Prototyp V2

Dependencies:   PM2_Libary

Committer:
raomen
Date:
Wed Apr 13 09:10:19 2022 +0200
Branch:
michi
Revision:
38:c2663f7dcccb
Parent:
34:9f779e91168e
Child:
40:e32c57763d92
New branch michi

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pmic 1:93d997d6b232 1 #include "mbed.h"
pmic 17:c19b471f05cb 2 #include "PM2_Libary.h"
lupomic 33:70ea029a69e8 3 #include <cstdint>
lupomic 31:24081337c9ed 4
pmic 24:86f1a63e35a0 5 // logical variable main task
pmic 24:86f1a63e35a0 6 bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task
pmic 17:c19b471f05cb 7
pmic 24:86f1a63e35a0 8 // user button on nucleo board
pmic 24:86f1a63e35a0 9 Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
pmic 24:86f1a63e35a0 10 InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
pmic 24:86f1a63e35a0 11 void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
pmic 24:86f1a63e35a0 12 void user_button_released_fcn();
pmic 6:e1fa1a2d7483 13
pmic 24:86f1a63e35a0 14 // while loop gets executed every main_task_period_ms milliseconds
raomen 38:c2663f7dcccb 15 int main_task_period_ms = 30; // define main task period time in ms e.g. 30 ms -> main task runns ~33,33 times per second
pmic 24:86f1a63e35a0 16 Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
pmic 6:e1fa1a2d7483 17
pmic 24:86f1a63e35a0 18 // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
raomen 38:c2663f7dcccb 19 float ir_distance_mV = 0.0f; // define variable to store measurement from infrared distancesensor in mVolt
pmic 24:86f1a63e35a0 20 AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
pmic 6:e1fa1a2d7483 21
lupomic 33:70ea029a69e8 22
pmic 24:86f1a63e35a0 23 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
pmic 24:86f1a63e35a0 24 DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors
pmic 17:c19b471f05cb 25
pmic 24:86f1a63e35a0 26 float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors
lupomic 33:70ea029a69e8 27 //motor pin declaration
lupomic 34:9f779e91168e 28 FastPWM pwm_M_right(PB_13);
lupomic 34:9f779e91168e 29 FastPWM pwm_M_left(PA_9);
lupomic 33:70ea029a69e8 30 FastPWM pwm_M_arm(PA_10);
pmic 17:c19b471f05cb 31
lupomic 33:70ea029a69e8 32 //Encoder pin declaration
lupomic 33:70ea029a69e8 33 EncoderCounter encoder_M_right(PA_6, PC_7); //encoder pin decalaration for wheels right side
lupomic 33:70ea029a69e8 34 EncoderCounter encoder_M_left(PB_6, PB_7); //encoder pin decalaration for wheels left side
lupomic 33:70ea029a69e8 35 EncoderCounter encoder_M_arm(PA_0, PA_1); //encoder pin decalaration for arm
pmic 17:c19b471f05cb 36
pmic 30:1e8295770bc1 37 // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
pmic 24:86f1a63e35a0 38 float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
lupomic 33:70ea029a69e8 39 float counts_per_turn_wheels = 2000.0f * 100.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels
lupomic 34:9f779e91168e 40 float counts_per_turn_arm = 2000.0f * 100.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm
pmic 25:ea1d6e27c895 41 float kn = 180.0f / 12.0f; // define motor constant in rpm per V
raomen 38:c2663f7dcccb 42 float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 (DC with 100:1 has 256'000 turns for 360°)
pmic 30:1e8295770bc1 43 float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1
pmic 6:e1fa1a2d7483 44
lupomic 33:70ea029a69e8 45 //motors for tracks
lupomic 33:70ea029a69e8 46 PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
lupomic 33:70ea029a69e8 47 PositionController positionController_M_left(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_left, encoder_M_left); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
lupomic 33:70ea029a69e8 48 //Arm Motor
lupomic 33:70ea029a69e8 49 PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
pmic 17:c19b471f05cb 50
lupomic 33:70ea029a69e8 51 //float max_speed_rps = 0.5f; not sure if needed // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage
lupomic 33:70ea029a69e8 52 // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
lupomic 33:70ea029a69e8 53 //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
pmic 17:c19b471f05cb 54
pmic 17:c19b471f05cb 55
lupomic 33:70ea029a69e8 56 //Platzhalter Variabeln für die Positionierung
lupomic 34:9f779e91168e 57 float PositionStair = 0.2;
lupomic 34:9f779e91168e 58 float PositionBackOff = -0.5;
lupomic 34:9f779e91168e 59 float degArmStart = 0.5;
lupomic 34:9f779e91168e 60 float degArmLift = -0.5;
lupomic 34:9f779e91168e 61 int ToNextFunction = 0;
lupomic 34:9f779e91168e 62 float max_speed_rps = 0.5f;
lupomic 33:70ea029a69e8 63
raomen 38:c2663f7dcccb 64
lupomic 34:9f779e91168e 65 int StartPosition(float deg){
lupomic 33:70ea029a69e8 66 positionController_M_Arm.setDesiredRotation(deg);
lupomic 33:70ea029a69e8 67 return NULL;
lupomic 33:70ea029a69e8 68 }
raomen 38:c2663f7dcccb 69
raomen 38:c2663f7dcccb 70
lupomic 33:70ea029a69e8 71 //Drives forward into the next step
lupomic 34:9f779e91168e 72 int Drive(float dist){
lupomic 34:9f779e91168e 73 float distance;
lupomic 34:9f779e91168e 74 distance=dist;
raomen 38:c2663f7dcccb 75 positionController_M_right.setDesiredRotation(distance,max_speed_rps);
raomen 38:c2663f7dcccb 76 positionController_M_left.setDesiredRotation(distance,max_speed_rps);
raomen 38:c2663f7dcccb 77 return 0;
lupomic 33:70ea029a69e8 78 }
lupomic 33:70ea029a69e8 79
lupomic 33:70ea029a69e8 80 //only turns the arm until the robot is on the next step
lupomic 33:70ea029a69e8 81 //not yet clear if the motor controler function drives to a absolute poition or if it drives the given distance relative to the current position
lupomic 34:9f779e91168e 82 int LiftUp(float deg){
lupomic 33:70ea029a69e8 83 int8_t i = 0; //prov condition variable
raomen 38:c2663f7dcccb 84 positionController_M_Arm.setDesiredRotation(deg);
lupomic 33:70ea029a69e8 85 return 0;
lupomic 33:70ea029a69e8 86 }
raomen 38:c2663f7dcccb 87
lupomic 33:70ea029a69e8 88 //pow function is here so we dont have to use the math.h library
lupomic 33:70ea029a69e8 89 //it takes 2 arguments the base can be any negative or positive floating point number the power has to be a hos to be an "integer" defined as a double
lupomic 33:70ea029a69e8 90 double powerx(double base, double pow2){
lupomic 33:70ea029a69e8 91 double result = -1;
lupomic 33:70ea029a69e8 92 double power = pow2;
lupomic 33:70ea029a69e8 93 double basis = base;
lupomic 33:70ea029a69e8 94 result = 1;
lupomic 33:70ea029a69e8 95 //handling negative exponents
lupomic 33:70ea029a69e8 96 if(power<0){
lupomic 33:70ea029a69e8 97 for(double i=1; i<=(power*(-1.0)); i++) {
lupomic 33:70ea029a69e8 98 result *= basis;
lupomic 33:70ea029a69e8 99 }
lupomic 33:70ea029a69e8 100 result = 1.0/result;
lupomic 33:70ea029a69e8 101 }
lupomic 33:70ea029a69e8 102 //handling positive exponents
lupomic 33:70ea029a69e8 103 else{
lupomic 33:70ea029a69e8 104 for(double i=1; i<=power; i++){
lupomic 33:70ea029a69e8 105 result *= basis;}}
lupomic 33:70ea029a69e8 106 return result;
lupomic 33:70ea029a69e8 107 }
lupomic 33:70ea029a69e8 108
lupomic 33:70ea029a69e8 109 double mapping(float adc_value_mV){
lupomic 33:70ea029a69e8 110 double distance = 0.0f; //distance in mm
lupomic 33:70ea029a69e8 111 double infY =360 , supY = 2360; //Window for sensor values
lupomic 33:70ea029a69e8 112 double voltage_mV = adc_value_mV;
lupomic 33:70ea029a69e8 113 double p1 = -1.127*powerx(10,-14), p2 = 8.881*powerx(10,-11), p3 = -2.76*powerx(10,-7), p4 = 0.0004262, p5 = -0.3363, p6 = 120.1 ; //faktoren für polynomkurve -> von matlab exportiert
lupomic 33:70ea029a69e8 114 if(voltage_mV > infY && voltage_mV < supY){
lupomic 33:70ea029a69e8 115 distance = p1*powerx(voltage_mV,5) + p2*powerx(voltage_mV,4) + p3*powerx(voltage_mV,3) + p4*powerx(voltage_mV,2) + p5*voltage_mV + p6;
lupomic 33:70ea029a69e8 116 }
lupomic 33:70ea029a69e8 117 return (distance);
lupomic 33:70ea029a69e8 118 }
lupomic 33:70ea029a69e8 119
lupomic 33:70ea029a69e8 120
lupomic 33:70ea029a69e8 121 int main(void)
pmic 23:26b3a25fc637 122 {
pmic 24:86f1a63e35a0 123 // attach button fall and rise functions to user button object
lupomic 33:70ea029a69e8 124 user_button.fall(&user_button_pressed_fcn);
lupomic 34:9f779e91168e 125 user_button.rise(&user_button_released_fcn);
lupomic 33:70ea029a69e8 126
pmic 24:86f1a63e35a0 127
pmic 6:e1fa1a2d7483 128
lupomic 33:70ea029a69e8 129 while (true){
lupomic 34:9f779e91168e 130 enable_motors = 1;
lupomic 34:9f779e91168e 131
lupomic 33:70ea029a69e8 132 ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
lupomic 33:70ea029a69e8 133
pmic 6:e1fa1a2d7483 134
raomen 38:c2663f7dcccb 135 switch (ToNextFunction) {
lupomic 33:70ea029a69e8 136 case 1: StartPosition(degArmStart);
lupomic 34:9f779e91168e 137 printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
lupomic 33:70ea029a69e8 138 // ToNextFunction+=1;
lupomic 33:70ea029a69e8 139 break;
lupomic 33:70ea029a69e8 140 case 2: Drive(PositionStair);
lupomic 34:9f779e91168e 141 printf("Case 2: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n",
lupomic 34:9f779e91168e 142 positionController_M_right.getRotation(),positionController_M_left.getRotation());
lupomic 33:70ea029a69e8 143 // ToNextFunction+=1;
lupomic 33:70ea029a69e8 144 break;
lupomic 34:9f779e91168e 145 case 3: LiftUp(degArmLift);
lupomic 33:70ea029a69e8 146 // ToNextFunction+=1;
lupomic 34:9f779e91168e 147 printf("Case 3: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
lupomic 33:70ea029a69e8 148 break;
lupomic 33:70ea029a69e8 149 case 4: Drive(PositionBackOff);
lupomic 34:9f779e91168e 150 printf("Case 4: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n",
lupomic 34:9f779e91168e 151 positionController_M_right.getRotation(),positionController_M_left.getRotation());
lupomic 33:70ea029a69e8 152 // ToNextFunction+=1;
lupomic 33:70ea029a69e8 153 break;
lupomic 33:70ea029a69e8 154 case 5: LiftUp(degArmStart);
lupomic 34:9f779e91168e 155 printf("Case 5: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
lupomic 33:70ea029a69e8 156 // ToNextFunction = 0;
lupomic 33:70ea029a69e8 157 break;
lupomic 34:9f779e91168e 158 default: ;
lupomic 33:70ea029a69e8 159 }
lupomic 33:70ea029a69e8 160 }
lupomic 33:70ea029a69e8 161 // read timer and make the main thread sleep for the remaining time span (non blocking)
pmic 24:86f1a63e35a0 162 int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
pmic 24:86f1a63e35a0 163 thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
lupomic 33:70ea029a69e8 164 return 0;
pmic 1:93d997d6b232 165 }
pmic 6:e1fa1a2d7483 166
lupomic 33:70ea029a69e8 167
pmic 24:86f1a63e35a0 168 void user_button_pressed_fcn()
pmic 25:ea1d6e27c895 169 {
pmic 26:28693b369945 170 user_button_timer.start();
pmic 6:e1fa1a2d7483 171 user_button_timer.reset();
pmic 6:e1fa1a2d7483 172 }
pmic 6:e1fa1a2d7483 173
lupomic 33:70ea029a69e8 174 void user_button_released_fcn() {
pmic 24:86f1a63e35a0 175 // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
pmic 24:86f1a63e35a0 176 int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
pmic 6:e1fa1a2d7483 177 user_button_timer.stop();
pmic 24:86f1a63e35a0 178 if (user_button_elapsed_time_ms > 200) {
lupomic 33:70ea029a69e8 179 ToNextFunction += 1;}
lupomic 33:70ea029a69e8 180 }