Prototyp V2

Dependencies:   PM2_Libary

Committer:
raomen
Date:
Mon Apr 18 16:02:10 2022 +0200
Branch:
michi
Revision:
45:8050724fe19b
Parent:
44:c2d4bc4be5f2
Child:
46:eba2263eb626
debug: calc_arm_deg_for_height() / start_position() / dirive_straight()

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pmic 1:93d997d6b232 1 #include "mbed.h"
pmic 17:c19b471f05cb 2 #include "PM2_Libary.h"
raomen 41:4a4978d1a578 3 #include <cmath>
lupomic 33:70ea029a69e8 4 #include <cstdint>
raomen 41:4a4978d1a578 5 #include <cstdio>
raomen 39:025d1bee1397 6 #include "math.h"
raomen 39:025d1bee1397 7 //*******************************************************************************************************************************************************************
raomen 39:025d1bee1397 8 // Defined Variables in mm coming from Hardware-team. Need to be updated
raomen 41:4a4978d1a578 9 float wheel_diameter = 30; // diameter of wheel with caterpillar to calculate mm per wheel turn (4)
raomen 41:4a4978d1a578 10 float arm_length = 118.5; // lenght of arm from pivotpoint to pivotpoint (3)
raomen 41:4a4978d1a578 11 float dist_arm_attach_distsensor = 20; // distance between pivot point arm on body to start distancesensor on top in horizontal (6)
raomen 41:4a4978d1a578 12 float dist_distsensors = 200; // distance between the two distancesensors on top of Wall-E (9)
raomen 41:4a4978d1a578 13 float dist_arm_ground = 51; // distance between pivotpoint arm and ground (5)
raomen 41:4a4978d1a578 14 float gripper_area_height = 16 ; // Height of Grappler cutout to grapple Stair (8)
raomen 41:4a4978d1a578 15 float dist_grappleratt_grappler_uk = 33; // distance between pivotpoint Grappler and bottom edge (?)
raomen 41:4a4978d1a578 16
raomen 39:025d1bee1397 17 float height_stairs = 100; // height to top of stairs in mm
raomen 39:025d1bee1397 18 //***********************************************************************************************************************************************************
raomen 41:4a4978d1a578 19 // declaration of Input - Output pins
pmic 17:c19b471f05cb 20
pmic 24:86f1a63e35a0 21 // user button on nucleo board
pmic 24:86f1a63e35a0 22 Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
pmic 24:86f1a63e35a0 23 InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
pmic 24:86f1a63e35a0 24 void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
pmic 24:86f1a63e35a0 25 void user_button_released_fcn();
pmic 6:e1fa1a2d7483 26
pmic 24:86f1a63e35a0 27 // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
raomen 38:c2663f7dcccb 28 float ir_distance_mV = 0.0f; // define variable to store measurement from infrared distancesensor in mVolt
pmic 24:86f1a63e35a0 29 AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
pmic 6:e1fa1a2d7483 30
pmic 24:86f1a63e35a0 31 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
pmic 24:86f1a63e35a0 32 DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors
pmic 24:86f1a63e35a0 33 float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors
lupomic 33:70ea029a69e8 34 //motor pin declaration
lupomic 34:9f779e91168e 35 FastPWM pwm_M_right(PB_13);
lupomic 34:9f779e91168e 36 FastPWM pwm_M_left(PA_9);
lupomic 33:70ea029a69e8 37 FastPWM pwm_M_arm(PA_10);
pmic 17:c19b471f05cb 38
lupomic 33:70ea029a69e8 39 //Encoder pin declaration
lupomic 33:70ea029a69e8 40 EncoderCounter encoder_M_right(PA_6, PC_7); //encoder pin decalaration for wheels right side
lupomic 33:70ea029a69e8 41 EncoderCounter encoder_M_left(PB_6, PB_7); //encoder pin decalaration for wheels left side
lupomic 33:70ea029a69e8 42 EncoderCounter encoder_M_arm(PA_0, PA_1); //encoder pin decalaration for arm
raomen 41:4a4978d1a578 43 //***********************************************************************************************************************************************************
raomen 43:7964411b4a6b 44 // Hardware controll Setup and functions (motors and sensors)
pmic 17:c19b471f05cb 45
pmic 30:1e8295770bc1 46 // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
pmic 24:86f1a63e35a0 47 float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
raomen 39:025d1bee1397 48 float counts_per_turn_wheels = 20.0f * 78.125f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels
raomen 39:025d1bee1397 49 float counts_per_turn_arm = 20.0f * 78.125f * 10.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm
pmic 25:ea1d6e27c895 50 float kn = 180.0f / 12.0f; // define motor constant in rpm per V
raomen 39:025d1bee1397 51 float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 (DC with 100:1 has 2'000 turns for 360°)
pmic 30:1e8295770bc1 52 float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1
pmic 6:e1fa1a2d7483 53
lupomic 33:70ea029a69e8 54 //motors for tracks
lupomic 33:70ea029a69e8 55 PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
lupomic 33:70ea029a69e8 56 PositionController positionController_M_left(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_left, encoder_M_left); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
lupomic 33:70ea029a69e8 57 //Arm Motor
lupomic 33:70ea029a69e8 58 PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
pmic 17:c19b471f05cb 59
lupomic 33:70ea029a69e8 60 // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
lupomic 33:70ea029a69e8 61 //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
raomen 41:4a4978d1a578 62 //***********************************************************************************************************************************************************
raomen 43:7964411b4a6b 63 // logic functions for basic movement
raomen 41:4a4978d1a578 64
lupomic 33:70ea029a69e8 65 //Platzhalter Variabeln für die Positionierung
raomen 45:8050724fe19b 66 int drive_stright_mm = 100;
raomen 45:8050724fe19b 67 int PositionBackOff = -100;
raomen 41:4a4978d1a578 68 float degArmStart = 0.0;
lupomic 34:9f779e91168e 69 float degArmLift = -0.5;
raomen 41:4a4978d1a578 70 int ToNextFunction = 0; // current state of the system (which function is beeing executed)
raomen 45:8050724fe19b 71 float max_speed_rps_wheel = 0.6f; // define maximum speed that the position controller is changig the speed for the wheels, has to be smaller or equal to kn * max_voltage
raomen 45:8050724fe19b 72 float max_speed_rps_arm = 0.3f; // define maximum speed that the position controller is changig the speed for the arm, has to be smaller or equal to kn * max_voltage
raomen 45:8050724fe19b 73 double start_deg_arm = asin((dist_arm_ground - dist_grappleratt_grappler_uk) / arm_length); //calculates the starting degree of the arm (gripper has to touch ground in frotn of Wall-E)
raomen 45:8050724fe19b 74 double current_deg_arm = start_deg_arm; // saves the current degree the arm has.
lupomic 33:70ea029a69e8 75
raomen 42:6e7ab1136354 76 // calculates the deg which the arm has to take to reach a certain height (the input height will be the height of OK Gripper area)
raomen 42:6e7ab1136354 77 double calc_arm_deg_for_height(int height_mm)
raomen 40:e32c57763d92 78 {
raomen 42:6e7ab1136354 79 if ((height_mm - dist_arm_ground - (dist_grappleratt_grappler_uk - gripper_area_height)) > arm_length)
raomen 41:4a4978d1a578 80 {
raomen 43:7964411b4a6b 81 printf("Error in calc_arm_deg_for_height: desired height is bigger than Wall-E arm lenght."); // error message when desired height is not reachable.
raomen 41:4a4978d1a578 82 }
raomen 45:8050724fe19b 83 float height_arm = height_mm - dist_arm_ground - (dist_grappleratt_grappler_uk - gripper_area_height);
raomen 45:8050724fe19b 84 float deg_arm_rad = asin(height_arm / arm_length); // deg in radians
raomen 45:8050724fe19b 85 float pi = 2 * acos(0.0); // definiton of pi
raomen 45:8050724fe19b 86 float deg_arm = deg_arm_rad * 180.0/pi; // deg in degrees
raomen 41:4a4978d1a578 87 return deg_arm;
raomen 40:e32c57763d92 88 }
raomen 38:c2663f7dcccb 89
raomen 45:8050724fe19b 90 //calculates the deg which the wheels have to turn in order to cover specified distnace in mm
raomen 45:8050724fe19b 91 float wheel_dist_to_deg(int distance) // distance has to be in mm.
raomen 45:8050724fe19b 92 {
raomen 45:8050724fe19b 93 float pi = 2 * acos(0.0); // definiton of pi
raomen 45:8050724fe19b 94 float deg_wheel = distance * 360 /(wheel_diameter * pi);
raomen 45:8050724fe19b 95 return deg_wheel;
raomen 45:8050724fe19b 96 }
raomen 45:8050724fe19b 97
raomen 43:7964411b4a6b 98 // bring arme in starting position height of stairs.
raomen 42:6e7ab1136354 99 int start_position()
raomen 42:6e7ab1136354 100 {
raomen 45:8050724fe19b 101 float deg_up_from_horizon = calc_arm_deg_for_height(height_stairs); //deg which arm motor has to turn to in order to grab stair. starting from horizontal position
raomen 45:8050724fe19b 102 float deg = deg_up_from_horizon + start_deg_arm;
raomen 43:7964411b4a6b 103 if ((0.0 > deg) || (deg > 360.0))
raomen 42:6e7ab1136354 104 {
raomen 45:8050724fe19b 105 printf("**************Error in start_position: degree is out of bound for Start Position.***************"); // error when desired reaching point is out of reach.
raomen 42:6e7ab1136354 106 }
raomen 45:8050724fe19b 107 positionController_M_Arm.setDesiredRotation(deg / 360.0, max_speed_rps_arm); // command to turn motor to desired deg.
raomen 45:8050724fe19b 108 current_deg_arm = positionController_M_Arm.getRotation() / 360.0;
raomen 42:6e7ab1136354 109 return NULL;
raomen 42:6e7ab1136354 110 }
raomen 42:6e7ab1136354 111
lupomic 33:70ea029a69e8 112 //Drives forward into the next step
raomen 39:025d1bee1397 113 // calculatioin of acctual distance with wheels is needed
raomen 43:7964411b4a6b 114 int drive_straight(float distance)
raomen 40:e32c57763d92 115 {
raomen 45:8050724fe19b 116 double deg_to_turn = wheel_dist_to_deg(distance);
raomen 45:8050724fe19b 117 positionController_M_right.setDesiredRotation(deg_to_turn / 360.0, max_speed_rps_wheel);
raomen 45:8050724fe19b 118 positionController_M_left.setDesiredRotation(deg_to_turn / 360.0, max_speed_rps_wheel);
raomen 45:8050724fe19b 119 return NULL;
lupomic 33:70ea029a69e8 120 }
lupomic 33:70ea029a69e8 121
lupomic 33:70ea029a69e8 122 //only turns the arm until the robot is on the next step
lupomic 33:70ea029a69e8 123 //not yet clear if the motor controler function drives to a absolute poition or if it drives the given distance relative to the current position
raomen 42:6e7ab1136354 124 int lift_up(float deg)
raomen 40:e32c57763d92 125 {
lupomic 33:70ea029a69e8 126 int8_t i = 0; //prov condition variable
raomen 45:8050724fe19b 127 positionController_M_Arm.setDesiredRotation(deg / 360.0, max_speed_rps_arm);
raomen 45:8050724fe19b 128 return NULL;
lupomic 33:70ea029a69e8 129 }
raomen 43:7964411b4a6b 130 //***********************************************************************************************************************************************************
raomen 38:c2663f7dcccb 131
raomen 43:7964411b4a6b 132 //Function which checks if sensors and motors have been wired correctly and the expectet results will happen. otherwise Wall-E will show with armmovement.
raomen 43:7964411b4a6b 133 int check_start()
raomen 43:7964411b4a6b 134 {
raomen 43:7964411b4a6b 135
raomen 43:7964411b4a6b 136 return 0;
raomen 43:7964411b4a6b 137 }
raomen 43:7964411b4a6b 138
raomen 43:7964411b4a6b 139 //pow function is here so we dont have to use the math.h library ************* unnecessary math.h is used any way ***************
lupomic 33:70ea029a69e8 140 //it takes 2 arguments the base can be any negative or positive floating point number the power has to be a hos to be an "integer" defined as a double
raomen 40:e32c57763d92 141 double powerx(double base, double pow2)
raomen 40:e32c57763d92 142 {
lupomic 33:70ea029a69e8 143 double result = -1;
lupomic 33:70ea029a69e8 144 double power = pow2;
lupomic 33:70ea029a69e8 145 double basis = base;
lupomic 33:70ea029a69e8 146 result = 1;
lupomic 33:70ea029a69e8 147 //handling negative exponents
raomen 40:e32c57763d92 148 if(power<0)
raomen 40:e32c57763d92 149 {
raomen 40:e32c57763d92 150 for(double i=1; i<=(power*(-1.0)); i++)
raomen 40:e32c57763d92 151 {
lupomic 33:70ea029a69e8 152 result *= basis;
lupomic 33:70ea029a69e8 153 }
lupomic 33:70ea029a69e8 154 result = 1.0/result;
lupomic 33:70ea029a69e8 155 }
lupomic 33:70ea029a69e8 156 //handling positive exponents
raomen 40:e32c57763d92 157 else
raomen 40:e32c57763d92 158 {
raomen 40:e32c57763d92 159 for(double i=1; i<=power; i++)
raomen 40:e32c57763d92 160 {
raomen 40:e32c57763d92 161 result *= basis;
raomen 40:e32c57763d92 162 }
raomen 40:e32c57763d92 163 }
lupomic 33:70ea029a69e8 164 return result;
raomen 40:e32c57763d92 165 }
lupomic 33:70ea029a69e8 166
raomen 40:e32c57763d92 167 double mapping(float adc_value_mV)
raomen 40:e32c57763d92 168 {
lupomic 33:70ea029a69e8 169 double distance = 0.0f; //distance in mm
lupomic 33:70ea029a69e8 170 double infY =360 , supY = 2360; //Window for sensor values
lupomic 33:70ea029a69e8 171 double voltage_mV = adc_value_mV;
lupomic 33:70ea029a69e8 172 double p1 = -1.127*powerx(10,-14), p2 = 8.881*powerx(10,-11), p3 = -2.76*powerx(10,-7), p4 = 0.0004262, p5 = -0.3363, p6 = 120.1 ; //faktoren für polynomkurve -> von matlab exportiert
raomen 45:8050724fe19b 173 if((voltage_mV > infY) && (voltage_mV < supY))
raomen 40:e32c57763d92 174 {
lupomic 33:70ea029a69e8 175 distance = p1*powerx(voltage_mV,5) + p2*powerx(voltage_mV,4) + p3*powerx(voltage_mV,3) + p4*powerx(voltage_mV,2) + p5*voltage_mV + p6;
lupomic 33:70ea029a69e8 176 }
lupomic 33:70ea029a69e8 177 return (distance);
lupomic 33:70ea029a69e8 178 }
lupomic 33:70ea029a69e8 179
raomen 41:4a4978d1a578 180 // logical variable main task
raomen 41:4a4978d1a578 181 bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task
raomen 41:4a4978d1a578 182
raomen 41:4a4978d1a578 183 // while loop gets executed every main_task_period_ms milliseconds
raomen 41:4a4978d1a578 184 int main_task_period_ms = 30; // define main task period time in ms e.g. 30 ms -> main task runns ~33,33 times per second
raomen 41:4a4978d1a578 185 Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
raomen 43:7964411b4a6b 186 //***********************************************************************************************************************************************************
raomen 39:025d1bee1397 187
lupomic 33:70ea029a69e8 188 int main(void)
pmic 23:26b3a25fc637 189 {
raomen 43:7964411b4a6b 190 // attach button fall and rise functions to user button object
lupomic 33:70ea029a69e8 191 user_button.fall(&user_button_pressed_fcn);
lupomic 34:9f779e91168e 192 user_button.rise(&user_button_released_fcn);
lupomic 33:70ea029a69e8 193
raomen 40:e32c57763d92 194 while (true)
raomen 40:e32c57763d92 195 {
raomen 45:8050724fe19b 196 enable_motors = 1;
raomen 45:8050724fe19b 197 ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
lupomic 33:70ea029a69e8 198
raomen 40:e32c57763d92 199 switch (ToNextFunction)
raomen 40:e32c57763d92 200 {
raomen 45:8050724fe19b 201 case 0:
lupomic 33:70ea029a69e8 202 break;
raomen 45:8050724fe19b 203 case 1:
raomen 45:8050724fe19b 204 start_position();
raomen 45:8050724fe19b 205 printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
raomen 45:8050724fe19b 206 // ToNextFunction+=1;
raomen 45:8050724fe19b 207 break;
raomen 45:8050724fe19b 208 case 2:
raomen 45:8050724fe19b 209 drive_straight(drive_stright_mm);
raomen 45:8050724fe19b 210 printf("Case 2: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n",
raomen 45:8050724fe19b 211 positionController_M_right.getRotation(),positionController_M_left.getRotation());
raomen 45:8050724fe19b 212 // ToNextFunction+=1;
raomen 45:8050724fe19b 213 break;
raomen 45:8050724fe19b 214 case 3:
raomen 45:8050724fe19b 215 lift_up(degArmLift);
raomen 45:8050724fe19b 216 // ToNextFunction+=1;
raomen 45:8050724fe19b 217 printf("Case 3: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
raomen 45:8050724fe19b 218 break;
raomen 45:8050724fe19b 219 case 4:
raomen 45:8050724fe19b 220 drive_straight(PositionBackOff);
lupomic 34:9f779e91168e 221 printf("Case 4: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n",
raomen 45:8050724fe19b 222 positionController_M_right.getRotation(),positionController_M_left.getRotation());
raomen 45:8050724fe19b 223 // ToNextFunction+=1;
raomen 45:8050724fe19b 224 break;
raomen 45:8050724fe19b 225 case 5:
raomen 45:8050724fe19b 226 lift_up(degArmStart);
lupomic 34:9f779e91168e 227 printf("Case 5: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
raomen 45:8050724fe19b 228 // ToNextFunction = 0;
raomen 45:8050724fe19b 229 break;
raomen 45:8050724fe19b 230 default: ;
lupomic 33:70ea029a69e8 231 }
lupomic 33:70ea029a69e8 232 }
lupomic 33:70ea029a69e8 233 // read timer and make the main thread sleep for the remaining time span (non blocking)
pmic 24:86f1a63e35a0 234 int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
pmic 24:86f1a63e35a0 235 thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
lupomic 33:70ea029a69e8 236 return 0;
pmic 1:93d997d6b232 237 }
pmic 6:e1fa1a2d7483 238
lupomic 33:70ea029a69e8 239
pmic 24:86f1a63e35a0 240 void user_button_pressed_fcn()
pmic 25:ea1d6e27c895 241 {
pmic 26:28693b369945 242 user_button_timer.start();
pmic 6:e1fa1a2d7483 243 user_button_timer.reset();
pmic 6:e1fa1a2d7483 244 }
pmic 6:e1fa1a2d7483 245
raomen 43:7964411b4a6b 246 void user_button_released_fcn()
raomen 43:7964411b4a6b 247 {
pmic 24:86f1a63e35a0 248 // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
pmic 24:86f1a63e35a0 249 int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
pmic 6:e1fa1a2d7483 250 user_button_timer.stop();
raomen 43:7964411b4a6b 251 if (user_button_elapsed_time_ms > 200)
raomen 43:7964411b4a6b 252 {
raomen 43:7964411b4a6b 253 ToNextFunction += 1;
raomen 43:7964411b4a6b 254 }
raomen 43:7964411b4a6b 255 }