 | 1372 | // report at most 6 simultaneous non-modifier keys here, plus the 8 |
mjr | 38:091e511ce8a0 | 1373 | // modifier keys. |
mjr | 38:091e511ce8a0 | 1374 | struct |
mjr | 38:091e511ce8a0 | 1375 | { |
mjr | 38:091e511ce8a0 | 1376 | bool changed; // flag: changed since last report sent |
mjr | 48:058ace2aed1d | 1377 | uint8_t nkeys; // number of active keys in the list |
mjr | 38:091e511ce8a0 | 1378 | uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask, |
mjr | 38:091e511ce8a0 | 1379 | // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes |
mjr | 38:091e511ce8a0 | 1380 | } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } }; |
mjr | 38:091e511ce8a0 | 1381 | |
mjr | 38:091e511ce8a0 | 1382 | // Media key state |
mjr | 38:091e511ce8a0 | 1383 | struct |
mjr | 38:091e511ce8a0 | 1384 | { |
mjr | 38:091e511ce8a0 | 1385 | bool changed; // flag: changed since last report sent |
mjr | 38:091e511ce8a0 | 1386 | uint8_t data; // key state byte for USB reports |
mjr | 38:091e511ce8a0 | 1387 | } mediaState = { false, 0 }; |
mjr | 38:091e511ce8a0 | 1388 | |
mjr | 38:091e511ce8a0 | 1389 | // button scan interrupt ticker |
mjr | 38:091e511ce8a0 | 1390 | Ticker buttonTicker; |
mjr | 38:091e511ce8a0 | 1391 | |
mjr | 38:091e511ce8a0 | 1392 | // Button scan interrupt handler. We call this periodically via |
mjr | 38:091e511ce8a0 | 1393 | // a timer interrupt to scan the physical button states. |
mjr | 38:091e511ce8a0 | 1394 | void scanButtons() |
mjr | 38:091e511ce8a0 | 1395 | { |
mjr | 38:091e511ce8a0 | 1396 | // scan all button input pins |
mjr | 38:091e511ce8a0 | 1397 | ButtonState *bs = buttonState; |
mjr | 38:091e511ce8a0 | 1398 | for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs) |
mjr | 38:091e511ce8a0 | 1399 | { |
mjr | 53:9b2611964afc | 1400 | // if this logical button is connected to a physical input, check |
mjr | 53:9b2611964afc | 1401 | // the GPIO pin state |
mjr | 38:091e511ce8a0 | 1402 | if (bs->di != NULL) |
mjr | 38:091e511ce8a0 | 1403 | { |
mjr | 38:091e511ce8a0 | 1404 | // Shift the new state into the debounce history. Note that |
mjr | 38:091e511ce8a0 | 1405 | // the physical pin inputs are active low (0V/GND = ON), so invert |
mjr | 38:091e511ce8a0 | 1406 | // the reading by XOR'ing the low bit with 1. And of course we |
mjr | 38:091e511ce8a0 | 1407 | // only want the low bit (since the history is effectively a bit |
mjr | 38:091e511ce8a0 | 1408 | // vector), so mask the whole thing with 0x01 as well. |
mjr | 53:9b2611964afc | 1409 | uint8_t db = bs->dbState; |
mjr | 38:091e511ce8a0 | 1410 | db <<= 1; |
mjr | 38:091e511ce8a0 | 1411 | db |= (bs->di->read() & 0x01) ^ 0x01; |
mjr | 53:9b2611964afc | 1412 | bs->dbState = db; |
mjr | 38:091e511ce8a0 | 1413 | |
mjr | 38:091e511ce8a0 | 1414 | // if we have all 0's or 1's in the history for the required |
mjr | 38:091e511ce8a0 | 1415 | // debounce period, the key state is stable - check for a change |
mjr | 38:091e511ce8a0 | 1416 | // to the last stable state |
mjr | 38:091e511ce8a0 | 1417 | const uint8_t stable = 0x1F; // 00011111b -> 5 stable readings |
mjr | 38:091e511ce8a0 | 1418 | db &= stable; |
mjr | 38:091e511ce8a0 | 1419 | if (db == 0 || db == stable) |
mjr | 53:9b2611964afc | 1420 | bs->physState = db & 1; |
mjr | 38:091e511ce8a0 | 1421 | } |
mjr | 38:091e511ce8a0 | 1422 | } |
mjr | 38:091e511ce8a0 | 1423 | } |
mjr | 38:091e511ce8a0 | 1424 | |
mjr | 38:091e511ce8a0 | 1425 | // Button state transition timer. This is used for pulse buttons, to |
mjr | 38:091e511ce8a0 | 1426 | // control the timing of the logical key presses generated by transitions |
mjr | 38:091e511ce8a0 | 1427 | // in the physical button state. |
mjr | 38:091e511ce8a0 | 1428 | Timer buttonTimer; |
mjr | 12:669df364a565 | 1429 | |
mjr | 11:bd9da7088e6e | 1430 | // initialize the button inputs |
mjr | 35:e959ffba78fd | 1431 | void initButtons(Config &cfg, bool &kbKeys) |
mjr | 11:bd9da7088e6e | 1432 | { |
mjr | 35:e959ffba78fd | 1433 | // presume we'll find no keyboard keys |
mjr | 35:e959ffba78fd | 1434 | kbKeys = false; |
mjr | 35:e959ffba78fd | 1435 | |
mjr | 53:9b2611964afc | 1436 | // Configure the virtual buttons. These are buttons controlled via |
mjr | 53:9b2611964afc | 1437 | // software triggers rather than physical GPIO inputs. The virtual |
mjr | 53:9b2611964afc | 1438 | // buttons have the same control structures as regular buttons, but |
mjr | 53:9b2611964afc | 1439 | // they get their configuration data from other config variables. |
mjr | 53:9b2611964afc | 1440 | |
mjr | 53:9b2611964afc | 1441 | // ZB Launch Ball button |
mjr | 53:9b2611964afc | 1442 | cfg.button[ZBL_BUTTON].set( |
mjr | 53:9b2611964afc | 1443 | PINNAME_TO_WIRE(NC), |
mjr | 53:9b2611964afc | 1444 | cfg.plunger.zbLaunchBall.keytype, |
mjr | 53:9b2611964afc | 1445 | cfg.plunger.zbLaunchBall.keycode); |
mjr | 53:9b2611964afc | 1446 | |
mjr | 11:bd9da7088e6e | 1447 | // create the digital inputs |
mjr | 35:e959ffba78fd | 1448 | ButtonState *bs = buttonState; |
mjr | 35:e959ffba78fd | 1449 | for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs) |
mjr | 11:bd9da7088e6e | 1450 | { |
mjr | 35:e959ffba78fd | 1451 | PinName pin = wirePinName(cfg.button[i].pin); |
mjr | 35:e959ffba78fd | 1452 | if (pin != NC) |
mjr | 35:e959ffba78fd | 1453 | { |
mjr | 35:e959ffba78fd | 1454 | // set up the GPIO input pin for this button |
mjr | 48:058ace2aed1d | 1455 | bs->di = new TinyDigitalIn(pin); |
mjr | 35:e959ffba78fd | 1456 | |
mjr | 38:091e511ce8a0 | 1457 | // if it's a pulse mode button, set the initial pulse state to Off |
mjr | 38:091e511ce8a0 | 1458 | if (cfg.button[i].flags & BtnFlagPulse) |
mjr | 38:091e511ce8a0 | 1459 | bs->pulseState = 1; |
mjr | 38:091e511ce8a0 | 1460 | |
mjr | 53:9b2611964afc | 1461 | // Note if it's a keyboard key of some kind. If we find any keyboard |
mjr | 53:9b2611964afc | 1462 | // mappings, we'll declare a keyboard interface when we send our HID |
mjr | 53:9b2611964afc | 1463 | // configuration to the host during USB connection setup. |
mjr | 35:e959ffba78fd | 1464 | switch (cfg.button[i].typ) |
mjr | 35:e959ffba78fd | 1465 | { |
mjr | 35:e959ffba78fd | 1466 | case BtnTypeKey: |
mjr | 53:9b2611964afc | 1467 | // note that we have at least one keyboard key |
mjr | 35:e959ffba78fd | 1468 | kbKeys = true; |
mjr | 35:e959ffba78fd | 1469 | break; |
mjr | 35:e959ffba78fd | 1470 | |
mjr | 53:9b2611964afc | 1471 | default: |
mjr | 53:9b2611964afc | 1472 | // not a keyboard key |
mjr | 39:b3815a1c3802 | 1473 | break; |
mjr | 35:e959ffba78fd | 1474 | } |
mjr | 35:e959ffba78fd | 1475 | } |
mjr | 11:bd9da7088e6e | 1476 | } |
mjr | 12:669df364a565 | 1477 | |
mjr | 53:9b2611964afc | 1478 | // If the ZB Launch Ball feature is enabled, and it uses a keyboard |
mjr | 53:9b2611964afc | 1479 | // key, this requires setting up a USB keyboard interface. |
mjr | 53:9b2611964afc | 1480 | if (cfg.plunger.zbLaunchBall.port != 0 |
mjr | 53:9b2611964afc | 1481 | && cfg.plunger.zbLaunchBall.keytype == BtnTypeKey) |
mjr | 53:9b2611964afc | 1482 | kbKeys = true; |
mjr | 53:9b2611964afc | 1483 | |
mjr | 38:091e511ce8a0 | 1484 | // start the button scan thread |
mjr | 38:091e511ce8a0 | 1485 | buttonTicker.attach_us(scanButtons, 1000); |
mjr | 38:091e511ce8a0 | 1486 | |
mjr | 38:091e511ce8a0 | 1487 | // start the button state transition timer |
mjr | 12:669df364a565 | 1488 | buttonTimer.start(); |
mjr | 11:bd9da7088e6e | 1489 | } |
mjr | 11:bd9da7088e6e | 1490 | |
mjr | 38:091e511ce8a0 | 1491 | // Process the button state. This sets up the joystick, keyboard, and |
mjr | 38:091e511ce8a0 | 1492 | // media control descriptors with the current state of keys mapped to |
mjr | 38:091e511ce8a0 | 1493 | // those HID interfaces, and executes the local effects for any keys |
mjr | 38:091e511ce8a0 | 1494 | // mapped to special device functions (e.g., Night Mode). |
mjr | 53:9b2611964afc | 1495 | void processButtons(Config &cfg) |
mjr | 35:e959ffba78fd | 1496 | { |
mjr | 35:e959ffba78fd | 1497 | // start with an empty list of USB key codes |
mjr | 35:e959ffba78fd | 1498 | uint8_t modkeys = 0; |
mjr | 35:e959ffba78fd | 1499 | uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 }; |
mjr | 35:e959ffba78fd | 1500 | int nkeys = 0; |
mjr | 11:bd9da7088e6e | 1501 | |
mjr | 35:e959ffba78fd | 1502 | // clear the joystick buttons |
mjr | 36:b9747461331e | 1503 | uint32_t newjs = 0; |
mjr | 35:e959ffba78fd | 1504 | |
mjr | 35:e959ffba78fd | 1505 | // start with no media keys pressed |
mjr | 35:e959ffba78fd | 1506 | uint8_t mediakeys = 0; |
mjr | 38:091e511ce8a0 | 1507 | |
mjr | 38:091e511ce8a0 | 1508 | // calculate the time since the last run |
mjr | 53:9b2611964afc | 1509 | uint32_t dt = buttonTimer.read_us(); |
mjr | 18:5e890ebd0023 | 1510 | buttonTimer.reset(); |
mjr | 38:091e511ce8a0 | 1511 | |
mjr | 11:bd9da7088e6e | 1512 | // scan the button list |
mjr | 18:5e890ebd0023 | 1513 | ButtonState *bs = buttonState; |
mjr | 53:9b2611964afc | 1514 | ButtonCfg *bc = cfg.button; |
mjr | 53:9b2611964afc | 1515 | for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs, ++bc) |
mjr | 11:bd9da7088e6e | 1516 | { |
mjr | 38:091e511ce8a0 | 1517 | // if it's a pulse-mode switch, get the virtual pressed state |
mjr | 38:091e511ce8a0 | 1518 | if (bs->pulseState != 0) |
mjr | 18:5e890ebd0023 | 1519 | { |
mjr | 38:091e511ce8a0 | 1520 | // if the timer has expired, check for state changes |
mjr | 53:9b2611964afc | 1521 | if (bs->pulseTime > dt) |
mjr | 18:5e890ebd0023 | 1522 | { |
mjr | 53:9b2611964afc | 1523 | // not expired yet - deduct the last interval |
mjr | 53:9b2611964afc | 1524 | bs->pulseTime -= dt; |
mjr | 53:9b2611964afc | 1525 | } |
mjr | 53:9b2611964afc | 1526 | else |
mjr | 53:9b2611964afc | 1527 | { |
mjr | 53:9b2611964afc | 1528 | // pulse time expired - check for a state change |
mjr | 53:9b2611964afc | 1529 | const uint32_t pulseLength = 200000UL; // 200 milliseconds |
mjr | 38:091e511ce8a0 | 1530 | switch (bs->pulseState) |
mjr | 18:5e890ebd0023 | 1531 | { |
mjr | 38:091e511ce8a0 | 1532 | case 1: |
mjr | 38:091e511ce8a0 | 1533 | // off - if the physical switch is now on, start a button pulse |
mjr | 53:9b2611964afc | 1534 | if (bs->physState) |
mjr | 53:9b2611964afc | 1535 | { |
mjr | 38:091e511ce8a0 | 1536 | bs->pulseTime = pulseLength; |
mjr | 38:091e511ce8a0 | 1537 | bs->pulseState = 2; |
mjr | 53:9b2611964afc | 1538 | bs->logState = 1; |
mjr | 38:091e511ce8a0 | 1539 | } |
mjr | 38:091e511ce8a0 | 1540 | break; |
mjr | 18:5e890ebd0023 | 1541 | |
mjr | 38:091e511ce8a0 | 1542 | case 2: |
mjr | 38:091e511ce8a0 | 1543 | // transitioning off to on - end the pulse, and start a gap |
mjr | 38:091e511ce8a0 | 1544 | // equal to the pulse time so that the host can observe the |
mjr | 38:091e511ce8a0 | 1545 | // change in state in the logical button |
mjr | 38:091e511ce8a0 | 1546 | bs->pulseState = 3; |
mjr | 38:091e511ce8a0 | 1547 | bs->pulseTime = pulseLength; |
mjr | 53:9b2611964afc | 1548 | bs->logState = 0; |
mjr | 38:091e511ce8a0 | 1549 | break; |
mjr | 38:091e511ce8a0 | 1550 | |
mjr | 38:091e511ce8a0 | 1551 | case 3: |
mjr | 38:091e511ce8a0 | 1552 | // on - if the physical switch is now off, start a button pulse |
mjr | 53:9b2611964afc | 1553 | if (!bs->physState) |
mjr | 53:9b2611964afc | 1554 | { |
mjr | 38:091e511ce8a0 | 1555 | bs->pulseTime = pulseLength; |
mjr | 38:091e511ce8a0 | 1556 | bs->pulseState = 4; |
mjr | 53:9b2611964afc | 1557 | bs->logState = 1; |
mjr | 38:091e511ce8a0 | 1558 | } |
mjr | 38:091e511ce8a0 | 1559 | break; |
mjr | 38:091e511ce8a0 | 1560 | |
mjr | 38:091e511ce8a0 | 1561 | case 4: |
mjr | 38:091e511ce8a0 | 1562 | // transitioning on to off - end the pulse, and start a gap |
mjr | 38:091e511ce8a0 | 1563 | bs->pulseState = 1; |
mjr | 38:091e511ce8a0 | 1564 | bs->pulseTime = pulseLength; |
mjr | 53:9b2611964afc | 1565 | bs->logState = 0; |
mjr | 38:091e511ce8a0 | 1566 | break; |
mjr | 18:5e890ebd0023 | 1567 | } |
mjr | 18:5e890ebd0023 | 1568 | } |
mjr | 38:091e511ce8a0 | 1569 | } |
mjr | 38:091e511ce8a0 | 1570 | else |
mjr | 38:091e511ce8a0 | 1571 | { |
mjr | 38:091e511ce8a0 | 1572 | // not a pulse switch - the logical state is the same as the physical state |
mjr | 53:9b2611964afc | 1573 | bs->logState = bs->physState; |
mjr | 38:091e511ce8a0 | 1574 | } |
mjr | 35:e959ffba78fd | 1575 | |
mjr | 38:091e511ce8a0 | 1576 | // carry out any edge effects from buttons changing states |
mjr | 53:9b2611964afc | 1577 | if (bs->logState != bs->prevLogState) |
mjr | 38:091e511ce8a0 | 1578 | { |
mjr | 38:091e511ce8a0 | 1579 | // check for special key transitions |
mjr | 53:9b2611964afc | 1580 | if (cfg.nightMode.btn == i + 1) |
mjr | 35:e959ffba78fd | 1581 | { |
mjr | 53:9b2611964afc | 1582 | // Check the switch type in the config flags. If flag 0x01 is set, |
mjr | 53:9b2611964afc | 1583 | // it's a persistent on/off switch, so the night mode state simply |
mjr | 53:9b2611964afc | 1584 | // follows the current state of the switch. Otherwise, it's a |
mjr | 53:9b2611964afc | 1585 | // momentary button, so each button push (i.e., each transition from |
mjr | 53:9b2611964afc | 1586 | // logical state OFF to ON) toggles the current night mode state. |
mjr | 53:9b2611964afc | 1587 | if (cfg.nightMode.flags & 0x01) |
mjr | 53:9b2611964afc | 1588 | { |
mjr | 53:9b2611964afc | 1589 | // toggle switch - when the button changes state, change |
mjr | 53:9b2611964afc | 1590 | // night mode to match the new state |
mjr | 53:9b2611964afc | 1591 | setNightMode(bs->logState); |
mjr | 53:9b2611964afc | 1592 | } |
mjr | 53:9b2611964afc | 1593 | else |
mjr | 53:9b2611964afc | 1594 | { |
mjr | 53:9b2611964afc | 1595 | // momentary switch - toggle the night mode state when the |
mjr | 53:9b2611964afc | 1596 | // physical button is pushed (i.e., when its logical state |
mjr | 53:9b2611964afc | 1597 | // transitions from OFF to ON) |
mjr | 53:9b2611964afc | 1598 | if (bs->logState) |
mjr | 53:9b2611964afc | 1599 | toggleNightMode(); |
mjr | 53:9b2611964afc | 1600 | } |
mjr | 35:e959ffba78fd | 1601 | } |
mjr | 38:091e511ce8a0 | 1602 | |
mjr | 38:091e511ce8a0 | 1603 | // remember the new state for comparison on the next run |
mjr | 53:9b2611964afc | 1604 | bs->prevLogState = bs->logState; |
mjr | 38:091e511ce8a0 | 1605 | } |
mjr | 38:091e511ce8a0 | 1606 | |
mjr | 53:9b2611964afc | 1607 | // if it's pressed, physically or virtually, add it to the appropriate |
mjr | 53:9b2611964afc | 1608 | // key state list |
mjr | 53:9b2611964afc | 1609 | if (bs->logState || bs->virtState) |
mjr | 38:091e511ce8a0 | 1610 | { |
mjr | 38:091e511ce8a0 | 1611 | // OR in the joystick button bit, mod key bits, and media key bits |
mjr | 53:9b2611964afc | 1612 | uint8_t val = bc->val; |
mjr | 53:9b2611964afc | 1613 | switch (bc->typ) |
mjr | 53:9b2611964afc | 1614 | { |
mjr | 53:9b2611964afc | 1615 | case BtnTypeJoystick: |
mjr | 53:9b2611964afc | 1616 | // joystick button |
mjr | 53:9b2611964afc | 1617 | newjs |= (1 << (val - 1)); |
mjr | 53:9b2611964afc | 1618 | break; |
mjr | 53:9b2611964afc | 1619 | |
mjr | 53:9b2611964afc | 1620 | case BtnTypeKey: |
mjr | 53:9b2611964afc | 1621 | // Keyboard key. This could be a modifier key (shift, control, |
mjr | 53:9b2611964afc | 1622 | // alt, GUI), a media key (mute, volume up, volume down), or a |
mjr | 53:9b2611964afc | 1623 | // regular key. Check which one. |
mjr | 53:9b2611964afc | 1624 | if (val >= 0x7F && val <= 0x81) |
mjr | 53:9b2611964afc | 1625 | { |
mjr | 53:9b2611964afc | 1626 | // It's a media key. OR the key into the media key mask. |
mjr | 53:9b2611964afc | 1627 | // The media mask bits are mapped in the HID report descriptor |
mjr | 53:9b2611964afc | 1628 | // in USBJoystick.cpp. For simplicity, we arrange the mask so |
mjr | 53:9b2611964afc | 1629 | // that the ones with regular keyboard equivalents that we catch |
mjr | 53:9b2611964afc | 1630 | // here are in the same order as the key scan codes: |
mjr | 53:9b2611964afc | 1631 | // |
mjr | 53:9b2611964afc | 1632 | // Mute = scan 0x7F = mask bit 0x01 |
mjr | 53:9b2611964afc | 1633 | // Vol Up = scan 0x80 = mask bit 0x02 |
mjr | 53:9b2611964afc | 1634 | // Vol Down = scan 0x81 = mask bit 0x04 |
mjr | 53:9b2611964afc | 1635 | // |
mjr | 53:9b2611964afc | 1636 | // So we can translate from scan code to bit mask with some |
mjr | 53:9b2611964afc | 1637 | // simple bit shifting: |
mjr | 53:9b2611964afc | 1638 | mediakeys |= (1 << (val - 0x7f)); |
mjr | 53:9b2611964afc | 1639 | } |
mjr | 53:9b2611964afc | 1640 | else if (val >= 0xE0 && val <= 0xE7) |
mjr | 53:9b2611964afc | 1641 | { |
mjr | 53:9b2611964afc | 1642 | // It's a modifier key. Like the media keys, these are represented |
mjr | 53:9b2611964afc | 1643 | // in the USB reports with a bit mask, and like the media keys, we |
mjr | 53:9b2611964afc | 1644 | // arrange the mask bits in the same order as the scan codes. This |
mjr | 53:9b2611964afc | 1645 | // makes figuring the mask a simple bit shift: |
mjr | 53:9b2611964afc | 1646 | modkeys |= (1 << (val - 0xE0)); |
mjr | 53:9b2611964afc | 1647 | } |
mjr | 53:9b2611964afc | 1648 | else |
mjr | 53:9b2611964afc | 1649 | { |
mjr | 53:9b2611964afc | 1650 | // It's a regular key. Make sure it's not already in the list, and |
mjr | 53:9b2611964afc | 1651 | // that the list isn't full. If neither of these apply, add the key. |
mjr | 53:9b2611964afc | 1652 | if (nkeys < 7) |
mjr | 53:9b2611964afc | 1653 | { |
mjr | 57:cc03231f676b | 1654 | bool found = false; |
mjr | 53:9b2611964afc | 1655 | for (int j = 0 ; j < nkeys ; ++j) |
mjr | 53:9b2611964afc | 1656 | { |
mjr | 53:9b2611964afc | 1657 | if (keys[j] == val) |
mjr | 53:9b2611964afc | 1658 | { |
mjr | 53:9b2611964afc | 1659 | found = true; |
mjr | 53:9b2611964afc | 1660 | break; |
mjr | 53:9b2611964afc | 1661 | } |
mjr | 53:9b2611964afc | 1662 | } |
mjr | 53:9b2611964afc | 1663 | if (!found) |
mjr | 53:9b2611964afc | 1664 | keys[nkeys++] = val; |
mjr | 53:9b2611964afc | 1665 | } |
mjr | 53:9b2611964afc | 1666 | } |
mjr | 53:9b2611964afc | 1667 | break; |
mjr | 53:9b2611964afc | 1668 | } |
mjr | 18:5e890ebd0023 | 1669 | } |
mjr | 11:bd9da7088e6e | 1670 | } |
mjr | 36:b9747461331e | 1671 | |
mjr | 36:b9747461331e | 1672 | // check for joystick button changes |
mjr | 36:b9747461331e | 1673 | if (jsButtons != newjs) |
mjr | 36:b9747461331e | 1674 | jsButtons = newjs; |
mjr | 11:bd9da7088e6e | 1675 | |
mjr | 35:e959ffba78fd | 1676 | // Check for changes to the keyboard keys |
mjr | 35:e959ffba78fd | 1677 | if (kbState.data[0] != modkeys |
mjr | 35:e959ffba78fd | 1678 | || kbState.nkeys != nkeys |
mjr | 35:e959ffba78fd | 1679 | || memcmp(keys, &kbState.data[2], 6) != 0) |
mjr | 35:e959ffba78fd | 1680 | { |
mjr | 35:e959ffba78fd | 1681 | // we have changes - set the change flag and store the new key data |
mjr | 35:e959ffba78fd | 1682 | kbState.changed = true; |
mjr | 35:e959ffba78fd | 1683 | kbState.data[0] = modkeys; |
mjr | 35:e959ffba78fd | 1684 | if (nkeys <= 6) { |
mjr | 35:e959ffba78fd | 1685 | // 6 or fewer simultaneous keys - report the key codes |
mjr | 35:e959ffba78fd | 1686 | kbState.nkeys = nkeys; |
mjr | 35:e959ffba78fd | 1687 | memcpy(&kbState.data[2], keys, 6); |
mjr | 35:e959ffba78fd | 1688 | } |
mjr | 35:e959ffba78fd | 1689 | else { |
mjr | 35:e959ffba78fd | 1690 | // more than 6 simultaneous keys - report rollover (all '1' key codes) |
mjr | 35:e959ffba78fd | 1691 | kbState.nkeys = 6; |
mjr | 35:e959ffba78fd | 1692 | memset(&kbState.data[2], 1, 6); |
mjr | 35:e959ffba78fd | 1693 | } |
mjr | 35:e959ffba78fd | 1694 | } |
mjr | 35:e959ffba78fd | 1695 | |
mjr | 35:e959ffba78fd | 1696 | // Check for changes to media keys |
mjr | 35:e959ffba78fd | 1697 | if (mediaState.data != mediakeys) |
mjr | 35:e959ffba78fd | 1698 | { |
mjr | 35:e959ffba78fd | 1699 | mediaState.changed = true; |
mjr | 35:e959ffba78fd | 1700 | mediaState.data = mediakeys; |
mjr | 35:e959ffba78fd | 1701 | } |
mjr | 11:bd9da7088e6e | 1702 | } |
mjr | 11:bd9da7088e6e | 1703 | |
mjr | 5:a70c0bce770d | 1704 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 1705 | // |
mjr | 5:a70c0bce770d | 1706 | // Customization joystick subbclass |
mjr | 5:a70c0bce770d | 1707 | // |
mjr | 5:a70c0bce770d | 1708 | |
mjr | 5:a70c0bce770d | 1709 | class MyUSBJoystick: public USBJoystick |
mjr | 5:a70c0bce770d | 1710 | { |
mjr | 5:a70c0bce770d | 1711 | public: |
mjr | 35:e959ffba78fd | 1712 | MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release, |
mjr | 35:e959ffba78fd | 1713 | bool waitForConnect, bool enableJoystick, bool useKB) |
mjr | 35:e959ffba78fd | 1714 | : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB) |
mjr | 5:a70c0bce770d | 1715 | { |
mjr | 54:fd77a6b2f76c | 1716 | sleeping_ = false; |
mjr | 54:fd77a6b2f76c | 1717 | reconnectPending_ = false; |
mjr | 54:fd77a6b2f76c | 1718 | timer_.start(); |
mjr | 54:fd77a6b2f76c | 1719 | } |
mjr | 54:fd77a6b2f76c | 1720 | |
mjr | 54:fd77a6b2f76c | 1721 | // show diagnostic LED feedback for connect state |
mjr | 54:fd77a6b2f76c | 1722 | void diagFlash() |
mjr | 54:fd77a6b2f76c | 1723 | { |
mjr | 54:fd77a6b2f76c | 1724 | if (!configured() || sleeping_) |
mjr | 54:fd77a6b2f76c | 1725 | { |
mjr | 54:fd77a6b2f76c | 1726 | // flash once if sleeping or twice if disconnected |
mjr | 54:fd77a6b2f76c | 1727 | for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j) |
mjr | 54:fd77a6b2f76c | 1728 | { |
mjr | 54:fd77a6b2f76c | 1729 | // short red flash |
mjr | 54:fd77a6b2f76c | 1730 | diagLED(1, 0, 0); |
mjr | 54:fd77a6b2f76c | 1731 | wait_us(50000); |
mjr | 54:fd77a6b2f76c | 1732 | diagLED(0, 0, 0); |
mjr | 54:fd77a6b2f76c | 1733 | wait_us(50000); |
mjr | 54:fd77a6b2f76c | 1734 | } |
mjr | 54:fd77a6b2f76c | 1735 | } |
mjr | 5:a70c0bce770d | 1736 | } |
mjr | 5:a70c0bce770d | 1737 | |
mjr | 5:a70c0bce770d | 1738 | // are we connected? |
mjr | 5:a70c0bce770d | 1739 | int isConnected() { return configured(); } |
mjr | 5:a70c0bce770d | 1740 | |
mjr | 54:fd77a6b2f76c | 1741 | // Are we in sleep mode? If true, this means that the hardware has |
mjr | 54:fd77a6b2f76c | 1742 | // detected no activity on the bus for 3ms. This happens when the |
mjr | 54:fd77a6b2f76c | 1743 | // cable is physically disconnected, the computer is turned off, or |
mjr | 54:fd77a6b2f76c | 1744 | // the connection is otherwise disabled. |
mjr | 54:fd77a6b2f76c | 1745 | bool isSleeping() const { return sleeping_; } |
mjr | 54:fd77a6b2f76c | 1746 | |
mjr | 54:fd77a6b2f76c | 1747 | // If necessary, attempt to recover from a broken connection. |
mjr | 54:fd77a6b2f76c | 1748 | // |
mjr | 54:fd77a6b2f76c | 1749 | // This is a hack, to work around an apparent timing bug in the |
mjr | 54:fd77a6b2f76c | 1750 | // KL25Z USB implementation that I haven't been able to solve any |
mjr | 54:fd77a6b2f76c | 1751 | // other way. |
mjr | 54:fd77a6b2f76c | 1752 | // |
mjr | 54:fd77a6b2f76c | 1753 | // The issue: when we have an established connection, and the |
mjr | 54:fd77a6b2f76c | 1754 | // connection is broken by physically unplugging the cable or by |
mjr | 54:fd77a6b2f76c | 1755 | // rebooting the PC, the KL25Z sometimes fails to reconnect when |
mjr | 54:fd77a6b2f76c | 1756 | // the physical connection is re-established. The failure is |
mjr | 54:fd77a6b2f76c | 1757 | // sporadic; I'd guess it happens about 25% of the time, but I |
mjr | 54:fd77a6b2f76c | 1758 | // haven't collected any real statistics on it. |
mjr | 54:fd77a6b2f76c | 1759 | // |
mjr | 54:fd77a6b2f76c | 1760 | // The proximate cause of the failure is a deadlock in the SETUP |
mjr | 54:fd77a6b2f76c | 1761 | // protocol between the host and device that happens around the |
mjr | 54:fd77a6b2f76c | 1762 | // point where the PC is requesting the configuration descriptor. |
mjr | 54:fd77a6b2f76c | 1763 | // The exact point in the protocol where this occurs varies slightly; |
mjr | 54:fd77a6b2f76c | 1764 | // it can occur a message or two before or after the Get Config |
mjr | 54:fd77a6b2f76c | 1765 | // Descriptor packet. No matter where it happens, the nature of |
mjr | 54:fd77a6b2f76c | 1766 | // the deadlock is the same: the PC thinks it sees a STALL on EP0 |
mjr | 54:fd77a6b2f76c | 1767 | // from the device, so it terminates the connection attempt, which |
mjr | 54:fd77a6b2f76c | 1768 | // stops further traffic on the cable. The KL25Z USB hardware sees |
mjr | 54:fd77a6b2f76c | 1769 | // the lack of traffic and triggers a SLEEP interrupt (a misnomer |
mjr | 54:fd77a6b2f76c | 1770 | // for what should have been called a BROKEN CONNECTION interrupt). |
mjr | 54:fd77a6b2f76c | 1771 | // Both sides simply stop talking at this point, so the connection |
mjr | 54:fd77a6b2f76c | 1772 | // is effectively dead. |
mjr | 54:fd77a6b2f76c | 1773 | // |
mjr | 54:fd77a6b2f76c | 1774 | // The strange thing is that, as far as I can tell, the KL25Z isn't |
mjr | 54:fd77a6b2f76c | 1775 | // doing anything to trigger the STALL on its end. Both the PC |
mjr | 54:fd77a6b2f76c | 1776 | // and the KL25Z are happy up until the very point of the failure |
mjr | 54:fd77a6b2f76c | 1777 | // and show no signs of anything wrong in the protocol exchange. |
mjr | 54:fd77a6b2f76c | 1778 | // In fact, every detail of the protocol exchange up to this point |
mjr | 54:fd77a6b2f76c | 1779 | // is identical to every successful exchange that does finish the |
mjr | 54:fd77a6b2f76c | 1780 | // whole setup process successfully, on both the KL25Z and Windows |
mjr | 54:fd77a6b2f76c | 1781 | // sides of the connection. I can't find any point of difference |
mjr | 54:fd77a6b2f76c | 1782 | // between successful and unsuccessful sequences that suggests why |
mjr | 54:fd77a6b2f76c | 1783 | // the fateful message fails. This makes me suspect that whatever |
mjr | 54:fd77a6b2f76c | 1784 | // is going wrong is inside the KL25Z USB hardware module, which |
mjr | 54:fd77a6b2f76c | 1785 | // is a pretty substantial black box - it has a lot of internal |
mjr | 54:fd77a6b2f76c | 1786 | // state that's inaccessible to the software. Further bolstering |
mjr | 54:fd77a6b2f76c | 1787 | // this theory is a little experiment where I found that I could |
mjr | 54:fd77a6b2f76c | 1788 | // reproduce the exact sequence of events of a failed reconnect |
mjr | 54:fd77a6b2f76c | 1789 | // attempt in an *initial* connection, which is otherwise 100% |
mjr | 54:fd77a6b2f76c | 1790 | // reliable, by inserting a little bit of artifical time padding |
mjr | 54:fd77a6b2f76c | 1791 | // (200us per event) into the SETUP interrupt handler. My |
mjr | 54:fd77a6b2f76c | 1792 | // hypothesis is that the STALL event happens because the KL25Z |
mjr | 54:fd77a6b2f76c | 1793 | // USB hardware is too slow to respond to a message. I'm not |
mjr | 54:fd77a6b2f76c | 1794 | // sure why this would only happen after a disconnect and not |
mjr | 54:fd77a6b2f76c | 1795 | // during the initial connection; maybe there's some reset work |
mjr | 54:fd77a6b2f76c | 1796 | // in the hardware that takes a substantial amount of time after |
mjr | 54:fd77a6b2f76c | 1797 | // a disconnect. |
mjr | 54:fd77a6b2f76c | 1798 | // |
mjr | 54:fd77a6b2f76c | 1799 | // The solution: the problem happens during the SETUP exchange, |
mjr | 54:fd77a6b2f76c | 1800 | // after we've been assigned a bus address. It only happens on |
mjr | 54:fd77a6b2f76c | 1801 | // some percentage of connection requests, so if we can simply |
mjr | 54:fd77a6b2f76c | 1802 | // start over when the failure occurs, we'll eventually succeed |
mjr | 54:fd77a6b2f76c | 1803 | // simply because not every attempt fails. The ideal would be |
mjr | 54:fd77a6b2f76c | 1804 | // to get the success rate up to 100%, but I can't figure out how |
mjr | 54:fd77a6b2f76c | 1805 | // to fix the underlying problem, so this is the next best thing. |
mjr | 54:fd77a6b2f76c | 1806 | // |
mjr | 54:fd77a6b2f76c | 1807 | // We can detect when the failure occurs by noticing when a SLEEP |
mjr | 54:fd77a6b2f76c | 1808 | // interrupt happens while we have an assigned bus address. |
mjr | 54:fd77a6b2f76c | 1809 | // |
mjr | 54:fd77a6b2f76c | 1810 | // To start a new connection attempt, we have to make the *host* |
mjr | 54:fd77a6b2f76c | 1811 | // try again. The logical connection is initiated solely by the |
mjr | 54:fd77a6b2f76c | 1812 | // host. Fortunately, it's easy to get the host to initiate the |
mjr | 54:fd77a6b2f76c | 1813 | // process: if we disconnect on the device side, it effectively |
mjr | 54:fd77a6b2f76c | 1814 | // makes the device look to the PC like it's electrically unplugged. |
mjr | 54:fd77a6b2f76c | 1815 | // When we reconnect on the device side, the PC thinks a new device |
mjr | 54:fd77a6b2f76c | 1816 | // has been plugged in and initiates the logical connection setup. |
mjr | 54:fd77a6b2f76c | 1817 | // We have to remain disconnected for a macroscopic interval for |
mjr | 54:fd77a6b2f76c | 1818 | // this to happen - 5ms seems to do the trick. |
mjr | 54:fd77a6b2f76c | 1819 | // |
mjr | 54:fd77a6b2f76c | 1820 | // Here's the full algorithm: |
mjr | 54:fd77a6b2f76c | 1821 | // |
mjr | 54:fd77a6b2f76c | 1822 | // 1. In the SLEEP interrupt handler, if we have a bus address, |
mjr | 54:fd77a6b2f76c | 1823 | // we disconnect the device. This happens in ISR context, so we |
mjr | 54:fd77a6b2f76c | 1824 | // can't wait around for 5ms. Instead, we simply set a flag noting |
mjr | 54:fd77a6b2f76c | 1825 | // that the connection has been broken, and we note the time and |
mjr | 54:fd77a6b2f76c | 1826 | // return. |
mjr | 54:fd77a6b2f76c | 1827 | // |
mjr | 54:fd77a6b2f76c | 1828 | // 2. In our main loop, whenever we find that we're disconnected, |
mjr | 54:fd77a6b2f76c | 1829 | // we call recoverConnection(). The main loop's job is basically a |
mjr | 54:fd77a6b2f76c | 1830 | // bunch of device polling. We're just one more device to poll, so |
mjr | 54:fd77a6b2f76c | 1831 | // recoverConnection() will be called soon after a disconnect, and |
mjr | 54:fd77a6b2f76c | 1832 | // then will be called in a loop for as long as we're disconnected. |
mjr | 54:fd77a6b2f76c | 1833 | // |
mjr | 54:fd77a6b2f76c | 1834 | // 3. In recoverConnection(), we check the flag we set in the SLEEP |
mjr | 54:fd77a6b2f76c | 1835 | // handler. If set, we wait until 5ms has elapsed from the SLEEP |
mjr | 54:fd77a6b2f76c | 1836 | // event time that we noted, then we'll reconnect and clear the flag. |
mjr | 54:fd77a6b2f76c | 1837 | // This gives us the required 5ms (or longer) delay between the |
mjr | 54:fd77a6b2f76c | 1838 | // disconnect and reconnect, ensuring that the PC will notice and |
mjr | 54:fd77a6b2f76c | 1839 | // will start over with the connection protocol. |
mjr | 54:fd77a6b2f76c | 1840 | // |
mjr | 54:fd77a6b2f76c | 1841 | // 4. The main loop keeps calling recoverConnection() in a loop for |
mjr | 54:fd77a6b2f76c | 1842 | // as long as we're disconnected, so if the new connection attempt |
mjr | 54:fd77a6b2f76c | 1843 | // triggered in step 3 fails, the SLEEP interrupt will happen again, |
mjr | 54:fd77a6b2f76c | 1844 | // we'll disconnect again, the flag will get set again, and |
mjr | 54:fd77a6b2f76c | 1845 | // recoverConnection() will reconnect again after another suitable |
mjr | 54:fd77a6b2f76c | 1846 | // delay. This will repeat until the connection succeeds or hell |
mjr | 54:fd77a6b2f76c | 1847 | // freezes over. |
mjr | 54:fd77a6b2f76c | 1848 | // |
mjr | 54:fd77a6b2f76c | 1849 | // Each disconnect happens immediately when a reconnect attempt |
mjr | 54:fd77a6b2f76c | 1850 | // fails, and an entire successful connection only takes about 25ms, |
mjr | 54:fd77a6b2f76c | 1851 | // so our loop can retry at more than 30 attempts per second. |
mjr | 54:fd77a6b2f76c | 1852 | // In my testing, lost connections almost always reconnect in |
mjr | 54:fd77a6b2f76c | 1853 | // less than second with this code in place. |
mjr | 54:fd77a6b2f76c | 1854 | void recoverConnection() |
mjr | 54:fd77a6b2f76c | 1855 | { |
mjr | 54:fd77a6b2f76c | 1856 | // if a reconnect is pending, reconnect |
mjr | 54:fd77a6b2f76c | 1857 | if (reconnectPending_) |
mjr | 54:fd77a6b2f76c | 1858 | { |
mjr | 54:fd77a6b2f76c | 1859 | // Loop until we reach 5ms after the last sleep event. |
mjr | 54:fd77a6b2f76c | 1860 | for (bool done = false ; !done ; ) |
mjr | 54:fd77a6b2f76c | 1861 | { |
mjr | 54:fd77a6b2f76c | 1862 | // If we've reached the target time, reconnect. Do the |
mjr | 54:fd77a6b2f76c | 1863 | // time check and flag reset atomically, so that we can't |
mjr | 54:fd77a6b2f76c | 1864 | // have another sleep event sneak in after we've verified |
mjr | 54:fd77a6b2f76c | 1865 | // the time. If another event occurs, it has to happen |
mjr | 54:fd77a6b2f76c | 1866 | // before we check, in which case it'll update the time |
mjr | 54:fd77a6b2f76c | 1867 | // before we check it, or after we clear the flag, in |
mjr | 54:fd77a6b2f76c | 1868 | // which case it will reset the flag and we'll do another |
mjr | 54:fd77a6b2f76c | 1869 | // round the next time we call this routine. |
mjr | 54:fd77a6b2f76c | 1870 | __disable_irq(); |
mjr | 54:fd77a6b2f76c | 1871 | if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000) |
mjr | 54:fd77a6b2f76c | 1872 | { |
mjr | 54:fd77a6b2f76c | 1873 | connect(false); |
mjr | 54:fd77a6b2f76c | 1874 | reconnectPending_ = false; |
mjr | 54:fd77a6b2f76c | 1875 | done = true; |
mjr | 54:fd77a6b2f76c | 1876 | } |
mjr | 54:fd77a6b2f76c | 1877 | __enable_irq(); |
mjr | 54:fd77a6b2f76c | 1878 | } |
mjr | 54:fd77a6b2f76c | 1879 | } |
mjr | 54:fd77a6b2f76c | 1880 | } |
mjr | 5:a70c0bce770d | 1881 | |
mjr | 5:a70c0bce770d | 1882 | protected: |
mjr | 54:fd77a6b2f76c | 1883 | // Handle a USB SLEEP interrupt. This interrupt signifies that the |
mjr | 54:fd77a6b2f76c | 1884 | // USB hardware module hasn't seen any token traffic for 3ms, which |
mjr | 54:fd77a6b2f76c | 1885 | // means that we're either physically or logically disconnected. |
mjr | 54:fd77a6b2f76c | 1886 | // |
mjr | 54:fd77a6b2f76c | 1887 | // Important: this runs in ISR context. |
mjr | 54:fd77a6b2f76c | 1888 | // |
mjr | 54:fd77a6b2f76c | 1889 | // Note that this is a specialized sense of "sleep" that's unrelated |
mjr | 54:fd77a6b2f76c | 1890 | // to the similarly named power modes on the PC. This has nothing |
mjr | 54:fd77a6b2f76c | 1891 | // to do with suspend/sleep mode on the PC, and it's not a low-power |
mjr | 54:fd77a6b2f76c | 1892 | // mode on the KL25Z. They really should have called this interrupt |
mjr | 54:fd77a6b2f76c | 1893 | // DISCONNECT or BROKEN CONNECTION.) |
mjr | 54:fd77a6b2f76c | 1894 | virtual void sleepStateChanged(unsigned int sleeping) |
mjr | 54:fd77a6b2f76c | 1895 | { |
mjr | 54:fd77a6b2f76c | 1896 | // note the new state |
mjr | 54:fd77a6b2f76c | 1897 | sleeping_ = sleeping; |
mjr | 54:fd77a6b2f76c | 1898 | |
mjr | 54:fd77a6b2f76c | 1899 | // If we have a non-zero bus address, we have at least a partial |
mjr | 54:fd77a6b2f76c | 1900 | // connection to the host (we've made it at least as far as the |
mjr | 54:fd77a6b2f76c | 1901 | // SETUP stage). Explicitly disconnect, and the pending reconnect |
mjr | 54:fd77a6b2f76c | 1902 | // flag, and remember the time of the sleep event. |
mjr | 54:fd77a6b2f76c | 1903 | if (USB0->ADDR != 0x00) |
mjr | 54:fd77a6b2f76c | 1904 | { |
mjr | 54:fd77a6b2f76c | 1905 | disconnect(); |
mjr | 54:fd77a6b2f76c | 1906 | lastSleepTime_ = timer_.read_us(); |
mjr | 54:fd77a6b2f76c | 1907 | reconnectPending_ = true; |
mjr | 54:fd77a6b2f76c | 1908 | } |
mjr | 54:fd77a6b2f76c | 1909 | } |
mjr | 54:fd77a6b2f76c | 1910 | |
mjr | 54:fd77a6b2f76c | 1911 | // is the USB connection asleep? |
mjr | 54:fd77a6b2f76c | 1912 | volatile bool sleeping_; |
mjr | 54:fd77a6b2f76c | 1913 | |
mjr | 54:fd77a6b2f76c | 1914 | // flag: reconnect pending after sleep event |
mjr | 54:fd77a6b2f76c | 1915 | volatile bool reconnectPending_; |
mjr | 54:fd77a6b2f76c | 1916 | |
mjr | 54:fd77a6b2f76c | 1917 | // time of last sleep event while connected |
mjr | 54:fd77a6b2f76c | 1918 | volatile uint32_t lastSleepTime_; |
mjr | 54:fd77a6b2f76c | 1919 | |
mjr | 54:fd77a6b2f76c | 1920 | // timer to keep track of interval since last sleep event |
mjr | 54:fd77a6b2f76c | 1921 | Timer timer_; |
mjr | 5:a70c0bce770d | 1922 | }; |
mjr | 5:a70c0bce770d | 1923 | |
mjr | 5:a70c0bce770d | 1924 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 1925 | // |
mjr | 5:a70c0bce770d | 1926 | // Accelerometer (MMA8451Q) |
mjr | 5:a70c0bce770d | 1927 | // |
mjr | 5:a70c0bce770d | 1928 | |
mjr | 5:a70c0bce770d | 1929 | // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer. |
mjr | 5:a70c0bce770d | 1930 | // |
mjr | 5:a70c0bce770d | 1931 | // This is a custom wrapper for the library code to interface to the |
mjr | 6:cc35eb643e8f | 1932 | // MMA8451Q. This class encapsulates an interrupt handler and |
mjr | 6:cc35eb643e8f | 1933 | // automatic calibration. |
mjr | 5:a70c0bce770d | 1934 | // |
mjr | 5:a70c0bce770d | 1935 | // We install an interrupt handler on the accelerometer "data ready" |
mjr | 6:cc35eb643e8f | 1936 | // interrupt to ensure that we fetch each sample immediately when it |
mjr | 6:cc35eb643e8f | 1937 | // becomes available. The accelerometer data rate is fiarly high |
mjr | 6:cc35eb643e8f | 1938 | // (800 Hz), so it's not practical to keep up with it by polling. |
mjr | 6:cc35eb643e8f | 1939 | // Using an interrupt handler lets us respond quickly and read |
mjr | 6:cc35eb643e8f | 1940 | // every sample. |
mjr | 5:a70c0bce770d | 1941 | // |
mjr | 6:cc35eb643e8f | 1942 | // We automatically calibrate the accelerometer so that it's not |
mjr | 6:cc35eb643e8f | 1943 | // necessary to get it exactly level when installing it, and so |
mjr | 6:cc35eb643e8f | 1944 | // that it's also not necessary to calibrate it manually. There's |
mjr | 6:cc35eb643e8f | 1945 | // lots of experience that tells us that manual calibration is a |
mjr | 6:cc35eb643e8f | 1946 | // terrible solution, mostly because cabinets tend to shift slightly |
mjr | 6:cc35eb643e8f | 1947 | // during use, requiring frequent recalibration. Instead, we |
mjr | 6:cc35eb643e8f | 1948 | // calibrate automatically. We continuously monitor the acceleration |
mjr | 6:cc35eb643e8f | 1949 | // data, watching for periods of constant (or nearly constant) values. |
mjr | 6:cc35eb643e8f | 1950 | // Any time it appears that the machine has been at rest for a while |
mjr | 6:cc35eb643e8f | 1951 | // (about 5 seconds), we'll average the readings during that rest |
mjr | 6:cc35eb643e8f | 1952 | // period and use the result as the level rest position. This is |
mjr | 6:cc35eb643e8f | 1953 | // is ongoing, so we'll quickly find the center point again if the |
mjr | 6:cc35eb643e8f | 1954 | // machine is moved during play (by an especially aggressive bout |
mjr | 6:cc35eb643e8f | 1955 | // of nudging, say). |
mjr | 5:a70c0bce770d | 1956 | // |
mjr | 5:a70c0bce770d | 1957 | |
mjr | 17:ab3cec0c8bf4 | 1958 | // I2C address of the accelerometer (this is a constant of the KL25Z) |
mjr | 17:ab3cec0c8bf4 | 1959 | const int MMA8451_I2C_ADDRESS = (0x1d<<1); |
mjr | 17:ab3cec0c8bf4 | 1960 | |
mjr | 17:ab3cec0c8bf4 | 1961 | // SCL and SDA pins for the accelerometer (constant for the KL25Z) |
mjr | 17:ab3cec0c8bf4 | 1962 | #define MMA8451_SCL_PIN PTE25 |
mjr | 17:ab3cec0c8bf4 | 1963 | #define MMA8451_SDA_PIN PTE24 |
mjr | 17:ab3cec0c8bf4 | 1964 | |
mjr | 17:ab3cec0c8bf4 | 1965 | // Digital in pin to use for the accelerometer interrupt. For the KL25Z, |
mjr | 17:ab3cec0c8bf4 | 1966 | // this can be either PTA14 or PTA15, since those are the pins physically |
mjr | 17:ab3cec0c8bf4 | 1967 | // wired on this board to the MMA8451 interrupt controller. |
mjr | 17:ab3cec0c8bf4 | 1968 | #define MMA8451_INT_PIN PTA15 |
mjr | 17:ab3cec0c8bf4 | 1969 | |
mjr | 17:ab3cec0c8bf4 | 1970 | |
mjr | 6:cc35eb643e8f | 1971 | // accelerometer input history item, for gathering calibration data |
mjr | 6:cc35eb643e8f | 1972 | struct AccHist |
mjr | 5:a70c0bce770d | 1973 | { |
mjr | 6:cc35eb643e8f | 1974 | AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; } |
mjr | 6:cc35eb643e8f | 1975 | void set(float x, float y, AccHist *prv) |
mjr | 6:cc35eb643e8f | 1976 | { |
mjr | 6:cc35eb643e8f | 1977 | // save the raw position |
mjr | 6:cc35eb643e8f | 1978 | this->x = x; |
mjr | 6:cc35eb643e8f | 1979 | this->y = y; |
mjr | 6:cc35eb643e8f | 1980 | this->d = distance(prv); |
mjr | 6:cc35eb643e8f | 1981 | } |
mjr | 6:cc35eb643e8f | 1982 | |
mjr | 6:cc35eb643e8f | 1983 | // reading for this entry |
mjr | 5:a70c0bce770d | 1984 | float x, y; |
mjr | 5:a70c0bce770d | 1985 | |
mjr | 6:cc35eb643e8f | 1986 | // distance from previous entry |
mjr | 6:cc35eb643e8f | 1987 | float d; |
mjr | 5:a70c0bce770d | 1988 | |
mjr | 6:cc35eb643e8f | 1989 | // total and count of samples averaged over this period |
mjr | 6:cc35eb643e8f | 1990 | float xtot, ytot; |
mjr | 6:cc35eb643e8f | 1991 | int cnt; |
mjr | 6:cc35eb643e8f | 1992 | |
mjr | 6:cc35eb643e8f | 1993 | void clearAvg() { xtot = ytot = 0.0; cnt = 0; } |
mjr | 6:cc35eb643e8f | 1994 | void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; } |
mjr | 6:cc35eb643e8f | 1995 | float xAvg() const { return xtot/cnt; } |
mjr | 6:cc35eb643e8f | 1996 | float yAvg() const { return ytot/cnt; } |
mjr | 5:a70c0bce770d | 1997 | |
mjr | 6:cc35eb643e8f | 1998 | float distance(AccHist *p) |
mjr | 6:cc35eb643e8f | 1999 | { return sqrt(square(p->x - x) + square(p->y - y)); } |
mjr | 5:a70c0bce770d | 2000 | }; |
mjr | 5:a70c0bce770d | 2001 | |
mjr | 5:a70c0bce770d | 2002 | // accelerometer wrapper class |
mjr | 3:3514575d4f86 | 2003 | class Accel |
mjr | 3:3514575d4f86 | 2004 | { |
mjr | 3:3514575d4f86 | 2005 | public: |
mjr | 3:3514575d4f86 | 2006 | Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin) |
mjr | 3:3514575d4f86 | 2007 | : mma_(sda, scl, i2cAddr), intIn_(irqPin) |
mjr | 3:3514575d4f86 | 2008 | { |
mjr | 5:a70c0bce770d | 2009 | // remember the interrupt pin assignment |
mjr | 5:a70c0bce770d | 2010 | irqPin_ = irqPin; |
mjr | 5:a70c0bce770d | 2011 | |
mjr | 5:a70c0bce770d | 2012 | // reset and initialize |
mjr | 5:a70c0bce770d | 2013 | reset(); |
mjr | 5:a70c0bce770d | 2014 | } |
mjr | 5:a70c0bce770d | 2015 | |
mjr | 5:a70c0bce770d | 2016 | void reset() |
mjr | 5:a70c0bce770d | 2017 | { |
mjr | 6:cc35eb643e8f | 2018 | // clear the center point |
mjr | 6:cc35eb643e8f | 2019 | cx_ = cy_ = 0.0; |
mjr | 6:cc35eb643e8f | 2020 | |
mjr | 6:cc35eb643e8f | 2021 | // start the calibration timer |
mjr | 5:a70c0bce770d | 2022 | tCenter_.start(); |
mjr | 5:a70c0bce770d | 2023 | iAccPrv_ = nAccPrv_ = 0; |
mjr | 6:cc35eb643e8f | 2024 | |
mjr | 5:a70c0bce770d | 2025 | // reset and initialize the MMA8451Q |
mjr | 5:a70c0bce770d | 2026 | mma_.init(); |
mjr | 6:cc35eb643e8f | 2027 | |
mjr | 6:cc35eb643e8f | 2028 | // set the initial integrated velocity reading to zero |
mjr | 6:cc35eb643e8f | 2029 | vx_ = vy_ = 0; |
mjr | 3:3514575d4f86 | 2030 | |
mjr | 6:cc35eb643e8f | 2031 | // set up our accelerometer interrupt handling |
mjr | 6:cc35eb643e8f | 2032 | intIn_.rise(this, &Accel::isr); |
mjr | 5:a70c0bce770d | 2033 | mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2); |
mjr | 3:3514575d4f86 | 2034 | |
mjr | 3:3514575d4f86 | 2035 | // read the current registers to clear the data ready flag |
mjr | 6:cc35eb643e8f | 2036 | mma_.getAccXYZ(ax_, ay_, az_); |
mjr | 3:3514575d4f86 | 2037 | |
mjr | 3:3514575d4f86 | 2038 | // start our timers |
mjr | 3:3514575d4f86 | 2039 | tGet_.start(); |
mjr | 3:3514575d4f86 | 2040 | tInt_.start(); |
mjr | 3:3514575d4f86 | 2041 | } |
mjr | 3:3514575d4f86 | 2042 | |
mjr | 9:fd65b0a94720 | 2043 | void get(int &x, int &y) |
mjr | 3:3514575d4f86 | 2044 | { |
mjr | 3:3514575d4f86 | 2045 | // disable interrupts while manipulating the shared data |
mjr | 3:3514575d4f86 | 2046 | __disable_irq(); |
mjr | 3:3514575d4f86 | 2047 | |
mjr | 3:3514575d4f86 | 2048 | // read the shared data and store locally for calculations |
mjr | 6:cc35eb643e8f | 2049 | float ax = ax_, ay = ay_; |
mjr | 6:cc35eb643e8f | 2050 | float vx = vx_, vy = vy_; |
mjr | 5:a70c0bce770d | 2051 | |
mjr | 6:cc35eb643e8f | 2052 | // reset the velocity sum for the next run |
mjr | 6:cc35eb643e8f | 2053 | vx_ = vy_ = 0; |
mjr | 3:3514575d4f86 | 2054 | |
mjr | 3:3514575d4f86 | 2055 | // get the time since the last get() sample |
mjr | 38:091e511ce8a0 | 2056 | float dt = tGet_.read_us()/1.0e6f; |
mjr | 3:3514575d4f86 | 2057 | tGet_.reset(); |
mjr | 3:3514575d4f86 | 2058 | |
mjr | 3:3514575d4f86 | 2059 | // done manipulating the shared data |
mjr | 3:3514575d4f86 | 2060 | __enable_irq(); |
mjr | 3:3514575d4f86 | 2061 | |
mjr | 6:cc35eb643e8f | 2062 | // adjust the readings for the integration time |
mjr | 6:cc35eb643e8f | 2063 | vx /= dt; |
mjr | 6:cc35eb643e8f | 2064 | vy /= dt; |
mjr | 6:cc35eb643e8f | 2065 | |
mjr | 6:cc35eb643e8f | 2066 | // add this sample to the current calibration interval's running total |
mjr | 6:cc35eb643e8f | 2067 | AccHist *p = accPrv_ + iAccPrv_; |
mjr | 6:cc35eb643e8f | 2068 | p->addAvg(ax, ay); |
mjr | 6:cc35eb643e8f | 2069 | |
mjr | 5:a70c0bce770d | 2070 | // check for auto-centering every so often |
mjr | 48:058ace2aed1d | 2071 | if (tCenter_.read_us() > 1000000) |
mjr | 5:a70c0bce770d | 2072 | { |
mjr | 5:a70c0bce770d | 2073 | // add the latest raw sample to the history list |
mjr | 6:cc35eb643e8f | 2074 | AccHist *prv = p; |
mjr | 5:a70c0bce770d | 2075 | iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv; |
mjr | 6:cc35eb643e8f | 2076 | p = accPrv_ + iAccPrv_; |
mjr | 6:cc35eb643e8f | 2077 | p->set(ax, ay, prv); |
mjr | 5:a70c0bce770d | 2078 | |
mjr | 5:a70c0bce770d | 2079 | // if we have a full complement, check for stability |
mjr | 5:a70c0bce770d | 2080 | if (nAccPrv_ >= maxAccPrv) |
mjr | 5:a70c0bce770d | 2081 | { |
mjr | 5:a70c0bce770d | 2082 | // check if we've been stable for all recent samples |
mjr | 6:cc35eb643e8f | 2083 | static const float accTol = .01; |
mjr | 6:cc35eb643e8f | 2084 | AccHist *p0 = accPrv_; |
mjr | 6:cc35eb643e8f | 2085 | if (p0[0].d < accTol |
mjr | 6:cc35eb643e8f | 2086 | && p0[1].d < accTol |
mjr | 6:cc35eb643e8f | 2087 | && p0[2].d < accTol |
mjr | 6:cc35eb643e8f | 2088 | && p0[3].d < accTol |
mjr | 6:cc35eb643e8f | 2089 | && p0[4].d < accTol) |
mjr | 5:a70c0bce770d | 2090 | { |
mjr | 6:cc35eb643e8f | 2091 | // Figure the new calibration point as the average of |
mjr | 6:cc35eb643e8f | 2092 | // the samples over the rest period |
mjr | 6:cc35eb643e8f | 2093 | cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0; |
mjr | 6:cc35eb643e8f | 2094 | cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0; |
mjr | 5:a70c0bce770d | 2095 | } |
mjr | 5:a70c0bce770d | 2096 | } |
mjr | 5:a70c0bce770d | 2097 | else |
mjr | 5:a70c0bce770d | 2098 | { |
mjr | 5:a70c0bce770d | 2099 | // not enough samples yet; just up the count |
mjr | 5:a70c0bce770d | 2100 | ++nAccPrv_; |
mjr | 5:a70c0bce770d | 2101 | } |
mjr | 6:cc35eb643e8f | 2102 | |
mjr | 6:cc35eb643e8f | 2103 | // clear the new item's running totals |
mjr | 6:cc35eb643e8f | 2104 | p->clearAvg(); |
mjr | 5:a70c0bce770d | 2105 | |
mjr | 5:a70c0bce770d | 2106 | // reset the timer |
mjr | 5:a70c0bce770d | 2107 | tCenter_.reset(); |
mjr | 39:b3815a1c3802 | 2108 | |
mjr | 39:b3815a1c3802 | 2109 | // If we haven't seen an interrupt in a while, do an explicit read to |
mjr | 39:b3815a1c3802 | 2110 | // "unstick" the device. The device can become stuck - which is to say, |
mjr | 39:b3815a1c3802 | 2111 | // it will stop delivering data-ready interrupts - if we fail to service |
mjr | 39:b3815a1c3802 | 2112 | // one data-ready interrupt before the next one occurs. Reading a sample |
mjr | 39:b3815a1c3802 | 2113 | // will clear up this overrun condition and allow normal interrupt |
mjr | 39:b3815a1c3802 | 2114 | // generation to continue. |
mjr | 39:b3815a1c3802 | 2115 | // |
mjr | 39:b3815a1c3802 | 2116 | // Note that this stuck condition *shouldn't* ever occur - if it does, |
mjr | 39:b3815a1c3802 | 2117 | // it means that we're spending a long period with interrupts disabled |
mjr | 39:b3815a1c3802 | 2118 | // (either in a critical section or in another interrupt handler), which |
mjr | 39:b3815a1c3802 | 2119 | // will likely cause other worse problems beyond the sticky accelerometer. |
mjr | 39:b3815a1c3802 | 2120 | // Even so, it's easy to detect and correct, so we'll do so for the sake |
mjr | 39:b3815a1c3802 | 2121 | // of making the system more fault-tolerant. |
mjr | 39:b3815a1c3802 | 2122 | if (tInt_.read() > 1.0f) |
mjr | 39:b3815a1c3802 | 2123 | { |
mjr | 39:b3815a1c3802 | 2124 | float x, y, z; |
mjr | 39:b3815a1c3802 | 2125 | mma_.getAccXYZ(x, y, z); |
mjr | 39:b3815a1c3802 | 2126 | } |
mjr | 5:a70c0bce770d | 2127 | } |
mjr | 5:a70c0bce770d | 2128 | |
mjr | 6:cc35eb643e8f | 2129 | // report our integrated velocity reading in x,y |
mjr | 6:cc35eb643e8f | 2130 | x = rawToReport(vx); |
mjr | 6:cc35eb643e8f | 2131 | y = rawToReport(vy); |
mjr | 5:a70c0bce770d | 2132 | |
mjr | 6:cc35eb643e8f | 2133 | #ifdef DEBUG_PRINTF |
mjr | 6:cc35eb643e8f | 2134 | if (x != 0 || y != 0) |
mjr | 6:cc35eb643e8f | 2135 | printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt); |
mjr | 6:cc35eb643e8f | 2136 | #endif |
mjr | 3:3514575d4f86 | 2137 | } |
mjr | 29:582472d0bc57 | 2138 | |
mjr | 3:3514575d4f86 | 2139 | private: |
mjr | 6:cc35eb643e8f | 2140 | // adjust a raw acceleration figure to a usb report value |
mjr | 6:cc35eb643e8f | 2141 | int rawToReport(float v) |
mjr | 5:a70c0bce770d | 2142 | { |
mjr | 6:cc35eb643e8f | 2143 | // scale to the joystick report range and round to integer |
mjr | 6:cc35eb643e8f | 2144 | int i = int(round(v*JOYMAX)); |
mjr | 5:a70c0bce770d | 2145 | |
mjr | 6:cc35eb643e8f | 2146 | // if it's near the center, scale it roughly as 20*(i/20)^2, |
mjr | 6:cc35eb643e8f | 2147 | // to suppress noise near the rest position |
mjr | 6:cc35eb643e8f | 2148 | static const int filter[] = { |
mjr | 6:cc35eb643e8f | 2149 | -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0, |
mjr | 6:cc35eb643e8f | 2150 | 0, |
mjr | 6:cc35eb643e8f | 2151 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18 |
mjr | 6:cc35eb643e8f | 2152 | }; |
mjr | 6:cc35eb643e8f | 2153 | return (i > 20 || i < -20 ? i : filter[i+20]); |
mjr | 5:a70c0bce770d | 2154 | } |
mjr | 5:a70c0bce770d | 2155 | |
mjr | 3:3514575d4f86 | 2156 | // interrupt handler |
mjr | 3:3514575d4f86 | 2157 | void isr() |
mjr | 3:3514575d4f86 | 2158 | { |
mjr | 3:3514575d4f86 | 2159 | // Read the axes. Note that we have to read all three axes |
mjr | 3:3514575d4f86 | 2160 | // (even though we only really use x and y) in order to clear |
mjr | 3:3514575d4f86 | 2161 | // the "data ready" status bit in the accelerometer. The |
mjr | 3:3514575d4f86 | 2162 | // interrupt only occurs when the "ready" bit transitions from |
mjr | 3:3514575d4f86 | 2163 | // off to on, so we have to make sure it's off. |
mjr | 5:a70c0bce770d | 2164 | float x, y, z; |
mjr | 5:a70c0bce770d | 2165 | mma_.getAccXYZ(x, y, z); |
mjr | 3:3514575d4f86 | 2166 | |
mjr | 3:3514575d4f86 | 2167 | // calculate the time since the last interrupt |
mjr | 39:b3815a1c3802 | 2168 | float dt = tInt_.read(); |
mjr | 3:3514575d4f86 | 2169 | tInt_.reset(); |
mjr | 6:cc35eb643e8f | 2170 | |
mjr | 6:cc35eb643e8f | 2171 | // integrate the time slice from the previous reading to this reading |
mjr | 6:cc35eb643e8f | 2172 | vx_ += (x + ax_ - 2*cx_)*dt/2; |
mjr | 6:cc35eb643e8f | 2173 | vy_ += (y + ay_ - 2*cy_)*dt/2; |
mjr | 3:3514575d4f86 | 2174 | |
mjr | 6:cc35eb643e8f | 2175 | // store the updates |
mjr | 6:cc35eb643e8f | 2176 | ax_ = x; |
mjr | 6:cc35eb643e8f | 2177 | ay_ = y; |
mjr | 6:cc35eb643e8f | 2178 | az_ = z; |
mjr | 3:3514575d4f86 | 2179 | } |
mjr | 3:3514575d4f86 | 2180 | |
mjr | 3:3514575d4f86 | 2181 | // underlying accelerometer object |
mjr | 3:3514575d4f86 | 2182 | MMA8451Q mma_; |
mjr | 3:3514575d4f86 | 2183 | |
mjr | 5:a70c0bce770d | 2184 | // last raw acceleration readings |
mjr | 6:cc35eb643e8f | 2185 | float ax_, ay_, az_; |
mjr | 5:a70c0bce770d | 2186 | |
mjr | 6:cc35eb643e8f | 2187 | // integrated velocity reading since last get() |
mjr | 6:cc35eb643e8f | 2188 | float vx_, vy_; |
mjr | 6:cc35eb643e8f | 2189 | |
mjr | 3:3514575d4f86 | 2190 | // timer for measuring time between get() samples |
mjr | 3:3514575d4f86 | 2191 | Timer tGet_; |
mjr | 3:3514575d4f86 | 2192 | |
mjr | 3:3514575d4f86 | 2193 | // timer for measuring time between interrupts |
mjr | 3:3514575d4f86 | 2194 | Timer tInt_; |
mjr | 5:a70c0bce770d | 2195 | |
mjr | 6:cc35eb643e8f | 2196 | // Calibration reference point for accelerometer. This is the |
mjr | 6:cc35eb643e8f | 2197 | // average reading on the accelerometer when in the neutral position |
mjr | 6:cc35eb643e8f | 2198 | // at rest. |
mjr | 6:cc35eb643e8f | 2199 | float cx_, cy_; |
mjr | 5:a70c0bce770d | 2200 | |
mjr | 5:a70c0bce770d | 2201 | // timer for atuo-centering |
mjr | 5:a70c0bce770d | 2202 | Timer tCenter_; |
mjr | 6:cc35eb643e8f | 2203 | |
mjr | 6:cc35eb643e8f | 2204 | // Auto-centering history. This is a separate history list that |
mjr | 6:cc35eb643e8f | 2205 | // records results spaced out sparesely over time, so that we can |
mjr | 6:cc35eb643e8f | 2206 | // watch for long-lasting periods of rest. When we observe nearly |
mjr | 6:cc35eb643e8f | 2207 | // no motion for an extended period (on the order of 5 seconds), we |
mjr | 6:cc35eb643e8f | 2208 | // take this to mean that the cabinet is at rest in its neutral |
mjr | 6:cc35eb643e8f | 2209 | // position, so we take this as the calibration zero point for the |
mjr | 6:cc35eb643e8f | 2210 | // accelerometer. We update this history continuously, which allows |
mjr | 6:cc35eb643e8f | 2211 | // us to continuously re-calibrate the accelerometer. This ensures |
mjr | 6:cc35eb643e8f | 2212 | // that we'll automatically adjust to any actual changes in the |
mjr | 6:cc35eb643e8f | 2213 | // cabinet's orientation (e.g., if it gets moved slightly by an |
mjr | 6:cc35eb643e8f | 2214 | // especially strong nudge) as well as any systematic drift in the |
mjr | 6:cc35eb643e8f | 2215 | // accelerometer measurement bias (e.g., from temperature changes). |
mjr | 5:a70c0bce770d | 2216 | int iAccPrv_, nAccPrv_; |
mjr | 5:a70c0bce770d | 2217 | static const int maxAccPrv = 5; |
mjr | 6:cc35eb643e8f | 2218 | AccHist accPrv_[maxAccPrv]; |
mjr | 6:cc35eb643e8f | 2219 | |
mjr | 5:a70c0bce770d | 2220 | // interurupt pin name |
mjr | 5:a70c0bce770d | 2221 | PinName irqPin_; |
mjr | 5:a70c0bce770d | 2222 | |
mjr | 5:a70c0bce770d | 2223 | // interrupt router |
mjr | 5:a70c0bce770d | 2224 | InterruptIn intIn_; |
mjr | 3:3514575d4f86 | 2225 | }; |
mjr | 3:3514575d4f86 | 2226 | |
mjr | 5:a70c0bce770d | 2227 | |
mjr | 5:a70c0bce770d | 2228 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 2229 | // |
mjr | 14:df700b22ca08 | 2230 | // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time |
mjr | 5:a70c0bce770d | 2231 | // for reasons that aren't clear to me. Doing a hard power cycle has the same |
mjr | 5:a70c0bce770d | 2232 | // effect, but when we do a soft reset, the hardware sometimes seems to leave |
mjr | 5:a70c0bce770d | 2233 | // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through |
mjr | 14:df700b22ca08 | 2234 | // the SCL line is supposed to clear this condition. I'm not convinced this |
mjr | 14:df700b22ca08 | 2235 | // actually works with the way this component is wired on the KL25Z, but it |
mjr | 14:df700b22ca08 | 2236 | // seems harmless, so we'll do it on reset in case it does some good. What |
mjr | 14:df700b22ca08 | 2237 | // we really seem to need is a way to power cycle the MMA8451Q if it ever |
mjr | 14:df700b22ca08 | 2238 | // gets stuck, but this is simply not possible in software on the KL25Z. |
mjr | 14:df700b22ca08 | 2239 | // |
mjr | 14:df700b22ca08 | 2240 | // If the accelerometer does get stuck, and a software reboot doesn't reset |
mjr | 14:df700b22ca08 | 2241 | // it, the only workaround is to manually power cycle the whole KL25Z by |
mjr | 14:df700b22ca08 | 2242 | // unplugging both of its USB connections. |
mjr | 5:a70c0bce770d | 2243 | // |
mjr | 5:a70c0bce770d | 2244 | void clear_i2c() |
mjr | 5:a70c0bce770d | 2245 | { |
mjr | 38:091e511ce8a0 | 2246 | // set up general-purpose output pins to the I2C lines |
mjr | 5:a70c0bce770d | 2247 | DigitalOut scl(MMA8451_SCL_PIN); |
mjr | 5:a70c0bce770d | 2248 | DigitalIn sda(MMA8451_SDA_PIN); |
mjr | 5:a70c0bce770d | 2249 | |
mjr | 5:a70c0bce770d | 2250 | // clock the SCL 9 times |
mjr | 5:a70c0bce770d | 2251 | for (int i = 0 ; i < 9 ; ++i) |
mjr | 5:a70c0bce770d | 2252 | { |
mjr | 5:a70c0bce770d | 2253 | scl = 1; |
mjr | 5:a70c0bce770d | 2254 | wait_us(20); |
mjr | 5:a70c0bce770d | 2255 | scl = 0; |
mjr | 5:a70c0bce770d | 2256 | wait_us(20); |
mjr | 5:a70c0bce770d | 2257 | } |
mjr | 5:a70c0bce770d | 2258 | } |
mjr | 14:df700b22ca08 | 2259 | |
mjr | 14:df700b22ca08 | 2260 | // --------------------------------------------------------------------------- |
mjr | 14:df700b22ca08 | 2261 | // |
mjr | 33:d832bcab089e | 2262 | // Simple binary (on/off) input debouncer. Requires an input to be stable |
mjr | 33:d832bcab089e | 2263 | // for a given interval before allowing an update. |
mjr | 33:d832bcab089e | 2264 | // |
mjr | 33:d832bcab089e | 2265 | class Debouncer |
mjr | 33:d832bcab089e | 2266 | { |
mjr | 33:d832bcab089e | 2267 | public: |
mjr | 33:d832bcab089e | 2268 | Debouncer(bool initVal, float tmin) |
mjr | 33:d832bcab089e | 2269 | { |
mjr | 33:d832bcab089e | 2270 | t.start(); |
mjr | 33:d832bcab089e | 2271 | this->stable = this->prv = initVal; |
mjr | 33:d832bcab089e | 2272 | this->tmin = tmin; |
mjr | 33:d832bcab089e | 2273 | } |
mjr | 33:d832bcab089e | 2274 | |
mjr | 33:d832bcab089e | 2275 | // Get the current stable value |
mjr | 33:d832bcab089e | 2276 | bool val() const { return stable; } |
mjr | 33:d832bcab089e | 2277 | |
mjr | 33:d832bcab089e | 2278 | // Apply a new sample. This tells us the new raw reading from the |
mjr | 33:d832bcab089e | 2279 | // input device. |
mjr | 33:d832bcab089e | 2280 | void sampleIn(bool val) |
mjr | 33:d832bcab089e | 2281 | { |
mjr | 33:d832bcab089e | 2282 | // If the new raw reading is different from the previous |
mjr | 33:d832bcab089e | 2283 | // raw reading, we've detected an edge - start the clock |
mjr | 33:d832bcab089e | 2284 | // on the sample reader. |
mjr | 33:d832bcab089e | 2285 | if (val != prv) |
mjr | 33:d832bcab089e | 2286 | { |
mjr | 33:d832bcab089e | 2287 | // we have an edge - reset the sample clock |
mjr | 33:d832bcab089e | 2288 | t.reset(); |
mjr | 33:d832bcab089e | 2289 | |
mjr | 33:d832bcab089e | 2290 | // this is now the previous raw sample for nxt time |
mjr | 33:d832bcab089e | 2291 | prv = val; |
mjr | 33:d832bcab089e | 2292 | } |
mjr | 33:d832bcab089e | 2293 | else if (val != stable) |
mjr | 33:d832bcab089e | 2294 | { |
mjr | 33:d832bcab089e | 2295 | // The new raw sample is the same as the last raw sample, |
mjr | 33:d832bcab089e | 2296 | // and different from the stable value. This means that |
mjr | 33:d832bcab089e | 2297 | // the sample value has been the same for the time currently |
mjr | 33:d832bcab089e | 2298 | // indicated by our timer. If enough time has elapsed to |
mjr | 33:d832bcab089e | 2299 | // consider the value stable, apply the new value. |
mjr | 33:d832bcab089e | 2300 | if (t.read() > tmin) |
mjr | 33:d832bcab089e | 2301 | stable = val; |
mjr | 33:d832bcab089e | 2302 | } |
mjr | 33:d832bcab089e | 2303 | } |
mjr | 33:d832bcab089e | 2304 | |
mjr | 33:d832bcab089e | 2305 | private: |
mjr | 33:d832bcab089e | 2306 | // current stable value |
mjr | 33:d832bcab089e | 2307 | bool stable; |
mjr | 33:d832bcab089e | 2308 | |
mjr | 33:d832bcab089e | 2309 | // last raw sample value |
mjr | 33:d832bcab089e | 2310 | bool prv; |
mjr | 33:d832bcab089e | 2311 | |
mjr | 33:d832bcab089e | 2312 | // elapsed time since last raw input change |
mjr | 33:d832bcab089e | 2313 | Timer t; |
mjr | 33:d832bcab089e | 2314 | |
mjr | 33:d832bcab089e | 2315 | // Minimum time interval for stability, in seconds. Input readings |
mjr | 33:d832bcab089e | 2316 | // must be stable for this long before the stable value is updated. |
mjr | 33:d832bcab089e | 2317 | float tmin; |
mjr | 33:d832bcab089e | 2318 | }; |
mjr | 33:d832bcab089e | 2319 | |
mjr | 33:d832bcab089e | 2320 | |
mjr | 33:d832bcab089e | 2321 | // --------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 2322 | // |
mjr | 33:d832bcab089e | 2323 | // Turn off all outputs and restore everything to the default LedWiz |
mjr | 33:d832bcab089e | 2324 | // state. This sets outputs #1-32 to LedWiz profile value 48 (full |
mjr | 33:d832bcab089e | 2325 | // brightness) and switch state Off, sets all extended outputs (#33 |
mjr | 33:d832bcab089e | 2326 | // and above) to zero brightness, and sets the LedWiz flash rate to 2. |
mjr | 33:d832bcab089e | 2327 | // This effectively restores the power-on conditions. |
mjr | 33:d832bcab089e | 2328 | // |
mjr | 33:d832bcab089e | 2329 | void allOutputsOff() |
mjr | 33:d832bcab089e | 2330 | { |
mjr | 33:d832bcab089e | 2331 | // reset all LedWiz outputs to OFF/48 |
mjr | 35:e959ffba78fd | 2332 | for (int i = 0 ; i < numLwOutputs ; ++i) |
mjr | 33:d832bcab089e | 2333 | { |
mjr | 33:d832bcab089e | 2334 | outLevel[i] = 0; |
mjr | 33:d832bcab089e | 2335 | wizOn[i] = 0; |
mjr | 33:d832bcab089e | 2336 | wizVal[i] = 48; |
mjr | 33:d832bcab089e | 2337 | lwPin[i]->set(0); |
mjr | 33:d832bcab089e | 2338 | } |
mjr | 33:d832bcab089e | 2339 | |
mjr | 33:d832bcab089e | 2340 | // reset all extended outputs (ports >32) to full off (brightness 0) |
mjr | 40:cc0d9814522b | 2341 | for (int i = numLwOutputs ; i < numOutputs ; ++i) |
mjr | 33:d832bcab089e | 2342 | { |
mjr | 33:d832bcab089e | 2343 | outLevel[i] = 0; |
mjr | 33:d832bcab089e | 2344 | lwPin[i]->set(0); |
mjr | 33:d832bcab089e | 2345 | } |
mjr | 33:d832bcab089e | 2346 | |
mjr | 33:d832bcab089e | 2347 | // restore default LedWiz flash rate |
mjr | 33:d832bcab089e | 2348 | wizSpeed = 2; |
mjr | 34:6b981a2afab7 | 2349 | |
mjr | 34:6b981a2afab7 | 2350 | // flush changes to hc595, if applicable |
mjr | 35:e959ffba78fd | 2351 | if (hc595 != 0) |
mjr | 35:e959ffba78fd | 2352 | hc595->update(); |
mjr | 33:d832bcab089e | 2353 | } |
mjr | 33:d832bcab089e | 2354 | |
mjr | 33:d832bcab089e | 2355 | // --------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 2356 | // |
mjr | 33:d832bcab089e | 2357 | // TV ON timer. If this feature is enabled, we toggle a TV power switch |
mjr | 33:d832bcab089e | 2358 | // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly |
mjr | 33:d832bcab089e | 2359 | // after the system is powered. This is useful for TVs that don't remember |
mjr | 33:d832bcab089e | 2360 | // their power state and don't turn back on automatically after being |
mjr | 33:d832bcab089e | 2361 | // unplugged and plugged in again. This feature requires external |
mjr | 33:d832bcab089e | 2362 | // circuitry, which is built in to the expansion board and can also be |
mjr | 33:d832bcab089e | 2363 | // built separately - see the Build Guide for the circuit plan. |
mjr | 33:d832bcab089e | 2364 | // |
mjr | 33:d832bcab089e | 2365 | // Theory of operation: to use this feature, the cabinet must have a |
mjr | 33:d832bcab089e | 2366 | // secondary PC-style power supply (PSU2) for the feedback devices, and |
mjr | 33:d832bcab089e | 2367 | // this secondary supply must be plugged in to the same power strip or |
mjr | 33:d832bcab089e | 2368 | // switched outlet that controls power to the TVs. This lets us use PSU2 |
mjr | 33:d832bcab089e | 2369 | // as a proxy for the TV power state - when PSU2 is on, the TV outlet is |
mjr | 33:d832bcab089e | 2370 | // powered, and when PSU2 is off, the TV outlet is off. We use a little |
mjr | 33:d832bcab089e | 2371 | // latch circuit powered by PSU2 to monitor the status. The latch has a |
mjr | 33:d832bcab089e | 2372 | // current state, ON or OFF, that we can read via a GPIO input pin, and |
mjr | 33:d832bcab089e | 2373 | // we can set the state to ON by pulsing a separate GPIO output pin. As |
mjr | 33:d832bcab089e | 2374 | // long as PSU2 is powered off, the latch stays in the OFF state, even if |
mjr | 33:d832bcab089e | 2375 | // we try to set it by pulsing the SET pin. When PSU2 is turned on after |
mjr | 33:d832bcab089e | 2376 | // being off, the latch starts receiving power but stays in the OFF state, |
mjr | 33:d832bcab089e | 2377 | // since this is the initial condition when the power first comes on. So |
mjr | 33:d832bcab089e | 2378 | // if our latch state pin is reading OFF, we know that PSU2 is either off |
mjr | 33:d832bcab089e | 2379 | // now or *was* off some time since we last checked. We use a timer to |
mjr | 33:d832bcab089e | 2380 | // check the state periodically. Each time we see the state is OFF, we |
mjr | 33:d832bcab089e | 2381 | // try pulsing the SET pin. If the state still reads as OFF, we know |
mjr | 33:d832bcab089e | 2382 | // that PSU2 is currently off; if the state changes to ON, though, we |
mjr | 33:d832bcab089e | 2383 | // know that PSU2 has gone from OFF to ON some time between now and the |
mjr | 33:d832bcab089e | 2384 | // previous check. When we see this condition, we start a countdown |
mjr | 33:d832bcab089e | 2385 | // timer, and pulse the TV switch relay when the countdown ends. |
mjr | 33:d832bcab089e | 2386 | // |
mjr | 40:cc0d9814522b | 2387 | // This scheme might seem a little convoluted, but it handles a number |
mjr | 40:cc0d9814522b | 2388 | // of tricky but likely scenarios: |
mjr | 33:d832bcab089e | 2389 | // |
mjr | 33:d832bcab089e | 2390 | // - Most cabinets systems are set up with "soft" PC power switches, |
mjr | 40:cc0d9814522b | 2391 | // so that the PC goes into "Soft Off" mode when the user turns off |
mjr | 40:cc0d9814522b | 2392 | // the cabinet by pushing the power button or using the Shut Down |
mjr | 40:cc0d9814522b | 2393 | // command from within Windows. In Windows parlance, this "soft off" |
mjr | 40:cc0d9814522b | 2394 | // condition is called ACPI State S5. In this state, the main CPU |
mjr | 40:cc0d9814522b | 2395 | // power is turned off, but the motherboard still provides power to |
mjr | 40:cc0d9814522b | 2396 | // USB devices. This means that the KL25Z keeps running. Without |
mjr | 40:cc0d9814522b | 2397 | // the external power sensing circuit, the only hint that we're in |
mjr | 40:cc0d9814522b | 2398 | // this state is that the USB connection to the host goes into Suspend |
mjr | 40:cc0d9814522b | 2399 | // mode, but that could mean other things as well. The latch circuit |
mjr | 40:cc0d9814522b | 2400 | // lets us tell for sure that we're in this state. |
mjr | 33:d832bcab089e | 2401 | // |
mjr | 33:d832bcab089e | 2402 | // - Some cabinet builders might prefer to use "hard" power switches, |
mjr | 33:d832bcab089e | 2403 | // cutting all power to the cabinet, including the PC motherboard (and |
mjr | 33:d832bcab089e | 2404 | // thus the KL25Z) every time the machine is turned off. This also |
mjr | 33:d832bcab089e | 2405 | // applies to the "soft" switch case above when the cabinet is unplugged, |
mjr | 33:d832bcab089e | 2406 | // a power outage occurs, etc. In these cases, the KL25Z will do a cold |
mjr | 33:d832bcab089e | 2407 | // boot when the PC is turned on. We don't know whether the KL25Z |
mjr | 33:d832bcab089e | 2408 | // will power up before or after PSU2, so it's not good enough to |
mjr | 40:cc0d9814522b | 2409 | // observe the current state of PSU2 when we first check. If PSU2 |
mjr | 40:cc0d9814522b | 2410 | // were to come on first, checking only the current state would fool |
mjr | 40:cc0d9814522b | 2411 | // us into thinking that no action is required, because we'd only see |
mjr | 40:cc0d9814522b | 2412 | // that PSU2 is turned on any time we check. The latch handles this |
mjr | 40:cc0d9814522b | 2413 | // case by letting us see that PSU2 was indeed off some time before our |
mjr | 40:cc0d9814522b | 2414 | // first check. |
mjr | 33:d832bcab089e | 2415 | // |
mjr | 33:d832bcab089e | 2416 | // - If the KL25Z is rebooted while the main system is running, or the |
mjr | 40:cc0d9814522b | 2417 | // KL25Z is unplugged and plugged back in, we'll correctly leave the |
mjr | 33:d832bcab089e | 2418 | // TVs as they are. The latch state is independent of the KL25Z's |
mjr | 33:d832bcab089e | 2419 | // power or software state, so it's won't affect the latch state when |
mjr | 33:d832bcab089e | 2420 | // the KL25Z is unplugged or rebooted; when we boot, we'll see that |
mjr | 33:d832bcab089e | 2421 | // the latch is already on and that we don't have to turn on the TVs. |
mjr | 33:d832bcab089e | 2422 | // This is important because TV ON buttons are usually on/off toggles, |
mjr | 33:d832bcab089e | 2423 | // so we don't want to push the button on a TV that's already on. |
mjr | 33:d832bcab089e | 2424 | // |
mjr | 33:d832bcab089e | 2425 | |
mjr | 33:d832bcab089e | 2426 | // Current PSU2 state: |
mjr | 33:d832bcab089e | 2427 | // 1 -> default: latch was on at last check, or we haven't checked yet |
mjr | 33:d832bcab089e | 2428 | // 2 -> latch was off at last check, SET pulsed high |
mjr | 33:d832bcab089e | 2429 | // 3 -> SET pulsed low, ready to check status |
mjr | 33:d832bcab089e | 2430 | // 4 -> TV timer countdown in progress |
mjr | 33:d832bcab089e | 2431 | // 5 -> TV relay on |
mjr | 33:d832bcab089e | 2432 | int psu2_state = 1; |
mjr | 35:e959ffba78fd | 2433 | |
mjr | 35:e959ffba78fd | 2434 | // PSU2 power sensing circuit connections |
mjr | 35:e959ffba78fd | 2435 | DigitalIn *psu2_status_sense; |
mjr | 35:e959ffba78fd | 2436 | DigitalOut *psu2_status_set; |
mjr | 35:e959ffba78fd | 2437 | |
mjr | 35:e959ffba78fd | 2438 | // TV ON switch relay control |
mjr | 35:e959ffba78fd | 2439 | DigitalOut *tv_relay; |
mjr | 35:e959ffba78fd | 2440 | |
mjr | 35:e959ffba78fd | 2441 | // Timer interrupt |
mjr | 35:e959ffba78fd | 2442 | Ticker tv_ticker; |
mjr | 35:e959ffba78fd | 2443 | float tv_delay_time; |
mjr | 33:d832bcab089e | 2444 | void TVTimerInt() |
mjr | 33:d832bcab089e | 2445 | { |
mjr | 35:e959ffba78fd | 2446 | // time since last state change |
mjr | 35:e959ffba78fd | 2447 | static Timer tv_timer; |
mjr | 35:e959ffba78fd | 2448 | |
mjr | 33:d832bcab089e | 2449 | // Check our internal state |
mjr | 33:d832bcab089e | 2450 | switch (psu2_state) |
mjr | 33:d832bcab089e | 2451 | { |
mjr | 33:d832bcab089e | 2452 | case 1: |
mjr | 33:d832bcab089e | 2453 | // Default state. This means that the latch was on last |
mjr | 33:d832bcab089e | 2454 | // time we checked or that this is the first check. In |
mjr | 33:d832bcab089e | 2455 | // either case, if the latch is off, switch to state 2 and |
mjr | 33:d832bcab089e | 2456 | // try pulsing the latch. Next time we check, if the latch |
mjr | 33:d832bcab089e | 2457 | // stuck, it means that PSU2 is now on after being off. |
mjr | 35:e959ffba78fd | 2458 | if (!psu2_status_sense->read()) |
mjr | 33:d832bcab089e | 2459 | { |
mjr | 33:d832bcab089e | 2460 | // switch to OFF state |
mjr | 33:d832bcab089e | 2461 | psu2_state = 2; |
mjr | 33:d832bcab089e | 2462 | |
mjr | 33:d832bcab089e | 2463 | // try setting the latch |
mjr | 35:e959ffba78fd | 2464 | psu2_status_set->write(1); |
mjr | 33:d832bcab089e | 2465 | } |
mjr | 33:d832bcab089e | 2466 | break; |
mjr | 33:d832bcab089e | 2467 | |
mjr | 33:d832bcab089e | 2468 | case 2: |
mjr | 33:d832bcab089e | 2469 | // PSU2 was off last time we checked, and we tried setting |
mjr | 33:d832bcab089e | 2470 | // the latch. Drop the SET signal and go to CHECK state. |
mjr | 35:e959ffba78fd | 2471 | psu2_status_set->write(0); |
mjr | 33:d832bcab089e | 2472 | psu2_state = 3; |
mjr | 33:d832bcab089e | 2473 | break; |
mjr | 33:d832bcab089e | 2474 | |
mjr | 33:d832bcab089e | 2475 | case 3: |
mjr | 33:d832bcab089e | 2476 | // CHECK state: we pulsed SET, and we're now ready to see |
mjr | 40:cc0d9814522b | 2477 | // if it stuck. If the latch is now on, PSU2 has transitioned |
mjr | 33:d832bcab089e | 2478 | // from OFF to ON, so start the TV countdown. If the latch is |
mjr | 33:d832bcab089e | 2479 | // off, our SET command didn't stick, so PSU2 is still off. |
mjr | 35:e959ffba78fd | 2480 | if (psu2_status_sense->read()) |
mjr | 33:d832bcab089e | 2481 | { |
mjr | 33:d832bcab089e | 2482 | // The latch stuck, so PSU2 has transitioned from OFF |
mjr | 33:d832bcab089e | 2483 | // to ON. Start the TV countdown timer. |
mjr | 33:d832bcab089e | 2484 | tv_timer.reset(); |
mjr | 33:d832bcab089e | 2485 | tv_timer.start(); |
mjr | 33:d832bcab089e | 2486 | psu2_state = 4; |
mjr | 33:d832bcab089e | 2487 | } |
mjr | 33:d832bcab089e | 2488 | else |
mjr | 33:d832bcab089e | 2489 | { |
mjr | 33:d832bcab089e | 2490 | // The latch didn't stick, so PSU2 was still off at |
mjr | 33:d832bcab089e | 2491 | // our last check. Try pulsing it again in case PSU2 |
mjr | 33:d832bcab089e | 2492 | // was turned on since the last check. |
mjr | 35:e959ffba78fd | 2493 | psu2_status_set->write(1); |
mjr | 33:d832bcab089e | 2494 | psu2_state = 2; |
mjr | 33:d832bcab089e | 2495 | } |
mjr | 33:d832bcab089e | 2496 | break; |
mjr | 33:d832bcab089e | 2497 | |
mjr | 33:d832bcab089e | 2498 | case 4: |
mjr | 33:d832bcab089e | 2499 | // TV timer countdown in progress. If we've reached the |
mjr | 33:d832bcab089e | 2500 | // delay time, pulse the relay. |
mjr | 35:e959ffba78fd | 2501 | if (tv_timer.read() >= tv_delay_time) |
mjr | 33:d832bcab089e | 2502 | { |
mjr | 33:d832bcab089e | 2503 | // turn on the relay for one timer interval |
mjr | 35:e959ffba78fd | 2504 | tv_relay->write(1); |
mjr | 33:d832bcab089e | 2505 | psu2_state = 5; |
mjr | 33:d832bcab089e | 2506 | } |
mjr | 33:d832bcab089e | 2507 | break; |
mjr | 33:d832bcab089e | 2508 | |
mjr | 33:d832bcab089e | 2509 | case 5: |
mjr | 33:d832bcab089e | 2510 | // TV timer relay on. We pulse this for one interval, so |
mjr | 33:d832bcab089e | 2511 | // it's now time to turn it off and return to the default state. |
mjr | 35:e959ffba78fd | 2512 | tv_relay->write(0); |
mjr | 33:d832bcab089e | 2513 | psu2_state = 1; |
mjr | 33:d832bcab089e | 2514 | break; |
mjr | 33:d832bcab089e | 2515 | } |
mjr | 33:d832bcab089e | 2516 | } |
mjr | 33:d832bcab089e | 2517 | |
mjr | 35:e959ffba78fd | 2518 | // Start the TV ON checker. If the status sense circuit is enabled in |
mjr | 35:e959ffba78fd | 2519 | // the configuration, we'll set up the pin connections and start the |
mjr | 35:e959ffba78fd | 2520 | // interrupt handler that periodically checks the status. Does nothing |
mjr | 35:e959ffba78fd | 2521 | // if any of the pins are configured as NC. |
mjr | 35:e959ffba78fd | 2522 | void startTVTimer(Config &cfg) |
mjr | 35:e959ffba78fd | 2523 | { |
mjr | 55:4db125cd11a0 | 2524 | // only start the timer if the pins are configured and the delay |
mjr | 55:4db125cd11a0 | 2525 | // time is nonzero |
mjr | 55:4db125cd11a0 | 2526 | if (cfg.TVON.delayTime != 0 |
mjr | 55:4db125cd11a0 | 2527 | && cfg.TVON.statusPin != 0xFF |
mjr | 53:9b2611964afc | 2528 | && cfg.TVON.latchPin != 0xFF |
mjr | 53:9b2611964afc | 2529 | && cfg.TVON.relayPin != 0xFF) |
mjr | 35:e959ffba78fd | 2530 | { |
mjr | 53:9b2611964afc | 2531 | psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin)); |
mjr | 53:9b2611964afc | 2532 | psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin)); |
mjr | 53:9b2611964afc | 2533 | tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin)); |
mjr | 40:cc0d9814522b | 2534 | tv_delay_time = cfg.TVON.delayTime/100.0; |
mjr | 35:e959ffba78fd | 2535 | |
mjr | 35:e959ffba78fd | 2536 | // Set up our time routine to run every 1/4 second. |
mjr | 35:e959ffba78fd | 2537 | tv_ticker.attach(&TVTimerInt, 0.25); |
mjr | 35:e959ffba78fd | 2538 | } |
mjr | 35:e959ffba78fd | 2539 | } |
mjr | 35:e959ffba78fd | 2540 | |
mjr | 35:e959ffba78fd | 2541 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 2542 | // |
mjr | 35:e959ffba78fd | 2543 | // In-memory configuration data structure. This is the live version in RAM |
mjr | 35:e959ffba78fd | 2544 | // that we use to determine how things are set up. |
mjr | 35:e959ffba78fd | 2545 | // |
mjr | 35:e959ffba78fd | 2546 | // When we save the configuration settings, we copy this structure to |
mjr | 35:e959ffba78fd | 2547 | // non-volatile flash memory. At startup, we check the flash location where |
mjr | 35:e959ffba78fd | 2548 | // we might have saved settings on a previous run, and it's valid, we copy |
mjr | 35:e959ffba78fd | 2549 | // the flash data to this structure. Firmware updates wipe the flash |
mjr | 35:e959ffba78fd | 2550 | // memory area, so you have to use the PC config tool to send the settings |
mjr | 35:e959ffba78fd | 2551 | // again each time the firmware is updated. |
mjr | 35:e959ffba78fd | 2552 | // |
mjr | 35:e959ffba78fd | 2553 | NVM nvm; |
mjr | 35:e959ffba78fd | 2554 | |
mjr | 35:e959ffba78fd | 2555 | // For convenience, a macro for the Config part of the NVM structure |
mjr | 35:e959ffba78fd | 2556 | #define cfg (nvm.d.c) |
mjr | 35:e959ffba78fd | 2557 | |
mjr | 35:e959ffba78fd | 2558 | // flash memory controller interface |
mjr | 35:e959ffba78fd | 2559 | FreescaleIAP iap; |
mjr | 35:e959ffba78fd | 2560 | |
mjr | 35:e959ffba78fd | 2561 | // figure the flash address as a pointer along with the number of sectors |
mjr | 35:e959ffba78fd | 2562 | // required to store the structure |
mjr | 35:e959ffba78fd | 2563 | NVM *configFlashAddr(int &addr, int &numSectors) |
mjr | 35:e959ffba78fd | 2564 | { |
mjr | 35:e959ffba78fd | 2565 | // figure how many flash sectors we span, rounding up to whole sectors |
mjr | 35:e959ffba78fd | 2566 | numSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE; |
mjr | 35:e959ffba78fd | 2567 | |
mjr | 35:e959ffba78fd | 2568 | // figure the address - this is the highest flash address where the |
mjr | 35:e959ffba78fd | 2569 | // structure will fit with the start aligned on a sector boundary |
mjr | 35:e959ffba78fd | 2570 | addr = iap.flash_size() - (numSectors * SECTOR_SIZE); |
mjr | 35:e959ffba78fd | 2571 | |
mjr | 35:e959ffba78fd | 2572 | // return the address as a pointer |
mjr | 35:e959ffba78fd | 2573 | return (NVM *)addr; |
mjr | 35:e959ffba78fd | 2574 | } |
mjr | 35:e959ffba78fd | 2575 | |
mjr | 35:e959ffba78fd | 2576 | // figure the flash address as a pointer |
mjr | 35:e959ffba78fd | 2577 | NVM *configFlashAddr() |
mjr | 35:e959ffba78fd | 2578 | { |
mjr | 35:e959ffba78fd | 2579 | int addr, numSectors; |
mjr | 35:e959ffba78fd | 2580 | return configFlashAddr(addr, numSectors); |
mjr | 35:e959ffba78fd | 2581 | } |
mjr | 35:e959ffba78fd | 2582 | |
mjr | 35:e959ffba78fd | 2583 | // Load the config from flash |
mjr | 35:e959ffba78fd | 2584 | void loadConfigFromFlash() |
mjr | 35:e959ffba78fd | 2585 | { |
mjr | 35:e959ffba78fd | 2586 | // We want to use the KL25Z's on-board flash to store our configuration |
mjr | 35:e959ffba78fd | 2587 | // data persistently, so that we can restore it across power cycles. |
mjr | 35:e959ffba78fd | 2588 | // Unfortunatly, the mbed platform doesn't explicitly support this. |
mjr | 35:e959ffba78fd | 2589 | // mbed treats the on-board flash as a raw storage device for linker |
mjr | 35:e959ffba78fd | 2590 | // output, and assumes that the linker output is the only thing |
mjr | 35:e959ffba78fd | 2591 | // stored there. There's no file system and no allowance for shared |
mjr | 35:e959ffba78fd | 2592 | // use for other purposes. Fortunately, the linker ues the space in |
mjr | 35:e959ffba78fd | 2593 | // the obvious way, storing the entire linked program in a contiguous |
mjr | 35:e959ffba78fd | 2594 | // block starting at the lowest flash address. This means that the |
mjr | 35:e959ffba78fd | 2595 | // rest of flash - from the end of the linked program to the highest |
mjr | 35:e959ffba78fd | 2596 | // flash address - is all unused free space. Writing our data there |
mjr | 35:e959ffba78fd | 2597 | // won't conflict with anything else. Since the linker doesn't give |
mjr | 35:e959ffba78fd | 2598 | // us any programmatic access to the total linker output size, it's |
mjr | 35:e959ffba78fd | 2599 | // safest to just store our config data at the very end of the flash |
mjr | 35:e959ffba78fd | 2600 | // region (i.e., the highest address). As long as it's smaller than |
mjr | 35:e959ffba78fd | 2601 | // the free space, it won't collide with the linker area. |
mjr | 35:e959ffba78fd | 2602 | |
mjr | 35:e959ffba78fd | 2603 | // Figure how many sectors we need for our structure |
mjr | 35:e959ffba78fd | 2604 | NVM *flash = configFlashAddr(); |
mjr | 35:e959ffba78fd | 2605 | |
mjr | 35:e959ffba78fd | 2606 | // if the flash is valid, load it; otherwise initialize to defaults |
mjr | 35:e959ffba78fd | 2607 | if (flash->valid()) |
mjr | 35:e959ffba78fd | 2608 | { |
mjr | 35:e959ffba78fd | 2609 | // flash is valid - load it into the RAM copy of the structure |
mjr | 35:e959ffba78fd | 2610 | memcpy(&nvm, flash, sizeof(NVM)); |
mjr | 35:e959ffba78fd | 2611 | } |
mjr | 35:e959ffba78fd | 2612 | else |
mjr | 35:e959ffba78fd | 2613 | { |
mjr | 35:e959ffba78fd | 2614 | // flash is invalid - load factory settings nito RAM structure |
mjr | 35:e959ffba78fd | 2615 | cfg.setFactoryDefaults(); |
mjr | 35:e959ffba78fd | 2616 | } |
mjr | 35:e959ffba78fd | 2617 | } |
mjr | 35:e959ffba78fd | 2618 | |
mjr | 35:e959ffba78fd | 2619 | void saveConfigToFlash() |
mjr | 33:d832bcab089e | 2620 | { |
mjr | 35:e959ffba78fd | 2621 | int addr, sectors; |
mjr | 35:e959ffba78fd | 2622 | configFlashAddr(addr, sectors); |
mjr | 35:e959ffba78fd | 2623 | nvm.save(iap, addr); |
mjr | 35:e959ffba78fd | 2624 | } |
mjr | 35:e959ffba78fd | 2625 | |
mjr | 35:e959ffba78fd | 2626 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 2627 | // |
mjr | 55:4db125cd11a0 | 2628 | // Pixel dump mode - the host requested a dump of image sensor pixels |
mjr | 55:4db125cd11a0 | 2629 | // (helpful for installing and setting up the sensor and light source) |
mjr | 55:4db125cd11a0 | 2630 | // |
mjr | 55:4db125cd11a0 | 2631 | bool reportPlungerStat = false; |
mjr | 55:4db125cd11a0 | 2632 | uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h) |
mjr | 55:4db125cd11a0 | 2633 | uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report |
mjr | 55:4db125cd11a0 | 2634 | |
mjr | 55:4db125cd11a0 | 2635 | |
mjr | 55:4db125cd11a0 | 2636 | |
mjr | 55:4db125cd11a0 | 2637 | // --------------------------------------------------------------------------- |
mjr | 55:4db125cd11a0 | 2638 | // |
mjr | 40:cc0d9814522b | 2639 | // Night mode setting updates |
mjr | 40:cc0d9814522b | 2640 | // |
mjr | 38:091e511ce8a0 | 2641 | |
mjr | 38:091e511ce8a0 | 2642 | // Turn night mode on or off |
mjr | 38:091e511ce8a0 | 2643 | static void setNightMode(bool on) |
mjr | 38:091e511ce8a0 | 2644 | { |
mjr | 40:cc0d9814522b | 2645 | // set the new night mode flag in the noisy output class |
mjr | 53:9b2611964afc | 2646 | nightMode = on; |
mjr | 55:4db125cd11a0 | 2647 | |
mjr | 40:cc0d9814522b | 2648 | // update the special output pin that shows the night mode state |
mjr | 53:9b2611964afc | 2649 | int port = int(cfg.nightMode.port) - 1; |
mjr | 53:9b2611964afc | 2650 | if (port >= 0 && port < numOutputs) |
mjr | 53:9b2611964afc | 2651 | lwPin[port]->set(nightMode ? 255 : 0); |
mjr | 40:cc0d9814522b | 2652 | |
mjr | 40:cc0d9814522b | 2653 | // update all outputs for the mode change |
mjr | 40:cc0d9814522b | 2654 | updateAllOuts(); |
mjr | 38:091e511ce8a0 | 2655 | } |
mjr | 38:091e511ce8a0 | 2656 | |
mjr | 38:091e511ce8a0 | 2657 | // Toggle night mode |
mjr | 38:091e511ce8a0 | 2658 | static void toggleNightMode() |
mjr | 38:091e511ce8a0 | 2659 | { |
mjr | 53:9b2611964afc | 2660 | setNightMode(!nightMode); |
mjr | 38:091e511ce8a0 | 2661 | } |
mjr | 38:091e511ce8a0 | 2662 | |
mjr | 38:091e511ce8a0 | 2663 | |
mjr | 38:091e511ce8a0 | 2664 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 2665 | // |
mjr | 35:e959ffba78fd | 2666 | // Plunger Sensor |
mjr | 35:e959ffba78fd | 2667 | // |
mjr | 35:e959ffba78fd | 2668 | |
mjr | 35:e959ffba78fd | 2669 | // the plunger sensor interface object |
mjr | 35:e959ffba78fd | 2670 | PlungerSensor *plungerSensor = 0; |
mjr | 35:e959ffba78fd | 2671 | |
mjr | 35:e959ffba78fd | 2672 | // Create the plunger sensor based on the current configuration. If |
mjr | 35:e959ffba78fd | 2673 | // there's already a sensor object, we'll delete it. |
mjr | 35:e959ffba78fd | 2674 | void createPlunger() |
mjr | 35:e959ffba78fd | 2675 | { |
mjr | 35:e959ffba78fd | 2676 | // create the new sensor object according to the type |
mjr | 35:e959ffba78fd | 2677 | switch (cfg.plunger.sensorType) |
mjr | 35:e959ffba78fd | 2678 | { |
mjr | 35:e959ffba78fd | 2679 | case PlungerType_TSL1410RS: |
mjr | 35:e959ffba78fd | 2680 | // pins are: SI, CLOCK, AO |
mjr | 53:9b2611964afc | 2681 | plungerSensor = new PlungerSensorTSL1410R( |
mjr | 53:9b2611964afc | 2682 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 53:9b2611964afc | 2683 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 53:9b2611964afc | 2684 | wirePinName(cfg.plunger.sensorPin[2]), |
mjr | 53:9b2611964afc | 2685 | NC); |
mjr | 35:e959ffba78fd | 2686 | break; |
mjr | 35:e959ffba78fd | 2687 | |
mjr | 35:e959ffba78fd | 2688 | case PlungerType_TSL1410RP: |
mjr | 35:e959ffba78fd | 2689 | // pins are: SI, CLOCK, AO1, AO2 |
mjr | 53:9b2611964afc | 2690 | plungerSensor = new PlungerSensorTSL1410R( |
mjr | 53:9b2611964afc | 2691 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 53:9b2611964afc | 2692 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 53:9b2611964afc | 2693 | wirePinName(cfg.plunger.sensorPin[2]), |
mjr | 53:9b2611964afc | 2694 | wirePinName(cfg.plunger.sensorPin[3])); |
mjr | 35:e959ffba78fd | 2695 | break; |
mjr | 35:e959ffba78fd | 2696 | |
mjr | 35:e959ffba78fd | 2697 | case PlungerType_TSL1412RS: |
mjr | 35:e959ffba78fd | 2698 | // pins are: SI, CLOCK, AO1, AO2 |
mjr | 53:9b2611964afc | 2699 | plungerSensor = new PlungerSensorTSL1412R( |
mjr | 53:9b2611964afc | 2700 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 53:9b2611964afc | 2701 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 53:9b2611964afc | 2702 | wirePinName(cfg.plunger.sensorPin[2]), |
mjr | 53:9b2611964afc | 2703 | NC); |
mjr | 35:e959ffba78fd | 2704 | break; |
mjr | 35:e959ffba78fd | 2705 | |
mjr | 35:e959ffba78fd | 2706 | case PlungerType_TSL1412RP: |
mjr | 35:e959ffba78fd | 2707 | // pins are: SI, CLOCK, AO1, AO2 |
mjr | 53:9b2611964afc | 2708 | plungerSensor = new PlungerSensorTSL1412R( |
mjr | 53:9b2611964afc | 2709 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 53:9b2611964afc | 2710 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 53:9b2611964afc | 2711 | wirePinName(cfg.plunger.sensorPin[2]), |
mjr | 53:9b2611964afc | 2712 | wirePinName(cfg.plunger.sensorPin[3])); |
mjr | 35:e959ffba78fd | 2713 | break; |
mjr | 35:e959ffba78fd | 2714 | |
mjr | 35:e959ffba78fd | 2715 | case PlungerType_Pot: |
mjr | 35:e959ffba78fd | 2716 | // pins are: AO |
mjr | 53:9b2611964afc | 2717 | plungerSensor = new PlungerSensorPot( |
mjr | 53:9b2611964afc | 2718 | wirePinName(cfg.plunger.sensorPin[0])); |
mjr | 35:e959ffba78fd | 2719 | break; |
mjr | 35:e959ffba78fd | 2720 | |
mjr | 35:e959ffba78fd | 2721 | case PlungerType_None: |
mjr | 35:e959ffba78fd | 2722 | default: |
mjr | 35:e959ffba78fd | 2723 | plungerSensor = new PlungerSensorNull(); |
mjr | 35:e959ffba78fd | 2724 | break; |
mjr | 35:e959ffba78fd | 2725 | } |
mjr | 33:d832bcab089e | 2726 | } |
mjr | 33:d832bcab089e | 2727 | |
mjr | 52:8298b2a73eb2 | 2728 | // Global plunger calibration mode flag |
mjr | 52:8298b2a73eb2 | 2729 | bool plungerCalMode; |
mjr | 52:8298b2a73eb2 | 2730 | |
mjr | 48:058ace2aed1d | 2731 | // Plunger reader |
mjr | 51:57eb311faafa | 2732 | // |
mjr | 51:57eb311faafa | 2733 | // This class encapsulates our plunger data processing. At the simplest |
mjr | 51:57eb311faafa | 2734 | // level, we read the position from the sensor, adjust it for the |
mjr | 51:57eb311faafa | 2735 | // calibration settings, and report the calibrated position to the host. |
mjr | 51:57eb311faafa | 2736 | // |
mjr | 51:57eb311faafa | 2737 | // In addition, we constantly monitor the data for "firing" motions. |
mjr | 51:57eb311faafa | 2738 | // A firing motion is when the user pulls back the plunger and releases |
mjr | 51:57eb311faafa | 2739 | // it, allowing it to shoot forward under the force of the main spring. |
mjr | 51:57eb311faafa | 2740 | // When we detect that this is happening, we briefly stop reporting the |
mjr | 51:57eb311faafa | 2741 | // real physical position that we're reading from the sensor, and instead |
mjr | 51:57eb311faafa | 2742 | // report a synthetic series of positions that depicts an idealized |
mjr | 51:57eb311faafa | 2743 | // firing motion. |
mjr | 51:57eb311faafa | 2744 | // |
mjr | 51:57eb311faafa | 2745 | // The point of the synthetic reports is to correct for distortions |
mjr | 51:57eb311faafa | 2746 | // created by the joystick interface conventions used by VP and other |
mjr | 51:57eb311faafa | 2747 | // PC pinball emulators. The convention they use is simply to have the |
mjr | 51:57eb311faafa | 2748 | // plunger device report the instantaneous position of the real plunger. |
mjr | 51:57eb311faafa | 2749 | // The PC software polls this reported position periodically, and moves |
mjr | 51:57eb311faafa | 2750 | // the on-screen virtual plunger in sync with the real plunger. This |
mjr | 51:57eb311faafa | 2751 | // works fine for human-scale motion when the user is manually moving |
mjr | 51:57eb311faafa | 2752 | // the plunger. But it doesn't work for the high speed motion of a |
mjr | 51:57eb311faafa | 2753 | // release. The plunger simply moves too fast. VP polls in about 10ms |
mjr | 51:57eb311faafa | 2754 | // intervals; the plunger takes about 50ms to travel from fully |
mjr | 51:57eb311faafa | 2755 | // retracted to the park position when released. The low sampling |
mjr | 51:57eb311faafa | 2756 | // rate relative to the rate of change of the sampled data creates |
mjr | 51:57eb311faafa | 2757 | // a classic digital aliasing effect. |
mjr | 51:57eb311faafa | 2758 | // |
mjr | 51:57eb311faafa | 2759 | // The synthetic reporting scheme compensates for the interface |
mjr | 51:57eb311faafa | 2760 | // distortions by essentially changing to a coarse enough timescale |
mjr | 51:57eb311faafa | 2761 | // that VP can reliably interpret the readings. Conceptually, there |
mjr | 51:57eb311faafa | 2762 | // are three steps involved in doing this. First, we analyze the |
mjr | 51:57eb311faafa | 2763 | // actual sensor data to detect and characterize the release motion. |
mjr | 51:57eb311faafa | 2764 | // Second, once we think we have a release in progress, we fit the |
mjr | 51:57eb311faafa | 2765 | // data to a mathematical model of the release. The model we use is |
mjr | 51:57eb311faafa | 2766 | // dead simple: we consider the release to have one parameter, namely |
mjr | 51:57eb311faafa | 2767 | // the retraction distance at the moment the user lets go. This is an |
mjr | 51:57eb311faafa | 2768 | // excellent proxy in the real physical system for the final speed |
mjr | 51:57eb311faafa | 2769 | // when the plunger hits the ball, and it also happens to match how |
mjr | 51:57eb311faafa | 2770 | // VP models it internally. Third, we construct synthetic reports |
mjr | 51:57eb311faafa | 2771 | // that will make VP's internal state match our model. This is also |
mjr | 51:57eb311faafa | 2772 | // pretty simple: we just need to send VP the maximum retraction |
mjr | 51:57eb311faafa | 2773 | // distance for long enough to be sure that it polls it at least |
mjr | 51:57eb311faafa | 2774 | // once, and then send it the park position for long enough to |
mjr | 51:57eb311faafa | 2775 | // ensure that VP will complete the same firing motion. The |
mjr | 51:57eb311faafa | 2776 | // immediate jump from the maximum point to the zero point will |
mjr | 51:57eb311faafa | 2777 | // cause VP to move its simulation model plunger forward from the |
mjr | 51:57eb311faafa | 2778 | // starting point at its natural spring acceleration rate, which |
mjr | 51:57eb311faafa | 2779 | // is exactly what the real plunger just did. |
mjr | 51:57eb311faafa | 2780 | // |
mjr | 48:058ace2aed1d | 2781 | class PlungerReader |
mjr | 48:058ace2aed1d | 2782 | { |
mjr | 48:058ace2aed1d | 2783 | public: |
mjr | 48:058ace2aed1d | 2784 | PlungerReader() |
mjr | 48:058ace2aed1d | 2785 | { |
mjr | 48:058ace2aed1d | 2786 | // not in a firing event yet |
mjr | 48:058ace2aed1d | 2787 | firing = 0; |
mjr | 48:058ace2aed1d | 2788 | |
mjr | 48:058ace2aed1d | 2789 | // no history yet |
mjr | 48:058ace2aed1d | 2790 | histIdx = 0; |
mjr | 55:4db125cd11a0 | 2791 | |
mjr | 55:4db125cd11a0 | 2792 | // initialize the filter |
mjr | 55:4db125cd11a0 | 2793 | initFilter(); |
mjr | 48:058ace2aed1d | 2794 | } |
mjr | 48:058ace2aed1d | 2795 | |
mjr | 48:058ace2aed1d | 2796 | // Collect a reading from the plunger sensor. The main loop calls |
mjr | 48:058ace2aed1d | 2797 | // this frequently to read the current raw position data from the |
mjr | 48:058ace2aed1d | 2798 | // sensor. We analyze the raw data to produce the calibrated |
mjr | 48:058ace2aed1d | 2799 | // position that we report to the PC via the joystick interface. |
mjr | 48:058ace2aed1d | 2800 | void read() |
mjr | 48:058ace2aed1d | 2801 | { |
mjr | 48:058ace2aed1d | 2802 | // Read a sample from the sensor |
mjr | 48:058ace2aed1d | 2803 | PlungerReading r; |
mjr | 48:058ace2aed1d | 2804 | if (plungerSensor->read(r)) |
mjr | 48:058ace2aed1d | 2805 | { |
mjr | 51:57eb311faafa | 2806 | // Pull the previous reading from the history |
mjr | 50:40015764bbe6 | 2807 | const PlungerReading &prv = nthHist(0); |
mjr | 48:058ace2aed1d | 2808 | |
mjr | 48:058ace2aed1d | 2809 | // If the new reading is within 2ms of the previous reading, |
mjr | 48:058ace2aed1d | 2810 | // ignore it. We require a minimum time between samples to |
mjr | 48:058ace2aed1d | 2811 | // ensure that we have a usable amount of precision in the |
mjr | 48:058ace2aed1d | 2812 | // denominator (the time interval) for calculating the plunger |
mjr | 48:058ace2aed1d | 2813 | // velocity. (The CCD sensor can't take readings faster than |
mjr | 48:058ace2aed1d | 2814 | // this anyway, but other sensor types, such as potentiometers, |
mjr | 48:058ace2aed1d | 2815 | // can, so we have to throttle the rate artifically in case |
mjr | 48:058ace2aed1d | 2816 | // we're using a fast sensor like that.) |
mjr | 48:058ace2aed1d | 2817 | if (uint32_t(r.t - prv.t) < 2000UL) |
mjr | 48:058ace2aed1d | 2818 | return; |
mjr | 53:9b2611964afc | 2819 | |
mjr | 53:9b2611964afc | 2820 | // check for calibration mode |
mjr | 53:9b2611964afc | 2821 | if (plungerCalMode) |
mjr | 53:9b2611964afc | 2822 | { |
mjr | 53:9b2611964afc | 2823 | // Calibration mode. Adjust the calibration bounds to fit |
mjr | 53:9b2611964afc | 2824 | // the value. If this value is beyond the current min or max, |
mjr | 53:9b2611964afc | 2825 | // expand the envelope to include this new value. |
mjr | 53:9b2611964afc | 2826 | if (r.pos > cfg.plunger.cal.max) |
mjr | 53:9b2611964afc | 2827 | cfg.plunger.cal.max = r.pos; |
mjr | 53:9b2611964afc | 2828 | if (r.pos < cfg.plunger.cal.min) |
mjr | 53:9b2611964afc | 2829 | cfg.plunger.cal.min = r.pos; |
mjr | 50:40015764bbe6 | 2830 | |
mjr | 53:9b2611964afc | 2831 | // If we're in calibration state 0, we're waiting for the |
mjr | 53:9b2611964afc | 2832 | // plunger to come to rest at the park position so that we |
mjr | 53:9b2611964afc | 2833 | // can take a sample of the park position. Check to see if |
mjr | 53:9b2611964afc | 2834 | // we've been at rest for a minimum interval. |
mjr | 53:9b2611964afc | 2835 | if (calState == 0) |
mjr | 53:9b2611964afc | 2836 | { |
mjr | 53:9b2611964afc | 2837 | if (abs(r.pos - calZeroStart.pos) < 65535/3/50) |
mjr | 53:9b2611964afc | 2838 | { |
mjr | 53:9b2611964afc | 2839 | // we're close enough - make sure we've been here long enough |
mjr | 53:9b2611964afc | 2840 | if (uint32_t(r.t - calZeroStart.t) > 100000UL) |
mjr | 53:9b2611964afc | 2841 | { |
mjr | 53:9b2611964afc | 2842 | // we've been at rest long enough - count it |
mjr | 53:9b2611964afc | 2843 | calZeroPosSum += r.pos; |
mjr | 53:9b2611964afc | 2844 | calZeroPosN += 1; |
mjr | 53:9b2611964afc | 2845 | |
mjr | 53:9b2611964afc | 2846 | // update the zero position from the new average |
mjr | 53:9b2611964afc | 2847 | cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN); |
mjr | 53:9b2611964afc | 2848 | |
mjr | 53:9b2611964afc | 2849 | // switch to calibration state 1 - at rest |
mjr | 53:9b2611964afc | 2850 | calState = 1; |
mjr | 53:9b2611964afc | 2851 | } |
mjr | 53:9b2611964afc | 2852 | } |
mjr | 53:9b2611964afc | 2853 | else |
mjr | 53:9b2611964afc | 2854 | { |
mjr | 53:9b2611964afc | 2855 | // we're not close to the last position - start again here |
mjr | 53:9b2611964afc | 2856 | calZeroStart = r; |
mjr | 53:9b2611964afc | 2857 | } |
mjr | 53:9b2611964afc | 2858 | } |
mjr | 53:9b2611964afc | 2859 | |
mjr | 53:9b2611964afc | 2860 | // Rescale to the joystick range, and adjust for the current |
mjr | 53:9b2611964afc | 2861 | // park position, but don't calibrate. We don't know the maximum |
mjr | 53:9b2611964afc | 2862 | // point yet, so we can't calibrate the range. |
mjr | 53:9b2611964afc | 2863 | r.pos = int( |
mjr | 53:9b2611964afc | 2864 | (long(r.pos - cfg.plunger.cal.zero) * JOYMAX) |
mjr | 53:9b2611964afc | 2865 | / (65535 - cfg.plunger.cal.zero)); |
mjr | 53:9b2611964afc | 2866 | } |
mjr | 53:9b2611964afc | 2867 | else |
mjr | 53:9b2611964afc | 2868 | { |
mjr | 53:9b2611964afc | 2869 | // Not in calibration mode. Apply the existing calibration and |
mjr | 53:9b2611964afc | 2870 | // rescale to the joystick range. |
mjr | 53:9b2611964afc | 2871 | r.pos = int( |
mjr | 53:9b2611964afc | 2872 | (long(r.pos - cfg.plunger.cal.zero) * JOYMAX) |
mjr | 53:9b2611964afc | 2873 | / (cfg.plunger.cal.max - cfg.plunger.cal.zero)); |
mjr | 53:9b2611964afc | 2874 | |
mjr | 53:9b2611964afc | 2875 | // limit the result to the valid joystick range |
mjr | 53:9b2611964afc | 2876 | if (r.pos > JOYMAX) |
mjr | 53:9b2611964afc | 2877 | r.pos = JOYMAX; |
mjr | 53:9b2611964afc | 2878 | else if (r.pos < -JOYMAX) |
mjr | 53:9b2611964afc | 2879 | r.pos = -JOYMAX; |
mjr | 53:9b2611964afc | 2880 | } |
mjr | 50:40015764bbe6 | 2881 | |
mjr | 50:40015764bbe6 | 2882 | // Calculate the velocity from the second-to-last reading |
mjr | 50:40015764bbe6 | 2883 | // to here, in joystick distance units per microsecond. |
mjr | 50:40015764bbe6 | 2884 | // Note that we use the second-to-last reading rather than |
mjr | 50:40015764bbe6 | 2885 | // the very last reading to give ourselves a little longer |
mjr | 50:40015764bbe6 | 2886 | // time base. The time base is so short between consecutive |
mjr | 50:40015764bbe6 | 2887 | // readings that the error bars in the position would be too |
mjr | 50:40015764bbe6 | 2888 | // large. |
mjr | 50:40015764bbe6 | 2889 | // |
mjr | 50:40015764bbe6 | 2890 | // For reference, the physical plunger velocity ranges up |
mjr | 50:40015764bbe6 | 2891 | // to about 100,000 joystick distance units/sec. This is |
mjr | 50:40015764bbe6 | 2892 | // based on empirical measurements. The typical time for |
mjr | 50:40015764bbe6 | 2893 | // a real plunger to travel the full distance when released |
mjr | 50:40015764bbe6 | 2894 | // from full retraction is about 85ms, so the average velocity |
mjr | 50:40015764bbe6 | 2895 | // covering this distance is about 56,000 units/sec. The |
mjr | 50:40015764bbe6 | 2896 | // peak is probably about twice that. In real-world units, |
mjr | 50:40015764bbe6 | 2897 | // this translates to an average speed of about .75 m/s and |
mjr | 50:40015764bbe6 | 2898 | // a peak of about 1.5 m/s. |
mjr | 50:40015764bbe6 | 2899 | // |
mjr | 50:40015764bbe6 | 2900 | // Note that we actually calculate the value here in units |
mjr | 50:40015764bbe6 | 2901 | // per *microsecond* - the discussion above is in terms of |
mjr | 50:40015764bbe6 | 2902 | // units/sec because that's more on a human scale. Our |
mjr | 50:40015764bbe6 | 2903 | // choice of internal units here really isn't important, |
mjr | 50:40015764bbe6 | 2904 | // since we only use the velocity for comparison purposes, |
mjr | 50:40015764bbe6 | 2905 | // to detect acceleration trends. We therefore save ourselves |
mjr | 50:40015764bbe6 | 2906 | // a little CPU time by using the natural units of our inputs. |
mjr | 51:57eb311faafa | 2907 | const PlungerReading &prv2 = nthHist(1); |
mjr | 50:40015764bbe6 | 2908 | float v = float(r.pos - prv2.pos)/float(r.t - prv2.t); |
mjr | 50:40015764bbe6 | 2909 | |
mjr | 50:40015764bbe6 | 2910 | // presume we'll report the latest instantaneous reading |
mjr | 50:40015764bbe6 | 2911 | z = r.pos; |
mjr | 50:40015764bbe6 | 2912 | vz = v; |
mjr | 48:058ace2aed1d | 2913 | |
mjr | 50:40015764bbe6 | 2914 | // Check firing events |
mjr | 50:40015764bbe6 | 2915 | switch (firing) |
mjr | 50:40015764bbe6 | 2916 | { |
mjr | 50:40015764bbe6 | 2917 | case 0: |
mjr | 50:40015764bbe6 | 2918 | // Default state - not in a firing event. |
mjr | 50:40015764bbe6 | 2919 | |
mjr | 50:40015764bbe6 | 2920 | // If we have forward motion from a position that's retracted |
mjr | 50:40015764bbe6 | 2921 | // beyond a threshold, enter phase 1. If we're not pulled back |
mjr | 50:40015764bbe6 | 2922 | // far enough, don't bother with this, as a release wouldn't |
mjr | 50:40015764bbe6 | 2923 | // be strong enough to require the synthetic firing treatment. |
mjr | 50:40015764bbe6 | 2924 | if (v < 0 && r.pos > JOYMAX/6) |
mjr | 50:40015764bbe6 | 2925 | { |
mjr | 53:9b2611964afc | 2926 | // enter firing phase 1 |
mjr | 50:40015764bbe6 | 2927 | firingMode(1); |
mjr | 50:40015764bbe6 | 2928 | |
mjr | 53:9b2611964afc | 2929 | // if in calibration state 1 (at rest), switch to state 2 (not |
mjr | 53:9b2611964afc | 2930 | // at rest) |
mjr | 53:9b2611964afc | 2931 | if (calState == 1) |
mjr | 53:9b2611964afc | 2932 | calState = 2; |
mjr | 53:9b2611964afc | 2933 | |
mjr | 50:40015764bbe6 | 2934 | // we don't have a freeze position yet, but note the start time |
mjr | 50:40015764bbe6 | 2935 | f1.pos = 0; |
mjr | 50:40015764bbe6 | 2936 | f1.t = r.t; |
mjr | 50:40015764bbe6 | 2937 | |
mjr | 50:40015764bbe6 | 2938 | // Figure the barrel spring "bounce" position in case we complete |
mjr | 50:40015764bbe6 | 2939 | // the firing event. This is the amount that the forward momentum |
mjr | 50:40015764bbe6 | 2940 | // of the plunger will compress the barrel spring at the peak of |
mjr | 50:40015764bbe6 | 2941 | // the forward travel during the release. Assume that this is |
mjr | 50:40015764bbe6 | 2942 | // linearly proportional to the starting retraction distance. |
mjr | 50:40015764bbe6 | 2943 | // The barrel spring is about 1/6 the length of the main spring, |
mjr | 50:40015764bbe6 | 2944 | // so figure it compresses by 1/6 the distance. (This is overly |
mjr | 53:9b2611964afc | 2945 | // simplistic and not very accurate, but it seems to give good |
mjr | 50:40015764bbe6 | 2946 | // visual results, and that's all it's for.) |
mjr | 50:40015764bbe6 | 2947 | f2.pos = -r.pos/6; |
mjr | 50:40015764bbe6 | 2948 | } |
mjr | 50:40015764bbe6 | 2949 | break; |
mjr | 50:40015764bbe6 | 2950 | |
mjr | 50:40015764bbe6 | 2951 | case 1: |
mjr | 50:40015764bbe6 | 2952 | // Phase 1 - acceleration. If we cross the zero point, trigger |
mjr | 50:40015764bbe6 | 2953 | // the firing event. Otherwise, continue monitoring as long as we |
mjr | 50:40015764bbe6 | 2954 | // see acceleration in the forward direction. |
mjr | 50:40015764bbe6 | 2955 | if (r.pos <= 0) |
mjr | 50:40015764bbe6 | 2956 | { |
mjr | 50:40015764bbe6 | 2957 | // switch to the synthetic firing mode |
mjr | 50:40015764bbe6 | 2958 | firingMode(2); |
mjr | 50:40015764bbe6 | 2959 | z = f2.pos; |
mjr | 50:40015764bbe6 | 2960 | |
mjr | 50:40015764bbe6 | 2961 | // note the start time for the firing phase |
mjr | 50:40015764bbe6 | 2962 | f2.t = r.t; |
mjr | 53:9b2611964afc | 2963 | |
mjr | 53:9b2611964afc | 2964 | // if in calibration mode, and we're in state 2 (moving), |
mjr | 53:9b2611964afc | 2965 | // collect firing statistics for calibration purposes |
mjr | 53:9b2611964afc | 2966 | if (plungerCalMode && calState == 2) |
mjr | 53:9b2611964afc | 2967 | { |
mjr | 53:9b2611964afc | 2968 | // collect a new zero point for the average when we |
mjr | 53:9b2611964afc | 2969 | // come to rest |
mjr | 53:9b2611964afc | 2970 | calState = 0; |
mjr | 53:9b2611964afc | 2971 | |
mjr | 53:9b2611964afc | 2972 | // collect average firing time statistics in millseconds, if |
mjr | 53:9b2611964afc | 2973 | // it's in range (20 to 255 ms) |
mjr | 53:9b2611964afc | 2974 | int dt = uint32_t(r.t - f1.t)/1000UL; |
mjr | 53:9b2611964afc | 2975 | if (dt >= 20 && dt <= 255) |
mjr | 53:9b2611964afc | 2976 | { |
mjr | 53:9b2611964afc | 2977 | calRlsTimeSum += dt; |
mjr | 53:9b2611964afc | 2978 | calRlsTimeN += 1; |
mjr | 53:9b2611964afc | 2979 | cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN); |
mjr | 53:9b2611964afc | 2980 | } |
mjr | 53:9b2611964afc | 2981 | } |
mjr | 50:40015764bbe6 | 2982 | } |
mjr | 50:40015764bbe6 | 2983 | else if (v < vprv2) |
mjr | 50:40015764bbe6 | 2984 | { |
mjr | 50:40015764bbe6 | 2985 | // We're still accelerating, and we haven't crossed the zero |
mjr | 50:40015764bbe6 | 2986 | // point yet - stay in phase 1. (Note that forward motion is |
mjr | 50:40015764bbe6 | 2987 | // negative velocity, so accelerating means that the new |
mjr | 50:40015764bbe6 | 2988 | // velocity is more negative than the previous one, which |
mjr | 50:40015764bbe6 | 2989 | // is to say numerically less than - that's why the test |
mjr | 50:40015764bbe6 | 2990 | // for acceleration is the seemingly backwards 'v < vprv'.) |
mjr | 50:40015764bbe6 | 2991 | |
mjr | 50:40015764bbe6 | 2992 | // If we've been accelerating for at least 20ms, we're probably |
mjr | 50:40015764bbe6 | 2993 | // really doing a release. Jump back to the recent local |
mjr | 50:40015764bbe6 | 2994 | // maximum where the release *really* started. This is always |
mjr | 50:40015764bbe6 | 2995 | // a bit before we started seeing sustained accleration, because |
mjr | 50:40015764bbe6 | 2996 | // the plunger motion for the first few milliseconds is too slow |
mjr | 50:40015764bbe6 | 2997 | // for our sensor precision to reliably detect acceleration. |
mjr | 50:40015764bbe6 | 2998 | if (f1.pos != 0) |
mjr | 50:40015764bbe6 | 2999 | { |
mjr | 50:40015764bbe6 | 3000 | // we have a reset point - freeze there |
mjr | 50:40015764bbe6 | 3001 | z = f1.pos; |
mjr | 50:40015764bbe6 | 3002 | } |
mjr | 50:40015764bbe6 | 3003 | else if (uint32_t(r.t - f1.t) >= 20000UL) |
mjr | 50:40015764bbe6 | 3004 | { |
mjr | 50:40015764bbe6 | 3005 | // it's been long enough - set a reset point. |
mjr | 50:40015764bbe6 | 3006 | f1.pos = z = histLocalMax(r.t, 50000UL); |
mjr | 50:40015764bbe6 | 3007 | } |
mjr | 50:40015764bbe6 | 3008 | } |
mjr | 50:40015764bbe6 | 3009 | else |
mjr | 50:40015764bbe6 | 3010 | { |
mjr | 50:40015764bbe6 | 3011 | // We're not accelerating. Cancel the firing event. |
mjr | 50:40015764bbe6 | 3012 | firingMode(0); |
mjr | 53:9b2611964afc | 3013 | calState = 1; |
mjr | 50:40015764bbe6 | 3014 | } |
mjr | 50:40015764bbe6 | 3015 | break; |
mjr | 50:40015764bbe6 | 3016 | |
mjr | 50:40015764bbe6 | 3017 | case 2: |
mjr | 50:40015764bbe6 | 3018 | // Phase 2 - start of synthetic firing event. Report the fake |
mjr | 50:40015764bbe6 | 3019 | // bounce for 25ms. VP polls the joystick about every 10ms, so |
mjr | 50:40015764bbe6 | 3020 | // this should be enough time to guarantee that VP sees this |
mjr | 50:40015764bbe6 | 3021 | // report at least once. |
mjr | 50:40015764bbe6 | 3022 | if (uint32_t(r.t - f2.t) < 25000UL) |
mjr | 50:40015764bbe6 | 3023 | { |
mjr | 50:40015764bbe6 | 3024 | // report the bounce position |
mjr | 50:40015764bbe6 | 3025 | z = f2.pos; |
mjr | 50:40015764bbe6 | 3026 | } |
mjr | 50:40015764bbe6 | 3027 | else |
mjr | 50:40015764bbe6 | 3028 | { |
mjr | 50:40015764bbe6 | 3029 | // it's been long enough - switch to phase 3, where we |
mjr | 50:40015764bbe6 | 3030 | // report the park position until the real plunger comes |
mjr | 50:40015764bbe6 | 3031 | // to rest |
mjr | 50:40015764bbe6 | 3032 | firingMode(3); |
mjr | 50:40015764bbe6 | 3033 | z = 0; |
mjr | 50:40015764bbe6 | 3034 | |
mjr | 50:40015764bbe6 | 3035 | // set the start of the "stability window" to the rest position |
mjr | 50:40015764bbe6 | 3036 | f3s.t = r.t; |
mjr | 50:40015764bbe6 | 3037 | f3s.pos = 0; |
mjr | 50:40015764bbe6 | 3038 | |
mjr | 50:40015764bbe6 | 3039 | // set the start of the "retraction window" to the actual position |
mjr | 50:40015764bbe6 | 3040 | f3r = r; |
mjr | 50:40015764bbe6 | 3041 | } |
mjr | 50:40015764bbe6 | 3042 | break; |
mjr | 50:40015764bbe6 | 3043 | |
mjr | 50:40015764bbe6 | 3044 | case 3: |
mjr | 50:40015764bbe6 | 3045 | // Phase 3 - in synthetic firing event. Report the park position |
mjr | 50:40015764bbe6 | 3046 | // until the plunger position stabilizes. Left to its own devices, |
mjr | 50:40015764bbe6 | 3047 | // the plunger will usualy bounce off the barrel spring several |
mjr | 50:40015764bbe6 | 3048 | // times before coming to rest, so we'll see oscillating motion |
mjr | 50:40015764bbe6 | 3049 | // for a second or two. In the simplest case, we can aimply wait |
mjr | 50:40015764bbe6 | 3050 | // for the plunger to stop moving for a short time. However, the |
mjr | 50:40015764bbe6 | 3051 | // player might intervene by pulling the plunger back again, so |
mjr | 50:40015764bbe6 | 3052 | // watch for that motion as well. If we're just bouncing freely, |
mjr | 50:40015764bbe6 | 3053 | // we'll see the direction change frequently. If the player is |
mjr | 50:40015764bbe6 | 3054 | // moving the plunger manually, the direction will be constant |
mjr | 50:40015764bbe6 | 3055 | // for longer. |
mjr | 50:40015764bbe6 | 3056 | if (v >= 0) |
mjr | 50:40015764bbe6 | 3057 | { |
mjr | 50:40015764bbe6 | 3058 | // We're moving back (or standing still). If this has been |
mjr | 50:40015764bbe6 | 3059 | // going on for a while, the user must have taken control. |
mjr | 50:40015764bbe6 | 3060 | if (uint32_t(r.t - f3r.t) > 65000UL) |
mjr | 50:40015764bbe6 | 3061 | { |
mjr | 50:40015764bbe6 | 3062 | // user has taken control - cancel firing mode |
mjr | 50:40015764bbe6 | 3063 | firingMode(0); |
mjr | 50:40015764bbe6 | 3064 | break; |
mjr | 50:40015764bbe6 | 3065 | } |
mjr | 50:40015764bbe6 | 3066 | } |
mjr | 50:40015764bbe6 | 3067 | else |
mjr | 50:40015764bbe6 | 3068 | { |
mjr | 50:40015764bbe6 | 3069 | // forward motion - reset retraction window |
mjr | 50:40015764bbe6 | 3070 | f3r.t = r.t; |
mjr | 50:40015764bbe6 | 3071 | } |
mjr | 50:40015764bbe6 | 3072 | |
mjr | 53:9b2611964afc | 3073 | // Check if we're close to the last starting point. The joystick |
mjr | 53:9b2611964afc | 3074 | // positive axis range (0..4096) covers the retraction distance of |
mjr | 53:9b2611964afc | 3075 | // about 2.5", so 1" is about 1638 joystick units, hence 1/16" is |
mjr | 53:9b2611964afc | 3076 | // about 100 units. |
mjr | 53:9b2611964afc | 3077 | if (abs(r.pos - f3s.pos) < 100) |
mjr | 50:40015764bbe6 | 3078 | { |
mjr | 53:9b2611964afc | 3079 | // It's at roughly the same position as the starting point. |
mjr | 53:9b2611964afc | 3080 | // Consider it stable if this has been true for 300ms. |
mjr | 50:40015764bbe6 | 3081 | if (uint32_t(r.t - f3s.t) > 30000UL) |
mjr | 50:40015764bbe6 | 3082 | { |
mjr | 50:40015764bbe6 | 3083 | // we're done with the firing event |
mjr | 50:40015764bbe6 | 3084 | firingMode(0); |
mjr | 50:40015764bbe6 | 3085 | } |
mjr | 50:40015764bbe6 | 3086 | else |
mjr | 50:40015764bbe6 | 3087 | { |
mjr | 50:40015764bbe6 | 3088 | // it's close to the last position but hasn't been |
mjr | 50:40015764bbe6 | 3089 | // here long enough; stay in firing mode and continue |
mjr | 50:40015764bbe6 | 3090 | // to report the park position |
mjr | 50:40015764bbe6 | 3091 | z = 0; |
mjr | 50:40015764bbe6 | 3092 | } |
mjr | 50:40015764bbe6 | 3093 | } |
mjr | 50:40015764bbe6 | 3094 | else |
mjr | 50:40015764bbe6 | 3095 | { |
mjr | 50:40015764bbe6 | 3096 | // It's not close enough to the last starting point, so use |
mjr | 50:40015764bbe6 | 3097 | // this as a new starting point, and stay in firing mode. |
mjr | 50:40015764bbe6 | 3098 | f3s = r; |
mjr | 50:40015764bbe6 | 3099 | z = 0; |
mjr | 50:40015764bbe6 | 3100 | } |
mjr | 50:40015764bbe6 | 3101 | break; |
mjr | 50:40015764bbe6 | 3102 | } |
mjr | 50:40015764bbe6 | 3103 | |
mjr | 50:40015764bbe6 | 3104 | // save the velocity reading for next time |
mjr | 50:40015764bbe6 | 3105 | vprv2 = vprv; |
mjr | 50:40015764bbe6 | 3106 | vprv = v; |
mjr | 50:40015764bbe6 | 3107 | |
mjr | 50:40015764bbe6 | 3108 | // add the new reading to the history |
mjr | 50:40015764bbe6 | 3109 | hist[histIdx++] = r; |
mjr | 50:40015764bbe6 | 3110 | histIdx %= countof(hist); |
mjr | 48:058ace2aed1d | 3111 | } |
mjr | 48:058ace2aed1d | 3112 | } |
mjr | 48:058ace2aed1d | 3113 | |
mjr | 48:058ace2aed1d | 3114 | // Get the current value to report through the joystick interface |
mjr | 55:4db125cd11a0 | 3115 | int16_t getPosition() |
mjr | 55:4db125cd11a0 | 3116 | { |
mjr | 55:4db125cd11a0 | 3117 | if (firing <= 1) |
mjr | 55:4db125cd11a0 | 3118 | { |
mjr | 55:4db125cd11a0 | 3119 | // figure the last average |
mjr | 55:4db125cd11a0 | 3120 | int lastAvg = int(filterSum / filterN); |
mjr | 55:4db125cd11a0 | 3121 | |
mjr | 55:4db125cd11a0 | 3122 | // figure the direction of this sample relative to the average, |
mjr | 55:4db125cd11a0 | 3123 | // and shift it in to our bit mask of recent direction data |
mjr | 55:4db125cd11a0 | 3124 | if (z != lastAvg) |
mjr | 55:4db125cd11a0 | 3125 | { |
mjr | 55:4db125cd11a0 | 3126 | filterDir <<= 1; |
mjr | 55:4db125cd11a0 | 3127 | if (z > lastAvg) filterDir |= 1; |
mjr | 55:4db125cd11a0 | 3128 | } |
mjr | 55:4db125cd11a0 | 3129 | filterDir &= 0xff; // limit to 8 samples |
mjr | 55:4db125cd11a0 | 3130 | |
mjr | 55:4db125cd11a0 | 3131 | // if we've been moving consistently in one direction (all 1's |
mjr | 55:4db125cd11a0 | 3132 | // or all 0's in the direction history vector), reset the average |
mjr | 55:4db125cd11a0 | 3133 | if (filterDir == 0x00 || filterDir == 0xff) |
mjr | 55:4db125cd11a0 | 3134 | { |
mjr | 55:4db125cd11a0 | 3135 | // motion away from the average - reset the average |
mjr | 55:4db125cd11a0 | 3136 | filterDir = 0x5555; |
mjr | 55:4db125cd11a0 | 3137 | filterN = 1; |
mjr | 55:4db125cd11a0 | 3138 | filterSum = (lastAvg + z)/2; |
mjr | 55:4db125cd11a0 | 3139 | return int16_t(filterSum); |
mjr | 55:4db125cd11a0 | 3140 | } |
mjr | 55:4db125cd11a0 | 3141 | else |
mjr | 55:4db125cd11a0 | 3142 | { |
mjr | 55:4db125cd11a0 | 3143 | // we're diretionless - return the new average, with the |
mjr | 55:4db125cd11a0 | 3144 | // new sample included |
mjr | 55:4db125cd11a0 | 3145 | filterSum += z; |
mjr | 55:4db125cd11a0 | 3146 | ++filterN; |
mjr | 55:4db125cd11a0 | 3147 | return int16_t(filterSum / filterN); |
mjr | 55:4db125cd11a0 | 3148 | } |
mjr | 55:4db125cd11a0 | 3149 | } |
mjr | 55:4db125cd11a0 | 3150 | else |
mjr | 55:4db125cd11a0 | 3151 | { |
mjr | 55:4db125cd11a0 | 3152 | // firing mode - skip the filter |
mjr | 55:4db125cd11a0 | 3153 | filterN = 1; |
mjr | 55:4db125cd11a0 | 3154 | filterSum = z; |
mjr | 55:4db125cd11a0 | 3155 | filterDir = 0x5555; |
mjr | 55:4db125cd11a0 | 3156 | return z; |
mjr | 55:4db125cd11a0 | 3157 | } |
mjr | 55:4db125cd11a0 | 3158 | } |
mjr | 55:4db125cd11a0 | 3159 | |
mjr | 55:4db125cd11a0 | 3160 | void initFilter() |
mjr | 55:4db125cd11a0 | 3161 | { |
mjr | 55:4db125cd11a0 | 3162 | filterSum = 0; |
mjr | 55:4db125cd11a0 | 3163 | filterN = 1; |
mjr | 55:4db125cd11a0 | 3164 | filterDir = 0x5555; |
mjr | 55:4db125cd11a0 | 3165 | } |
mjr | 55:4db125cd11a0 | 3166 | int64_t filterSum; |
mjr | 55:4db125cd11a0 | 3167 | int64_t filterN; |
mjr | 55:4db125cd11a0 | 3168 | uint16_t filterDir; |
mjr | 55:4db125cd11a0 | 3169 | |
mjr | 48:058ace2aed1d | 3170 | |
mjr | 48:058ace2aed1d | 3171 | // Get the current velocity (joystick distance units per microsecond) |
mjr | 48:058ace2aed1d | 3172 | float getVelocity() const { return vz; } |
mjr | 48:058ace2aed1d | 3173 | |
mjr | 48:058ace2aed1d | 3174 | // get the timestamp of the current joystick report (microseconds) |
mjr | 50:40015764bbe6 | 3175 | uint32_t getTimestamp() const { return nthHist(0).t; } |
mjr | 48:058ace2aed1d | 3176 | |
mjr | 48:058ace2aed1d | 3177 | // Set calibration mode on or off |
mjr | 52:8298b2a73eb2 | 3178 | void setCalMode(bool f) |
mjr | 48:058ace2aed1d | 3179 | { |
mjr | 52:8298b2a73eb2 | 3180 | // check to see if we're entering calibration mode |
mjr | 52:8298b2a73eb2 | 3181 | if (f && !plungerCalMode) |
mjr | 52:8298b2a73eb2 | 3182 | { |
mjr | 52:8298b2a73eb2 | 3183 | // reset the calibration in the configuration |
mjr | 48:058ace2aed1d | 3184 | cfg.plunger.cal.begin(); |
mjr | 52:8298b2a73eb2 | 3185 | |
mjr | 52:8298b2a73eb2 | 3186 | // start in state 0 (waiting to settle) |
mjr | 52:8298b2a73eb2 | 3187 | calState = 0; |
mjr | 52:8298b2a73eb2 | 3188 | calZeroPosSum = 0; |
mjr | 52:8298b2a73eb2 | 3189 | calZeroPosN = 0; |
mjr | 52:8298b2a73eb2 | 3190 | calRlsTimeSum = 0; |
mjr | 52:8298b2a73eb2 | 3191 | calRlsTimeN = 0; |
mjr | 52:8298b2a73eb2 | 3192 | |
mjr | 52:8298b2a73eb2 | 3193 | // set the initial zero point to the current position |
mjr | 52:8298b2a73eb2 | 3194 | PlungerReading r; |
mjr | 52:8298b2a73eb2 | 3195 | if (plungerSensor->read(r)) |
mjr | 52:8298b2a73eb2 | 3196 | { |
mjr | 52:8298b2a73eb2 | 3197 | // got a reading - use it as the initial zero point |
mjr | 52:8298b2a73eb2 | 3198 | cfg.plunger.cal.zero = r.pos; |
mjr | 52:8298b2a73eb2 | 3199 | |
mjr | 52:8298b2a73eb2 | 3200 | // use it as the starting point for the settling watch |
mjr | 53:9b2611964afc | 3201 | calZeroStart = r; |
mjr | 52:8298b2a73eb2 | 3202 | } |
mjr | 52:8298b2a73eb2 | 3203 | else |
mjr | 52:8298b2a73eb2 | 3204 | { |
mjr | 52:8298b2a73eb2 | 3205 | // no reading available - use the default 1/6 position |
mjr | 52:8298b2a73eb2 | 3206 | cfg.plunger.cal.zero = 0xffff/6; |
mjr | 52:8298b2a73eb2 | 3207 | |
mjr | 52:8298b2a73eb2 | 3208 | // we don't have a starting point for the setting watch |
mjr | 53:9b2611964afc | 3209 | calZeroStart.pos = -65535; |
mjr | 53:9b2611964afc | 3210 | calZeroStart.t = 0; |
mjr | 53:9b2611964afc | 3211 | } |
mjr | 53:9b2611964afc | 3212 | } |
mjr | 53:9b2611964afc | 3213 | else if (!f && plungerCalMode) |
mjr | 53:9b2611964afc | 3214 | { |
mjr | 53:9b2611964afc | 3215 | // Leaving calibration mode. Make sure the max is past the |
mjr | 53:9b2611964afc | 3216 | // zero point - if it's not, we'd have a zero or negative |
mjr | 53:9b2611964afc | 3217 | // denominator for the scaling calculation, which would be |
mjr | 53:9b2611964afc | 3218 | // physically meaningless. |
mjr | 53:9b2611964afc | 3219 | if (cfg.plunger.cal.max <= cfg.plunger.cal.zero) |
mjr | 53:9b2611964afc | 3220 | { |
mjr | 53:9b2611964afc | 3221 | // bad settings - reset to defaults |
mjr | 53:9b2611964afc | 3222 | cfg.plunger.cal.max = 0xffff; |
mjr | 53:9b2611964afc | 3223 | cfg.plunger.cal.zero = 0xffff/6; |
mjr | 52:8298b2a73eb2 | 3224 | } |
mjr | 52:8298b2a73eb2 | 3225 | } |
mjr | 52:8298b2a73eb2 | 3226 | |
mjr | 48:058ace2aed1d | 3227 | // remember the new mode |
mjr | 52:8298b2a73eb2 | 3228 | plungerCalMode = f; |
mjr | 48:058ace2aed1d | 3229 | } |
mjr | 48:058ace2aed1d | 3230 | |
mjr | 48:058ace2aed1d | 3231 | // is a firing event in progress? |
mjr | 53:9b2611964afc | 3232 | bool isFiring() { return firing == 3; } |
mjr | 48:058ace2aed1d | 3233 | |
mjr | 48:058ace2aed1d | 3234 | private: |
mjr | 52:8298b2a73eb2 | 3235 | |
mjr | 52:8298b2a73eb2 | 3236 | // Calibration state. During calibration mode, we watch for release |
mjr | 52:8298b2a73eb2 | 3237 | // events, to measure the time it takes to complete the release |
mjr | 52:8298b2a73eb2 | 3238 | // motion; and we watch for the plunger to come to reset after a |
mjr | 52:8298b2a73eb2 | 3239 | // release, to gather statistics on the rest position. |
mjr | 52:8298b2a73eb2 | 3240 | // 0 = waiting to settle |
mjr | 52:8298b2a73eb2 | 3241 | // 1 = at rest |
mjr | 52:8298b2a73eb2 | 3242 | // 2 = retracting |
mjr | 52:8298b2a73eb2 | 3243 | // 3 = possibly releasing |
mjr | 52:8298b2a73eb2 | 3244 | uint8_t calState; |
mjr | 52:8298b2a73eb2 | 3245 | |
mjr | 52:8298b2a73eb2 | 3246 | // Calibration zero point statistics. |
mjr | 52:8298b2a73eb2 | 3247 | // During calibration mode, we collect data on the rest position (the |
mjr | 52:8298b2a73eb2 | 3248 | // zero point) by watching for the plunger to come to rest after each |
mjr | 52:8298b2a73eb2 | 3249 | // release. We average these rest positions to get the calibrated |
mjr | 52:8298b2a73eb2 | 3250 | // zero point. We use the average because the real physical plunger |
mjr | 52:8298b2a73eb2 | 3251 | // itself doesn't come to rest at exactly the same spot every time, |
mjr | 52:8298b2a73eb2 | 3252 | // largely due to friction in the mechanism. To calculate the average, |
mjr | 52:8298b2a73eb2 | 3253 | // we keep a sum of the readings and a count of samples. |
mjr | 53:9b2611964afc | 3254 | PlungerReading calZeroStart; |
mjr | 52:8298b2a73eb2 | 3255 | long calZeroPosSum; |
mjr | 52:8298b2a73eb2 | 3256 | int calZeroPosN; |
mjr | 52:8298b2a73eb2 | 3257 | |
mjr | 52:8298b2a73eb2 | 3258 | // Calibration release time statistics. |
mjr | 52:8298b2a73eb2 | 3259 | // During calibration, we collect an average for the release time. |
mjr | 52:8298b2a73eb2 | 3260 | long calRlsTimeSum; |
mjr | 52:8298b2a73eb2 | 3261 | int calRlsTimeN; |
mjr | 52:8298b2a73eb2 | 3262 | |
mjr | 48:058ace2aed1d | 3263 | // set a firing mode |
mjr | 48:058ace2aed1d | 3264 | inline void firingMode(int m) |
mjr | 48:058ace2aed1d | 3265 | { |
mjr | 48:058ace2aed1d | 3266 | firing = m; |
mjr | 48:058ace2aed1d | 3267 | } |
mjr | 48:058ace2aed1d | 3268 | |
mjr | 48:058ace2aed1d | 3269 | // Find the most recent local maximum in the history data, up to |
mjr | 48:058ace2aed1d | 3270 | // the given time limit. |
mjr | 48:058ace2aed1d | 3271 | int histLocalMax(uint32_t tcur, uint32_t dt) |
mjr | 48:058ace2aed1d | 3272 | { |
mjr | 48:058ace2aed1d | 3273 | // start with the prior entry |
mjr | 48:058ace2aed1d | 3274 | int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1; |
mjr | 48:058ace2aed1d | 3275 | int hi = hist[idx].pos; |
mjr | 48:058ace2aed1d | 3276 | |
mjr | 48:058ace2aed1d | 3277 | // scan backwards for a local maximum |
mjr | 48:058ace2aed1d | 3278 | for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1) |
mjr | 48:058ace2aed1d | 3279 | { |
mjr | 48:058ace2aed1d | 3280 | // if this isn't within the time window, stop |
mjr | 48:058ace2aed1d | 3281 | if (uint32_t(tcur - hist[idx].t) > dt) |
mjr | 48:058ace2aed1d | 3282 | break; |
mjr | 48:058ace2aed1d | 3283 | |
mjr | 48:058ace2aed1d | 3284 | // if this isn't above the current hith, stop |
mjr | 48:058ace2aed1d | 3285 | if (hist[idx].pos < hi) |
mjr | 48:058ace2aed1d | 3286 | break; |
mjr | 48:058ace2aed1d | 3287 | |
mjr | 48:058ace2aed1d | 3288 | // this is the new high |
mjr | 48:058ace2aed1d | 3289 | hi = hist[idx].pos; |
mjr | 48:058ace2aed1d | 3290 | } |
mjr | 48:058ace2aed1d | 3291 | |
mjr | 48:058ace2aed1d | 3292 | // return the local maximum |
mjr | 48:058ace2aed1d | 3293 | return hi; |
mjr | 48:058ace2aed1d | 3294 | } |
mjr | 48:058ace2aed1d | 3295 | |
mjr | 50:40015764bbe6 | 3296 | // velocity at previous reading, and the one before that |
mjr | 50:40015764bbe6 | 3297 | float vprv, vprv2; |
mjr | 48:058ace2aed1d | 3298 | |
mjr | 48:058ace2aed1d | 3299 | // Circular buffer of recent readings. We keep a short history |
mjr | 48:058ace2aed1d | 3300 | // of readings to analyze during firing events. We can only identify |
mjr | 48:058ace2aed1d | 3301 | // a firing event once it's somewhat under way, so we need a little |
mjr | 48:058ace2aed1d | 3302 | // retrospective information to accurately determine after the fact |
mjr | 48:058ace2aed1d | 3303 | // exactly when it started. We throttle our readings to no more |
mjr | 48:058ace2aed1d | 3304 | // than one every 2ms, so we have at least N*2ms of history in this |
mjr | 48:058ace2aed1d | 3305 | // array. |
mjr | 50:40015764bbe6 | 3306 | PlungerReading hist[25]; |
mjr | 48:058ace2aed1d | 3307 | int histIdx; |
mjr | 49:37bd97eb7688 | 3308 | |
mjr | 50:40015764bbe6 | 3309 | // get the nth history item (0=last, 1=2nd to last, etc) |
mjr | 50:40015764bbe6 | 3310 | const PlungerReading &nthHist(int n) const |
mjr | 50:40015764bbe6 | 3311 | { |
mjr | 50:40015764bbe6 | 3312 | // histIdx-1 is the last written; go from there |
mjr | 50:40015764bbe6 | 3313 | n = histIdx - 1 - n; |
mjr | 50:40015764bbe6 | 3314 | |
mjr | 50:40015764bbe6 | 3315 | // adjust for wrapping |
mjr | 50:40015764bbe6 | 3316 | if (n < 0) |
mjr | 50:40015764bbe6 | 3317 | n += countof(hist); |
mjr | 50:40015764bbe6 | 3318 | |
mjr | 50:40015764bbe6 | 3319 | // return the item |
mjr | 50:40015764bbe6 | 3320 | return hist[n]; |
mjr | 50:40015764bbe6 | 3321 | } |
mjr | 48:058ace2aed1d | 3322 | |
mjr | 48:058ace2aed1d | 3323 | // Firing event state. |
mjr | 48:058ace2aed1d | 3324 | // |
mjr | 48:058ace2aed1d | 3325 | // 0 - Default state. We report the real instantaneous plunger |
mjr | 48:058ace2aed1d | 3326 | // position to the joystick interface. |
mjr | 48:058ace2aed1d | 3327 | // |
mjr | 53:9b2611964afc | 3328 | // 1 - Moving forward |
mjr | 48:058ace2aed1d | 3329 | // |
mjr | 53:9b2611964afc | 3330 | // 2 - Accelerating |
mjr | 48:058ace2aed1d | 3331 | // |
mjr | 53:9b2611964afc | 3332 | // 3 - Firing. We report the rest position for a minimum interval, |
mjr | 53:9b2611964afc | 3333 | // or until the real plunger comes to rest somewhere. |
mjr | 48:058ace2aed1d | 3334 | // |
mjr | 48:058ace2aed1d | 3335 | int firing; |
mjr | 48:058ace2aed1d | 3336 | |
mjr | 51:57eb311faafa | 3337 | // Position/timestamp at start of firing phase 1. When we see a |
mjr | 51:57eb311faafa | 3338 | // sustained forward acceleration, we freeze joystick reports at |
mjr | 51:57eb311faafa | 3339 | // the recent local maximum, on the assumption that this was the |
mjr | 51:57eb311faafa | 3340 | // start of the release. If this is zero, it means that we're |
mjr | 51:57eb311faafa | 3341 | // monitoring accelerating motion but haven't seen it for long |
mjr | 51:57eb311faafa | 3342 | // enough yet to be confident that a release is in progress. |
mjr | 48:058ace2aed1d | 3343 | PlungerReading f1; |
mjr | 48:058ace2aed1d | 3344 | |
mjr | 48:058ace2aed1d | 3345 | // Position/timestamp at start of firing phase 2. The position is |
mjr | 48:058ace2aed1d | 3346 | // the fake "bounce" position we report during this phase, and the |
mjr | 48:058ace2aed1d | 3347 | // timestamp tells us when the phase began so that we can end it |
mjr | 48:058ace2aed1d | 3348 | // after enough time elapses. |
mjr | 48:058ace2aed1d | 3349 | PlungerReading f2; |
mjr | 48:058ace2aed1d | 3350 | |
mjr | 48:058ace2aed1d | 3351 | // Position/timestamp of start of stability window during phase 3. |
mjr | 48:058ace2aed1d | 3352 | // We use this to determine when the plunger comes to rest. We set |
mjr | 51:57eb311faafa | 3353 | // this at the beginning of phase 3, and then reset it when the |
mjr | 48:058ace2aed1d | 3354 | // plunger moves too far from the last position. |
mjr | 48:058ace2aed1d | 3355 | PlungerReading f3s; |
mjr | 48:058ace2aed1d | 3356 | |
mjr | 48:058ace2aed1d | 3357 | // Position/timestamp of start of retraction window during phase 3. |
mjr | 48:058ace2aed1d | 3358 | // We use this to determine if the user is drawing the plunger back. |
mjr | 48:058ace2aed1d | 3359 | // If we see retraction motion for more than about 65ms, we assume |
mjr | 48:058ace2aed1d | 3360 | // that the user has taken over, because we should see forward |
mjr | 48:058ace2aed1d | 3361 | // motion within this timeframe if the plunger is just bouncing |
mjr | 48:058ace2aed1d | 3362 | // freely. |
mjr | 48:058ace2aed1d | 3363 | PlungerReading f3r; |
mjr | 48:058ace2aed1d | 3364 | |
mjr | 48:058ace2aed1d | 3365 | // next Z value to report to the joystick interface (in joystick |
mjr | 48:058ace2aed1d | 3366 | // distance units) |
mjr | 48:058ace2aed1d | 3367 | int z; |
mjr | 48:058ace2aed1d | 3368 | |
mjr | 48:058ace2aed1d | 3369 | // velocity of this reading (joystick distance units per microsecond) |
mjr | 48:058ace2aed1d | 3370 | float vz; |
mjr | 48:058ace2aed1d | 3371 | }; |
mjr | 48:058ace2aed1d | 3372 | |
mjr | 48:058ace2aed1d | 3373 | // plunger reader singleton |
mjr | 48:058ace2aed1d | 3374 | PlungerReader plungerReader; |
mjr | 48:058ace2aed1d | 3375 | |
mjr | 48:058ace2aed1d | 3376 | // --------------------------------------------------------------------------- |
mjr | 48:058ace2aed1d | 3377 | // |
mjr | 48:058ace2aed1d | 3378 | // Handle the ZB Launch Ball feature. |
mjr | 48:058ace2aed1d | 3379 | // |
mjr | 48:058ace2aed1d | 3380 | // The ZB Launch Ball feature, if enabled, lets the mechanical plunger |
mjr | 48:058ace2aed1d | 3381 | // serve as a substitute for a physical Launch Ball button. When a table |
mjr | 48:058ace2aed1d | 3382 | // is loaded in VP, and the table has the ZB Launch Ball LedWiz port |
mjr | 48:058ace2aed1d | 3383 | // turned on, we'll disable mechanical plunger reports through the |
mjr | 48:058ace2aed1d | 3384 | // joystick interface and instead use the plunger only to simulate the |
mjr | 48:058ace2aed1d | 3385 | // Launch Ball button. When the mode is active, pulling back and |
mjr | 48:058ace2aed1d | 3386 | // releasing the plunger causes a brief simulated press of the Launch |
mjr | 48:058ace2aed1d | 3387 | // button, and pushing the plunger forward of the rest position presses |
mjr | 48:058ace2aed1d | 3388 | // the Launch button as long as the plunger is pressed forward. |
mjr | 48:058ace2aed1d | 3389 | // |
mjr | 48:058ace2aed1d | 3390 | // This feature has two configuration components: |
mjr | 48:058ace2aed1d | 3391 | // |
mjr | 48:058ace2aed1d | 3392 | // - An LedWiz port number. This port is a "virtual" port that doesn't |
mjr | 48:058ace2aed1d | 3393 | // have to be attached to any actual output. DOF uses it to signal |
mjr | 48:058ace2aed1d | 3394 | // that the current table uses a Launch button instead of a plunger. |
mjr | 48:058ace2aed1d | 3395 | // DOF simply turns the port on when such a table is loaded and turns |
mjr | 48:058ace2aed1d | 3396 | // it off at all other times. We use it to enable and disable the |
mjr | 48:058ace2aed1d | 3397 | // plunger/launch button connection. |
mjr | 48:058ace2aed1d | 3398 | // |
mjr | 48:058ace2aed1d | 3399 | // - A joystick button ID. We simulate pressing this button when the |
mjr | 48:058ace2aed1d | 3400 | // launch feature is activated via the LedWiz port and the plunger is |
mjr | 48:058ace2aed1d | 3401 | // either pulled back and releasd, or pushed forward past the rest |
mjr | 48:058ace2aed1d | 3402 | // position. |
mjr | 48:058ace2aed1d | 3403 | // |
mjr | 48:058ace2aed1d | 3404 | class ZBLaunchBall |
mjr | 48:058ace2aed1d | 3405 | { |
mjr | 48:058ace2aed1d | 3406 | public: |
mjr | 48:058ace2aed1d | 3407 | ZBLaunchBall() |
mjr | 48:058ace2aed1d | 3408 | { |
mjr | 48:058ace2aed1d | 3409 | // start in the default state |
mjr | 48:058ace2aed1d | 3410 | lbState = 0; |
mjr | 53:9b2611964afc | 3411 | btnState = false; |
mjr | 48:058ace2aed1d | 3412 | } |
mjr | 48:058ace2aed1d | 3413 | |
mjr | 48:058ace2aed1d | 3414 | // Update state. This checks the current plunger position and |
mjr | 48:058ace2aed1d | 3415 | // the timers to see if the plunger is in a position that simulates |
mjr | 48:058ace2aed1d | 3416 | // a Launch Ball button press via the ZB Launch Ball feature. |
mjr | 48:058ace2aed1d | 3417 | // Updates the simulated button vector according to the current |
mjr | 48:058ace2aed1d | 3418 | // launch ball state. The main loop calls this before each |
mjr | 48:058ace2aed1d | 3419 | // joystick update to figure the new simulated button state. |
mjr | 53:9b2611964afc | 3420 | void update() |
mjr | 48:058ace2aed1d | 3421 | { |
mjr | 53:9b2611964afc | 3422 | // If the ZB Launch Ball led wiz output is ON, check for a |
mjr | 53:9b2611964afc | 3423 | // plunger firing event |
mjr | 53:9b2611964afc | 3424 | if (zbLaunchOn) |
mjr | 48:058ace2aed1d | 3425 | { |
mjr | 53:9b2611964afc | 3426 | // note the new position |
mjr | 48:058ace2aed1d | 3427 | int znew = plungerReader.getPosition(); |
mjr | 53:9b2611964afc | 3428 | |
mjr | 53:9b2611964afc | 3429 | // figure the push threshold from the configuration data |
mjr | 51:57eb311faafa | 3430 | const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0); |
mjr | 53:9b2611964afc | 3431 | |
mjr | 53:9b2611964afc | 3432 | // check the state |
mjr | 48:058ace2aed1d | 3433 | switch (lbState) |
mjr | 48:058ace2aed1d | 3434 | { |
mjr | 48:058ace2aed1d | 3435 | case 0: |
mjr | 53:9b2611964afc | 3436 | // Default state. If a launch event has been detected on |
mjr | 53:9b2611964afc | 3437 | // the plunger, activate a timed pulse and switch to state 1. |
mjr | 53:9b2611964afc | 3438 | // If the plunger is pushed forward of the threshold, push |
mjr | 53:9b2611964afc | 3439 | // the button. |
mjr | 53:9b2611964afc | 3440 | if (plungerReader.isFiring()) |
mjr | 53:9b2611964afc | 3441 | { |
mjr | 53:9b2611964afc | 3442 | // firing event - start a timed Launch button pulse |
mjr | 53:9b2611964afc | 3443 | lbTimer.reset(); |
mjr | 53:9b2611964afc | 3444 | lbTimer.start(); |
mjr | 53:9b2611964afc | 3445 | setButton(true); |
mjr | 53:9b2611964afc | 3446 | |
mjr | 53:9b2611964afc | 3447 | // switch to state 1 |
mjr | 53:9b2611964afc | 3448 | lbState = 1; |
mjr | 53:9b2611964afc | 3449 | } |
mjr | 48:058ace2aed1d | 3450 | else if (znew <= pushThreshold) |
mjr | 53:9b2611964afc | 3451 | { |
mjr | 53:9b2611964afc | 3452 | // pushed forward without a firing event - hold the |
mjr | 53:9b2611964afc | 3453 | // button as long as we're pushed forward |
mjr | 53:9b2611964afc | 3454 | setButton(true); |
mjr | 53:9b2611964afc | 3455 | } |
mjr | 53:9b2611964afc | 3456 | else |
mjr | 53:9b2611964afc | 3457 | { |
mjr | 53:9b2611964afc | 3458 | // not pushed forward - turn off the Launch button |
mjr | 53:9b2611964afc | 3459 | setButton(false); |
mjr | 53:9b2611964afc | 3460 | } |
mjr | 48:058ace2aed1d | 3461 | break; |
mjr | 48:058ace2aed1d | 3462 | |
mjr | 48:058ace2aed1d | 3463 | case 1: |
mjr | 53:9b2611964afc | 3464 | // State 1: Timed Launch button pulse in progress after a |
mjr | 53:9b2611964afc | 3465 | // firing event. Wait for the timer to expire. |
mjr | 53:9b2611964afc | 3466 | if (lbTimer.read_us() > 200000UL) |
mjr | 53:9b2611964afc | 3467 | { |
mjr | 53:9b2611964afc | 3468 | // timer expired - turn off the button |
mjr | 53:9b2611964afc | 3469 | setButton(false); |
mjr | 53:9b2611964afc | 3470 | |
mjr | 53:9b2611964afc | 3471 | // switch to state 2 |
mjr | 53:9b2611964afc | 3472 | lbState = 2; |
mjr | 53:9b2611964afc | 3473 | } |
mjr | 48:058ace2aed1d | 3474 | break; |
mjr | 48:058ace2aed1d | 3475 | |
mjr | 48:058ace2aed1d | 3476 | case 2: |
mjr | 53:9b2611964afc | 3477 | // State 2: Timed Launch button pulse done. Wait for the |
mjr | 53:9b2611964afc | 3478 | // plunger launch event to end. |
mjr | 53:9b2611964afc | 3479 | if (!plungerReader.isFiring()) |
mjr | 53:9b2611964afc | 3480 | { |
mjr | 53:9b2611964afc | 3481 | // firing event done - return to default state |
mjr | 53:9b2611964afc | 3482 | lbState = 0; |
mjr | 53:9b2611964afc | 3483 | } |
mjr | 48:058ace2aed1d | 3484 | break; |
mjr | 48:058ace2aed1d | 3485 | } |
mjr | 53:9b2611964afc | 3486 | } |
mjr | 53:9b2611964afc | 3487 | else |
mjr | 53:9b2611964afc | 3488 | { |
mjr | 53:9b2611964afc | 3489 | // ZB Launch Ball disabled - turn off the button if it was on |
mjr | 53:9b2611964afc | 3490 | setButton(false); |
mjr | 48:058ace2aed1d | 3491 | |
mjr | 53:9b2611964afc | 3492 | // return to the default state |
mjr | 53:9b2611964afc | 3493 | lbState = 0; |
mjr | 48:058ace2aed1d | 3494 | } |
mjr | 48:058ace2aed1d | 3495 | } |
mjr | 53:9b2611964afc | 3496 | |
mjr | 53:9b2611964afc | 3497 | // Set the button state |
mjr | 53:9b2611964afc | 3498 | void setButton(bool on) |
mjr | 53:9b2611964afc | 3499 | { |
mjr | 53:9b2611964afc | 3500 | if (btnState != on) |
mjr | 53:9b2611964afc | 3501 | { |
mjr | 53:9b2611964afc | 3502 | // remember the new state |
mjr | 53:9b2611964afc | 3503 | btnState = on; |
mjr | 53:9b2611964afc | 3504 | |
mjr | 53:9b2611964afc | 3505 | // update the virtual button state |
mjr | 53:9b2611964afc | 3506 | buttonState[ZBL_BUTTON].virtPress(on); |
mjr | 53:9b2611964afc | 3507 | } |
mjr | 53:9b2611964afc | 3508 | } |
mjr | 53:9b2611964afc | 3509 | |
mjr | 48:058ace2aed1d | 3510 | private: |
mjr | 48:058ace2aed1d | 3511 | // Simulated Launch Ball button state. If a "ZB Launch Ball" port is |
mjr | 48:058ace2aed1d | 3512 | // defined for our LedWiz port mapping, any time that port is turned ON, |
mjr | 48:058ace2aed1d | 3513 | // we'll simulate pushing the Launch Ball button if the player pulls |
mjr | 48:058ace2aed1d | 3514 | // back and releases the plunger, or simply pushes on the plunger from |
mjr | 48:058ace2aed1d | 3515 | // the rest position. This allows the plunger to be used in lieu of a |
mjr | 48:058ace2aed1d | 3516 | // physical Launch Ball button for tables that don't have plungers. |
mjr | 48:058ace2aed1d | 3517 | // |
mjr | 48:058ace2aed1d | 3518 | // States: |
mjr | 48:058ace2aed1d | 3519 | // 0 = default |
mjr | 53:9b2611964afc | 3520 | // 1 = firing (firing event has activated a Launch button pulse) |
mjr | 53:9b2611964afc | 3521 | // 2 = firing done (Launch button pulse ended, waiting for plunger |
mjr | 53:9b2611964afc | 3522 | // firing event to end) |
mjr | 53:9b2611964afc | 3523 | uint8_t lbState; |
mjr | 48:058ace2aed1d | 3524 | |
mjr | 53:9b2611964afc | 3525 | // button state |
mjr | 53:9b2611964afc | 3526 | bool btnState; |
mjr | 48:058ace2aed1d | 3527 | |
mjr | 48:058ace2aed1d | 3528 | // Time since last lbState transition. Some of the states are time- |
mjr | 48:058ace2aed1d | 3529 | // sensitive. In the "uncocked" state, we'll return to state 0 if |
mjr | 48:058ace2aed1d | 3530 | // we remain in this state for more than a few milliseconds, since |
mjr | 48:058ace2aed1d | 3531 | // it indicates that the plunger is being slowly returned to rest |
mjr | 48:058ace2aed1d | 3532 | // rather than released. In the "launching" state, we need to release |
mjr | 48:058ace2aed1d | 3533 | // the Launch Ball button after a moment, and we need to wait for |
mjr | 48:058ace2aed1d | 3534 | // the plunger to come to rest before returning to state 0. |
mjr | 48:058ace2aed1d | 3535 | Timer lbTimer; |
mjr | 48:058ace2aed1d | 3536 | }; |
mjr | 48:058ace2aed1d | 3537 | |
mjr | 35:e959ffba78fd | 3538 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 3539 | // |
mjr | 35:e959ffba78fd | 3540 | // Reboot - resets the microcontroller |
mjr | 35:e959ffba78fd | 3541 | // |
mjr | 54:fd77a6b2f76c | 3542 | void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L) |
mjr | 35:e959ffba78fd | 3543 | { |
mjr | 35:e959ffba78fd | 3544 | // disconnect from USB |
mjr | 54:fd77a6b2f76c | 3545 | if (disconnect) |
mjr | 54:fd77a6b2f76c | 3546 | js.disconnect(); |
mjr | 35:e959ffba78fd | 3547 | |
mjr | 35:e959ffba78fd | 3548 | // wait a few seconds to make sure the host notices the disconnect |
mjr | 54:fd77a6b2f76c | 3549 | wait_us(pause_us); |
mjr | 35:e959ffba78fd | 3550 | |
mjr | 35:e959ffba78fd | 3551 | // reset the device |
mjr | 35:e959ffba78fd | 3552 | NVIC_SystemReset(); |
mjr | 35:e959ffba78fd | 3553 | while (true) { } |
mjr | 35:e959ffba78fd | 3554 | } |
mjr | 35:e959ffba78fd | 3555 | |
mjr | 35:e959ffba78fd | 3556 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 3557 | // |
mjr | 35:e959ffba78fd | 3558 | // Translate joystick readings from raw values to reported values, based |
mjr | 35:e959ffba78fd | 3559 | // on the orientation of the controller card in the cabinet. |
mjr | 35:e959ffba78fd | 3560 | // |
mjr | 35:e959ffba78fd | 3561 | void accelRotate(int &x, int &y) |
mjr | 35:e959ffba78fd | 3562 | { |
mjr | 35:e959ffba78fd | 3563 | int tmp; |
mjr | 35:e959ffba78fd | 3564 | switch (cfg.orientation) |
mjr | 35:e959ffba78fd | 3565 | { |
mjr | 35:e959ffba78fd | 3566 | case OrientationFront: |
mjr | 35:e959ffba78fd | 3567 | tmp = x; |
mjr | 35:e959ffba78fd | 3568 | x = y; |
mjr | 35:e959ffba78fd | 3569 | y = tmp; |
mjr | 35:e959ffba78fd | 3570 | break; |
mjr | 35:e959ffba78fd | 3571 | |
mjr | 35:e959ffba78fd | 3572 | case OrientationLeft: |
mjr | 35:e959ffba78fd | 3573 | x = -x; |
mjr | 35:e959ffba78fd | 3574 | break; |
mjr | 35:e959ffba78fd | 3575 | |
mjr | 35:e959ffba78fd | 3576 | case OrientationRight: |
mjr | 35:e959ffba78fd | 3577 | y = -y; |
mjr | 35:e959ffba78fd | 3578 | break; |
mjr | 35:e959ffba78fd | 3579 | |
mjr | 35:e959ffba78fd | 3580 | case OrientationRear: |
mjr | 35:e959ffba78fd | 3581 | tmp = -x; |
mjr | 35:e959ffba78fd | 3582 | x = -y; |
mjr | 35:e959ffba78fd | 3583 | y = tmp; |
mjr | 35:e959ffba78fd | 3584 | break; |
mjr | 35:e959ffba78fd | 3585 | } |
mjr | 35:e959ffba78fd | 3586 | } |
mjr | 35:e959ffba78fd | 3587 | |
mjr | 35:e959ffba78fd | 3588 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 3589 | // |
mjr | 35:e959ffba78fd | 3590 | // Calibration button state: |
mjr | 35:e959ffba78fd | 3591 | // 0 = not pushed |
mjr | 35:e959ffba78fd | 3592 | // 1 = pushed, not yet debounced |
mjr | 35:e959ffba78fd | 3593 | // 2 = pushed, debounced, waiting for hold time |
mjr | 35:e959ffba78fd | 3594 | // 3 = pushed, hold time completed - in calibration mode |
mjr | 35:e959ffba78fd | 3595 | int calBtnState = 0; |
mjr | 35:e959ffba78fd | 3596 | |
mjr | 35:e959ffba78fd | 3597 | // calibration button debounce timer |
mjr | 35:e959ffba78fd | 3598 | Timer calBtnTimer; |
mjr | 35:e959ffba78fd | 3599 | |
mjr | 35:e959ffba78fd | 3600 | // calibration button light state |
mjr | 35:e959ffba78fd | 3601 | int calBtnLit = false; |
mjr | 35:e959ffba78fd | 3602 | |
mjr | 35:e959ffba78fd | 3603 | |
mjr | 35:e959ffba78fd | 3604 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 3605 | // |
mjr | 40:cc0d9814522b | 3606 | // Configuration variable get/set message handling |
mjr | 35:e959ffba78fd | 3607 | // |
mjr | 40:cc0d9814522b | 3608 | |
mjr | 40:cc0d9814522b | 3609 | // Handle SET messages - write configuration variables from USB message data |
mjr | 40:cc0d9814522b | 3610 | #define if_msg_valid(test) if (test) |
mjr | 53:9b2611964afc | 3611 | #define v_byte(var, ofs) cfg.var = data[ofs] |
mjr | 53:9b2611964afc | 3612 | #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs)) |
mjr | 53:9b2611964afc | 3613 | #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs]) |
mjr | 53:9b2611964afc | 3614 | #define v_byte_ro(val, ofs) // ignore read-only variables on SET |
mjr | 40:cc0d9814522b | 3615 | #define v_func configVarSet |
mjr | 40:cc0d9814522b | 3616 | #include "cfgVarMsgMap.h" |
mjr | 35:e959ffba78fd | 3617 | |
mjr | 40:cc0d9814522b | 3618 | // redefine everything for the SET messages |
mjr | 40:cc0d9814522b | 3619 | #undef if_msg_valid |
mjr | 40:cc0d9814522b | 3620 | #undef v_byte |
mjr | 40:cc0d9814522b | 3621 | #undef v_ui16 |
mjr | 40:cc0d9814522b | 3622 | #undef v_pin |
mjr | 53:9b2611964afc | 3623 | #undef v_byte_ro |
mjr | 40:cc0d9814522b | 3624 | #undef v_func |
mjr | 38:091e511ce8a0 | 3625 | |
mjr | 40:cc0d9814522b | 3626 | // Handle GET messages - read variable values and return in USB message daa |
mjr | 40:cc0d9814522b | 3627 | #define if_msg_valid(test) |
mjr | 53:9b2611964afc | 3628 | #define v_byte(var, ofs) data[ofs] = cfg.var |
mjr | 53:9b2611964afc | 3629 | #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var) |
mjr | 53:9b2611964afc | 3630 | #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var) |
mjr | 53:9b2611964afc | 3631 | #define v_byte_ro(val, ofs) data[ofs] = val |
mjr | 40:cc0d9814522b | 3632 | #define v_func configVarGet |
mjr | 40:cc0d9814522b | 3633 | #include "cfgVarMsgMap.h" |
mjr | 40:cc0d9814522b | 3634 | |
mjr | 35:e959ffba78fd | 3635 | |
mjr | 35:e959ffba78fd | 3636 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 3637 | // |
mjr | 35:e959ffba78fd | 3638 | // Handle an input report from the USB host. Input reports use our extended |
mjr | 35:e959ffba78fd | 3639 | // LedWiz protocol. |
mjr | 33:d832bcab089e | 3640 | // |
mjr | 48:058ace2aed1d | 3641 | void handleInputMsg(LedWizMsg &lwm, USBJoystick &js) |
mjr | 35:e959ffba78fd | 3642 | { |
mjr | 38:091e511ce8a0 | 3643 | // LedWiz commands come in two varieties: SBA and PBA. An |
mjr | 38:091e511ce8a0 | 3644 | // SBA is marked by the first byte having value 64 (0x40). In |
mjr | 38:091e511ce8a0 | 3645 | // the real LedWiz protocol, any other value in the first byte |
mjr | 38:091e511ce8a0 | 3646 | // means it's a PBA message. However, *valid* PBA messages |
mjr | 38:091e511ce8a0 | 3647 | // always have a first byte (and in fact all 8 bytes) in the |
mjr | 38:091e511ce8a0 | 3648 | // range 0-49 or 129-132. Anything else is invalid. We take |
mjr | 38:091e511ce8a0 | 3649 | // advantage of this to implement private protocol extensions. |
mjr | 38:091e511ce8a0 | 3650 | // So our full protocol is as follows: |
mjr | 38:091e511ce8a0 | 3651 | // |
mjr | 38:091e511ce8a0 | 3652 | // first byte = |
mjr | 38:091e511ce8a0 | 3653 | // 0-48 -> LWZ-PBA |
mjr | 38:091e511ce8a0 | 3654 | // 64 -> LWZ SBA |
mjr | 38:091e511ce8a0 | 3655 | // 65 -> private control message; second byte specifies subtype |
mjr | 38:091e511ce8a0 | 3656 | // 129-132 -> LWZ-PBA |
mjr | 38:091e511ce8a0 | 3657 | // 200-228 -> extended bank brightness set for outputs N to N+6, where |
mjr | 38:091e511ce8a0 | 3658 | // N is (first byte - 200)*7 |
mjr | 38:091e511ce8a0 | 3659 | // other -> reserved for future use |
mjr | 38:091e511ce8a0 | 3660 | // |
mjr | 39:b3815a1c3802 | 3661 | uint8_t *data = lwm.data; |
mjr | 38:091e511ce8a0 | 3662 | if (data[0] == 64) |
mjr | 35:e959ffba78fd | 3663 | { |
mjr | 38:091e511ce8a0 | 3664 | // LWZ-SBA - first four bytes are bit-packed on/off flags |
mjr | 38:091e511ce8a0 | 3665 | // for the outputs; 5th byte is the pulse speed (1-7) |
mjr | 38:091e511ce8a0 | 3666 | //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n", |
mjr | 38:091e511ce8a0 | 3667 | // data[1], data[2], data[3], data[4], data[5]); |
mjr | 38:091e511ce8a0 | 3668 | |
mjr | 38:091e511ce8a0 | 3669 | // update all on/off states |
mjr | 38:091e511ce8a0 | 3670 | for (int i = 0, bit = 1, ri = 1 ; i < numLwOutputs ; ++i, bit <<= 1) |
mjr | 35:e959ffba78fd | 3671 | { |
mjr | 38:091e511ce8a0 | 3672 | // figure the on/off state bit for this output |
mjr | 38:091e511ce8a0 | 3673 | if (bit == 0x100) { |
mjr | 38:091e511ce8a0 | 3674 | bit = 1; |
mjr | 38:091e511ce8a0 | 3675 | ++ri; |
mjr | 35:e959ffba78fd | 3676 | } |
mjr | 35:e959ffba78fd | 3677 | |
mjr | 38:091e511ce8a0 | 3678 | // set the on/off state |
mjr | 38:091e511ce8a0 | 3679 | wizOn[i] = ((data[ri] & bit) != 0); |
mjr | 38:091e511ce8a0 | 3680 | |
mjr | 38:091e511ce8a0 | 3681 | // If the wizVal setting is 255, it means that this |
mjr | 38:091e511ce8a0 | 3682 | // output was last set to a brightness value with the |
mjr | 38:091e511ce8a0 | 3683 | // extended protocol. Return it to LedWiz control by |
mjr | 38:091e511ce8a0 | 3684 | // rescaling the brightness setting to the LedWiz range |
mjr | 38:091e511ce8a0 | 3685 | // and updating wizVal with the result. If it's any |
mjr | 38:091e511ce8a0 | 3686 | // other value, it was previously set by a PBA message, |
mjr | 38:091e511ce8a0 | 3687 | // so simply retain the last setting - in the normal |
mjr | 38:091e511ce8a0 | 3688 | // LedWiz protocol, the "profile" (brightness) and on/off |
mjr | 38:091e511ce8a0 | 3689 | // states are independent, so an SBA just turns an output |
mjr | 38:091e511ce8a0 | 3690 | // on or off but retains its last brightness level. |
mjr | 38:091e511ce8a0 | 3691 | if (wizVal[i] == 255) |
mjr | 40:cc0d9814522b | 3692 | wizVal[i] = (uint8_t)round(outLevel[i]/255.0 * 48.0); |
mjr | 38:091e511ce8a0 | 3693 | } |
mjr | 38:091e511ce8a0 | 3694 | |
mjr | 38:091e511ce8a0 | 3695 | // set the flash speed - enforce the value range 1-7 |
mjr | 38:091e511ce8a0 | 3696 | wizSpeed = data[5]; |
mjr | 38:091e511ce8a0 | 3697 | if (wizSpeed < 1) |
mjr | 38:091e511ce8a0 | 3698 | wizSpeed = 1; |
mjr | 38:091e511ce8a0 | 3699 | else if (wizSpeed > 7) |
mjr | 38:091e511ce8a0 | 3700 | wizSpeed = 7; |
mjr | 38:091e511ce8a0 | 3701 | |
mjr | 38:091e511ce8a0 | 3702 | // update the physical outputs |
mjr | 38:091e511ce8a0 | 3703 | updateWizOuts(); |
mjr | 38:091e511ce8a0 | 3704 | if (hc595 != 0) |
mjr | 38:091e511ce8a0 | 3705 | hc595->update(); |
mjr | 38:091e511ce8a0 | 3706 | |
mjr | 38:091e511ce8a0 | 3707 | // reset the PBA counter |
mjr | 38:091e511ce8a0 | 3708 | pbaIdx = 0; |
mjr | 38:091e511ce8a0 | 3709 | } |
mjr | 38:091e511ce8a0 | 3710 | else if (data[0] == 65) |
mjr | 38:091e511ce8a0 | 3711 | { |
mjr | 38:091e511ce8a0 | 3712 | // Private control message. This isn't an LedWiz message - it's |
mjr | 38:091e511ce8a0 | 3713 | // an extension for this device. 65 is an invalid PBA setting, |
mjr | 38:091e511ce8a0 | 3714 | // and isn't used for any other LedWiz message, so we appropriate |
mjr | 38:091e511ce8a0 | 3715 | // it for our own private use. The first byte specifies the |
mjr | 38:091e511ce8a0 | 3716 | // message type. |
mjr | 39:b3815a1c3802 | 3717 | switch (data[1]) |
mjr | 38:091e511ce8a0 | 3718 | { |
mjr | 39:b3815a1c3802 | 3719 | case 0: |
mjr | 39:b3815a1c3802 | 3720 | // No Op |
mjr | 39:b3815a1c3802 | 3721 | break; |
mjr | 39:b3815a1c3802 | 3722 | |
mjr | 39:b3815a1c3802 | 3723 | case 1: |
mjr | 38:091e511ce8a0 | 3724 | // 1 = Old Set Configuration: |
mjr | 38:091e511ce8a0 | 3725 | // data[2] = LedWiz unit number (0x00 to 0x0f) |
mjr | 38:091e511ce8a0 | 3726 | // data[3] = feature enable bit mask: |
mjr | 38:091e511ce8a0 | 3727 | // 0x01 = enable plunger sensor |
mjr | 39:b3815a1c3802 | 3728 | { |
mjr | 39:b3815a1c3802 | 3729 | |
mjr | 39:b3815a1c3802 | 3730 | // get the new LedWiz unit number - this is 0-15, whereas we |
mjr | 39:b3815a1c3802 | 3731 | // we save the *nominal* unit number 1-16 in the config |
mjr | 39:b3815a1c3802 | 3732 | uint8_t newUnitNo = (data[2] & 0x0f) + 1; |
mjr | 39:b3815a1c3802 | 3733 | |
mjr | 39:b3815a1c3802 | 3734 | // we'll need a reset if the LedWiz unit number is changing |
mjr | 39:b3815a1c3802 | 3735 | bool needReset = (newUnitNo != cfg.psUnitNo); |
mjr | 39:b3815a1c3802 | 3736 | |
mjr | 39:b3815a1c3802 | 3737 | // set the configuration parameters from the message |
mjr | 39:b3815a1c3802 | 3738 | cfg.psUnitNo = newUnitNo; |
mjr | 39:b3815a1c3802 | 3739 | cfg.plunger.enabled = data[3] & 0x01; |
mjr | 39:b3815a1c3802 | 3740 | |
mjr | 39:b3815a1c3802 | 3741 | // save the configuration |
mjr | 39:b3815a1c3802 | 3742 | saveConfigToFlash(); |
mjr | 39:b3815a1c3802 | 3743 | |
mjr | 39:b3815a1c3802 | 3744 | // reboot if necessary |
mjr | 39:b3815a1c3802 | 3745 | if (needReset) |
mjr | 39:b3815a1c3802 | 3746 | reboot(js); |
mjr | 39:b3815a1c3802 | 3747 | } |
mjr | 39:b3815a1c3802 | 3748 | break; |
mjr | 38:091e511ce8a0 | 3749 | |
mjr | 39:b3815a1c3802 | 3750 | case 2: |
mjr | 38:091e511ce8a0 | 3751 | // 2 = Calibrate plunger |
mjr | 38:091e511ce8a0 | 3752 | // (No parameters) |
mjr | 38:091e511ce8a0 | 3753 | |
mjr | 38:091e511ce8a0 | 3754 | // enter calibration mode |
mjr | 38:091e511ce8a0 | 3755 | calBtnState = 3; |
mjr | 52:8298b2a73eb2 | 3756 | plungerReader.setCalMode(true); |
mjr | 38:091e511ce8a0 | 3757 | calBtnTimer.reset(); |
mjr | 39:b3815a1c3802 | 3758 | break; |
mjr | 39:b3815a1c3802 | 3759 | |
mjr | 39:b3815a1c3802 | 3760 | case 3: |
mjr | 52:8298b2a73eb2 | 3761 | // 3 = plunger sensor status report |
mjr | 48:058ace2aed1d | 3762 | // data[2] = flag bits |
mjr | 53:9b2611964afc | 3763 | // data[3] = extra exposure time, 100us (.1ms) increments |
mjr | 52:8298b2a73eb2 | 3764 | reportPlungerStat = true; |
mjr | 53:9b2611964afc | 3765 | reportPlungerStatFlags = data[2]; |
mjr | 53:9b2611964afc | 3766 | reportPlungerStatTime = data[3]; |
mjr | 38:091e511ce8a0 | 3767 | |
mjr | 38:091e511ce8a0 | 3768 | // show purple until we finish sending the report |
mjr | 38:091e511ce8a0 | 3769 | diagLED(1, 0, 1); |
mjr | 39:b3815a1c3802 | 3770 | break; |
mjr | 39:b3815a1c3802 | 3771 | |
mjr | 39:b3815a1c3802 | 3772 | case 4: |
mjr | 38:091e511ce8a0 | 3773 | // 4 = hardware configuration query |
mjr | 38:091e511ce8a0 | 3774 | // (No parameters) |
mjr | 38:091e511ce8a0 | 3775 | js.reportConfig( |
mjr | 38:091e511ce8a0 | 3776 | numOutputs, |
mjr | 38:091e511ce8a0 | 3777 | cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally) |
mjr | 52:8298b2a73eb2 | 3778 | cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease, |
mjr | 40:cc0d9814522b | 3779 | nvm.valid()); |
mjr | 39:b3815a1c3802 | 3780 | break; |
mjr | 39:b3815a1c3802 | 3781 | |
mjr | 39:b3815a1c3802 | 3782 | case 5: |
mjr | 38:091e511ce8a0 | 3783 | // 5 = all outputs off, reset to LedWiz defaults |
mjr | 38:091e511ce8a0 | 3784 | allOutputsOff(); |
mjr | 39:b3815a1c3802 | 3785 | break; |
mjr | 39:b3815a1c3802 | 3786 | |
mjr | 39:b3815a1c3802 | 3787 | case 6: |
mjr | 38:091e511ce8a0 | 3788 | // 6 = Save configuration to flash. |
mjr | 38:091e511ce8a0 | 3789 | saveConfigToFlash(); |
mjr | 38:091e511ce8a0 | 3790 | |
mjr | 53:9b2611964afc | 3791 | // before disconnecting, pause for the delay time specified in |
mjr | 53:9b2611964afc | 3792 | // the parameter byte (in seconds) |
mjr | 53:9b2611964afc | 3793 | rebootTime_us = data[2] * 1000000L; |
mjr | 53:9b2611964afc | 3794 | rebootTimer.start(); |
mjr | 39:b3815a1c3802 | 3795 | break; |
mjr | 40:cc0d9814522b | 3796 | |
mjr | 40:cc0d9814522b | 3797 | case 7: |
mjr | 40:cc0d9814522b | 3798 | // 7 = Device ID report |
mjr | 53:9b2611964afc | 3799 | // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID |
mjr | 53:9b2611964afc | 3800 | js.reportID(data[2]); |
mjr | 40:cc0d9814522b | 3801 | break; |
mjr | 40:cc0d9814522b | 3802 | |
mjr | 40:cc0d9814522b | 3803 | case 8: |
mjr | 40:cc0d9814522b | 3804 | // 8 = Engage/disengage night mode. |
mjr | 40:cc0d9814522b | 3805 | // data[2] = 1 to engage, 0 to disengage |
mjr | 40:cc0d9814522b | 3806 | setNightMode(data[2]); |
mjr | 40:cc0d9814522b | 3807 | break; |
mjr | 52:8298b2a73eb2 | 3808 | |
mjr | 52:8298b2a73eb2 | 3809 | case 9: |
mjr | 52:8298b2a73eb2 | 3810 | // 9 = Config variable query. |
mjr | 52:8298b2a73eb2 | 3811 | // data[2] = config var ID |
mjr | 52:8298b2a73eb2 | 3812 | // data[3] = array index (for array vars: button assignments, output ports) |
mjr | 52:8298b2a73eb2 | 3813 | { |
mjr | 53:9b2611964afc | 3814 | // set up the reply buffer with the variable ID data, and zero out |
mjr | 53:9b2611964afc | 3815 | // the rest of the buffer |
mjr | 52:8298b2a73eb2 | 3816 | uint8_t reply[8]; |
mjr | 52:8298b2a73eb2 | 3817 | reply[1] = data[2]; |
mjr | 52:8298b2a73eb2 | 3818 | reply[2] = data[3]; |
mjr | 53:9b2611964afc | 3819 | memset(reply+3, 0, sizeof(reply)-3); |
mjr | 52:8298b2a73eb2 | 3820 | |
mjr | 52:8298b2a73eb2 | 3821 | // query the value |
mjr | 52:8298b2a73eb2 | 3822 | configVarGet(reply); |
mjr | 52:8298b2a73eb2 | 3823 | |
mjr | 52:8298b2a73eb2 | 3824 | // send the reply |
mjr | 52:8298b2a73eb2 | 3825 | js.reportConfigVar(reply + 1); |
mjr | 52:8298b2a73eb2 | 3826 | } |
mjr | 52:8298b2a73eb2 | 3827 | break; |
mjr | 53:9b2611964afc | 3828 | |
mjr | 53:9b2611964afc | 3829 | case 10: |
mjr | 53:9b2611964afc | 3830 | // 10 = Build ID query. |
mjr | 53:9b2611964afc | 3831 | js.reportBuildInfo(getBuildID()); |
mjr | 53:9b2611964afc | 3832 | break; |
mjr | 38:091e511ce8a0 | 3833 | } |
mjr | 38:091e511ce8a0 | 3834 | } |
mjr | 38:091e511ce8a0 | 3835 | else if (data[0] == 66) |
mjr | 38:091e511ce8a0 | 3836 | { |
mjr | 38:091e511ce8a0 | 3837 | // Extended protocol - Set configuration variable. |
mjr | 38:091e511ce8a0 | 3838 | // The second byte of the message is the ID of the variable |
mjr | 38:091e511ce8a0 | 3839 | // to update, and the remaining bytes give the new value, |
mjr | 38:091e511ce8a0 | 3840 | // in a variable-dependent format. |
mjr | 40:cc0d9814522b | 3841 | configVarSet(data); |
mjr | 38:091e511ce8a0 | 3842 | } |
mjr | 38:091e511ce8a0 | 3843 | else if (data[0] >= 200 && data[0] <= 228) |
mjr | 38:091e511ce8a0 | 3844 | { |
mjr | 38:091e511ce8a0 | 3845 | // Extended protocol - Extended output port brightness update. |
mjr | 38:091e511ce8a0 | 3846 | // data[0]-200 gives us the bank of 7 outputs we're setting: |
mjr | 38:091e511ce8a0 | 3847 | // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc. |
mjr | 38:091e511ce8a0 | 3848 | // The remaining bytes are brightness levels, 0-255, for the |
mjr | 38:091e511ce8a0 | 3849 | // seven outputs in the selected bank. The LedWiz flashing |
mjr | 38:091e511ce8a0 | 3850 | // modes aren't accessible in this message type; we can only |
mjr | 38:091e511ce8a0 | 3851 | // set a fixed brightness, but in exchange we get 8-bit |
mjr | 38:091e511ce8a0 | 3852 | // resolution rather than the paltry 0-48 scale that the real |
mjr | 38:091e511ce8a0 | 3853 | // LedWiz uses. There's no separate on/off status for outputs |
mjr | 38:091e511ce8a0 | 3854 | // adjusted with this message type, either, as there would be |
mjr | 38:091e511ce8a0 | 3855 | // for a PBA message - setting a non-zero value immediately |
mjr | 38:091e511ce8a0 | 3856 | // turns the output, overriding the last SBA setting. |
mjr | 38:091e511ce8a0 | 3857 | // |
mjr | 38:091e511ce8a0 | 3858 | // For outputs 0-31, this overrides any previous PBA/SBA |
mjr | 38:091e511ce8a0 | 3859 | // settings for the port. Any subsequent PBA/SBA message will |
mjr | 38:091e511ce8a0 | 3860 | // in turn override the setting made here. It's simple - the |
mjr | 38:091e511ce8a0 | 3861 | // most recent message of either type takes precedence. For |
mjr | 38:091e511ce8a0 | 3862 | // outputs above the LedWiz range, PBA/SBA messages can't |
mjr | 38:091e511ce8a0 | 3863 | // address those ports anyway. |
mjr | 38:091e511ce8a0 | 3864 | int i0 = (data[0] - 200)*7; |
mjr | 38:091e511ce8a0 | 3865 | int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs; |
mjr | 38:091e511ce8a0 | 3866 | for (int i = i0 ; i < i1 ; ++i) |
mjr | 38:091e511ce8a0 | 3867 | { |
mjr | 38:091e511ce8a0 | 3868 | // set the brightness level for the output |
mjr | 40:cc0d9814522b | 3869 | uint8_t b = data[i-i0+1]; |
mjr | 38:091e511ce8a0 | 3870 | outLevel[i] = b; |
mjr | 38:091e511ce8a0 | 3871 | |
mjr | 38:091e511ce8a0 | 3872 | // if it's in the basic LedWiz output set, set the LedWiz |
mjr | 38:091e511ce8a0 | 3873 | // profile value to 255, which means "use outLevel" |
mjr | 38:091e511ce8a0 | 3874 | if (i < 32) |
mjr | 38:091e511ce8a0 | 3875 | wizVal[i] = 255; |
mjr | 38:091e511ce8a0 | 3876 | |
mjr | 38:091e511ce8a0 | 3877 | // set the output |
mjr | 40:cc0d9814522b | 3878 | lwPin[i]->set(b); |
mjr | 38:091e511ce8a0 | 3879 | } |
mjr | 38:091e511ce8a0 | 3880 | |
mjr | 38:091e511ce8a0 | 3881 | // update 74HC595 outputs, if attached |
mjr | 38:091e511ce8a0 | 3882 | if (hc595 != 0) |
mjr | 38:091e511ce8a0 | 3883 | hc595->update(); |
mjr | 38:091e511ce8a0 | 3884 | } |
mjr | 38:091e511ce8a0 | 3885 | else |
mjr | 38:091e511ce8a0 | 3886 | { |
mjr | 38:091e511ce8a0 | 3887 | // Everything else is LWZ-PBA. This is a full "profile" |
mjr | 38:091e511ce8a0 | 3888 | // dump from the host for one bank of 8 outputs. Each |
mjr | 38:091e511ce8a0 | 3889 | // byte sets one output in the current bank. The current |
mjr | 38:091e511ce8a0 | 3890 | // bank is implied; the bank starts at 0 and is reset to 0 |
mjr | 38:091e511ce8a0 | 3891 | // by any LWZ-SBA message, and is incremented to the next |
mjr | 38:091e511ce8a0 | 3892 | // bank by each LWZ-PBA message. Our variable pbaIdx keeps |
mjr | 38:091e511ce8a0 | 3893 | // track of our notion of the current bank. There's no direct |
mjr | 38:091e511ce8a0 | 3894 | // way for the host to select the bank; it just has to count |
mjr | 38:091e511ce8a0 | 3895 | // on us staying in sync. In practice, the host will always |
mjr | 38:091e511ce8a0 | 3896 | // send a full set of 4 PBA messages in a row to set all 32 |
mjr | 38:091e511ce8a0 | 3897 | // outputs. |
mjr | 38:091e511ce8a0 | 3898 | // |
mjr | 38:091e511ce8a0 | 3899 | // Note that a PBA implicitly overrides our extended profile |
mjr | 38:091e511ce8a0 | 3900 | // messages (message prefix 200-219), because this sets the |
mjr | 38:091e511ce8a0 | 3901 | // wizVal[] entry for each output, and that takes precedence |
mjr | 38:091e511ce8a0 | 3902 | // over the extended protocol settings. |
mjr | 38:091e511ce8a0 | 3903 | // |
mjr | 38:091e511ce8a0 | 3904 | //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n", |
mjr | 38:091e511ce8a0 | 3905 | // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); |
mjr | 38:091e511ce8a0 | 3906 | |
mjr | 38:091e511ce8a0 | 3907 | // Update all output profile settings |
mjr | 38:091e511ce8a0 | 3908 | for (int i = 0 ; i < 8 ; ++i) |
mjr | 38:091e511ce8a0 | 3909 | wizVal[pbaIdx + i] = data[i]; |
mjr | 38:091e511ce8a0 | 3910 | |
mjr | 38:091e511ce8a0 | 3911 | // Update the physical LED state if this is the last bank. |
mjr | 38:091e511ce8a0 | 3912 | // Note that hosts always send a full set of four PBA |
mjr | 38:091e511ce8a0 | 3913 | // messages, so there's no need to do a physical update |
mjr | 38:091e511ce8a0 | 3914 | // until we've received the last bank's PBA message. |
mjr | 38:091e511ce8a0 | 3915 | if (pbaIdx == 24) |
mjr | 38:091e511ce8a0 | 3916 | { |
mjr | 35:e959ffba78fd | 3917 | updateWizOuts(); |
mjr | 35:e959ffba78fd | 3918 | if (hc595 != 0) |
mjr | 35:e959ffba78fd | 3919 | hc595->update(); |
mjr | 35:e959ffba78fd | 3920 | pbaIdx = 0; |
mjr | 35:e959ffba78fd | 3921 | } |
mjr | 38:091e511ce8a0 | 3922 | else |
mjr | 38:091e511ce8a0 | 3923 | pbaIdx += 8; |
mjr | 38:091e511ce8a0 | 3924 | } |
mjr | 38:091e511ce8a0 | 3925 | } |
mjr | 35:e959ffba78fd | 3926 | |
mjr | 33:d832bcab089e | 3927 | |
mjr | 38:091e511ce8a0 | 3928 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 3929 | // |
mjr | 5:a70c0bce770d | 3930 | // Main program loop. This is invoked on startup and runs forever. Our |
mjr | 5:a70c0bce770d | 3931 | // main work is to read our devices (the accelerometer and the CCD), process |
mjr | 5:a70c0bce770d | 3932 | // the readings into nudge and plunger position data, and send the results |
mjr | 5:a70c0bce770d | 3933 | // to the host computer via the USB joystick interface. We also monitor |
mjr | 5:a70c0bce770d | 3934 | // the USB connection for incoming LedWiz commands and process those into |
mjr | 5:a70c0bce770d | 3935 | // port outputs. |
mjr | 5:a70c0bce770d | 3936 | // |
mjr | 0:5acbbe3f4cf4 | 3937 | int main(void) |
mjr | 0:5acbbe3f4cf4 | 3938 | { |
mjr | 39:b3815a1c3802 | 3939 | printf("\r\nPinscape Controller starting\r\n"); |
mjr | 39:b3815a1c3802 | 3940 | // memory config debugging: {int *a = new int; printf("Stack=%lx, heap=%lx, free=%ld\r\n", (long)&a, (long)a, (long)&a - (long)a);} |
mjr | 1:d913e0afb2ac | 3941 | |
mjr | 39:b3815a1c3802 | 3942 | // clear the I2C bus (for the accelerometer) |
mjr | 35:e959ffba78fd | 3943 | clear_i2c(); |
mjr | 38:091e511ce8a0 | 3944 | |
mjr | 43:7a6364d82a41 | 3945 | // load the saved configuration (or set factory defaults if no flash |
mjr | 43:7a6364d82a41 | 3946 | // configuration has ever been saved) |
mjr | 35:e959ffba78fd | 3947 | loadConfigFromFlash(); |
mjr | 35:e959ffba78fd | 3948 | |
mjr | 38:091e511ce8a0 | 3949 | // initialize the diagnostic LEDs |
mjr | 38:091e511ce8a0 | 3950 | initDiagLEDs(cfg); |
mjr | 38:091e511ce8a0 | 3951 | |
mjr | 33:d832bcab089e | 3952 | // we're not connected/awake yet |
mjr | 33:d832bcab089e | 3953 | bool connected = false; |
mjr | 40:cc0d9814522b | 3954 | Timer connectChangeTimer; |
mjr | 33:d832bcab089e | 3955 | |
mjr | 35:e959ffba78fd | 3956 | // create the plunger sensor interface |
mjr | 35:e959ffba78fd | 3957 | createPlunger(); |
mjr | 33:d832bcab089e | 3958 | |
mjr | 35:e959ffba78fd | 3959 | // set up the TLC5940 interface and start the TLC5940 clock, if applicable |
mjr | 35:e959ffba78fd | 3960 | init_tlc5940(cfg); |
mjr | 34:6b981a2afab7 | 3961 | |
mjr | 34:6b981a2afab7 | 3962 | // enable the 74HC595 chips, if present |
mjr | 35:e959ffba78fd | 3963 | init_hc595(cfg); |
mjr | 6:cc35eb643e8f | 3964 | |
mjr | 54:fd77a6b2f76c | 3965 | // Initialize the LedWiz ports. Note that the ordering here is important: |
mjr | 54:fd77a6b2f76c | 3966 | // this has to come after we create the TLC5940 and 74HC595 object instances |
mjr | 54:fd77a6b2f76c | 3967 | // (which we just did above), since we need to access those objects to set |
mjr | 54:fd77a6b2f76c | 3968 | // up ports assigned to the respective chips. |
mjr | 35:e959ffba78fd | 3969 | initLwOut(cfg); |
mjr | 48:058ace2aed1d | 3970 | |
mjr | 35:e959ffba78fd | 3971 | // start the TLC5940 clock |
mjr | 35:e959ffba78fd | 3972 | if (tlc5940 != 0) |
mjr | 35:e959ffba78fd | 3973 | tlc5940->start(); |
mjr | 35:e959ffba78fd | 3974 | |
mjr | 40:cc0d9814522b | 3975 | // start the TV timer, if applicable |
mjr | 40:cc0d9814522b | 3976 | startTVTimer(cfg); |
mjr | 48:058ace2aed1d | 3977 | |
mjr | 35:e959ffba78fd | 3978 | // initialize the button input ports |
mjr | 35:e959ffba78fd | 3979 | bool kbKeys = false; |
mjr | 35:e959ffba78fd | 3980 | initButtons(cfg, kbKeys); |
mjr | 38:091e511ce8a0 | 3981 | |
mjr | 6:cc35eb643e8f | 3982 | // Create the joystick USB client. Note that we use the LedWiz unit |
mjr | 6:cc35eb643e8f | 3983 | // number from the saved configuration. |
mjr | 51:57eb311faafa | 3984 | MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false, |
mjr | 51:57eb311faafa | 3985 | cfg.joystickEnabled, kbKeys); |
mjr | 51:57eb311faafa | 3986 | |
mjr | 51:57eb311faafa | 3987 | // Wait for the connection |
mjr | 51:57eb311faafa | 3988 | Timer connectTimer; |
mjr | 51:57eb311faafa | 3989 | connectTimer.start(); |
mjr | 51:57eb311faafa | 3990 | while (!js.configured()) |
mjr | 51:57eb311faafa | 3991 | { |
mjr | 51:57eb311faafa | 3992 | // show one short yellow flash at 2-second intervals |
mjr | 51:57eb311faafa | 3993 | if (connectTimer.read_us() > 2000000) |
mjr | 51:57eb311faafa | 3994 | { |
mjr | 51:57eb311faafa | 3995 | // short yellow flash |
mjr | 51:57eb311faafa | 3996 | diagLED(1, 1, 0); |
mjr | 54:fd77a6b2f76c | 3997 | wait_us(50000); |
mjr | 51:57eb311faafa | 3998 | diagLED(0, 0, 0); |
mjr | 51:57eb311faafa | 3999 | |
mjr | 51:57eb311faafa | 4000 | // reset the flash timer |
mjr | 51:57eb311faafa | 4001 | connectTimer.reset(); |
mjr | 51:57eb311faafa | 4002 | } |
mjr | 51:57eb311faafa | 4003 | } |
mjr | 54:fd77a6b2f76c | 4004 | connected = true; |
mjr | 40:cc0d9814522b | 4005 | |
mjr | 38:091e511ce8a0 | 4006 | // Last report timer for the joytick interface. We use the joystick timer |
mjr | 38:091e511ce8a0 | 4007 | // to throttle the report rate, because VP doesn't benefit from reports any |
mjr | 38:091e511ce8a0 | 4008 | // faster than about every 10ms. |
mjr | 38:091e511ce8a0 | 4009 | Timer jsReportTimer; |
mjr | 38:091e511ce8a0 | 4010 | jsReportTimer.start(); |
mjr | 38:091e511ce8a0 | 4011 | |
mjr | 38:091e511ce8a0 | 4012 | // Time since we successfully sent a USB report. This is a hacky workaround |
mjr | 38:091e511ce8a0 | 4013 | // for sporadic problems in the USB stack that I haven't been able to figure |
mjr | 38:091e511ce8a0 | 4014 | // out. If we go too long without successfully sending a USB report, we'll |
mjr | 38:091e511ce8a0 | 4015 | // try resetting the connection. |
mjr | 38:091e511ce8a0 | 4016 | Timer jsOKTimer; |
mjr | 38:091e511ce8a0 | 4017 | jsOKTimer.start(); |
mjr | 35:e959ffba78fd | 4018 | |
mjr | 55:4db125cd11a0 | 4019 | // Initialize the calibration button and lamp, if enabled. To be enabled, |
mjr | 55:4db125cd11a0 | 4020 | // the pin has to be assigned to something other than NC (0xFF), AND the |
mjr | 55:4db125cd11a0 | 4021 | // corresponding feature enable flag has to be set. |
mjr | 55:4db125cd11a0 | 4022 | DigitalIn *calBtn = 0; |
mjr | 55:4db125cd11a0 | 4023 | DigitalOut *calBtnLed = 0; |
mjr | 55:4db125cd11a0 | 4024 | |
mjr | 55:4db125cd11a0 | 4025 | // calibration button input - feature flag 0x01 |
mjr | 55:4db125cd11a0 | 4026 | if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF) |
mjr | 55:4db125cd11a0 | 4027 | calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn)); |
mjr | 55:4db125cd11a0 | 4028 | |
mjr | 55:4db125cd11a0 | 4029 | // calibration button indicator lamp output - feature flag 0x02 |
mjr | 55:4db125cd11a0 | 4030 | if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF) |
mjr | 55:4db125cd11a0 | 4031 | calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led)); |
mjr | 6:cc35eb643e8f | 4032 | |
mjr | 35:e959ffba78fd | 4033 | // initialize the calibration button |
mjr | 1:d913e0afb2ac | 4034 | calBtnTimer.start(); |
mjr | 35:e959ffba78fd | 4035 | calBtnState = 0; |
mjr | 1:d913e0afb2ac | 4036 | |
mjr | 1:d913e0afb2ac | 4037 | // set up a timer for our heartbeat indicator |
mjr | 1:d913e0afb2ac | 4038 | Timer hbTimer; |
mjr | 1:d913e0afb2ac | 4039 | hbTimer.start(); |
mjr | 1:d913e0afb2ac | 4040 | int hb = 0; |
mjr | 5:a70c0bce770d | 4041 | uint16_t hbcnt = 0; |
mjr | 1:d913e0afb2ac | 4042 | |
mjr | 1:d913e0afb2ac | 4043 | // set a timer for accelerometer auto-centering |
mjr | 1:d913e0afb2ac | 4044 | Timer acTimer; |
mjr | 1:d913e0afb2ac | 4045 | acTimer.start(); |
mjr | 1:d913e0afb2ac | 4046 | |
mjr | 0:5acbbe3f4cf4 | 4047 | // create the accelerometer object |
mjr | 5:a70c0bce770d | 4048 | Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN); |
mjr | 48:058ace2aed1d | 4049 | |
mjr | 17:ab3cec0c8bf4 | 4050 | // last accelerometer report, in joystick units (we report the nudge |
mjr | 17:ab3cec0c8bf4 | 4051 | // acceleration via the joystick x & y axes, per the VP convention) |
mjr | 17:ab3cec0c8bf4 | 4052 | int x = 0, y = 0; |
mjr | 17:ab3cec0c8bf4 | 4053 | |
mjr | 48:058ace2aed1d | 4054 | // initialize the plunger sensor |
mjr | 35:e959ffba78fd | 4055 | plungerSensor->init(); |
mjr | 10:976666ffa4ef | 4056 | |
mjr | 48:058ace2aed1d | 4057 | // set up the ZB Launch Ball monitor |
mjr | 48:058ace2aed1d | 4058 | ZBLaunchBall zbLaunchBall; |
mjr | 48:058ace2aed1d | 4059 | |
mjr | 54:fd77a6b2f76c | 4060 | // enable the peripheral chips |
mjr | 54:fd77a6b2f76c | 4061 | if (tlc5940 != 0) |
mjr | 54:fd77a6b2f76c | 4062 | tlc5940->enable(true); |
mjr | 54:fd77a6b2f76c | 4063 | if (hc595 != 0) |
mjr | 54:fd77a6b2f76c | 4064 | hc595->enable(true); |
mjr | 43:7a6364d82a41 | 4065 | |
mjr | 1:d913e0afb2ac | 4066 | // we're all set up - now just loop, processing sensor reports and |
mjr | 1:d913e0afb2ac | 4067 | // host requests |
mjr | 0:5acbbe3f4cf4 | 4068 | for (;;) |
mjr | 0:5acbbe3f4cf4 | 4069 | { |
mjr | 48:058ace2aed1d | 4070 | // Process incoming reports on the joystick interface. The joystick |
mjr | 48:058ace2aed1d | 4071 | // "out" (receive) endpoint is used for LedWiz commands and our |
mjr | 48:058ace2aed1d | 4072 | // extended protocol commands. Limit processing time to 5ms to |
mjr | 48:058ace2aed1d | 4073 | // ensure we don't starve the input side. |
mjr | 39:b3815a1c3802 | 4074 | LedWizMsg lwm; |
mjr | 48:058ace2aed1d | 4075 | Timer lwt; |
mjr | 48:058ace2aed1d | 4076 | lwt.start(); |
mjr | 48:058ace2aed1d | 4077 | while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000) |
mjr | 48:058ace2aed1d | 4078 | handleInputMsg(lwm, js); |
mjr | 55:4db125cd11a0 | 4079 | |
mjr | 55:4db125cd11a0 | 4080 | // send TLC5940 data updates if applicable |
mjr | 55:4db125cd11a0 | 4081 | if (tlc5940 != 0) |
mjr | 55:4db125cd11a0 | 4082 | tlc5940->send(); |
mjr | 1:d913e0afb2ac | 4083 | |
mjr | 1:d913e0afb2ac | 4084 | // check for plunger calibration |
mjr | 17:ab3cec0c8bf4 | 4085 | if (calBtn != 0 && !calBtn->read()) |
mjr | 0:5acbbe3f4cf4 | 4086 | { |
mjr | 1:d913e0afb2ac | 4087 | // check the state |
mjr | 1:d913e0afb2ac | 4088 | switch (calBtnState) |
mjr | 0:5acbbe3f4cf4 | 4089 | { |
mjr | 1:d913e0afb2ac | 4090 | case 0: |
mjr | 1:d913e0afb2ac | 4091 | // button not yet pushed - start debouncing |
mjr | 1:d913e0afb2ac | 4092 | calBtnTimer.reset(); |
mjr | 1:d913e0afb2ac | 4093 | calBtnState = 1; |
mjr | 1:d913e0afb2ac | 4094 | break; |
mjr | 1:d913e0afb2ac | 4095 | |
mjr | 1:d913e0afb2ac | 4096 | case 1: |
mjr | 1:d913e0afb2ac | 4097 | // pushed, not yet debounced - if the debounce time has |
mjr | 1:d913e0afb2ac | 4098 | // passed, start the hold period |
mjr | 48:058ace2aed1d | 4099 | if (calBtnTimer.read_us() > 50000) |
mjr | 1:d913e0afb2ac | 4100 | calBtnState = 2; |
mjr | 1:d913e0afb2ac | 4101 | break; |
mjr | 1:d913e0afb2ac | 4102 | |
mjr | 1:d913e0afb2ac | 4103 | case 2: |
mjr | 1:d913e0afb2ac | 4104 | // in the hold period - if the button has been held down |
mjr | 1:d913e0afb2ac | 4105 | // for the entire hold period, move to calibration mode |
mjr | 48:058ace2aed1d | 4106 | if (calBtnTimer.read_us() > 2050000) |
mjr | 1:d913e0afb2ac | 4107 | { |
mjr | 1:d913e0afb2ac | 4108 | // enter calibration mode |
mjr | 1:d913e0afb2ac | 4109 | calBtnState = 3; |
mjr | 9:fd65b0a94720 | 4110 | calBtnTimer.reset(); |
mjr | 35:e959ffba78fd | 4111 | |
mjr | 44:b5ac89b9cd5d | 4112 | // begin the plunger calibration limits |
mjr | 52:8298b2a73eb2 | 4113 | plungerReader.setCalMode(true); |
mjr | 1:d913e0afb2ac | 4114 | } |
mjr | 1:d913e0afb2ac | 4115 | break; |
mjr | 2:c174f9ee414a | 4116 | |
mjr | 2:c174f9ee414a | 4117 | case 3: |
mjr | 9:fd65b0a94720 | 4118 | // Already in calibration mode - pushing the button here |
mjr | 9:fd65b0a94720 | 4119 | // doesn't change the current state, but we won't leave this |
mjr | 9:fd65b0a94720 | 4120 | // state as long as it's held down. So nothing changes here. |
mjr | 2:c174f9ee414a | 4121 | break; |
mjr | 0:5acbbe3f4cf4 | 4122 | } |
mjr | 0:5acbbe3f4cf4 | 4123 | } |
mjr | 1:d913e0afb2ac | 4124 | else |
mjr | 1:d913e0afb2ac | 4125 | { |
mjr | 2:c174f9ee414a | 4126 | // Button released. If we're in calibration mode, and |
mjr | 2:c174f9ee414a | 4127 | // the calibration time has elapsed, end the calibration |
mjr | 2:c174f9ee414a | 4128 | // and save the results to flash. |
mjr | 2:c174f9ee414a | 4129 | // |
mjr | 2:c174f9ee414a | 4130 | // Otherwise, return to the base state without saving anything. |
mjr | 2:c174f9ee414a | 4131 | // If the button is released before we make it to calibration |
mjr | 2:c174f9ee414a | 4132 | // mode, it simply cancels the attempt. |
mjr | 48:058ace2aed1d | 4133 | if (calBtnState == 3 && calBtnTimer.read_us() > 15000000) |
mjr | 2:c174f9ee414a | 4134 | { |
mjr | 2:c174f9ee414a | 4135 | // exit calibration mode |
mjr | 1:d913e0afb2ac | 4136 | calBtnState = 0; |
mjr | 52:8298b2a73eb2 | 4137 | plungerReader.setCalMode(false); |
mjr | 2:c174f9ee414a | 4138 | |
mjr | 6:cc35eb643e8f | 4139 | // save the updated configuration |
mjr | 35:e959ffba78fd | 4140 | cfg.plunger.cal.calibrated = 1; |
mjr | 35:e959ffba78fd | 4141 | saveConfigToFlash(); |
mjr | 2:c174f9ee414a | 4142 | } |
mjr | 2:c174f9ee414a | 4143 | else if (calBtnState != 3) |
mjr | 2:c174f9ee414a | 4144 | { |
mjr | 2:c174f9ee414a | 4145 | // didn't make it to calibration mode - cancel the operation |
mjr | 1:d913e0afb2ac | 4146 | calBtnState = 0; |
mjr | 2:c174f9ee414a | 4147 | } |
mjr | 1:d913e0afb2ac | 4148 | } |
mjr | 1:d913e0afb2ac | 4149 | |
mjr | 1:d913e0afb2ac | 4150 | // light/flash the calibration button light, if applicable |
mjr | 1:d913e0afb2ac | 4151 | int newCalBtnLit = calBtnLit; |
mjr | 1:d913e0afb2ac | 4152 | switch (calBtnState) |
mjr | 0:5acbbe3f4cf4 | 4153 | { |
mjr | 1:d913e0afb2ac | 4154 | case 2: |
mjr | 1:d913e0afb2ac | 4155 | // in the hold period - flash the light |
mjr | 48:058ace2aed1d | 4156 | newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1); |
mjr | 1:d913e0afb2ac | 4157 | break; |
mjr | 1:d913e0afb2ac | 4158 | |
mjr | 1:d913e0afb2ac | 4159 | case 3: |
mjr | 1:d913e0afb2ac | 4160 | // calibration mode - show steady on |
mjr | 1:d913e0afb2ac | 4161 | newCalBtnLit = true; |
mjr | 1:d913e0afb2ac | 4162 | break; |
mjr | 1:d913e0afb2ac | 4163 | |
mjr | 1:d913e0afb2ac | 4164 | default: |
mjr | 1:d913e0afb2ac | 4165 | // not calibrating/holding - show steady off |
mjr | 1:d913e0afb2ac | 4166 | newCalBtnLit = false; |
mjr | 1:d913e0afb2ac | 4167 | break; |
mjr | 1:d913e0afb2ac | 4168 | } |
mjr | 3:3514575d4f86 | 4169 | |
mjr | 3:3514575d4f86 | 4170 | // light or flash the external calibration button LED, and |
mjr | 3:3514575d4f86 | 4171 | // do the same with the on-board blue LED |
mjr | 1:d913e0afb2ac | 4172 | if (calBtnLit != newCalBtnLit) |
mjr | 1:d913e0afb2ac | 4173 | { |
mjr | 1:d913e0afb2ac | 4174 | calBtnLit = newCalBtnLit; |
mjr | 2:c174f9ee414a | 4175 | if (calBtnLit) { |
mjr | 17:ab3cec0c8bf4 | 4176 | if (calBtnLed != 0) |
mjr | 17:ab3cec0c8bf4 | 4177 | calBtnLed->write(1); |
mjr | 38:091e511ce8a0 | 4178 | diagLED(0, 0, 1); // blue |
mjr | 2:c174f9ee414a | 4179 | } |
mjr | 2:c174f9ee414a | 4180 | else { |
mjr | 17:ab3cec0c8bf4 | 4181 | if (calBtnLed != 0) |
mjr | 17:ab3cec0c8bf4 | 4182 | calBtnLed->write(0); |
mjr | 38:091e511ce8a0 | 4183 | diagLED(0, 0, 0); // off |
mjr | 2:c174f9ee414a | 4184 | } |
mjr | 1:d913e0afb2ac | 4185 | } |
mjr | 35:e959ffba78fd | 4186 | |
mjr | 48:058ace2aed1d | 4187 | // read the plunger sensor |
mjr | 48:058ace2aed1d | 4188 | plungerReader.read(); |
mjr | 48:058ace2aed1d | 4189 | |
mjr | 53:9b2611964afc | 4190 | // update the ZB Launch Ball status |
mjr | 53:9b2611964afc | 4191 | zbLaunchBall.update(); |
mjr | 37:ed52738445fc | 4192 | |
mjr | 53:9b2611964afc | 4193 | // process button updates |
mjr | 53:9b2611964afc | 4194 | processButtons(cfg); |
mjr | 53:9b2611964afc | 4195 | |
mjr | 38:091e511ce8a0 | 4196 | // send a keyboard report if we have new data |
mjr | 37:ed52738445fc | 4197 | if (kbState.changed) |
mjr | 37:ed52738445fc | 4198 | { |
mjr | 38:091e511ce8a0 | 4199 | // send a keyboard report |
mjr | 37:ed52738445fc | 4200 | js.kbUpdate(kbState.data); |
mjr | 37:ed52738445fc | 4201 | kbState.changed = false; |
mjr | 37:ed52738445fc | 4202 | } |
mjr | 38:091e511ce8a0 | 4203 | |
mjr | 38:091e511ce8a0 | 4204 | // likewise for the media controller |
mjr | 37:ed52738445fc | 4205 | if (mediaState.changed) |
mjr | 37:ed52738445fc | 4206 | { |
mjr | 38:091e511ce8a0 | 4207 | // send a media report |
mjr | 37:ed52738445fc | 4208 | js.mediaUpdate(mediaState.data); |
mjr | 37:ed52738445fc | 4209 | mediaState.changed = false; |
mjr | 37:ed52738445fc | 4210 | } |
mjr | 38:091e511ce8a0 | 4211 | |
mjr | 38:091e511ce8a0 | 4212 | // flag: did we successfully send a joystick report on this round? |
mjr | 38:091e511ce8a0 | 4213 | bool jsOK = false; |
mjr | 55:4db125cd11a0 | 4214 | |
mjr | 55:4db125cd11a0 | 4215 | // figure the current status flags for joystick reports |
mjr | 55:4db125cd11a0 | 4216 | uint16_t statusFlags = |
mjr | 55:4db125cd11a0 | 4217 | (cfg.plunger.enabled ? 0x01 : 0x00) |
mjr | 55:4db125cd11a0 | 4218 | | (nightMode ? 0x02 : 0x00); |
mjr | 17:ab3cec0c8bf4 | 4219 | |
mjr | 50:40015764bbe6 | 4220 | // If it's been long enough since our last USB status report, send |
mjr | 50:40015764bbe6 | 4221 | // the new report. VP only polls for input in 10ms intervals, so |
mjr | 50:40015764bbe6 | 4222 | // there's no benefit in sending reports more frequently than this. |
mjr | 50:40015764bbe6 | 4223 | // More frequent reporting would only add USB I/O overhead. |
mjr | 50:40015764bbe6 | 4224 | if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL) |
mjr | 17:ab3cec0c8bf4 | 4225 | { |
mjr | 17:ab3cec0c8bf4 | 4226 | // read the accelerometer |
mjr | 17:ab3cec0c8bf4 | 4227 | int xa, ya; |
mjr | 17:ab3cec0c8bf4 | 4228 | accel.get(xa, ya); |
mjr | 17:ab3cec0c8bf4 | 4229 | |
mjr | 17:ab3cec0c8bf4 | 4230 | // confine the results to our joystick axis range |
mjr | 17:ab3cec0c8bf4 | 4231 | if (xa < -JOYMAX) xa = -JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 4232 | if (xa > JOYMAX) xa = JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 4233 | if (ya < -JOYMAX) ya = -JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 4234 | if (ya > JOYMAX) ya = JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 4235 | |
mjr | 17:ab3cec0c8bf4 | 4236 | // store the updated accelerometer coordinates |
mjr | 17:ab3cec0c8bf4 | 4237 | x = xa; |
mjr | 17:ab3cec0c8bf4 | 4238 | y = ya; |
mjr | 17:ab3cec0c8bf4 | 4239 | |
mjr | 48:058ace2aed1d | 4240 | // Report the current plunger position unless the plunger is |
mjr | 48:058ace2aed1d | 4241 | // disabled, or the ZB Launch Ball signal is on. In either of |
mjr | 48:058ace2aed1d | 4242 | // those cases, just report a constant 0 value. ZB Launch Ball |
mjr | 48:058ace2aed1d | 4243 | // temporarily disables mechanical plunger reporting because it |
mjr | 21:5048e16cc9ef | 4244 | // tells us that the table has a Launch Ball button instead of |
mjr | 48:058ace2aed1d | 4245 | // a traditional plunger, so we don't want to confuse VP with |
mjr | 48:058ace2aed1d | 4246 | // regular plunger inputs. |
mjr | 48:058ace2aed1d | 4247 | int z = plungerReader.getPosition(); |
mjr | 53:9b2611964afc | 4248 | int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z); |
mjr | 35:e959ffba78fd | 4249 | |
mjr | 35:e959ffba78fd | 4250 | // rotate X and Y according to the device orientation in the cabinet |
mjr | 35:e959ffba78fd | 4251 | accelRotate(x, y); |
mjr | 35:e959ffba78fd | 4252 | |
mjr | 35:e959ffba78fd | 4253 | // send the joystick report |
mjr | 53:9b2611964afc | 4254 | jsOK = js.update(x, y, zrep, jsButtons, statusFlags); |
mjr | 21:5048e16cc9ef | 4255 | |
mjr | 17:ab3cec0c8bf4 | 4256 | // we've just started a new report interval, so reset the timer |
mjr | 38:091e511ce8a0 | 4257 | jsReportTimer.reset(); |
mjr | 17:ab3cec0c8bf4 | 4258 | } |
mjr | 21:5048e16cc9ef | 4259 | |
mjr | 52:8298b2a73eb2 | 4260 | // If we're in sensor status mode, report all pixel exposure values |
mjr | 52:8298b2a73eb2 | 4261 | if (reportPlungerStat) |
mjr | 10:976666ffa4ef | 4262 | { |
mjr | 17:ab3cec0c8bf4 | 4263 | // send the report |
mjr | 53:9b2611964afc | 4264 | plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime); |
mjr | 17:ab3cec0c8bf4 | 4265 | |
mjr | 10:976666ffa4ef | 4266 | // we have satisfied this request |
mjr | 52:8298b2a73eb2 | 4267 | reportPlungerStat = false; |
mjr | 10:976666ffa4ef | 4268 | } |
mjr | 10:976666ffa4ef | 4269 | |
mjr | 35:e959ffba78fd | 4270 | // If joystick reports are turned off, send a generic status report |
mjr | 35:e959ffba78fd | 4271 | // periodically for the sake of the Windows config tool. |
mjr | 55:4db125cd11a0 | 4272 | if (!cfg.joystickEnabled && jsReportTimer.read_us() > 5000) |
mjr | 21:5048e16cc9ef | 4273 | { |
mjr | 55:4db125cd11a0 | 4274 | jsOK = js.updateStatus(statusFlags); |
mjr | 38:091e511ce8a0 | 4275 | jsReportTimer.reset(); |
mjr | 38:091e511ce8a0 | 4276 | } |
mjr | 38:091e511ce8a0 | 4277 | |
mjr | 38:091e511ce8a0 | 4278 | // if we successfully sent a joystick report, reset the watchdog timer |
mjr | 38:091e511ce8a0 | 4279 | if (jsOK) |
mjr | 38:091e511ce8a0 | 4280 | { |
mjr | 38:091e511ce8a0 | 4281 | jsOKTimer.reset(); |
mjr | 38:091e511ce8a0 | 4282 | jsOKTimer.start(); |
mjr | 21:5048e16cc9ef | 4283 | } |
mjr | 21:5048e16cc9ef | 4284 | |
mjr | 6:cc35eb643e8f | 4285 | #ifdef DEBUG_PRINTF |
mjr | 6:cc35eb643e8f | 4286 | if (x != 0 || y != 0) |
mjr | 6:cc35eb643e8f | 4287 | printf("%d,%d\r\n", x, y); |
mjr | 6:cc35eb643e8f | 4288 | #endif |
mjr | 6:cc35eb643e8f | 4289 | |
mjr | 33:d832bcab089e | 4290 | // check for connection status changes |
mjr | 54:fd77a6b2f76c | 4291 | bool newConnected = js.isConnected() && !js.isSleeping(); |
mjr | 33:d832bcab089e | 4292 | if (newConnected != connected) |
mjr | 33:d832bcab089e | 4293 | { |
mjr | 54:fd77a6b2f76c | 4294 | // give it a moment to stabilize |
mjr | 40:cc0d9814522b | 4295 | connectChangeTimer.start(); |
mjr | 55:4db125cd11a0 | 4296 | if (connectChangeTimer.read_us() > 1000000) |
mjr | 33:d832bcab089e | 4297 | { |
mjr | 33:d832bcab089e | 4298 | // note the new status |
mjr | 33:d832bcab089e | 4299 | connected = newConnected; |
mjr | 40:cc0d9814522b | 4300 | |
mjr | 40:cc0d9814522b | 4301 | // done with the change timer for this round - reset it for next time |
mjr | 40:cc0d9814522b | 4302 | connectChangeTimer.stop(); |
mjr | 40:cc0d9814522b | 4303 | connectChangeTimer.reset(); |
mjr | 33:d832bcab089e | 4304 | |
mjr | 54:fd77a6b2f76c | 4305 | // if we're newly disconnected, clean up for PC suspend mode or power off |
mjr | 54:fd77a6b2f76c | 4306 | if (!connected) |
mjr | 40:cc0d9814522b | 4307 | { |
mjr | 54:fd77a6b2f76c | 4308 | // turn off all outputs |
mjr | 33:d832bcab089e | 4309 | allOutputsOff(); |
mjr | 40:cc0d9814522b | 4310 | |
mjr | 40:cc0d9814522b | 4311 | // The KL25Z runs off of USB power, so we might (depending on the PC |
mjr | 40:cc0d9814522b | 4312 | // and OS configuration) continue to receive power even when the main |
mjr | 40:cc0d9814522b | 4313 | // PC power supply is turned off, such as in soft-off or suspend/sleep |
mjr | 40:cc0d9814522b | 4314 | // mode. Any external output controller chips (TLC5940, 74HC595) might |
mjr | 40:cc0d9814522b | 4315 | // be powered from the PC power supply directly rather than from our |
mjr | 40:cc0d9814522b | 4316 | // USB power, so they might be powered off even when we're still running. |
mjr | 40:cc0d9814522b | 4317 | // To ensure cleaner startup when the power comes back on, globally |
mjr | 40:cc0d9814522b | 4318 | // disable the outputs. The global disable signals come from GPIO lines |
mjr | 40:cc0d9814522b | 4319 | // that remain powered as long as the KL25Z is powered, so these modes |
mjr | 40:cc0d9814522b | 4320 | // will apply smoothly across power state transitions in the external |
mjr | 40:cc0d9814522b | 4321 | // hardware. That is, when the external chips are powered up, they'll |
mjr | 40:cc0d9814522b | 4322 | // see the global disable signals as stable voltage inputs immediately, |
mjr | 40:cc0d9814522b | 4323 | // which will cause them to suppress any output triggering. This ensures |
mjr | 40:cc0d9814522b | 4324 | // that we don't fire any solenoids or flash any lights spuriously when |
mjr | 40:cc0d9814522b | 4325 | // the power first comes on. |
mjr | 40:cc0d9814522b | 4326 | if (tlc5940 != 0) |
mjr | 40:cc0d9814522b | 4327 | tlc5940->enable(false); |
mjr | 40:cc0d9814522b | 4328 | if (hc595 != 0) |
mjr | 40:cc0d9814522b | 4329 | hc595->enable(false); |
mjr | 40:cc0d9814522b | 4330 | } |
mjr | 33:d832bcab089e | 4331 | } |
mjr | 33:d832bcab089e | 4332 | } |
mjr | 48:058ace2aed1d | 4333 | |
mjr | 53:9b2611964afc | 4334 | // if we have a reboot timer pending, check for completion |
mjr | 53:9b2611964afc | 4335 | if (rebootTimer.isRunning() && rebootTimer.read_us() > rebootTime_us) |
mjr | 53:9b2611964afc | 4336 | reboot(js); |
mjr | 53:9b2611964afc | 4337 | |
mjr | 48:058ace2aed1d | 4338 | // if we're disconnected, initiate a new connection |
mjr | 51:57eb311faafa | 4339 | if (!connected) |
mjr | 48:058ace2aed1d | 4340 | { |
mjr | 54:fd77a6b2f76c | 4341 | // show USB HAL debug events |
mjr | 54:fd77a6b2f76c | 4342 | extern void HAL_DEBUG_PRINTEVENTS(const char *prefix); |
mjr | 54:fd77a6b2f76c | 4343 | HAL_DEBUG_PRINTEVENTS(">DISC"); |
mjr | 54:fd77a6b2f76c | 4344 | |
mjr | 54:fd77a6b2f76c | 4345 | // show immediate diagnostic feedback |
mjr | 54:fd77a6b2f76c | 4346 | js.diagFlash(); |
mjr | 54:fd77a6b2f76c | 4347 | |
mjr | 54:fd77a6b2f76c | 4348 | // clear any previous diagnostic LED display |
mjr | 54:fd77a6b2f76c | 4349 | diagLED(0, 0, 0); |
mjr | 51:57eb311faafa | 4350 | |
mjr | 51:57eb311faafa | 4351 | // set up a timer to monitor the reboot timeout |
mjr | 51:57eb311faafa | 4352 | Timer rebootTimer; |
mjr | 51:57eb311faafa | 4353 | rebootTimer.start(); |
mjr | 48:058ace2aed1d | 4354 | |
mjr | 54:fd77a6b2f76c | 4355 | // set up a timer for diagnostic displays |
mjr | 54:fd77a6b2f76c | 4356 | Timer diagTimer; |
mjr | 54:fd77a6b2f76c | 4357 | diagTimer.reset(); |
mjr | 54:fd77a6b2f76c | 4358 | diagTimer.start(); |
mjr | 54:fd77a6b2f76c | 4359 | |
mjr | 54:fd77a6b2f76c | 4360 | // loop until we get our connection back |
mjr | 54:fd77a6b2f76c | 4361 | while (!js.isConnected() || js.isSleeping()) |
mjr | 51:57eb311faafa | 4362 | { |
mjr | 54:fd77a6b2f76c | 4363 | // try to recover the connection |
mjr | 54:fd77a6b2f76c | 4364 | js.recoverConnection(); |
mjr | 54:fd77a6b2f76c | 4365 | |
mjr | 55:4db125cd11a0 | 4366 | // send TLC5940 data if necessary |
mjr | 55:4db125cd11a0 | 4367 | if (tlc5940 != 0) |
mjr | 55:4db125cd11a0 | 4368 | tlc5940->send(); |
mjr | 55:4db125cd11a0 | 4369 | |
mjr | 54:fd77a6b2f76c | 4370 | // show a diagnostic flash every couple of seconds |
mjr | 54:fd77a6b2f76c | 4371 | if (diagTimer.read_us() > 2000000) |
mjr | 51:57eb311faafa | 4372 | { |
mjr | 54:fd77a6b2f76c | 4373 | // flush the USB HAL debug events, if in debug mode |
mjr | 54:fd77a6b2f76c | 4374 | HAL_DEBUG_PRINTEVENTS(">NC"); |
mjr | 54:fd77a6b2f76c | 4375 | |
mjr | 54:fd77a6b2f76c | 4376 | // show diagnostic feedback |
mjr | 54:fd77a6b2f76c | 4377 | js.diagFlash(); |
mjr | 51:57eb311faafa | 4378 | |
mjr | 51:57eb311faafa | 4379 | // reset the flash timer |
mjr | 54:fd77a6b2f76c | 4380 | diagTimer.reset(); |
mjr | 51:57eb311faafa | 4381 | } |
mjr | 51:57eb311faafa | 4382 | |
mjr | 51:57eb311faafa | 4383 | // if the disconnect reboot timeout has expired, reboot |
mjr | 51:57eb311faafa | 4384 | if (cfg.disconnectRebootTimeout != 0 |
mjr | 51:57eb311faafa | 4385 | && rebootTimer.read() > cfg.disconnectRebootTimeout) |
mjr | 54:fd77a6b2f76c | 4386 | reboot(js, false, 0); |
mjr | 54:fd77a6b2f76c | 4387 | } |
mjr | 54:fd77a6b2f76c | 4388 | |
mjr | 54:fd77a6b2f76c | 4389 | // if we made it out of that loop alive, we're connected again! |
mjr | 54:fd77a6b2f76c | 4390 | connected = true; |
mjr | 54:fd77a6b2f76c | 4391 | HAL_DEBUG_PRINTEVENTS(">C"); |
mjr | 54:fd77a6b2f76c | 4392 | |
mjr | 54:fd77a6b2f76c | 4393 | // Enable peripheral chips and update them with current output data |
mjr | 54:fd77a6b2f76c | 4394 | if (tlc5940 != 0) |
mjr | 54:fd77a6b2f76c | 4395 | { |
mjr | 55:4db125cd11a0 | 4396 | tlc5940->enable(true); |
mjr | 54:fd77a6b2f76c | 4397 | tlc5940->update(true); |
mjr | 54:fd77a6b2f76c | 4398 | } |
mjr | 54:fd77a6b2f76c | 4399 | if (hc595 != 0) |
mjr | 54:fd77a6b2f76c | 4400 | { |
mjr | 55:4db125cd11a0 | 4401 | hc595->enable(true); |
mjr | 54:fd77a6b2f76c | 4402 | hc595->update(true); |
mjr | 51:57eb311faafa | 4403 | } |
mjr | 48:058ace2aed1d | 4404 | } |
mjr | 43:7a6364d82a41 | 4405 | |
mjr | 6:cc35eb643e8f | 4406 | // provide a visual status indication on the on-board LED |
mjr | 48:058ace2aed1d | 4407 | if (calBtnState < 2 && hbTimer.read_us() > 1000000) |
mjr | 1:d913e0afb2ac | 4408 | { |
mjr | 54:fd77a6b2f76c | 4409 | if (jsOKTimer.read_us() > 1000000) |
mjr | 38:091e511ce8a0 | 4410 | { |
mjr | 39:b3815a1c3802 | 4411 | // USB freeze - show red/yellow. |
mjr | 40:cc0d9814522b | 4412 | // |
mjr | 54:fd77a6b2f76c | 4413 | // It's been more than a second since we successfully sent a joystick |
mjr | 54:fd77a6b2f76c | 4414 | // update message. This must mean that something's wrong on the USB |
mjr | 54:fd77a6b2f76c | 4415 | // connection, even though we haven't detected an outright disconnect. |
mjr | 54:fd77a6b2f76c | 4416 | // Show a distinctive diagnostic LED pattern when this occurs. |
mjr | 38:091e511ce8a0 | 4417 | hb = !hb; |
mjr | 38:091e511ce8a0 | 4418 | diagLED(1, hb, 0); |
mjr | 54:fd77a6b2f76c | 4419 | |
mjr | 54:fd77a6b2f76c | 4420 | // If the reboot-on-disconnect option is in effect, treat this condition |
mjr | 54:fd77a6b2f76c | 4421 | // as equivalent to a disconnect, since something is obviously wrong |
mjr | 54:fd77a6b2f76c | 4422 | // with the USB connection. |
mjr | 54:fd77a6b2f76c | 4423 | if (cfg.disconnectRebootTimeout != 0) |
mjr | 54:fd77a6b2f76c | 4424 | { |
mjr | 54:fd77a6b2f76c | 4425 | // The reboot timeout is in effect. If we've been incommunicado for |
mjr | 54:fd77a6b2f76c | 4426 | // longer than the timeout, reboot. If we haven't reached the time |
mjr | 54:fd77a6b2f76c | 4427 | // limit, keep running for now, and leave the OK timer running so |
mjr | 54:fd77a6b2f76c | 4428 | // that we can continue to monitor this. |
mjr | 54:fd77a6b2f76c | 4429 | if (jsOKTimer.read() > cfg.disconnectRebootTimeout) |
mjr | 54:fd77a6b2f76c | 4430 | reboot(js, false, 0); |
mjr | 54:fd77a6b2f76c | 4431 | } |
mjr | 54:fd77a6b2f76c | 4432 | else |
mjr | 54:fd77a6b2f76c | 4433 | { |
mjr | 54:fd77a6b2f76c | 4434 | // There's no reboot timer, so just keep running with the diagnostic |
mjr | 54:fd77a6b2f76c | 4435 | // pattern displayed. Since we're not waiting for any other timed |
mjr | 54:fd77a6b2f76c | 4436 | // conditions in this state, stop the timer so that it doesn't |
mjr | 54:fd77a6b2f76c | 4437 | // overflow if this condition persists for a long time. |
mjr | 54:fd77a6b2f76c | 4438 | jsOKTimer.stop(); |
mjr | 54:fd77a6b2f76c | 4439 | } |
mjr | 38:091e511ce8a0 | 4440 | } |
mjr | 35:e959ffba78fd | 4441 | else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated) |
mjr | 6:cc35eb643e8f | 4442 | { |
mjr | 6:cc35eb643e8f | 4443 | // connected, plunger calibration needed - flash yellow/green |
mjr | 6:cc35eb643e8f | 4444 | hb = !hb; |
mjr | 38:091e511ce8a0 | 4445 | diagLED(hb, 1, 0); |
mjr | 6:cc35eb643e8f | 4446 | } |
mjr | 6:cc35eb643e8f | 4447 | else |
mjr | 6:cc35eb643e8f | 4448 | { |
mjr | 6:cc35eb643e8f | 4449 | // connected - flash blue/green |
mjr | 2:c174f9ee414a | 4450 | hb = !hb; |
mjr | 38:091e511ce8a0 | 4451 | diagLED(0, hb, !hb); |
mjr | 2:c174f9ee414a | 4452 | } |
mjr | 1:d913e0afb2ac | 4453 | |
mjr | 1:d913e0afb2ac | 4454 | // reset the heartbeat timer |
mjr | 1:d913e0afb2ac | 4455 | hbTimer.reset(); |
mjr | 5:a70c0bce770d | 4456 | ++hbcnt; |
mjr | 1:d913e0afb2ac | 4457 | } |
mjr | 1:d913e0afb2ac | 4458 | } |
mjr | 0:5acbbe3f4cf4 | 4459 | } |