Prototyp V2

Dependencies:   PM2_Libary

Committer:
raomen
Date:
Mon May 02 14:46:19 2022 +0200
Branch:
michi
Revision:
91:e464d78fce0a
Parent:
90:2c0468f658ac
Child:
92:06c871d9a6ad
added comments

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pmic 1:93d997d6b232 1 #include "mbed.h"
pmic 17:c19b471f05cb 2 #include "PM2_Libary.h"
lupomic 33:70ea029a69e8 3 #include <cstdint>
raomen 41:4a4978d1a578 4 #include <cstdio>
raomen 39:025d1bee1397 5 #include "math.h"
raomen 39:025d1bee1397 6 //*******************************************************************************************************************************************************************
raomen 39:025d1bee1397 7 // Defined Variables in mm coming from Hardware-team. Need to be updated
raomen 55:8cb262e56efb 8 const float wheel_diameter = 30; // diameter of wheel with caterpillar to calculate mm per wheel turn (4)
raomen 55:8cb262e56efb 9 const float arm_length = 118.5; // lenght of arm from pivotpoint to pivotpoint (3)
raomen 55:8cb262e56efb 10 const float dist_arm_attach_distsensor = 20; // distance between pivot point arm on body to start distancesensor on top in horizontal (6)
raomen 55:8cb262e56efb 11 const float dist_distsensors = 200; // distance between the two distancesensors on top of Wall-E (9)
raomen 55:8cb262e56efb 12 const float dist_arm_ground = 51; // distance between pivotpoint arm and ground (5)
raomen 85:fbcc3d8e945a 13 const float dist_arm_attach_OK_griparea = 10.5 ; // Height of Grappler cutout to grapple Stair (8) (maybe add 1mm so gripper is a bit over the plate)
raomen 85:fbcc3d8e945a 14 const float dist_grappleratt_grappler_uk = 36.5; // distance between pivotpoint Grappler and bottom edge (?)
raomen 91:e464d78fce0a 15 const float grip_area_depth = 32.5; // depth of the area that will gripp the stair (7)
raomen 41:4a4978d1a578 16
raomen 55:8cb262e56efb 17 const float height_stairs = 100; // height to top of next stairstep in mm
raomen 39:025d1bee1397 18 //***********************************************************************************************************************************************************
raomen 41:4a4978d1a578 19 // declaration of Input - Output pins
pmic 17:c19b471f05cb 20
pmic 24:86f1a63e35a0 21 // user button on nucleo board
pmic 24:86f1a63e35a0 22 Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
pmic 24:86f1a63e35a0 23 InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
pmic 24:86f1a63e35a0 24 void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
pmic 24:86f1a63e35a0 25 void user_button_released_fcn();
pmic 6:e1fa1a2d7483 26
pmic 24:86f1a63e35a0 27 // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
raomen 38:c2663f7dcccb 28 float ir_distance_mV = 0.0f; // define variable to store measurement from infrared distancesensor in mVolt
raomen 55:8cb262e56efb 29 AnalogIn ir_analog_in(PC_3); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
pmic 6:e1fa1a2d7483 30
pmic 24:86f1a63e35a0 31 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
pmic 24:86f1a63e35a0 32 DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors
pmic 24:86f1a63e35a0 33 float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors
raomen 48:0ab6b1fd455f 34
lupomic 33:70ea029a69e8 35 //motor pin declaration
raomen 46:eba2263eb626 36 FastPWM pwm_M_right (PB_13); //motor pin decalaration for wheels right side
raomen 46:eba2263eb626 37 FastPWM pwm_M_left (PA_9); //motor pin decalaration for wheels left side
raomen 46:eba2263eb626 38 FastPWM pwm_M_arm (PA_10); //motor pin decalaration for arm
pmic 17:c19b471f05cb 39
lupomic 33:70ea029a69e8 40 //Encoder pin declaration
raomen 46:eba2263eb626 41 EncoderCounter encoder_M_right (PA_6, PC_7); //encoder pin decalaration for wheels right side
raomen 46:eba2263eb626 42 EncoderCounter encoder_M_left (PB_6, PB_7); //encoder pin decalaration for wheels left side
raomen 46:eba2263eb626 43 EncoderCounter encoder_M_arm (PA_0, PA_1); //encoder pin decalaration for arm
raomen 41:4a4978d1a578 44 //***********************************************************************************************************************************************************
raomen 43:7964411b4a6b 45 // Hardware controll Setup and functions (motors and sensors)
pmic 17:c19b471f05cb 46
pmic 30:1e8295770bc1 47 // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
raomen 55:8cb262e56efb 48 const float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
raomen 55:8cb262e56efb 49 const float counts_per_turn_wheels = 20.0f * 78.125f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels
raomen 59:f6c3e42f16c7 50 const float counts_per_turn_arm = 20.0f * 78.125f * 20.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm
raomen 55:8cb262e56efb 51 const float kn = 180.0f / 12.0f; // define motor constant in rpm per V
raomen 55:8cb262e56efb 52 const float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 (DC with 100:1 has 2'000 turns for 360°)
raomen 55:8cb262e56efb 53 const float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1
raomen 46:eba2263eb626 54
lupomic 33:70ea029a69e8 55 //motors for tracks
lupomic 33:70ea029a69e8 56 PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
lupomic 33:70ea029a69e8 57 PositionController positionController_M_left(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_left, encoder_M_left); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
lupomic 33:70ea029a69e8 58 //Arm Motor
lupomic 33:70ea029a69e8 59 PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
pmic 17:c19b471f05cb 60
lupomic 33:70ea029a69e8 61 // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
lupomic 33:70ea029a69e8 62 //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
raomen 41:4a4978d1a578 63 //***********************************************************************************************************************************************************
raomen 80:4eae727a13b5 64 // calculations for basic movment and controll
raomen 41:4a4978d1a578 65
raomen 50:058dc65d0fa4 66 //placeholder variables for prototype testing
raomen 84:40d64e0bb1ea 67 const int drive_straight_mm = 200; // placeholder for testing drives amount forward
raomen 84:40d64e0bb1ea 68 const int drive_back_mm = -200; // placeholder for testing drives amount backwards
raomen 65:1ee1f319a199 69 int ToNextFunction = 0; // current state of the system (which function is beeing executed)
lupomic 33:70ea029a69e8 70
raomen 81:909670edc2a2 71 // definition variables for calculations
raomen 55:8cb262e56efb 72 const float pi = 2 * acos(0.0); // definiton of pi
raomen 85:fbcc3d8e945a 73 const float end_pos_lift_deg = 180 + asin((dist_arm_ground-(dist_grappleratt_grappler_uk))/arm_length) * 180 / pi; // calculates the degree which the arm has to have when lift_up has been executed.
raomen 81:909670edc2a2 74 const float start_deg_arm = -asin((dist_arm_ground - dist_grappleratt_grappler_uk) / arm_length) * 180.0/pi ; //calculates the starting degree of the arm (gripper has to touch ground in frotn of Wall-E)
raomen 81:909670edc2a2 75
raomen 81:909670edc2a2 76 // definition of rotation speeds for motors 0 = none 1.0 = max.
raomen 66:b4e55e1eebfc 77 const float max_speed_rps_wheel = 0.5f; // define maximum speed that the position controller is changig the speed for the wheels, has to be smaller or equal to kn * max_voltage
raomen 55:8cb262e56efb 78 const float max_speed_rps_arm = 0.3f; // define maximum speed that the position controller is changig the speed for the arm, has to be smaller or equal to kn * max_voltage
raomen 65:1ee1f319a199 79
raomen 46:eba2263eb626 80 // calculates the deg which the arm has to take to reach a certain height (the input height has to be the height of OK Gripper area)
raomen 74:d7569d530f6c 81 // PARAM: height_mm = height which OK Gripperarea has to reach.
raomen 74:d7569d530f6c 82 // RETURN: deg_arm = absolut Position in deg that the arm has to take.
raomen 65:1ee1f319a199 83 float calc_arm_deg_for_height(int height_mm)
raomen 40:e32c57763d92 84 {
raomen 85:fbcc3d8e945a 85 float height_arm = height_mm - (dist_arm_ground - dist_arm_attach_OK_griparea); // calculates the height which only the arm has to cover (- attachement height (arm to robot) etc.)
raomen 81:909670edc2a2 86 float deg_arm = asin(height_arm / arm_length) * 180.0/pi; // calculates the absolute degrees which the arm has to reach
raomen 51:7d165baaa646 87 return deg_arm;
raomen 40:e32c57763d92 88 }
raomen 38:c2663f7dcccb 89
raomen 46:eba2263eb626 90 //calculates the deg which the wheels have to turn in order to cover specified distance in mm
raomen 85:fbcc3d8e945a 91 //PARAM: distance = distance to drive in milimeter
raomen 60:b2e9958f2298 92 //RETURN: deg_wheel = degree which the motor has to turn in order to cover distance(mm)
raomen 85:fbcc3d8e945a 93 float wheel_dist_to_deg(int distance)
raomen 45:8050724fe19b 94 {
raomen 85:fbcc3d8e945a 95 float deg_wheel = distance / (wheel_diameter * pi) * 360;
raomen 45:8050724fe19b 96 return deg_wheel;
raomen 45:8050724fe19b 97 }
raomen 45:8050724fe19b 98
raomen 58:3cd93949a7d7 99 // increments the Motor for defined degree from the current one
raomen 58:3cd93949a7d7 100 // PARAM: deg_to_turn = degree to turn the Motor
raomen 80:4eae727a13b5 101 // PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation())
raomen 80:4eae727a13b5 102 // RETURN: new_turn_rotation = new Rotation value in rotations
raomen 80:4eae727a13b5 103 float turn_relative_deg(float deg_to_turn, float current_rotation)
raomen 57:79732e5818d7 104 {
raomen 80:4eae727a13b5 105 float new_turn_rotation = current_rotation + deg_to_turn/360.0;
raomen 57:79732e5818d7 106 return new_turn_rotation;
raomen 57:79732e5818d7 107 }
raomen 57:79732e5818d7 108
raomen 80:4eae727a13b5 109 // sets the Motor to a specified degree in one rotation
raomen 80:4eae727a13b5 110 // PARAM: end_deg = new position of the arm in degree 0 <= value >=360
raomen 80:4eae727a13b5 111 // PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation())
raomen 80:4eae727a13b5 112 // RETURN: new_partial_rotation = new deg value in rotations
raomen 80:4eae727a13b5 113 float turn_absolut_deg(float end_deg, float current_rotations)
raomen 80:4eae727a13b5 114 {
raomen 80:4eae727a13b5 115 int full_rotations;
raomen 80:4eae727a13b5 116 if(current_rotations > 0)
raomen 80:4eae727a13b5 117 {
raomen 80:4eae727a13b5 118 full_rotations = round(current_rotations - 0.5);
raomen 80:4eae727a13b5 119 }
raomen 80:4eae727a13b5 120 else if(current_rotations < 0)
raomen 80:4eae727a13b5 121 {
raomen 80:4eae727a13b5 122 full_rotations = round(current_rotations + 0.5);
raomen 80:4eae727a13b5 123 }
raomen 80:4eae727a13b5 124 else
raomen 80:4eae727a13b5 125 {
raomen 80:4eae727a13b5 126 full_rotations = 0;
raomen 80:4eae727a13b5 127 }
raomen 80:4eae727a13b5 128 float new_partial_rotation = full_rotations - start_deg_arm/360 + end_deg/360;
raomen 80:4eae727a13b5 129 return new_partial_rotation;
raomen 80:4eae727a13b5 130 }
raomen 80:4eae727a13b5 131 //***********************************************************************************************************************************************************
raomen 83:8cf96ccfac98 132 // important calculatet constant for Wall-E
raomen 81:909670edc2a2 133 const double deg_up_from_horizon_to_stair = calc_arm_deg_for_height(height_stairs);
raomen 80:4eae727a13b5 134
raomen 80:4eae727a13b5 135 // import functions from file mapping
raomen 80:4eae727a13b5 136 extern double powerx(double base, double pow2);
raomen 80:4eae727a13b5 137 extern double mapping (float adc_value_mV);
raomen 75:3831b90a4ae0 138
raomen 75:3831b90a4ae0 139 //simple check if there is an object in proximity
raomen 75:3831b90a4ae0 140 //returns 0 if there is NO object present
raomen 75:3831b90a4ae0 141 //returns 1 if there is an object present
raomen 75:3831b90a4ae0 142 //returns 2 if the distance isn't in the expected range
raomen 80:4eae727a13b5 143 uint8_t StepDetection(double distance)
raomen 80:4eae727a13b5 144 {
raomen 75:3831b90a4ae0 145 double d_valueMM = distance;
raomen 79:368cbf09cf6a 146 if(d_valueMM >= 4) return 0;
raomen 79:368cbf09cf6a 147 else if(d_valueMM < 4) return 1;
raomen 79:368cbf09cf6a 148 else if(d_valueMM <= 0 || d_valueMM > 100 ) return 2;
raomen 79:368cbf09cf6a 149 else return 2;
raomen 75:3831b90a4ae0 150
raomen 75:3831b90a4ae0 151 }
raomen 58:3cd93949a7d7 152
raomen 46:eba2263eb626 153 // bring arm in starting position. Height of stairs.
raomen 68:e3fc5ed0bc0e 154 void set_arm_stair_height()
raomen 42:6e7ab1136354 155 {
raomen 81:909670edc2a2 156 float deg = deg_up_from_horizon_to_stair + start_deg_arm;
raomen 66:b4e55e1eebfc 157
raomen 64:72b9efe62ece 158 enable_motors = 1;
raomen 45:8050724fe19b 159 positionController_M_Arm.setDesiredRotation(deg / 360.0, max_speed_rps_arm); // command to turn motor to desired deg.
raomen 64:72b9efe62ece 160 enable_motors = 0;
raomen 42:6e7ab1136354 161 }
raomen 42:6e7ab1136354 162
raomen 55:8cb262e56efb 163 //Drives forward into the next step
raomen 55:8cb262e56efb 164 //Prameter:distance in milimeter
raomen 64:72b9efe62ece 165 void drive_straight(float distance)
raomen 40:e32c57763d92 166 {
raomen 46:eba2263eb626 167 float deg_to_turn = wheel_dist_to_deg(distance);
raomen 60:b2e9958f2298 168
raomen 60:b2e9958f2298 169 float relativ_turns_rightmotor = turn_relative_deg(deg_to_turn, positionController_M_right.getRotation());
raomen 60:b2e9958f2298 170 float relativ_turns_leftmotor = turn_relative_deg(deg_to_turn, positionController_M_left.getRotation());
raomen 66:b4e55e1eebfc 171
raomen 64:72b9efe62ece 172 enable_motors = 1;
raomen 60:b2e9958f2298 173 positionController_M_right.setDesiredRotation(relativ_turns_rightmotor, max_speed_rps_wheel);
raomen 64:72b9efe62ece 174 positionController_M_left.setDesiredRotation(relativ_turns_leftmotor, max_speed_rps_wheel);
raomen 64:72b9efe62ece 175 enable_motors = 0;
lupomic 33:70ea029a69e8 176 }
lupomic 33:70ea029a69e8 177
raomen 74:d7569d530f6c 178 //turns the arm until the robot is on the next step
raomen 64:72b9efe62ece 179 void lift_up()
raomen 40:e32c57763d92 180 {
raomen 81:909670edc2a2 181 float absolut_pos_arm = turn_absolut_deg(end_pos_lift_deg, positionController_M_Arm.getRotation()-1);
raomen 46:eba2263eb626 182
raomen 64:72b9efe62ece 183 enable_motors = 1;
raomen 77:508d8fda4aa0 184 positionController_M_Arm.setDesiredRotation(absolut_pos_arm, max_speed_rps_arm);
raomen 64:72b9efe62ece 185 enable_motors = 0;
lupomic 33:70ea029a69e8 186 }
raomen 90:2c0468f658ac 187
raomen 90:2c0468f658ac 188 void lift_sequenze()
raomen 90:2c0468f658ac 189 {
raomen 90:2c0468f658ac 190
raomen 90:2c0468f658ac 191 }
raomen 43:7964411b4a6b 192 //***********************************************************************************************************************************************************
raomen 38:c2663f7dcccb 193
raomen 80:4eae727a13b5 194 //Function which checks if sensors and motors have been wired correctly and the expectet results will happen. otherwise Wall-E will ???.
raomen 65:1ee1f319a199 195 void check_start()
raomen 43:7964411b4a6b 196 {
raomen 43:7964411b4a6b 197
raomen 43:7964411b4a6b 198 }
raomen 43:7964411b4a6b 199
raomen 41:4a4978d1a578 200 // while loop gets executed every main_task_period_ms milliseconds
raomen 41:4a4978d1a578 201 int main_task_period_ms = 30; // define main task period time in ms e.g. 30 ms -> main task runns ~33,33 times per second
raomen 41:4a4978d1a578 202 Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
raomen 43:7964411b4a6b 203 //***********************************************************************************************************************************************************
raomen 39:025d1bee1397 204
lupomic 33:70ea029a69e8 205 int main(void)
pmic 23:26b3a25fc637 206 {
raomen 46:eba2263eb626 207 // attach button fall and rise functions to user button object
raomen 46:eba2263eb626 208 user_button.fall(&user_button_pressed_fcn);
raomen 46:eba2263eb626 209 user_button.rise(&user_button_released_fcn);
lupomic 34:9f779e91168e 210
raomen 40:e32c57763d92 211 while (true)
raomen 40:e32c57763d92 212 {
raomen 45:8050724fe19b 213 ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
raomen 75:3831b90a4ae0 214
raomen 40:e32c57763d92 215 switch (ToNextFunction)
raomen 40:e32c57763d92 216 {
raomen 46:eba2263eb626 217
raomen 45:8050724fe19b 218 case 1:
raomen 68:e3fc5ed0bc0e 219 set_arm_stair_height();
raomen 46:eba2263eb626 220 break;
raomen 46:eba2263eb626 221
raomen 45:8050724fe19b 222 case 2:
raomen 80:4eae727a13b5 223 drive_straight(drive_straight_mm);
raomen 46:eba2263eb626 224 break;
raomen 46:eba2263eb626 225
raomen 45:8050724fe19b 226 case 3:
raomen 46:eba2263eb626 227 lift_up();
raomen 46:eba2263eb626 228 break;
raomen 46:eba2263eb626 229
raomen 83:8cf96ccfac98 230 case 4:
raomen 83:8cf96ccfac98 231 set_arm_stair_height();
raomen 83:8cf96ccfac98 232
raomen 83:8cf96ccfac98 233 case 5:
raomen 46:eba2263eb626 234 drive_straight(drive_back_mm);
raomen 65:1ee1f319a199 235 ToNextFunction = 0;
raomen 46:eba2263eb626 236 break;
raomen 46:eba2263eb626 237
raomen 46:eba2263eb626 238 default: ;
lupomic 33:70ea029a69e8 239 }
lupomic 33:70ea029a69e8 240 }
raomen 80:4eae727a13b5 241 // read timer and make the main thread sleep for the remaining time span (non blocking)
raomen 80:4eae727a13b5 242 int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
raomen 80:4eae727a13b5 243 thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
raomen 80:4eae727a13b5 244 return 0;
pmic 1:93d997d6b232 245 }
pmic 6:e1fa1a2d7483 246
lupomic 33:70ea029a69e8 247
pmic 24:86f1a63e35a0 248 void user_button_pressed_fcn()
pmic 25:ea1d6e27c895 249 {
pmic 26:28693b369945 250 user_button_timer.start();
pmic 6:e1fa1a2d7483 251 user_button_timer.reset();
pmic 6:e1fa1a2d7483 252 }
pmic 6:e1fa1a2d7483 253
raomen 43:7964411b4a6b 254 void user_button_released_fcn()
raomen 43:7964411b4a6b 255 {
pmic 24:86f1a63e35a0 256 // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
pmic 24:86f1a63e35a0 257 int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
pmic 6:e1fa1a2d7483 258 user_button_timer.stop();
raomen 43:7964411b4a6b 259 if (user_button_elapsed_time_ms > 200)
raomen 43:7964411b4a6b 260 {
raomen 43:7964411b4a6b 261 ToNextFunction += 1;
raomen 43:7964411b4a6b 262 }
raomen 43:7964411b4a6b 263 }