Prototyp V2

Dependencies:   PM2_Libary

Branch:
lupo2
Revision:
96:06f43e78d121
Parent:
88:cb8a18fc0391
Parent:
85:fbcc3d8e945a
--- a/main.cpp	Mon May 02 14:47:17 2022 +0200
+++ b/main.cpp	Wed May 04 09:24:35 2022 +0200
@@ -10,8 +10,8 @@
 const float dist_arm_attach_distsensor    = 20; // distance between pivot point arm  on body to start distancesensor on top in horizontal (6)
 const float dist_distsensors              = 200; // distance between the two distancesensors on top of Wall-E (9)
 const float dist_arm_ground               = 51; // distance between pivotpoint arm and ground (5)
-const float gripper_area_height           = 16 ; // Height of Grappler cutout to grapple Stair (8)
-const float dist_grappleratt_grappler_uk  = 33; // distance between pivotpoint Grappler and bottom edge (?)
+const float dist_arm_attach_OK_griparea   = 10.5 ; // Height of Grappler cutout to grapple Stair (8) (maybe add 1mm so gripper is a bit over the plate)
+const float dist_grappleratt_grappler_uk  = 36.5; // distance between pivotpoint Grappler and bottom edge (?)
 
 const float height_stairs                 = 100; // height to top of next stairstep in mm
 //***********************************************************************************************************************************************************
@@ -69,161 +69,93 @@
 // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
 //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
 //***********************************************************************************************************************************************************
-// logic functions for basic movement
+// calculations for basic movment and controll
 
 //placeholder variables for prototype testing
 
-const int   drive_stright_mm = 100; // placeholder for testing drives amount forward
-const int   drive_back_mm = -100; // placeholder for testing drives amount backwards
-int         ToNextFunction = 0;  // current state of the system (which function is beeing executed)
+const int   drive_straight_mm = 200;  // placeholder for testing drives amount forward
+const int   drive_back_mm = -200;    // placeholder for testing drives amount backwards
+int         ToNextFunction = 0;      // current state of the system (which function is beeing executed)
 int         state=0;
-
+// definition variables for calculations
+const float   pi = 2 * acos(0.0); // definiton of pi
+const float   end_pos_lift_deg = 180 + asin((dist_arm_ground-(dist_grappleratt_grappler_uk))/arm_length) * 180 / pi;  // calculates the degree which the arm has to have when lift_up has been executed.
+const float   start_deg_arm = -asin((dist_arm_ground - dist_grappleratt_grappler_uk) / arm_length) * 180.0/pi ; //calculates the starting degree of the arm (gripper has to touch ground in frotn of Wall-E)
 
-// definition important variables
-const float   pi = 2 * acos(0.0); // definiton of pi
+// definition of rotation speeds for motors 0 = none 1.0 = max.
 const float   max_speed_rps_wheel = 0.5f;  // define maximum speed that the position controller is changig the speed for the wheels, has to be smaller or equal to kn * max_voltage
 const float   max_speed_rps_arm = 0.3f; // define maximum speed that the position controller is changig the speed for the arm, has to be smaller or equal to kn * max_voltage
-float         start_deg_arm = -asin((dist_arm_ground - dist_grappleratt_grappler_uk) / arm_length) * 180.0/pi ; ///calculates the starting degree of the arm (gripper has to touch ground in frotn of Wall-E)
-// import functions from file mapping
-extern double powerx(double base, double pow2);
-extern double mapping (float adc_value_mV);
 
 // calculates the deg which the arm has to take to reach a certain height (the input height has to be the height of OK Gripper area)
+// PARAM: height_mm = height which OK Gripperarea has to reach.
+// RETURN: deg_arm = absolut Position in deg that the arm has to take.
 float calc_arm_deg_for_height(int height_mm)
 {
-    float deg_arm;
-    if ((height_mm - dist_arm_ground - (dist_grappleratt_grappler_uk - gripper_area_height)) > arm_length) //check if height is reachable
-    {
-        printf("Error in calc_arm_deg_for_height: desired height is bigger than Wall-E arm lenght."); // error message when desired height is not reachable. 
-    }
-    else 
-    {
-        float height_arm = height_mm - dist_arm_ground - (dist_grappleratt_grappler_uk - gripper_area_height); // calculates the height which only the arm has to cover (- attachement height (arm to robot) etc.)
-        deg_arm = asin(height_arm / arm_length) * 180.0/pi; // calculates the absolute degrees which the arm has to reach
-    }
+    float height_arm = height_mm - (dist_arm_ground - dist_arm_attach_OK_griparea); // calculates the height which only the arm has to cover (- attachement height (arm to robot) etc.)
+    float deg_arm = asin(height_arm / arm_length) * 180.0/pi; // calculates the absolute degrees which the arm has to reach
     return deg_arm;
 }
 
+//calculates the deg which the wheels have to turn in order to cover specified distance in mm
+//PARAM: distance = distance to drive in milimeter
+//RETURN: deg_wheel = degree which the motor has to turn in order to cover distance(mm)
+float wheel_dist_to_deg(int distance)
+{
+    float deg_wheel = distance / (wheel_diameter * pi) * 360;
+    return deg_wheel;
+}
+
+
+// increments the Motor for defined degree from the current one
+// PARAM: deg_to_turn = degree to turn the Motor
+// PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation())
+// RETURN: new_turn_rotation = new Rotation value in rotations
+float turn_relative_deg(float deg_to_turn, float current_rotation)
+{
+    float new_turn_rotation = current_rotation + deg_to_turn/360.0;
+    return new_turn_rotation;
+}
+
+// sets the Motor to a specified degree in one rotation 
+// PARAM: end_deg = new position of the arm in degree 0 <= value >=360
+// PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation())
+// RETURN: new_partial_rotation = new deg value in rotations
+float turn_absolut_deg(float end_deg, float current_rotations)
+{
+    int full_rotations;
+	if(current_rotations > 0)
+	{
+		full_rotations = round(current_rotations - 0.5);	
+	}
+	else if(current_rotations < 0)
+	{
+		full_rotations = round(current_rotations + 0.5);	
+	} 
+	else
+	{
+		full_rotations = 0;
+	}
+    float new_partial_rotation = full_rotations - start_deg_arm/360 + end_deg/360;
+    return new_partial_rotation;
+}
+
 //calculates position of arm when lift up has ended.
 //RETURN: end_deg = degree which the motor has to turn in order to reach end lift position.
 float calc_pos_end_lift()
 {
     float end_deg;
-    end_deg = asin((dist_arm_ground-(dist_grappleratt_grappler_uk-gripper_area_height))/arm_length) + start_deg_arm;
+    end_deg = asin((dist_arm_ground-(dist_grappleratt_grappler_uk-dist_grappleratt_grappler_uk))/arm_length) + start_deg_arm;
     end_deg = end_deg * 180 / pi;
     return end_deg;
 }
 
-//calculates the deg which the wheels have to turn in order to cover specified distance in mm
-//RETURN: deg_wheel = degree which the motor has to turn in order to cover distance(mm)
-float wheel_dist_to_deg(int distance) // distance has to be in mm.
-{
-    float deg_wheel = distance * 360 /(wheel_diameter * pi);
-    return deg_wheel;
-}
-
-// increments the Motor for defined degree from the current one
-// PARAM: deg_to_turn = degree to turn the Motor
-// PARAM: current_full_rotation = the current rotation of the Motor (Motor.getRotation())
-// RETURN: new Rotation value in rotations
-float turn_relative_deg(float deg_to_turn, float current_full_rotation)
-{
-    float current_rotations = current_full_rotation;
-    float new_turn_rotation = current_rotations - deg_to_turn/360.0;
-    return new_turn_rotation;
-}
-
-// sets the Motor to a specified degree in one rotation 
-// PARAM: end_deg = new position of the arm in degree 0 <= value >=360
-// PARAM: current_rotations = the current rotation of the Motor (Motor.getRotation())
-// RETURN: new_partial_rotation = new deg value in rotations
-float turn_absolut_deg(float end_deg, float current_rotations)
-{
-    int full_rotations = current_rotations;
-    float new_partial_rotation = current_rotations - start_deg_arm/360;
-    return new_partial_rotation;
-}
-
-// bring arm in starting position. Height of stairs.
-int set_arm_stair_height()
-{
-    float diff;
-    double deg_up_from_horizon = calc_arm_deg_for_height(height_stairs); //deg which arm motor has to turn to in order to grab stair. starting from horizontal position
-    float deg = deg_up_from_horizon + start_deg_arm;
-    if ((0.0 > deg) || (deg > 360.0))
-    {
-        printf("Error in start_position: degree is out of bound for Start Position."); // error when desired reaching point is out of reach.
-        return 2;
-    }
-
-    enable_motors = 1;
-    positionController_M_Arm.setDesiredRotation(deg / 360.0, max_speed_rps_arm); // command to turn motor to desired deg.
-
-    diff = deg-(positionController_M_Arm.getRotation() * 360.0);
-    if (diff<=0.3){
-        return 1;
-    }
-    else {
-        return NULL;}
-
-
-    enable_motors = 0;
+//***********************************************************************************************************************************************************
+// important calculatet constant for Wall-E
+const double deg_up_from_horizon_to_stair = calc_arm_deg_for_height(height_stairs);
 
-}
-
-//Drives forward into the next step 
-//Prameter:distance in milimeter
-int drive_straight(float distance)
-{
-    float diff_R;
-    float diff_L;
-    float deg_to_turn = wheel_dist_to_deg(distance);
-    float relativ_turns_rightmotor = turn_relative_deg(deg_to_turn, positionController_M_right.getRotation());
-    float relativ_turns_leftmotor = turn_relative_deg(deg_to_turn, positionController_M_left.getRotation());
-
-    enable_motors = 1;
-    positionController_M_right.setDesiredRotation(relativ_turns_rightmotor, max_speed_rps_wheel);
-    positionController_M_left.setDesiredRotation(relativ_turns_leftmotor, max_speed_rps_wheel); 
-    enable_motors = 0;
-
-    diff_R= relativ_turns_rightmotor-positionController_M_right.getRotation();
-    diff_L= relativ_turns_leftmotor-positionController_M_left.getRotation();
-    if ((diff_R<=0.3) && (diff_L<=0.3))
-    {
-        return 1;
-    }
-    else 
-    {
-    return 0;
-    }
-}
-
-//only turns the arm until the robot is on the next step
-int lift_up()
-{
-    float diff;
-    float position_lift_end_deg = asin((-dist_arm_ground - (dist_grappleratt_grappler_uk-gripper_area_height)) / arm_length) - 90; // calculates the degree which has to be reached in order to get on top of next step
-    float relativ_turns_arm = turn_absolut_deg(position_lift_end_deg, positionController_M_Arm.getRotation());
-    
-    enable_motors = 1;
-    positionController_M_Arm.setDesiredRotation(relativ_turns_arm , max_speed_rps_arm);
-    enable_motors = 0;
-    
-    diff=relativ_turns_arm-positionController_M_Arm.getRotation();
-    if(diff<=0.3)
-    { return 1;
-    }
-    else 
-    { return 0;
-    }  
-    
-    
-}
-//***********************************************************************************************************************************************************
-
-int NextStep (float){
-    return 1;
-}
+// import functions from file mapping
+extern double powerx(double base, double pow2);
+extern double mapping (float adc_value_mV);
 
 //
 //simple check if there is an object in proximity
@@ -239,11 +171,92 @@
     else return 2;
 
 }
-//Function which checks if sensors and motors have been wired correctly and the expectet results will happen. otherwise Wall-E will show with armmovement.
-void check_start()
+//simple check if there is an object in proximity
+//returns 0 if there is NO object present
+//returns 1 if there is an object present
+//returns 2 if the distance isn't in the expected range
+uint8_t StepDetection_down(float sensor)
+
+{
+    double d_valueMM = mapping(sensor*1.0e3f*3.3f);   
+    if(d_valueMM >= 4) return 0;
+    else if(d_valueMM < 4)  return 1;
+    else if(d_valueMM <= 0 || d_valueMM > 100 ) return 2;
+    else return 2;
+}
+
+// bring arm in starting position. Height of stairs.
+int set_arm_stair_height()
+
+{
+    float deg = deg_up_from_horizon_to_stair + start_deg_arm;
+    float diff;
+    double deg_up_from_horizon = calc_arm_deg_for_height(height_stairs); //deg which arm motor has to turn to in order to grab stair. starting from horizontal position
+    positionController_M_Arm.setDesiredRotation(deg / 360.0, max_speed_rps_arm); // command to turn motor to desired deg.
+    diff = deg-(positionController_M_Arm.getRotation() * 360.0);
+    if (diff<=0.3){
+        return 1;
+    }
+    else {
+        return NULL;}
+}
+
+//Drives forward into the next step 
+//Prameter:distance in milimeter
+int drive_straight(float distance)
 {
+    float diff_R;
+    float diff_L;
+    float deg_to_turn = wheel_dist_to_deg(distance);
+    float relativ_turns_rightmotor = turn_relative_deg(deg_to_turn, positionController_M_right.getRotation());
+    float relativ_turns_leftmotor = turn_relative_deg(deg_to_turn, positionController_M_left.getRotation());
+
+   
+    positionController_M_right.setDesiredRotation(relativ_turns_rightmotor, max_speed_rps_wheel);
+    positionController_M_left.setDesiredRotation(relativ_turns_leftmotor, max_speed_rps_wheel); 
+
+
+    diff_R= relativ_turns_rightmotor-positionController_M_right.getRotation();
+    diff_L= relativ_turns_leftmotor-positionController_M_left.getRotation();
+    if ((diff_R<=0.3) && (diff_L<=0.3))
+    {
+        return 1;
+    }
+    else 
+    {
+    return 0;
+    }
+}
+
+//turns the arm until the robot is on the next step
+int lift_up()
+{
+    float diff;
+    float absolut_pos_arm = turn_absolut_deg(end_pos_lift_deg, positionController_M_Arm.getRotation()-1);
+    float position_lift_end_deg = asin((-dist_arm_ground - (dist_grappleratt_grappler_uk-dist_arm_attach_OK_griparea)) / arm_length) - 90; // calculates the degree which has to be reached in order to get on top of next step
+    float relativ_turns_arm = turn_absolut_deg(position_lift_end_deg, positionController_M_Arm.getRotation());
+    
+    
+    positionController_M_Arm.setDesiredRotation(relativ_turns_arm , max_speed_rps_arm);
+ 
+    diff=relativ_turns_arm-positionController_M_Arm.getRotation();
+    if(diff<=0.3)
+    { return 1;
+    }
+    else 
+    { return 0;
+    }  
     
 }
+//***********************************************************************************************************************************************************
+//Function which checks if sensors and motors have been wired correctly and the expectet results will happen. otherwise Wall-E will show with armmovement.
+void check_start();
+
+int NextStep (float){
+    return 1;
+}
+
+
 
 // while loop gets executed every main_task_period_ms milliseconds
 int main_task_period_ms = 30;   // define main task period time in ms e.g. 30 ms -> main task runns ~33,33 times per second
@@ -259,21 +272,26 @@
 
     while (true)
     {
+
         ir_distance_mm_L= mapping(ir_analog_in_Distance_L.read()*1.0e3f * 3.3f);
         ir_distance_mm_R= mapping(ir_analog_in_Distance_R.read()*1.0e3f * 3.3f);
-        ir_distance_mm_Lookdown_B= mapping(ir_analog_in_Lookdown_B.read()*1.0e3f * 3.3f);
-        ir_distance_mm_Lookdown_F= mapping(ir_analog_in_Lookdown_F.read()*1.0e3f * 3.3f);
+    
+        if (ToNextFunction>=1)
+        {
+            enable_motors=1;
+        }
 
 
         switch (ToNextFunction) 
         {
 
             case 1: 
-            set_arm_stair_height();
+            state=set_arm_stair_height();
             printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
             if (state==1){
                     ToNextFunction += 1;
             }
+
             break;
 
             case 2:
@@ -283,13 +301,13 @@
             }
 
             case 3: 
-            state=drive_straight(drive_stright_mm);
+            state=drive_straight(drive_straight_mm);
             printf("Case 2: Position Right(rot): %3.3f;    Position Left (rot): %3.3f\n",
             positionController_M_right.getRotation(),positionController_M_left.getRotation());
             if (state==1){
                     ToNextFunction += 1;
             }
-            break;
+
 
             case 4: 
             state=lift_up();
@@ -298,7 +316,6 @@
                     ToNextFunction += 1;
             }
 
-
             case 5: 
             state=drive_straight(drive_back_mm);
             printf("Case 4: Position Right(rot): %3.3f;    Position Left (rot): %3.3f\n",
@@ -315,13 +332,14 @@
                     ToNextFunction = 1;
             }
             break;  
+
             default:  ;
         } 
     }
-       // read timer and make the main thread sleep for the remaining time span (non blocking)
-        int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
-        thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
-        return 0;
+    // read timer and make the main thread sleep for the remaining time span (non blocking)
+    int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
+    thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
+    return 0;
 }