Eigne Matrix Class Library

Dependents:   Eigen_test Odometry_test AttitudeEstimation_usingTicker MPU9250_Quaternion_Binary_Serial ... more

Embed: (wiki syntax)

« Back to documentation index

LLT< _MatrixType, _UpLo > Class Template Reference

LLT< _MatrixType, _UpLo > Class Template Reference
[Cholesky module]

Standard Cholesky decomposition (LL^T) of a matrix and associated features. More...

#include <LLT.h>

Public Member Functions

 LLT ()
 Default Constructor.
 LLT (Index size)
 Default Constructor with memory preallocation.
Traits::MatrixU matrixU () const
Traits::MatrixL matrixL () const
template<typename Rhs >
const internal::solve_retval
< LLT, Rhs > 
solve (const MatrixBase< Rhs > &b) const
LLTcompute (const MatrixType &matrix)
 Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of matrix.
const MatrixType & matrixLLT () const
MatrixType reconstructedMatrix () const
ComputationInfo info () const
 Reports whether previous computation was successful.
template<typename VectorType >
LLT rankUpdate (const VectorType &vec, const RealScalar &sigma=1)
 Performs a rank one update (or dowdate) of the current decomposition.

Detailed Description

template<typename _MatrixType, int _UpLo>
class Eigen::LLT< _MatrixType, _UpLo >

Standard Cholesky decomposition (LL^T) of a matrix and associated features.

Parameters:
MatrixTypethe type of the matrix of which we are computing the LL^T Cholesky decomposition
UpLothe triangular part that will be used for the decompositon: Lower (default) or Upper. The other triangular part won't be read.

This class performs a LL^T Cholesky decomposition of a symmetric, positive definite matrix A such that A = LL^* = U^*U, where L is lower triangular.

While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, for that purpose, we recommend the Cholesky decomposition without square root which is more stable and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other situations like generalised eigen problems with hermitian matrices.

Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations has a solution.

Example:

Output:

See also:
MatrixBase::llt(), class LDLT

Definition at line 50 of file LLT.h.


Constructor & Destructor Documentation

LLT (  )

Default Constructor.

The default constructor is useful in cases in which the user intends to perform decompositions via LLT::compute(const MatrixType&).

Definition at line 78 of file LLT.h.

LLT ( Index  size )

Default Constructor with memory preallocation.

Like the default constructor but with preallocation of the internal data according to the specified problem size.

See also:
LLT()

Definition at line 86 of file LLT.h.


Member Function Documentation

LLT< MatrixType, _UpLo > & compute ( const MatrixType &  a )

Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of matrix.

Returns:
a reference to *this

Example:

Output:

Definition at line 391 of file LLT.h.

ComputationInfo info (  ) const

Reports whether previous computation was successful.

Returns:
Success if computation was succesful, NumericalIssue if the matrix.appears to be negative.

Definition at line 164 of file LLT.h.

Traits::MatrixL matrixL (  ) const
Returns:
a view of the lower triangular matrix L

Definition at line 104 of file LLT.h.

const MatrixType& matrixLLT (  ) const
Returns:
the LLT decomposition matrix

TODO: document the storage layout

Definition at line 150 of file LLT.h.

Traits::MatrixU matrixU (  ) const
Returns:
a view of the upper triangular matrix U

Definition at line 97 of file LLT.h.

LLT< _MatrixType, _UpLo > rankUpdate ( const VectorType &  v,
const RealScalar &  sigma = 1 
)

Performs a rank one update (or dowdate) of the current decomposition.

If A = LL^* before the rank one update, then after it we have LL^* = A + sigma * v v^* where v must be a vector of same dimension.

Definition at line 414 of file LLT.h.

MatrixType reconstructedMatrix (  ) const
Returns:
the matrix represented by the decomposition, i.e., it returns the product: L L^*. This function is provided for debug purpose.

Definition at line 470 of file LLT.h.

const internal::solve_retval<LLT, Rhs> solve ( const MatrixBase< Rhs > &  b ) const
Returns:
the solution x of $ A x = b $ using the current decomposition of A.

Since this LLT class assumes anyway that the matrix A is invertible, the solution theoretically exists and is unique regardless of b.

Example:

Output:

See also:
solveInPlace(), MatrixBase::llt()

Definition at line 122 of file LLT.h.