Eigne Matrix Class Library

Dependents:   Eigen_test Odometry_test AttitudeEstimation_usingTicker MPU9250_Quaternion_Binary_Serial ... more

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers PlainObjectBase.h Source File

PlainObjectBase.h

00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
00006 //
00007 // This Source Code Form is subject to the terms of the Mozilla
00008 // Public License v. 2.0. If a copy of the MPL was not distributed
00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00010 
00011 #ifndef EIGEN_DENSESTORAGEBASE_H
00012 #define EIGEN_DENSESTORAGEBASE_H
00013 
00014 #if defined(EIGEN_INITIALIZE_MATRICES_BY_ZERO)
00015 # define EIGEN_INITIALIZE_COEFFS
00016 # define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=Scalar(0);
00017 #elif defined(EIGEN_INITIALIZE_MATRICES_BY_NAN)
00018 # define EIGEN_INITIALIZE_COEFFS
00019 # define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=std::numeric_limits<Scalar>::quiet_NaN();
00020 #else
00021 # undef EIGEN_INITIALIZE_COEFFS
00022 # define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
00023 #endif
00024 
00025 namespace Eigen {
00026 
00027 namespace internal {
00028 
00029 template<int MaxSizeAtCompileTime> struct check_rows_cols_for_overflow {
00030   template<typename Index>
00031   static EIGEN_ALWAYS_INLINE void run(Index, Index)
00032   {
00033   }
00034 };
00035 
00036 template<> struct check_rows_cols_for_overflow<Dynamic> {
00037   template<typename Index>
00038   static EIGEN_ALWAYS_INLINE void run(Index rows, Index cols)
00039   {
00040     // http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242
00041     // we assume Index is signed
00042     Index max_index = (size_t(1) << (8 * sizeof(Index) - 1)) - 1; // assume Index is signed
00043     bool error = (rows == 0 || cols == 0) ? false
00044                : (rows > max_index / cols);
00045     if (error)
00046       throw_std_bad_alloc();
00047   }
00048 };
00049 
00050 template <typename Derived,
00051           typename OtherDerived = Derived,
00052           bool IsVector = bool(Derived::IsVectorAtCompileTime) && bool(OtherDerived::IsVectorAtCompileTime)>
00053 struct conservative_resize_like_impl;
00054 
00055 template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct matrix_swap_impl;
00056 
00057 } // end namespace internal
00058 
00059 /** \class PlainObjectBase
00060   * \brief %Dense storage base class for matrices and arrays.
00061   *
00062   * This class can be extended with the help of the plugin mechanism described on the page
00063   * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN.
00064   *
00065   * \sa \ref TopicClassHierarchy
00066   */
00067 #ifdef EIGEN_PARSED_BY_DOXYGEN
00068 namespace internal {
00069 
00070 // this is a warkaround to doxygen not being able to understand the inheritence logic
00071 // when it is hidden by the dense_xpr_base helper struct.
00072 template<typename Derived> struct dense_xpr_base_dispatcher_for_doxygen;// : public MatrixBase<Derived> {};
00073 /** This class is just a workaround for Doxygen and it does not not actually exist. */
00074 template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
00075 struct dense_xpr_base_dispatcher_for_doxygen<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
00076     : public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > {};
00077 /** This class is just a workaround for Doxygen and it does not not actually exist. */
00078 template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
00079 struct dense_xpr_base_dispatcher_for_doxygen<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
00080     : public ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > {};
00081 
00082 } // namespace internal
00083 
00084 template<typename Derived>
00085 class PlainObjectBase : public internal::dense_xpr_base_dispatcher_for_doxygen<Derived>
00086 #else
00087 template<typename Derived>
00088 class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
00089 #endif
00090 {
00091   public:
00092     enum { Options = internal::traits<Derived>::Options };
00093     typedef typename internal::dense_xpr_base<Derived>::type Base;
00094 
00095     typedef typename internal::traits<Derived>::StorageKind StorageKind;
00096     typedef typename internal::traits<Derived>::Index Index;
00097     typedef typename internal::traits<Derived>::Scalar Scalar;
00098     typedef typename internal::packet_traits<Scalar>::type PacketScalar;
00099     typedef typename NumTraits<Scalar>::Real RealScalar;
00100     typedef Derived DenseType;
00101 
00102     using Base::RowsAtCompileTime;
00103     using Base::ColsAtCompileTime;
00104     using Base::SizeAtCompileTime;
00105     using Base::MaxRowsAtCompileTime;
00106     using Base::MaxColsAtCompileTime;
00107     using Base::MaxSizeAtCompileTime;
00108     using Base::IsVectorAtCompileTime;
00109     using Base::Flags;
00110 
00111     template<typename PlainObjectType, int MapOptions, typename StrideType> friend class Eigen::Map;
00112     friend  class Eigen::Map<Derived, Unaligned>;
00113     typedef Eigen::Map<Derived, Unaligned>  MapType;
00114     friend  class Eigen::Map<const Derived, Unaligned>;
00115     typedef const Eigen::Map<const Derived, Unaligned> ConstMapType;
00116     friend  class Eigen::Map<Derived, Aligned>;
00117     typedef Eigen::Map<Derived, Aligned> AlignedMapType;
00118     friend  class Eigen::Map<const Derived, Aligned>;
00119     typedef const Eigen::Map<const Derived, Aligned> ConstAlignedMapType;
00120     template<typename StrideType> struct StridedMapType { typedef Eigen::Map<Derived, Unaligned, StrideType> type; };
00121     template<typename StrideType> struct StridedConstMapType { typedef Eigen::Map<const Derived, Unaligned, StrideType> type; };
00122     template<typename StrideType> struct StridedAlignedMapType { typedef Eigen::Map<Derived, Aligned, StrideType> type; };
00123     template<typename StrideType> struct StridedConstAlignedMapType { typedef Eigen::Map<const Derived, Aligned, StrideType> type; };
00124 
00125   protected:
00126     DenseStorage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage;
00127 
00128   public:
00129     enum { NeedsToAlign = SizeAtCompileTime != Dynamic && (internal::traits<Derived>::Flags & AlignedBit) != 0 };
00130     EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
00131 
00132     Base& base() { return *static_cast<Base*>(this); }
00133     const Base& base() const { return *static_cast<const Base*>(this); }
00134 
00135     EIGEN_STRONG_INLINE Index rows() const { return m_storage.rows(); }
00136     EIGEN_STRONG_INLINE Index cols() const { return m_storage.cols(); }
00137 
00138     EIGEN_STRONG_INLINE const Scalar& coeff(Index rowId, Index colId) const
00139     {
00140       if(Flags & RowMajorBit)
00141         return m_storage.data()[colId + rowId * m_storage.cols()];
00142       else // column-major
00143         return m_storage.data()[rowId + colId * m_storage.rows()];
00144     }
00145 
00146     EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
00147     {
00148       return m_storage.data()[index];
00149     }
00150 
00151     EIGEN_STRONG_INLINE Scalar& coeffRef(Index rowId, Index colId)
00152     {
00153       if(Flags & RowMajorBit)
00154         return m_storage.data()[colId + rowId * m_storage.cols()];
00155       else // column-major
00156         return m_storage.data()[rowId + colId * m_storage.rows()];
00157     }
00158 
00159     EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
00160     {
00161       return m_storage.data()[index];
00162     }
00163 
00164     EIGEN_STRONG_INLINE const Scalar& coeffRef(Index rowId, Index colId) const
00165     {
00166       if(Flags & RowMajorBit)
00167         return m_storage.data()[colId + rowId * m_storage.cols()];
00168       else // column-major
00169         return m_storage.data()[rowId + colId * m_storage.rows()];
00170     }
00171 
00172     EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const
00173     {
00174       return m_storage.data()[index];
00175     }
00176 
00177     /** \internal */
00178     template<int LoadMode>
00179     EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
00180     {
00181       return internal::ploadt<PacketScalar, LoadMode>
00182                (m_storage.data() + (Flags & RowMajorBit
00183                                    ? colId + rowId * m_storage.cols()
00184                                    : rowId + colId * m_storage.rows()));
00185     }
00186 
00187     /** \internal */
00188     template<int LoadMode>
00189     EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
00190     {
00191       return internal::ploadt<PacketScalar, LoadMode>(m_storage.data() + index);
00192     }
00193 
00194     /** \internal */
00195     template<int StoreMode>
00196     EIGEN_STRONG_INLINE void writePacket(Index rowId, Index colId, const PacketScalar& val)
00197     {
00198       internal::pstoret<Scalar, PacketScalar, StoreMode>
00199               (m_storage.data() + (Flags & RowMajorBit
00200                                    ? colId + rowId * m_storage.cols()
00201                                    : rowId + colId * m_storage.rows()), val);
00202     }
00203 
00204     /** \internal */
00205     template<int StoreMode>
00206     EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& val)
00207     {
00208       internal::pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, val);
00209     }
00210 
00211     /** \returns a const pointer to the data array of this matrix */
00212     EIGEN_STRONG_INLINE const Scalar *data () const
00213     { return m_storage.data(); }
00214 
00215     /** \returns a pointer to the data array of this matrix */
00216     EIGEN_STRONG_INLINE Scalar *data ()
00217     { return m_storage.data(); }
00218 
00219     /** Resizes \c *this to a \a rows x \a cols matrix.
00220       *
00221       * This method is intended for dynamic-size matrices, although it is legal to call it on any
00222       * matrix as long as fixed dimensions are left unchanged. If you only want to change the number
00223       * of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t).
00224       *
00225       * If the current number of coefficients of \c *this exactly matches the
00226       * product \a rows * \a cols, then no memory allocation is performed and
00227       * the current values are left unchanged. In all other cases, including
00228       * shrinking, the data is reallocated and all previous values are lost.
00229       *
00230       * Example: \include Matrix_resize_int_int.cpp
00231       * Output: \verbinclude Matrix_resize_int_int.out
00232       *
00233       * \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t)
00234       */
00235     EIGEN_STRONG_INLINE void resize(Index nbRows, Index nbCols)
00236     {
00237       eigen_assert(   EIGEN_IMPLIES(RowsAtCompileTime!=Dynamic,nbRows==RowsAtCompileTime)
00238                    && EIGEN_IMPLIES(ColsAtCompileTime!=Dynamic,nbCols==ColsAtCompileTime)
00239                    && EIGEN_IMPLIES(RowsAtCompileTime==Dynamic && MaxRowsAtCompileTime!=Dynamic,nbRows<=MaxRowsAtCompileTime)
00240                    && EIGEN_IMPLIES(ColsAtCompileTime==Dynamic && MaxColsAtCompileTime!=Dynamic,nbCols<=MaxColsAtCompileTime)
00241                    && nbRows>=0 && nbCols>=0 && "Invalid sizes when resizing a matrix or array.");
00242       internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(nbRows, nbCols);
00243       #ifdef EIGEN_INITIALIZE_COEFFS
00244         Index size = nbRows*nbCols;
00245         bool size_changed = size != this->size();
00246         m_storage.resize(size, nbRows, nbCols);
00247         if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
00248       #else
00249         internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(nbRows, nbCols);
00250         m_storage.resize(nbRows*nbCols, nbRows, nbCols);
00251       #endif
00252     }
00253 
00254     /** Resizes \c *this to a vector of length \a size
00255       *
00256       * \only_for_vectors. This method does not work for
00257       * partially dynamic matrices when the static dimension is anything other
00258       * than 1. For example it will not work with Matrix<double, 2, Dynamic>.
00259       *
00260       * Example: \include Matrix_resize_int.cpp
00261       * Output: \verbinclude Matrix_resize_int.out
00262       *
00263       * \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t)
00264       */
00265     inline void resize(Index size)
00266     {
00267       EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase)
00268       eigen_assert(((SizeAtCompileTime == Dynamic && (MaxSizeAtCompileTime==Dynamic || size<=MaxSizeAtCompileTime)) || SizeAtCompileTime == size) && size>=0);
00269       #ifdef EIGEN_INITIALIZE_COEFFS
00270         bool size_changed = size != this->size();
00271       #endif
00272       if(RowsAtCompileTime == 1)
00273         m_storage.resize(size, 1, size);
00274       else
00275         m_storage.resize(size, size, 1);
00276       #ifdef EIGEN_INITIALIZE_COEFFS
00277         if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
00278       #endif
00279     }
00280 
00281     /** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange
00282       * as in the example below.
00283       *
00284       * Example: \include Matrix_resize_NoChange_int.cpp
00285       * Output: \verbinclude Matrix_resize_NoChange_int.out
00286       *
00287       * \sa resize(Index,Index)
00288       */
00289     inline void resize(NoChange_t, Index nbCols)
00290     {
00291       resize(rows(), nbCols);
00292     }
00293 
00294     /** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange
00295       * as in the example below.
00296       *
00297       * Example: \include Matrix_resize_int_NoChange.cpp
00298       * Output: \verbinclude Matrix_resize_int_NoChange.out
00299       *
00300       * \sa resize(Index,Index)
00301       */
00302     inline void resize(Index nbRows, NoChange_t)
00303     {
00304       resize(nbRows, cols());
00305     }
00306 
00307     /** Resizes \c *this to have the same dimensions as \a other.
00308       * Takes care of doing all the checking that's needed.
00309       *
00310       * Note that copying a row-vector into a vector (and conversely) is allowed.
00311       * The resizing, if any, is then done in the appropriate way so that row-vectors
00312       * remain row-vectors and vectors remain vectors.
00313       */
00314     template<typename OtherDerived>
00315     EIGEN_STRONG_INLINE void resizeLike(const EigenBase<OtherDerived>& _other)
00316     {
00317       const OtherDerived& other = _other.derived ();
00318       internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(other.rows(), other.cols());
00319       const Index othersize = other.rows()*other.cols();
00320       if(RowsAtCompileTime == 1)
00321       {
00322         eigen_assert(other.rows() == 1 || other.cols() == 1);
00323         resize(1, othersize);
00324       }
00325       else if(ColsAtCompileTime == 1)
00326       {
00327         eigen_assert(other.rows() == 1 || other.cols() == 1);
00328         resize(othersize, 1);
00329       }
00330       else resize(other.rows(), other.cols());
00331     }
00332 
00333     /** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
00334       *
00335       * The method is intended for matrices of dynamic size. If you only want to change the number
00336       * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or
00337       * conservativeResize(Index, NoChange_t).
00338       *
00339       * Matrices are resized relative to the top-left element. In case values need to be 
00340       * appended to the matrix they will be uninitialized.
00341       */
00342     EIGEN_STRONG_INLINE void conservativeResize(Index nbRows, Index nbCols)
00343     {
00344       internal::conservative_resize_like_impl<Derived>::run(*this, nbRows, nbCols);
00345     }
00346 
00347     /** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
00348       *
00349       * As opposed to conservativeResize(Index rows, Index cols), this version leaves
00350       * the number of columns unchanged.
00351       *
00352       * In case the matrix is growing, new rows will be uninitialized.
00353       */
00354     EIGEN_STRONG_INLINE void conservativeResize(Index nbRows, NoChange_t)
00355     {
00356       // Note: see the comment in conservativeResize(Index,Index)
00357       conservativeResize(nbRows, cols());
00358     }
00359 
00360     /** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
00361       *
00362       * As opposed to conservativeResize(Index rows, Index cols), this version leaves
00363       * the number of rows unchanged.
00364       *
00365       * In case the matrix is growing, new columns will be uninitialized.
00366       */
00367     EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index nbCols)
00368     {
00369       // Note: see the comment in conservativeResize(Index,Index)
00370       conservativeResize(rows(), nbCols);
00371     }
00372 
00373     /** Resizes the vector to \a size while retaining old values.
00374       *
00375       * \only_for_vectors. This method does not work for
00376       * partially dynamic matrices when the static dimension is anything other
00377       * than 1. For example it will not work with Matrix<double, 2, Dynamic>.
00378       *
00379       * When values are appended, they will be uninitialized.
00380       */
00381     EIGEN_STRONG_INLINE void conservativeResize(Index size)
00382     {
00383       internal::conservative_resize_like_impl<Derived>::run(*this, size);
00384     }
00385 
00386     /** Resizes the matrix to \a rows x \a cols of \c other, while leaving old values untouched.
00387       *
00388       * The method is intended for matrices of dynamic size. If you only want to change the number
00389       * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or
00390       * conservativeResize(Index, NoChange_t).
00391       *
00392       * Matrices are resized relative to the top-left element. In case values need to be 
00393       * appended to the matrix they will copied from \c other.
00394       */
00395     template<typename OtherDerived>
00396     EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other)
00397     {
00398       internal::conservative_resize_like_impl<Derived,OtherDerived>::run(*this, other);
00399     }
00400 
00401     /** This is a special case of the templated operator=. Its purpose is to
00402       * prevent a default operator= from hiding the templated operator=.
00403       */
00404     EIGEN_STRONG_INLINE Derived& operator=(const PlainObjectBase& other)
00405     {
00406       return _set(other);
00407     }
00408 
00409     /** \sa MatrixBase::lazyAssign() */
00410     template<typename OtherDerived>
00411     EIGEN_STRONG_INLINE Derived& lazyAssign (const DenseBase<OtherDerived>& other)
00412     {
00413       _resize_to_match(other);
00414       return Base::lazyAssign (other.derived());
00415     }
00416 
00417     template<typename OtherDerived>
00418     EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func)
00419     {
00420       resize(func.rows(), func.cols());
00421       return Base::operator=(func);
00422     }
00423 
00424     EIGEN_STRONG_INLINE PlainObjectBase() : m_storage()
00425     {
00426 //       _check_template_params();
00427 //       EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
00428     }
00429 
00430 #ifndef EIGEN_PARSED_BY_DOXYGEN
00431     // FIXME is it still needed ?
00432     /** \internal */
00433     PlainObjectBase(internal::constructor_without_unaligned_array_assert)
00434       : m_storage(internal::constructor_without_unaligned_array_assert())
00435     {
00436 //       _check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
00437     }
00438 #endif
00439 
00440 #ifdef EIGEN_HAVE_RVALUE_REFERENCES
00441     PlainObjectBase(PlainObjectBase&& other)
00442       : m_storage( std::move(other.m_storage) )
00443     {
00444     }
00445 
00446     PlainObjectBase& operator=(PlainObjectBase&& other)
00447     {
00448       using std::swap;
00449       swap(m_storage, other.m_storage);
00450       return *this;
00451     }
00452 #endif
00453 
00454     /** Copy constructor */
00455     EIGEN_STRONG_INLINE PlainObjectBase(const PlainObjectBase& other)
00456       : m_storage()
00457     {
00458       _check_template_params();
00459       lazyAssign (other);
00460     }
00461 
00462     template<typename OtherDerived>
00463     EIGEN_STRONG_INLINE PlainObjectBase(const DenseBase<OtherDerived> &other)
00464       : m_storage()
00465     {
00466       _check_template_params();
00467       lazyAssign (other);
00468     }
00469 
00470     EIGEN_STRONG_INLINE PlainObjectBase(Index a_size, Index nbRows, Index nbCols)
00471       : m_storage(a_size, nbRows, nbCols)
00472     {
00473 //       _check_template_params();
00474 //       EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
00475     }
00476 
00477     /** \copydoc MatrixBase::operator=(const EigenBase<OtherDerived>&)
00478       */
00479     template<typename OtherDerived>
00480     EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived> &other)
00481     {
00482       _resize_to_match(other);
00483       Base::operator=(other.derived ());
00484       return this->derived();
00485     }
00486 
00487     /** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
00488     template<typename OtherDerived>
00489     EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase<OtherDerived> &other)
00490       : m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
00491     {
00492       _check_template_params();
00493       internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(other.derived ().rows(), other.derived ().cols());
00494       Base::operator=(other.derived ());
00495     }
00496 
00497     /** \name Map
00498       * These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects,
00499       * while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned
00500       * \a data pointers.
00501       *
00502       * \see class Map
00503       */
00504     //@{
00505     static inline ConstMapType Map(const Scalar* data )
00506     { return ConstMapType(data); }
00507     static inline MapType Map(Scalar* data )
00508     { return MapType(data); }
00509     static inline ConstMapType Map(const Scalar* data , Index size)
00510     { return ConstMapType(data, size); }
00511     static inline MapType Map(Scalar* data , Index size)
00512     { return MapType(data, size); }
00513     static inline ConstMapType Map(const Scalar* data , Index rows, Index cols)
00514     { return ConstMapType(data, rows, cols); }
00515     static inline MapType Map(Scalar* data , Index rows, Index cols)
00516     { return MapType(data, rows, cols); }
00517 
00518     static inline ConstAlignedMapType MapAligned(const Scalar* data )
00519     { return ConstAlignedMapType(data); }
00520     static inline AlignedMapType MapAligned(Scalar* data )
00521     { return AlignedMapType(data); }
00522     static inline ConstAlignedMapType MapAligned(const Scalar* data , Index size)
00523     { return ConstAlignedMapType(data, size); }
00524     static inline AlignedMapType MapAligned(Scalar* data , Index size)
00525     { return AlignedMapType(data, size); }
00526     static inline ConstAlignedMapType MapAligned(const Scalar* data , Index rows, Index cols)
00527     { return ConstAlignedMapType(data, rows, cols); }
00528     static inline AlignedMapType MapAligned(Scalar* data , Index rows, Index cols)
00529     { return AlignedMapType(data, rows, cols); }
00530 
00531     template<int Outer, int Inner>
00532     static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data , const Stride<Outer, Inner>& stride)
00533     { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data , stride); }
00534     template<int Outer, int Inner>
00535     static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data , const Stride<Outer, Inner>& stride)
00536     { return typename StridedMapType<Stride<Outer, Inner> >::type(data , stride); }
00537     template<int Outer, int Inner>
00538     static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data , Index size, const Stride<Outer, Inner>& stride)
00539     { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data , size, stride); }
00540     template<int Outer, int Inner>
00541     static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data , Index size, const Stride<Outer, Inner>& stride)
00542     { return typename StridedMapType<Stride<Outer, Inner> >::type(data , size, stride); }
00543     template<int Outer, int Inner>
00544     static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data , Index rows, Index cols, const Stride<Outer, Inner>& stride)
00545     { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data , rows, cols, stride); }
00546     template<int Outer, int Inner>
00547     static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data , Index rows, Index cols, const Stride<Outer, Inner>& stride)
00548     { return typename StridedMapType<Stride<Outer, Inner> >::type(data , rows, cols, stride); }
00549 
00550     template<int Outer, int Inner>
00551     static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data , const Stride<Outer, Inner>& stride)
00552     { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data , stride); }
00553     template<int Outer, int Inner>
00554     static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data , const Stride<Outer, Inner>& stride)
00555     { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data , stride); }
00556     template<int Outer, int Inner>
00557     static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data , Index size, const Stride<Outer, Inner>& stride)
00558     { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data , size, stride); }
00559     template<int Outer, int Inner>
00560     static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data , Index size, const Stride<Outer, Inner>& stride)
00561     { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data , size, stride); }
00562     template<int Outer, int Inner>
00563     static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data , Index rows, Index cols, const Stride<Outer, Inner>& stride)
00564     { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data , rows, cols, stride); }
00565     template<int Outer, int Inner>
00566     static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data , Index rows, Index cols, const Stride<Outer, Inner>& stride)
00567     { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data , rows, cols, stride); }
00568     //@}
00569 
00570     using Base::setConstant;
00571     Derived& setConstant(Index size, const Scalar& value);
00572     Derived& setConstant(Index rows, Index cols, const Scalar& value);
00573 
00574     using Base::setZero;
00575     Derived& setZero(Index size);
00576     Derived& setZero(Index rows, Index cols);
00577 
00578     using Base::setOnes;
00579     Derived& setOnes(Index size);
00580     Derived& setOnes(Index rows, Index cols);
00581 
00582     using Base::setRandom;
00583     Derived& setRandom(Index size);
00584     Derived& setRandom(Index rows, Index cols);
00585 
00586     #ifdef EIGEN_PLAINOBJECTBASE_PLUGIN
00587     #include EIGEN_PLAINOBJECTBASE_PLUGIN
00588     #endif
00589 
00590   protected:
00591     /** \internal Resizes *this in preparation for assigning \a other to it.
00592       * Takes care of doing all the checking that's needed.
00593       *
00594       * Note that copying a row-vector into a vector (and conversely) is allowed.
00595       * The resizing, if any, is then done in the appropriate way so that row-vectors
00596       * remain row-vectors and vectors remain vectors.
00597       */
00598     template<typename OtherDerived>
00599     EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase<OtherDerived>& other)
00600     {
00601       #ifdef EIGEN_NO_AUTOMATIC_RESIZING
00602       eigen_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size())
00603                  : (rows() == other.rows() && cols() == other.cols())))
00604         && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
00605       EIGEN_ONLY_USED_FOR_DEBUG(other);
00606       if(this->size()==0)
00607         resizeLike(other);
00608       #else
00609       resizeLike(other);
00610       #endif
00611     }
00612 
00613     /**
00614       * \brief Copies the value of the expression \a other into \c *this with automatic resizing.
00615       *
00616       * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
00617       * it will be initialized.
00618       *
00619       * Note that copying a row-vector into a vector (and conversely) is allowed.
00620       * The resizing, if any, is then done in the appropriate way so that row-vectors
00621       * remain row-vectors and vectors remain vectors.
00622       *
00623       * \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias()
00624       *
00625       * \internal
00626       */
00627     template<typename OtherDerived>
00628     EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other)
00629     {
00630       _set_selector(other.derived(), typename internal::conditional<static_cast<bool>(int(OtherDerived::Flags) & EvalBeforeAssigningBit), internal::true_type, internal::false_type>::type());
00631       return this->derived();
00632     }
00633 
00634     template<typename OtherDerived>
00635     EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::true_type&) { _set_noalias(other.eval()); }
00636 
00637     template<typename OtherDerived>
00638     EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::false_type&) { _set_noalias(other); }
00639 
00640     /** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
00641       * is the case when creating a new matrix) so one can enforce lazy evaluation.
00642       *
00643       * \sa operator=(const MatrixBase<OtherDerived>&), _set()
00644       */
00645     template<typename OtherDerived>
00646     EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase<OtherDerived>& other)
00647     {
00648       // I don't think we need this resize call since the lazyAssign will anyways resize
00649       // and lazyAssign will be called by the assign selector.
00650       //_resize_to_match(other);
00651       // the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
00652       // it wouldn't allow to copy a row-vector into a column-vector.
00653       return internal::assign_selector<Derived,OtherDerived,false>::run(this->derived(), other.derived());
00654     }
00655 
00656     template<typename T0, typename T1>
00657     EIGEN_STRONG_INLINE void _init2(Index nbRows, Index nbCols, typename internal::enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0)
00658     {
00659       EIGEN_STATIC_ASSERT(bool(NumTraits<T0>::IsInteger) &&
00660                           bool(NumTraits<T1>::IsInteger),
00661                           FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED)
00662       resize(nbRows,nbCols);
00663     }
00664     template<typename T0, typename T1>
00665     EIGEN_STRONG_INLINE void _init2(const Scalar& val0, const Scalar& val1, typename internal::enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
00666     {
00667       EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2)
00668       m_storage.data ()[0] = val0;
00669       m_storage.data ()[1] = val1;
00670     }
00671 
00672     template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
00673     friend struct internal::matrix_swap_impl;
00674 
00675     /** \internal generic implementation of swap for dense storage since for dynamic-sized matrices of same type it is enough to swap the
00676       * data pointers.
00677       */
00678     template<typename OtherDerived>
00679     void _swap(DenseBase<OtherDerived> const & other)
00680     {
00681       enum { SwapPointers = internal::is_same<Derived, OtherDerived>::value && Base::SizeAtCompileTime==Dynamic };
00682       internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.const_cast_derived());
00683     }
00684 
00685   public:
00686 #ifndef EIGEN_PARSED_BY_DOXYGEN
00687     static EIGEN_STRONG_INLINE void _check_template_params()
00688     {
00689       EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (Options&RowMajor)==RowMajor)
00690                         && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, (Options&RowMajor)==0)
00691                         && ((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0))
00692                         && ((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0))
00693                         && ((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0))
00694                         && ((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0))
00695                         && (MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic)
00696                         && (MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic)
00697                         && (Options & (DontAlign|RowMajor)) == Options),
00698         INVALID_MATRIX_TEMPLATE_PARAMETERS)
00699     }
00700 #endif
00701 
00702 private:
00703     enum { ThisConstantIsPrivateInPlainObjectBase };
00704 };
00705 
00706 namespace internal {
00707 
00708 template <typename Derived, typename OtherDerived, bool IsVector>
00709 struct conservative_resize_like_impl
00710 {
00711   typedef typename Derived::Index Index;
00712   static void run(DenseBase<Derived> & _this, Index rows, Index cols)
00713   {
00714     if (_this.rows() == rows && _this.cols() == cols) return;
00715     EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
00716 
00717     if ( ( Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows
00718          (!Derived::IsRowMajor && _this.rows() == rows) )  // column-major and we change only the number of columns
00719     {
00720       internal::check_rows_cols_for_overflow<Derived::MaxSizeAtCompileTime>::run(rows, cols);
00721       _this.derived().m_storage.conservativeResize(rows*cols,rows,cols);
00722     }
00723     else
00724     {
00725       // The storage order does not allow us to use reallocation.
00726       typename Derived::PlainObject tmp(rows,cols);
00727       const Index common_rows = (std::min)(rows, _this.rows());
00728       const Index common_cols = (std::min)(cols, _this.cols());
00729       tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
00730       _this.derived().swap(tmp);
00731     }
00732   }
00733 
00734   static void run(DenseBase<Derived> & _this, const DenseBase<OtherDerived>& other)
00735   {
00736     if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
00737 
00738     // Note: Here is space for improvement. Basically, for conservativeResize(Index,Index),
00739     // neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the
00740     // dimensions is dynamic, one could use either conservativeResize(Index rows, NoChange_t) or
00741     // conservativeResize(NoChange_t, Index cols). For these methods new static asserts like
00742     // EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good.
00743     EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
00744     EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived)
00745 
00746     if ( ( Derived::IsRowMajor && _this.cols() == other.cols()) || // row-major and we change only the number of rows
00747          (!Derived::IsRowMajor && _this.rows() == other.rows()) )  // column-major and we change only the number of columns
00748     {
00749       const Index new_rows = other.rows() - _this.rows();
00750       const Index new_cols = other.cols() - _this.cols();
00751       _this.derived().m_storage.conservativeResize(other.size(),other.rows(),other.cols());
00752       if (new_rows>0)
00753         _this.bottomRightCorner(new_rows, other.cols()) = other.bottomRows(new_rows);
00754       else if (new_cols>0)
00755         _this.bottomRightCorner(other.rows(), new_cols) = other.rightCols(new_cols);
00756     }
00757     else
00758     {
00759       // The storage order does not allow us to use reallocation.
00760       typename Derived::PlainObject tmp(other);
00761       const Index common_rows = (std::min)(tmp.rows(), _this.rows());
00762       const Index common_cols = (std::min)(tmp.cols(), _this.cols());
00763       tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
00764       _this.derived().swap(tmp);
00765     }
00766   }
00767 };
00768 
00769 // Here, the specialization for vectors inherits from the general matrix case
00770 // to allow calling .conservativeResize(rows,cols) on vectors.
00771 template <typename Derived, typename OtherDerived>
00772 struct conservative_resize_like_impl<Derived,OtherDerived,true>
00773   : conservative_resize_like_impl<Derived,OtherDerived,false>
00774 {
00775   using conservative_resize_like_impl<Derived,OtherDerived,false>::run;
00776   
00777   typedef typename Derived::Index Index;
00778   static void run(DenseBase<Derived> & _this, Index size)
00779   {
00780     const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : size;
00781     const Index new_cols = Derived::RowsAtCompileTime==1 ? size : 1;
00782     _this.derived().m_storage.conservativeResize(size,new_rows,new_cols);
00783   }
00784 
00785   static void run(DenseBase<Derived> & _this, const DenseBase<OtherDerived>& other)
00786   {
00787     if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
00788 
00789     const Index num_new_elements = other.size() - _this.size();
00790 
00791     const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : other.rows();
00792     const Index new_cols = Derived::RowsAtCompileTime==1 ? other.cols() : 1;
00793     _this.derived().m_storage.conservativeResize(other.size(),new_rows,new_cols);
00794 
00795     if (num_new_elements > 0)
00796       _this.tail(num_new_elements) = other.tail(num_new_elements);
00797   }
00798 };
00799 
00800 template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
00801 struct matrix_swap_impl
00802 {
00803   static inline void run(MatrixTypeA& a, MatrixTypeB& b)
00804   {
00805     a.base().swap(b);
00806   }
00807 };
00808 
00809 template<typename MatrixTypeA, typename MatrixTypeB>
00810 struct matrix_swap_impl<MatrixTypeA, MatrixTypeB, true>
00811 {
00812   static inline void run(MatrixTypeA& a, MatrixTypeB& b)
00813   {
00814     static_cast<typename MatrixTypeA::Base&>(a).m_storage.swap(static_cast<typename MatrixTypeB::Base&>(b).m_storage);
00815   }
00816 };
00817 
00818 } // end namespace internal
00819 
00820 } // end namespace Eigen
00821 
00822 #endif // EIGEN_DENSESTORAGEBASE_H