Prototyp V2

Dependencies:   PM2_Libary

Committer:
lupomic
Date:
Sun Apr 10 19:40:59 2022 +0200
Revision:
34:9f779e91168e
Parent:
33:70ea029a69e8
Child:
35:f02adb2c2b8a
Child:
38:c2663f7dcccb
Child:
39:025d1bee1397
basic functions

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pmic 1:93d997d6b232 1 #include "mbed.h"
pmic 17:c19b471f05cb 2 #include "PM2_Libary.h"
lupomic 33:70ea029a69e8 3 #include <cstdint>
lupomic 31:24081337c9ed 4
pmic 24:86f1a63e35a0 5 // logical variable main task
pmic 24:86f1a63e35a0 6 bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task
pmic 17:c19b471f05cb 7
pmic 24:86f1a63e35a0 8 // user button on nucleo board
pmic 24:86f1a63e35a0 9 Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
pmic 24:86f1a63e35a0 10 InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
pmic 24:86f1a63e35a0 11 void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
pmic 24:86f1a63e35a0 12 void user_button_released_fcn();
pmic 6:e1fa1a2d7483 13
pmic 24:86f1a63e35a0 14 // while loop gets executed every main_task_period_ms milliseconds
lupomic 34:9f779e91168e 15 int main_task_period_ms = 30; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
pmic 24:86f1a63e35a0 16 Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
pmic 6:e1fa1a2d7483 17
pmic 24:86f1a63e35a0 18 // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
pmic 24:86f1a63e35a0 19 float ir_distance_mV = 0.0f; // define variable to store measurement
pmic 24:86f1a63e35a0 20 AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
pmic 6:e1fa1a2d7483 21
lupomic 33:70ea029a69e8 22
lupomic 33:70ea029a69e8 23
pmic 24:86f1a63e35a0 24 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
pmic 24:86f1a63e35a0 25 DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors
pmic 17:c19b471f05cb 26
pmic 24:86f1a63e35a0 27 float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors
lupomic 33:70ea029a69e8 28 //motor pin declaration
lupomic 34:9f779e91168e 29 FastPWM pwm_M_right(PB_13);
lupomic 34:9f779e91168e 30 FastPWM pwm_M_left(PA_9);
lupomic 33:70ea029a69e8 31 FastPWM pwm_M_arm(PA_10);
pmic 17:c19b471f05cb 32
lupomic 33:70ea029a69e8 33 //Encoder pin declaration
lupomic 33:70ea029a69e8 34 EncoderCounter encoder_M_right(PA_6, PC_7); //encoder pin decalaration for wheels right side
lupomic 33:70ea029a69e8 35 EncoderCounter encoder_M_left(PB_6, PB_7); //encoder pin decalaration for wheels left side
lupomic 33:70ea029a69e8 36 EncoderCounter encoder_M_arm(PA_0, PA_1); //encoder pin decalaration for arm
pmic 17:c19b471f05cb 37
pmic 30:1e8295770bc1 38 // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
pmic 24:86f1a63e35a0 39 float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
lupomic 33:70ea029a69e8 40 float counts_per_turn_wheels = 2000.0f * 100.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels
lupomic 34:9f779e91168e 41 float counts_per_turn_arm = 2000.0f * 100.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm
pmic 25:ea1d6e27c895 42 float kn = 180.0f / 12.0f; // define motor constant in rpm per V
pmic 30:1e8295770bc1 43 float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1
pmic 30:1e8295770bc1 44 float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1
pmic 6:e1fa1a2d7483 45
lupomic 33:70ea029a69e8 46 //motors for tracks
lupomic 33:70ea029a69e8 47 PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
lupomic 33:70ea029a69e8 48 PositionController positionController_M_left(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_left, encoder_M_left); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
lupomic 33:70ea029a69e8 49 //Arm Motor
lupomic 33:70ea029a69e8 50 PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
pmic 17:c19b471f05cb 51
lupomic 33:70ea029a69e8 52 //float max_speed_rps = 0.5f; not sure if needed // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage
lupomic 33:70ea029a69e8 53 // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
lupomic 33:70ea029a69e8 54 //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
pmic 17:c19b471f05cb 55
pmic 17:c19b471f05cb 56
pmic 24:86f1a63e35a0 57 // LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage)
pmic 25:ea1d6e27c895 58 // LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h"
pmic 20:7e7325edcf5c 59
lupomic 33:70ea029a69e8 60 //Platzhalter Variabeln für die Positionierung
lupomic 34:9f779e91168e 61 float PositionStair = 0.2;
lupomic 34:9f779e91168e 62 float PositionBackOff = -0.5;
lupomic 34:9f779e91168e 63 float degArmStart = 0.5;
lupomic 34:9f779e91168e 64 float degArmLift = -0.5;
lupomic 34:9f779e91168e 65 int ToNextFunction = 0;
lupomic 34:9f779e91168e 66 float max_speed_rps = 0.5f;
lupomic 33:70ea029a69e8 67
lupomic 34:9f779e91168e 68 int StartPosition(float deg){
lupomic 33:70ea029a69e8 69
lupomic 33:70ea029a69e8 70 positionController_M_Arm.setDesiredRotation(deg);
lupomic 33:70ea029a69e8 71
lupomic 33:70ea029a69e8 72 return NULL;
lupomic 33:70ea029a69e8 73 }
lupomic 33:70ea029a69e8 74 //Drives forward into the next step
lupomic 34:9f779e91168e 75 int Drive(float dist){
lupomic 34:9f779e91168e 76
lupomic 34:9f779e91168e 77 float distance;
lupomic 33:70ea029a69e8 78
lupomic 34:9f779e91168e 79 distance=dist;
lupomic 34:9f779e91168e 80
lupomic 33:70ea029a69e8 81
lupomic 34:9f779e91168e 82 positionController_M_right.setDesiredRotation(distance,max_speed_rps);
lupomic 34:9f779e91168e 83 positionController_M_left.setDesiredRotation(distance,max_speed_rps);
lupomic 34:9f779e91168e 84
lupomic 33:70ea029a69e8 85
lupomic 33:70ea029a69e8 86 return 0;
lupomic 33:70ea029a69e8 87 }
lupomic 33:70ea029a69e8 88
lupomic 33:70ea029a69e8 89 //only turns the arm until the robot is on the next step
lupomic 33:70ea029a69e8 90 //not yet clear if the motor controler function drives to a absolute poition or if it drives the given distance relative to the current position
lupomic 34:9f779e91168e 91 int LiftUp(float deg){
lupomic 34:9f779e91168e 92
lupomic 33:70ea029a69e8 93 int8_t i = 0; //prov condition variable
lupomic 33:70ea029a69e8 94
lupomic 33:70ea029a69e8 95 positionController_M_Arm.setDesiredRotation(deg);
lupomic 33:70ea029a69e8 96
lupomic 33:70ea029a69e8 97
lupomic 33:70ea029a69e8 98 return 0;
lupomic 33:70ea029a69e8 99 }
lupomic 33:70ea029a69e8 100 //pow function is here so we dont have to use the math.h library
lupomic 33:70ea029a69e8 101 //it takes 2 arguments the base can be any negative or positive floating point number the power has to be a hos to be an "integer" defined as a double
lupomic 33:70ea029a69e8 102 double powerx(double base, double pow2){
lupomic 33:70ea029a69e8 103 double result = -1;
lupomic 33:70ea029a69e8 104 double power = pow2;
lupomic 33:70ea029a69e8 105 double basis = base;
lupomic 33:70ea029a69e8 106 result = 1;
lupomic 33:70ea029a69e8 107 //handling negative exponents
lupomic 33:70ea029a69e8 108 if(power<0){
lupomic 33:70ea029a69e8 109 for(double i=1; i<=(power*(-1.0)); i++) {
lupomic 33:70ea029a69e8 110 result *= basis;
lupomic 33:70ea029a69e8 111 }
lupomic 33:70ea029a69e8 112 result = 1.0/result;
lupomic 33:70ea029a69e8 113 }
lupomic 33:70ea029a69e8 114 //handling positive exponents
lupomic 33:70ea029a69e8 115 else{
lupomic 33:70ea029a69e8 116 for(double i=1; i<=power; i++){
lupomic 33:70ea029a69e8 117 result *= basis;}}
lupomic 33:70ea029a69e8 118
lupomic 33:70ea029a69e8 119 return result;
lupomic 33:70ea029a69e8 120 }
lupomic 33:70ea029a69e8 121
lupomic 33:70ea029a69e8 122 double mapping(float adc_value_mV){
lupomic 33:70ea029a69e8 123 double distance = 0.0f; //distance in mm
lupomic 33:70ea029a69e8 124 double infY =360 , supY = 2360; //Window for sensor values
lupomic 33:70ea029a69e8 125 double voltage_mV = adc_value_mV;
lupomic 33:70ea029a69e8 126 double p1 = -1.127*powerx(10,-14), p2 = 8.881*powerx(10,-11), p3 = -2.76*powerx(10,-7), p4 = 0.0004262, p5 = -0.3363, p6 = 120.1 ; //faktoren für polynomkurve -> von matlab exportiert
lupomic 33:70ea029a69e8 127 if(voltage_mV > infY && voltage_mV < supY){
lupomic 33:70ea029a69e8 128 distance = p1*powerx(voltage_mV,5) + p2*powerx(voltage_mV,4) + p3*powerx(voltage_mV,3) + p4*powerx(voltage_mV,2) + p5*voltage_mV + p6;
lupomic 33:70ea029a69e8 129 }
lupomic 33:70ea029a69e8 130 return (distance);
lupomic 33:70ea029a69e8 131 }
lupomic 33:70ea029a69e8 132
lupomic 33:70ea029a69e8 133
lupomic 33:70ea029a69e8 134 int main(void)
pmic 23:26b3a25fc637 135 {
pmic 24:86f1a63e35a0 136 // attach button fall and rise functions to user button object
lupomic 33:70ea029a69e8 137 user_button.fall(&user_button_pressed_fcn);
lupomic 34:9f779e91168e 138 user_button.rise(&user_button_released_fcn);
lupomic 33:70ea029a69e8 139
pmic 24:86f1a63e35a0 140
pmic 6:e1fa1a2d7483 141
lupomic 33:70ea029a69e8 142 while (true){
lupomic 34:9f779e91168e 143 enable_motors = 1;
lupomic 34:9f779e91168e 144
lupomic 33:70ea029a69e8 145 ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
lupomic 33:70ea029a69e8 146
lupomic 34:9f779e91168e 147 // printf("test pow function 2 ^ 2 %lf\n",powerx(2,2));
lupomic 34:9f779e91168e 148 //printf("test mapping function %f\n", mapping(ir_distance_mV));
pmic 6:e1fa1a2d7483 149
lupomic 34:9f779e91168e 150 //printf("IR sensor (mV): %3.3f\n", ir_distance_mV);
lupomic 33:70ea029a69e8 151
pmic 6:e1fa1a2d7483 152
lupomic 33:70ea029a69e8 153 switch (ToNextFunction) {
lupomic 33:70ea029a69e8 154 case 1: StartPosition(degArmStart);
lupomic 34:9f779e91168e 155 printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
lupomic 33:70ea029a69e8 156 // ToNextFunction+=1;
lupomic 33:70ea029a69e8 157 break;
lupomic 33:70ea029a69e8 158 case 2: Drive(PositionStair);
lupomic 34:9f779e91168e 159 printf("Case 2: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n",
lupomic 34:9f779e91168e 160 positionController_M_right.getRotation(),positionController_M_left.getRotation());
lupomic 33:70ea029a69e8 161 // ToNextFunction+=1;
lupomic 33:70ea029a69e8 162 break;
lupomic 34:9f779e91168e 163 case 3: LiftUp(degArmLift);
lupomic 33:70ea029a69e8 164 // ToNextFunction+=1;
lupomic 34:9f779e91168e 165 printf("Case 3: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
lupomic 33:70ea029a69e8 166 break;
lupomic 33:70ea029a69e8 167 case 4: Drive(PositionBackOff);
lupomic 34:9f779e91168e 168 printf("Case 4: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n",
lupomic 34:9f779e91168e 169 positionController_M_right.getRotation(),positionController_M_left.getRotation());
lupomic 33:70ea029a69e8 170 // ToNextFunction+=1;
lupomic 33:70ea029a69e8 171 break;
lupomic 33:70ea029a69e8 172 case 5: LiftUp(degArmStart);
lupomic 34:9f779e91168e 173 printf("Case 5: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
lupomic 33:70ea029a69e8 174 // ToNextFunction = 0;
lupomic 33:70ea029a69e8 175 break;
lupomic 34:9f779e91168e 176 default: ;
lupomic 33:70ea029a69e8 177 }
pmic 6:e1fa1a2d7483 178
lupomic 33:70ea029a69e8 179
lupomic 33:70ea029a69e8 180
lupomic 33:70ea029a69e8 181 }
lupomic 33:70ea029a69e8 182 // read timer and make the main thread sleep for the remaining time span (non blocking)
pmic 24:86f1a63e35a0 183 int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
pmic 24:86f1a63e35a0 184 thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
lupomic 33:70ea029a69e8 185 return 0;
pmic 1:93d997d6b232 186 }
pmic 6:e1fa1a2d7483 187
lupomic 33:70ea029a69e8 188
pmic 24:86f1a63e35a0 189 void user_button_pressed_fcn()
pmic 25:ea1d6e27c895 190 {
pmic 26:28693b369945 191 user_button_timer.start();
pmic 6:e1fa1a2d7483 192 user_button_timer.reset();
pmic 6:e1fa1a2d7483 193 }
pmic 6:e1fa1a2d7483 194
lupomic 33:70ea029a69e8 195 void user_button_released_fcn() {
pmic 24:86f1a63e35a0 196 // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
pmic 24:86f1a63e35a0 197 int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
pmic 6:e1fa1a2d7483 198 user_button_timer.stop();
pmic 24:86f1a63e35a0 199 if (user_button_elapsed_time_ms > 200) {
lupomic 33:70ea029a69e8 200 ToNextFunction += 1;}
lupomic 33:70ea029a69e8 201 }