Prototyp V2

Dependencies:   PM2_Libary

Committer:
lupomic
Date:
Wed May 04 09:24:35 2022 +0200
Branch:
lupo2
Revision:
96:06f43e78d121
Parent:
88:cb8a18fc0391
Parent:
85:fbcc3d8e945a
merge

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pmic 1:93d997d6b232 1 #include "mbed.h"
pmic 17:c19b471f05cb 2 #include "PM2_Libary.h"
lupomic 33:70ea029a69e8 3 #include <cstdint>
raomen 41:4a4978d1a578 4 #include <cstdio>
raomen 39:025d1bee1397 5 #include "math.h"
raomen 39:025d1bee1397 6 //*******************************************************************************************************************************************************************
raomen 39:025d1bee1397 7 // Defined Variables in mm coming from Hardware-team. Need to be updated
raomen 55:8cb262e56efb 8 const float wheel_diameter = 30; // diameter of wheel with caterpillar to calculate mm per wheel turn (4)
raomen 55:8cb262e56efb 9 const float arm_length = 118.5; // lenght of arm from pivotpoint to pivotpoint (3)
raomen 55:8cb262e56efb 10 const float dist_arm_attach_distsensor = 20; // distance between pivot point arm on body to start distancesensor on top in horizontal (6)
raomen 55:8cb262e56efb 11 const float dist_distsensors = 200; // distance between the two distancesensors on top of Wall-E (9)
raomen 55:8cb262e56efb 12 const float dist_arm_ground = 51; // distance between pivotpoint arm and ground (5)
raomen 85:fbcc3d8e945a 13 const float dist_arm_attach_OK_griparea = 10.5 ; // Height of Grappler cutout to grapple Stair (8) (maybe add 1mm so gripper is a bit over the plate)
raomen 85:fbcc3d8e945a 14 const float dist_grappleratt_grappler_uk = 36.5; // distance between pivotpoint Grappler and bottom edge (?)
raomen 41:4a4978d1a578 15
raomen 55:8cb262e56efb 16 const float height_stairs = 100; // height to top of next stairstep in mm
raomen 39:025d1bee1397 17 //***********************************************************************************************************************************************************
raomen 41:4a4978d1a578 18 // declaration of Input - Output pins
pmic 17:c19b471f05cb 19
pmic 24:86f1a63e35a0 20 // user button on nucleo board
pmic 24:86f1a63e35a0 21 Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
pmic 24:86f1a63e35a0 22 InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
pmic 24:86f1a63e35a0 23 void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
pmic 24:86f1a63e35a0 24 void user_button_released_fcn();
pmic 6:e1fa1a2d7483 25
pmic 24:86f1a63e35a0 26 // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
lupomic 70:da5754e1514c 27 // define variable to store measurement from infrared distancesensor in mm
lupomic 86:56b35f01e4d4 28 float ir_distance_mm_L;
lupomic 86:56b35f01e4d4 29 float ir_distance_mm_R;
lupomic 86:56b35f01e4d4 30 float ir_distance_mm_Lookdown_B;
lupomic 86:56b35f01e4d4 31 float ir_distance_mm_Lookdown_F;
lupomic 70:da5754e1514c 32
lupomic 70:da5754e1514c 33 AnalogIn ir_analog_in_Distance_L(PC_2);
lupomic 70:da5754e1514c 34 AnalogIn ir_analog_in_Distance_R(PC_3);
lupomic 70:da5754e1514c 35 AnalogIn ir_analog_in_Lookdown_B(PC_5);
lupomic 70:da5754e1514c 36 AnalogIn ir_analog_in_Lookdown_F(PB_1);
lupomic 70:da5754e1514c 37 // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
pmic 6:e1fa1a2d7483 38
pmic 24:86f1a63e35a0 39 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
pmic 24:86f1a63e35a0 40 DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors
pmic 24:86f1a63e35a0 41 float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors
raomen 48:0ab6b1fd455f 42
lupomic 33:70ea029a69e8 43 //motor pin declaration
raomen 46:eba2263eb626 44 FastPWM pwm_M_right (PB_13); //motor pin decalaration for wheels right side
raomen 46:eba2263eb626 45 FastPWM pwm_M_left (PA_9); //motor pin decalaration for wheels left side
raomen 46:eba2263eb626 46 FastPWM pwm_M_arm (PA_10); //motor pin decalaration for arm
pmic 17:c19b471f05cb 47
lupomic 33:70ea029a69e8 48 //Encoder pin declaration
raomen 46:eba2263eb626 49 EncoderCounter encoder_M_right (PA_6, PC_7); //encoder pin decalaration for wheels right side
raomen 46:eba2263eb626 50 EncoderCounter encoder_M_left (PB_6, PB_7); //encoder pin decalaration for wheels left side
raomen 46:eba2263eb626 51 EncoderCounter encoder_M_arm (PA_0, PA_1); //encoder pin decalaration for arm
raomen 41:4a4978d1a578 52 //***********************************************************************************************************************************************************
raomen 43:7964411b4a6b 53 // Hardware controll Setup and functions (motors and sensors)
pmic 17:c19b471f05cb 54
pmic 30:1e8295770bc1 55 // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
raomen 55:8cb262e56efb 56 const float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
raomen 55:8cb262e56efb 57 const float counts_per_turn_wheels = 20.0f * 78.125f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels
raomen 59:f6c3e42f16c7 58 const float counts_per_turn_arm = 20.0f * 78.125f * 20.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm
raomen 55:8cb262e56efb 59 const float kn = 180.0f / 12.0f; // define motor constant in rpm per V
raomen 55:8cb262e56efb 60 const float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 (DC with 100:1 has 2'000 turns for 360°)
raomen 55:8cb262e56efb 61 const float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1
raomen 46:eba2263eb626 62
lupomic 33:70ea029a69e8 63 //motors for tracks
lupomic 33:70ea029a69e8 64 PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
lupomic 33:70ea029a69e8 65 PositionController positionController_M_left(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_left, encoder_M_left); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
lupomic 33:70ea029a69e8 66 //Arm Motor
lupomic 33:70ea029a69e8 67 PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
pmic 17:c19b471f05cb 68
lupomic 33:70ea029a69e8 69 // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
lupomic 33:70ea029a69e8 70 //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
raomen 41:4a4978d1a578 71 //***********************************************************************************************************************************************************
raomen 80:4eae727a13b5 72 // calculations for basic movment and controll
raomen 41:4a4978d1a578 73
raomen 50:058dc65d0fa4 74 //placeholder variables for prototype testing
lupomic 71:e740ef7c7813 75
raomen 84:40d64e0bb1ea 76 const int drive_straight_mm = 200; // placeholder for testing drives amount forward
raomen 84:40d64e0bb1ea 77 const int drive_back_mm = -200; // placeholder for testing drives amount backwards
raomen 65:1ee1f319a199 78 int ToNextFunction = 0; // current state of the system (which function is beeing executed)
lupomic 70:da5754e1514c 79 int state=0;
raomen 81:909670edc2a2 80 // definition variables for calculations
raomen 55:8cb262e56efb 81 const float pi = 2 * acos(0.0); // definiton of pi
raomen 85:fbcc3d8e945a 82 const float end_pos_lift_deg = 180 + asin((dist_arm_ground-(dist_grappleratt_grappler_uk))/arm_length) * 180 / pi; // calculates the degree which the arm has to have when lift_up has been executed.
raomen 81:909670edc2a2 83 const float start_deg_arm = -asin((dist_arm_ground - dist_grappleratt_grappler_uk) / arm_length) * 180.0/pi ; //calculates the starting degree of the arm (gripper has to touch ground in frotn of Wall-E)
raomen 81:909670edc2a2 84
raomen 81:909670edc2a2 85 // definition of rotation speeds for motors 0 = none 1.0 = max.
raomen 66:b4e55e1eebfc 86 const float max_speed_rps_wheel = 0.5f; // define maximum speed that the position controller is changig the speed for the wheels, has to be smaller or equal to kn * max_voltage
raomen 55:8cb262e56efb 87 const float max_speed_rps_arm = 0.3f; // define maximum speed that the position controller is changig the speed for the arm, has to be smaller or equal to kn * max_voltage
raomen 65:1ee1f319a199 88
raomen 46:eba2263eb626 89 // calculates the deg which the arm has to take to reach a certain height (the input height has to be the height of OK Gripper area)
raomen 74:d7569d530f6c 90 // PARAM: height_mm = height which OK Gripperarea has to reach.
raomen 74:d7569d530f6c 91 // RETURN: deg_arm = absolut Position in deg that the arm has to take.
raomen 65:1ee1f319a199 92 float calc_arm_deg_for_height(int height_mm)
raomen 40:e32c57763d92 93 {
raomen 85:fbcc3d8e945a 94 float height_arm = height_mm - (dist_arm_ground - dist_arm_attach_OK_griparea); // calculates the height which only the arm has to cover (- attachement height (arm to robot) etc.)
raomen 81:909670edc2a2 95 float deg_arm = asin(height_arm / arm_length) * 180.0/pi; // calculates the absolute degrees which the arm has to reach
raomen 51:7d165baaa646 96 return deg_arm;
raomen 40:e32c57763d92 97 }
raomen 38:c2663f7dcccb 98
raomen 46:eba2263eb626 99 //calculates the deg which the wheels have to turn in order to cover specified distance in mm
raomen 85:fbcc3d8e945a 100 //PARAM: distance = distance to drive in milimeter
raomen 60:b2e9958f2298 101 //RETURN: deg_wheel = degree which the motor has to turn in order to cover distance(mm)
raomen 85:fbcc3d8e945a 102 float wheel_dist_to_deg(int distance)
raomen 45:8050724fe19b 103 {
raomen 85:fbcc3d8e945a 104 float deg_wheel = distance / (wheel_diameter * pi) * 360;
raomen 45:8050724fe19b 105 return deg_wheel;
raomen 45:8050724fe19b 106 }
raomen 45:8050724fe19b 107
lupomic 96:06f43e78d121 108
raomen 58:3cd93949a7d7 109 // increments the Motor for defined degree from the current one
raomen 58:3cd93949a7d7 110 // PARAM: deg_to_turn = degree to turn the Motor
raomen 80:4eae727a13b5 111 // PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation())
raomen 80:4eae727a13b5 112 // RETURN: new_turn_rotation = new Rotation value in rotations
raomen 80:4eae727a13b5 113 float turn_relative_deg(float deg_to_turn, float current_rotation)
raomen 57:79732e5818d7 114 {
raomen 80:4eae727a13b5 115 float new_turn_rotation = current_rotation + deg_to_turn/360.0;
raomen 57:79732e5818d7 116 return new_turn_rotation;
raomen 57:79732e5818d7 117 }
raomen 57:79732e5818d7 118
raomen 80:4eae727a13b5 119 // sets the Motor to a specified degree in one rotation
raomen 80:4eae727a13b5 120 // PARAM: end_deg = new position of the arm in degree 0 <= value >=360
raomen 80:4eae727a13b5 121 // PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation())
raomen 80:4eae727a13b5 122 // RETURN: new_partial_rotation = new deg value in rotations
raomen 80:4eae727a13b5 123 float turn_absolut_deg(float end_deg, float current_rotations)
raomen 80:4eae727a13b5 124 {
raomen 80:4eae727a13b5 125 int full_rotations;
raomen 80:4eae727a13b5 126 if(current_rotations > 0)
raomen 80:4eae727a13b5 127 {
raomen 80:4eae727a13b5 128 full_rotations = round(current_rotations - 0.5);
raomen 80:4eae727a13b5 129 }
raomen 80:4eae727a13b5 130 else if(current_rotations < 0)
raomen 80:4eae727a13b5 131 {
raomen 80:4eae727a13b5 132 full_rotations = round(current_rotations + 0.5);
raomen 80:4eae727a13b5 133 }
raomen 80:4eae727a13b5 134 else
raomen 80:4eae727a13b5 135 {
raomen 80:4eae727a13b5 136 full_rotations = 0;
raomen 80:4eae727a13b5 137 }
raomen 80:4eae727a13b5 138 float new_partial_rotation = full_rotations - start_deg_arm/360 + end_deg/360;
raomen 80:4eae727a13b5 139 return new_partial_rotation;
raomen 80:4eae727a13b5 140 }
lupomic 96:06f43e78d121 141
raomen 67:3debc9a3cca5 142 //calculates position of arm when lift up has ended.
raomen 67:3debc9a3cca5 143 //RETURN: end_deg = degree which the motor has to turn in order to reach end lift position.
raomen 66:b4e55e1eebfc 144 float calc_pos_end_lift()
raomen 66:b4e55e1eebfc 145 {
raomen 66:b4e55e1eebfc 146 float end_deg;
lupomic 96:06f43e78d121 147 end_deg = asin((dist_arm_ground-(dist_grappleratt_grappler_uk-dist_grappleratt_grappler_uk))/arm_length) + start_deg_arm;
raomen 68:e3fc5ed0bc0e 148 end_deg = end_deg * 180 / pi;
raomen 66:b4e55e1eebfc 149 return end_deg;
raomen 66:b4e55e1eebfc 150 }
raomen 66:b4e55e1eebfc 151
raomen 80:4eae727a13b5 152 //***********************************************************************************************************************************************************
raomen 83:8cf96ccfac98 153 // important calculatet constant for Wall-E
raomen 81:909670edc2a2 154 const double deg_up_from_horizon_to_stair = calc_arm_deg_for_height(height_stairs);
raomen 80:4eae727a13b5 155
raomen 80:4eae727a13b5 156 // import functions from file mapping
raomen 80:4eae727a13b5 157 extern double powerx(double base, double pow2);
raomen 80:4eae727a13b5 158 extern double mapping (float adc_value_mV);
raomen 75:3831b90a4ae0 159
lupomic 88:cb8a18fc0391 160 //
raomen 75:3831b90a4ae0 161 //simple check if there is an object in proximity
raomen 75:3831b90a4ae0 162 //returns 0 if there is NO object present
raomen 75:3831b90a4ae0 163 //returns 1 if there is an object present
raomen 75:3831b90a4ae0 164 //returns 2 if the distance isn't in the expected range
lupomic 70:da5754e1514c 165
lupomic 70:da5754e1514c 166 uint8_t StepDetection(double distance){
lupomic 70:da5754e1514c 167 double d_valueMM = distance;
lupomic 71:e740ef7c7813 168 if(d_valueMM >= 4) return 0;
lupomic 70:da5754e1514c 169 if(d_valueMM < 4) return 1;
lupomic 71:e740ef7c7813 170 if(d_valueMM <= 0 || d_valueMM > 100 ) return 2;
lupomic 71:e740ef7c7813 171 else return 2;
lupomic 71:e740ef7c7813 172
lupomic 70:da5754e1514c 173 }
lupomic 96:06f43e78d121 174 //simple check if there is an object in proximity
lupomic 96:06f43e78d121 175 //returns 0 if there is NO object present
lupomic 96:06f43e78d121 176 //returns 1 if there is an object present
lupomic 96:06f43e78d121 177 //returns 2 if the distance isn't in the expected range
lupomic 96:06f43e78d121 178 uint8_t StepDetection_down(float sensor)
lupomic 96:06f43e78d121 179
raomen 80:4eae727a13b5 180 {
lupomic 96:06f43e78d121 181 double d_valueMM = mapping(sensor*1.0e3f*3.3f);
raomen 79:368cbf09cf6a 182 if(d_valueMM >= 4) return 0;
raomen 79:368cbf09cf6a 183 else if(d_valueMM < 4) return 1;
raomen 79:368cbf09cf6a 184 else if(d_valueMM <= 0 || d_valueMM > 100 ) return 2;
raomen 79:368cbf09cf6a 185 else return 2;
raomen 75:3831b90a4ae0 186 }
raomen 58:3cd93949a7d7 187
raomen 46:eba2263eb626 188 // bring arm in starting position. Height of stairs.
lupomic 96:06f43e78d121 189 int set_arm_stair_height()
lupomic 96:06f43e78d121 190
raomen 42:6e7ab1136354 191 {
raomen 81:909670edc2a2 192 float deg = deg_up_from_horizon_to_stair + start_deg_arm;
lupomic 96:06f43e78d121 193 float diff;
lupomic 96:06f43e78d121 194 double deg_up_from_horizon = calc_arm_deg_for_height(height_stairs); //deg which arm motor has to turn to in order to grab stair. starting from horizontal position
raomen 45:8050724fe19b 195 positionController_M_Arm.setDesiredRotation(deg / 360.0, max_speed_rps_arm); // command to turn motor to desired deg.
lupomic 96:06f43e78d121 196 diff = deg-(positionController_M_Arm.getRotation() * 360.0);
lupomic 96:06f43e78d121 197 if (diff<=0.3){
lupomic 96:06f43e78d121 198 return 1;
lupomic 96:06f43e78d121 199 }
lupomic 96:06f43e78d121 200 else {
lupomic 96:06f43e78d121 201 return NULL;}
raomen 42:6e7ab1136354 202 }
raomen 42:6e7ab1136354 203
raomen 55:8cb262e56efb 204 //Drives forward into the next step
raomen 55:8cb262e56efb 205 //Prameter:distance in milimeter
lupomic 96:06f43e78d121 206 int drive_straight(float distance)
raomen 40:e32c57763d92 207 {
lupomic 96:06f43e78d121 208 float diff_R;
lupomic 96:06f43e78d121 209 float diff_L;
raomen 46:eba2263eb626 210 float deg_to_turn = wheel_dist_to_deg(distance);
raomen 60:b2e9958f2298 211 float relativ_turns_rightmotor = turn_relative_deg(deg_to_turn, positionController_M_right.getRotation());
raomen 60:b2e9958f2298 212 float relativ_turns_leftmotor = turn_relative_deg(deg_to_turn, positionController_M_left.getRotation());
raomen 66:b4e55e1eebfc 213
lupomic 96:06f43e78d121 214
raomen 60:b2e9958f2298 215 positionController_M_right.setDesiredRotation(relativ_turns_rightmotor, max_speed_rps_wheel);
raomen 64:72b9efe62ece 216 positionController_M_left.setDesiredRotation(relativ_turns_leftmotor, max_speed_rps_wheel);
lupomic 96:06f43e78d121 217
lupomic 96:06f43e78d121 218
lupomic 96:06f43e78d121 219 diff_R= relativ_turns_rightmotor-positionController_M_right.getRotation();
lupomic 96:06f43e78d121 220 diff_L= relativ_turns_leftmotor-positionController_M_left.getRotation();
lupomic 96:06f43e78d121 221 if ((diff_R<=0.3) && (diff_L<=0.3))
lupomic 96:06f43e78d121 222 {
lupomic 96:06f43e78d121 223 return 1;
lupomic 96:06f43e78d121 224 }
lupomic 96:06f43e78d121 225 else
lupomic 96:06f43e78d121 226 {
lupomic 96:06f43e78d121 227 return 0;
lupomic 96:06f43e78d121 228 }
lupomic 33:70ea029a69e8 229 }
lupomic 33:70ea029a69e8 230
raomen 74:d7569d530f6c 231 //turns the arm until the robot is on the next step
lupomic 96:06f43e78d121 232 int lift_up()
raomen 40:e32c57763d92 233 {
lupomic 96:06f43e78d121 234 float diff;
raomen 81:909670edc2a2 235 float absolut_pos_arm = turn_absolut_deg(end_pos_lift_deg, positionController_M_Arm.getRotation()-1);
lupomic 96:06f43e78d121 236 float position_lift_end_deg = asin((-dist_arm_ground - (dist_grappleratt_grappler_uk-dist_arm_attach_OK_griparea)) / arm_length) - 90; // calculates the degree which has to be reached in order to get on top of next step
lupomic 96:06f43e78d121 237 float relativ_turns_arm = turn_absolut_deg(position_lift_end_deg, positionController_M_Arm.getRotation());
lupomic 96:06f43e78d121 238
raomen 46:eba2263eb626 239
lupomic 96:06f43e78d121 240 positionController_M_Arm.setDesiredRotation(relativ_turns_arm , max_speed_rps_arm);
lupomic 96:06f43e78d121 241
lupomic 96:06f43e78d121 242 diff=relativ_turns_arm-positionController_M_Arm.getRotation();
lupomic 96:06f43e78d121 243 if(diff<=0.3)
lupomic 96:06f43e78d121 244 { return 1;
lupomic 96:06f43e78d121 245 }
lupomic 96:06f43e78d121 246 else
lupomic 96:06f43e78d121 247 { return 0;
lupomic 96:06f43e78d121 248 }
lupomic 71:e740ef7c7813 249
lupomic 33:70ea029a69e8 250 }
raomen 43:7964411b4a6b 251 //***********************************************************************************************************************************************************
lupomic 96:06f43e78d121 252 //Function which checks if sensors and motors have been wired correctly and the expectet results will happen. otherwise Wall-E will show with armmovement.
lupomic 96:06f43e78d121 253 void check_start();
raomen 38:c2663f7dcccb 254
lupomic 96:06f43e78d121 255 int NextStep (float){
lupomic 96:06f43e78d121 256 return 1;
lupomic 96:06f43e78d121 257 }
raomen 43:7964411b4a6b 258
lupomic 96:06f43e78d121 259
raomen 43:7964411b4a6b 260
raomen 41:4a4978d1a578 261 // while loop gets executed every main_task_period_ms milliseconds
raomen 41:4a4978d1a578 262 int main_task_period_ms = 30; // define main task period time in ms e.g. 30 ms -> main task runns ~33,33 times per second
raomen 41:4a4978d1a578 263 Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
raomen 43:7964411b4a6b 264 //***********************************************************************************************************************************************************
raomen 39:025d1bee1397 265
lupomic 33:70ea029a69e8 266 int main(void)
pmic 23:26b3a25fc637 267 {
raomen 46:eba2263eb626 268 // attach button fall and rise functions to user button object
raomen 46:eba2263eb626 269 user_button.fall(&user_button_pressed_fcn);
raomen 46:eba2263eb626 270 user_button.rise(&user_button_released_fcn);
lupomic 34:9f779e91168e 271
lupomic 34:9f779e91168e 272
raomen 40:e32c57763d92 273 while (true)
raomen 40:e32c57763d92 274 {
lupomic 96:06f43e78d121 275
lupomic 86:56b35f01e4d4 276 ir_distance_mm_L= mapping(ir_analog_in_Distance_L.read()*1.0e3f * 3.3f);
lupomic 86:56b35f01e4d4 277 ir_distance_mm_R= mapping(ir_analog_in_Distance_R.read()*1.0e3f * 3.3f);
lupomic 96:06f43e78d121 278
lupomic 96:06f43e78d121 279 if (ToNextFunction>=1)
lupomic 96:06f43e78d121 280 {
lupomic 96:06f43e78d121 281 enable_motors=1;
lupomic 96:06f43e78d121 282 }
lupomic 70:da5754e1514c 283
raomen 75:3831b90a4ae0 284
raomen 40:e32c57763d92 285 switch (ToNextFunction)
raomen 40:e32c57763d92 286 {
raomen 46:eba2263eb626 287
raomen 45:8050724fe19b 288 case 1:
lupomic 96:06f43e78d121 289 state=set_arm_stair_height();
raomen 46:eba2263eb626 290 printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
lupomic 70:da5754e1514c 291 if (state==1){
lupomic 70:da5754e1514c 292 ToNextFunction += 1;
lupomic 70:da5754e1514c 293 }
lupomic 96:06f43e78d121 294
raomen 46:eba2263eb626 295 break;
raomen 46:eba2263eb626 296
lupomic 70:da5754e1514c 297 case 2:
lupomic 86:56b35f01e4d4 298 state=NextStep(ir_analog_in_Distance_L);
lupomic 70:da5754e1514c 299 if (state==1){
lupomic 70:da5754e1514c 300 ToNextFunction += 1;
lupomic 70:da5754e1514c 301 }
raomen 46:eba2263eb626 302
raomen 45:8050724fe19b 303 case 3:
lupomic 96:06f43e78d121 304 state=drive_straight(drive_straight_mm);
raomen 45:8050724fe19b 305 printf("Case 2: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n",
raomen 46:eba2263eb626 306 positionController_M_right.getRotation(),positionController_M_left.getRotation());
lupomic 70:da5754e1514c 307 if (state==1){
lupomic 70:da5754e1514c 308 ToNextFunction += 1;
lupomic 70:da5754e1514c 309 }
lupomic 96:06f43e78d121 310
raomen 46:eba2263eb626 311
raomen 45:8050724fe19b 312 case 4:
lupomic 70:da5754e1514c 313 state=lift_up();
lupomic 70:da5754e1514c 314 printf("Case 3: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
lupomic 86:56b35f01e4d4 315 if ((state==1)&&(StepDetection(ir_distance_mm_Lookdown_B))&&StepDetection(ir_distance_mm_Lookdown_F)){
lupomic 70:da5754e1514c 316 ToNextFunction += 1;
lupomic 70:da5754e1514c 317 }
lupomic 71:e740ef7c7813 318
raomen 45:8050724fe19b 319 case 5:
lupomic 70:da5754e1514c 320 state=drive_straight(drive_back_mm);
lupomic 34:9f779e91168e 321 printf("Case 4: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n",
raomen 46:eba2263eb626 322 positionController_M_right.getRotation(),positionController_M_left.getRotation());
lupomic 86:56b35f01e4d4 323 if ((state==1)&&(StepDetection(ir_distance_mm_Lookdown_B)!=1)){
lupomic 70:da5754e1514c 324 ToNextFunction += 1;
lupomic 70:da5754e1514c 325 }
raomen 46:eba2263eb626 326 break;
raomen 46:eba2263eb626 327
lupomic 70:da5754e1514c 328 case 6:
lupomic 70:da5754e1514c 329 state=lift_up();
raomen 46:eba2263eb626 330 printf("Case 5: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
lupomic 70:da5754e1514c 331 if (state==1){
lupomic 70:da5754e1514c 332 ToNextFunction = 1;
lupomic 70:da5754e1514c 333 }
raomen 46:eba2263eb626 334 break;
raomen 46:eba2263eb626 335
raomen 46:eba2263eb626 336 default: ;
lupomic 33:70ea029a69e8 337 }
lupomic 33:70ea029a69e8 338 }
raomen 80:4eae727a13b5 339 // read timer and make the main thread sleep for the remaining time span (non blocking)
raomen 80:4eae727a13b5 340 int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
raomen 80:4eae727a13b5 341 thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
raomen 80:4eae727a13b5 342 return 0;
pmic 1:93d997d6b232 343 }
pmic 6:e1fa1a2d7483 344
lupomic 33:70ea029a69e8 345
lupomic 71:e740ef7c7813 346
pmic 24:86f1a63e35a0 347 void user_button_pressed_fcn()
pmic 25:ea1d6e27c895 348 {
pmic 26:28693b369945 349 user_button_timer.start();
pmic 6:e1fa1a2d7483 350 user_button_timer.reset();
pmic 6:e1fa1a2d7483 351 }
pmic 6:e1fa1a2d7483 352
raomen 43:7964411b4a6b 353 void user_button_released_fcn()
raomen 43:7964411b4a6b 354 {
pmic 24:86f1a63e35a0 355 // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
pmic 24:86f1a63e35a0 356 int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
pmic 6:e1fa1a2d7483 357 user_button_timer.stop();
raomen 43:7964411b4a6b 358 if (user_button_elapsed_time_ms > 200)
raomen 43:7964411b4a6b 359 {
lupomic 86:56b35f01e4d4 360 ToNextFunction = 3;
raomen 43:7964411b4a6b 361 }
raomen 43:7964411b4a6b 362 }