An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Wed Jun 02 02:14:27 2021 +0000
Revision:
113:7330439f2ffc
Parent:
108:bd5d4bd4383b
VCNL4010 tested and working;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 3:3514575d4f86 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
mjr 3:3514575d4f86 2 * Modified Mouse code for Joystick - WH 2012
mjr 3:3514575d4f86 3 *
mjr 3:3514575d4f86 4 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 3:3514575d4f86 5 * and associated documentation files (the "Software"), to deal in the Software without
mjr 3:3514575d4f86 6 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 3:3514575d4f86 7 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 3:3514575d4f86 8 * Software is furnished to do so, subject to the following conditions:
mjr 3:3514575d4f86 9 *
mjr 3:3514575d4f86 10 * The above copyright notice and this permission notice shall be included in all copies or
mjr 3:3514575d4f86 11 * substantial portions of the Software.
mjr 3:3514575d4f86 12 *
mjr 3:3514575d4f86 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 3:3514575d4f86 14 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 3:3514575d4f86 15 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 3:3514575d4f86 16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 3:3514575d4f86 17 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 3:3514575d4f86 18 */
mjr 3:3514575d4f86 19
mjr 3:3514575d4f86 20 #include "stdint.h"
mjr 3:3514575d4f86 21 #include "USBJoystick.h"
mjr 21:5048e16cc9ef 22
mjr 21:5048e16cc9ef 23 #include "config.h" // Pinscape configuration
mjr 21:5048e16cc9ef 24
mjr 35:e959ffba78fd 25
mjr 35:e959ffba78fd 26
mjr 48:058ace2aed1d 27 // Maximum report sizes
mjr 77:0b96f6867312 28 const int MAX_REPORT_JS_TX = USBJoystick::reportLen;
mjr 48:058ace2aed1d 29 const int MAX_REPORT_JS_RX = 8;
mjr 63:5cd1a5f3a41b 30 const int MAX_REPORT_KB_TX = 8;
mjr 63:5cd1a5f3a41b 31 const int MAX_REPORT_KB_RX = 4;
mjr 48:058ace2aed1d 32
mjr 11:bd9da7088e6e 33 bool USBJoystick::update(int16_t x, int16_t y, int16_t z, uint32_t buttons, uint16_t status)
mjr 3:3514575d4f86 34 {
mjr 3:3514575d4f86 35 _x = x;
mjr 3:3514575d4f86 36 _y = y;
mjr 3:3514575d4f86 37 _z = z;
mjr 11:bd9da7088e6e 38 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 39 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 10:976666ffa4ef 40 _status = status;
mjr 3:3514575d4f86 41
mjr 3:3514575d4f86 42 // send the report
mjr 3:3514575d4f86 43 return update();
mjr 3:3514575d4f86 44 }
mjr 35:e959ffba78fd 45
mjr 11:bd9da7088e6e 46 bool USBJoystick::update()
mjr 11:bd9da7088e6e 47 {
mjr 3:3514575d4f86 48 HID_REPORT report;
mjr 63:5cd1a5f3a41b 49
mjr 3:3514575d4f86 50 // Fill the report according to the Joystick Descriptor
mjr 6:cc35eb643e8f 51 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 53:9b2611964afc 52 #define putbe(idx, val) (report.data[(idx)+1] = (val) & 0xff, report.data[idx] = ((val) >> 8) & 0xff)
mjr 40:cc0d9814522b 53 #define putl(idx, val) (put(idx, val), put((idx)+2, (val) >> 16))
mjr 54:fd77a6b2f76c 54 #define putlbe(idx, val) (putbe((idx)+2, val), putbe(idx, (val) >> 16))
mjr 77:0b96f6867312 55 #define put64(idx, val) (putl(idx, val), putl((idx)+4, (val) >> 32))
mjr 63:5cd1a5f3a41b 56 put(0, _status);
mjr 63:5cd1a5f3a41b 57 put(2, 0); // second word of status - zero in high bit identifies as normal joystick report
mjr 63:5cd1a5f3a41b 58 put(4, _buttonsLo);
mjr 63:5cd1a5f3a41b 59 put(6, _buttonsHi);
mjr 63:5cd1a5f3a41b 60 put(8, _x);
mjr 63:5cd1a5f3a41b 61 put(10, _y);
mjr 63:5cd1a5f3a41b 62 put(12, _z);
mjr 21:5048e16cc9ef 63
mjr 21:5048e16cc9ef 64 // important: keep reportLen in sync with the actual byte length of
mjr 21:5048e16cc9ef 65 // the reports we build here
mjr 63:5cd1a5f3a41b 66 report.length = reportLen;
mjr 3:3514575d4f86 67
mjr 5:a70c0bce770d 68 // send the report
mjr 10:976666ffa4ef 69 return sendTO(&report, 100);
mjr 10:976666ffa4ef 70 }
mjr 10:976666ffa4ef 71
mjr 35:e959ffba78fd 72 bool USBJoystick::kbUpdate(uint8_t data[8])
mjr 35:e959ffba78fd 73 {
mjr 35:e959ffba78fd 74 // set up the report
mjr 35:e959ffba78fd 75 HID_REPORT report;
mjr 35:e959ffba78fd 76 report.data[0] = REPORT_ID_KB; // report ID = keyboard
mjr 35:e959ffba78fd 77 memcpy(&report.data[1], data, 8); // copy the kb report data
mjr 35:e959ffba78fd 78 report.length = 9; // length = ID prefix + kb report length
mjr 35:e959ffba78fd 79
mjr 35:e959ffba78fd 80 // send it to endpoint 4 (the keyboard interface endpoint)
mjr 35:e959ffba78fd 81 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 82 }
mjr 35:e959ffba78fd 83
mjr 35:e959ffba78fd 84 bool USBJoystick::mediaUpdate(uint8_t data)
mjr 35:e959ffba78fd 85 {
mjr 35:e959ffba78fd 86 // set up the report
mjr 35:e959ffba78fd 87 HID_REPORT report;
mjr 35:e959ffba78fd 88 report.data[0] = REPORT_ID_MEDIA; // report ID = media
mjr 35:e959ffba78fd 89 report.data[1] = data; // key pressed bits
mjr 35:e959ffba78fd 90 report.length = 2;
mjr 35:e959ffba78fd 91
mjr 35:e959ffba78fd 92 // send it
mjr 35:e959ffba78fd 93 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 94 }
mjr 35:e959ffba78fd 95
mjr 52:8298b2a73eb2 96 bool USBJoystick::sendPlungerStatus(
mjr 87:8d35c74403af 97 int npix, int plungerPos, int flags, uint32_t avgScanTime, uint32_t processingTime)
mjr 52:8298b2a73eb2 98 {
mjr 52:8298b2a73eb2 99 HID_REPORT report;
mjr 52:8298b2a73eb2 100
mjr 52:8298b2a73eb2 101 // Set the special status bits to indicate it's an extended
mjr 52:8298b2a73eb2 102 // exposure report.
mjr 63:5cd1a5f3a41b 103 put(0, 0x87FF);
mjr 52:8298b2a73eb2 104
mjr 52:8298b2a73eb2 105 // start at the second byte
mjr 63:5cd1a5f3a41b 106 int ofs = 2;
mjr 52:8298b2a73eb2 107
mjr 52:8298b2a73eb2 108 // write the report subtype (0) to byte 2
mjr 52:8298b2a73eb2 109 report.data[ofs++] = 0;
mjr 52:8298b2a73eb2 110
mjr 52:8298b2a73eb2 111 // write the number of pixels to bytes 3-4
mjr 52:8298b2a73eb2 112 put(ofs, uint16_t(npix));
mjr 52:8298b2a73eb2 113 ofs += 2;
mjr 52:8298b2a73eb2 114
mjr 87:8d35c74403af 115 // write the detected plunger position to bytes 5-6
mjr 87:8d35c74403af 116 put(ofs, uint16_t(plungerPos));
mjr 52:8298b2a73eb2 117 ofs += 2;
mjr 52:8298b2a73eb2 118
mjr 86:e30a1f60f783 119 // Add the calibration mode flag if applicable
mjr 52:8298b2a73eb2 120 extern bool plungerCalMode;
mjr 86:e30a1f60f783 121 if (plungerCalMode) flags |= 0x04;
mjr 86:e30a1f60f783 122
mjr 86:e30a1f60f783 123 // write the flags to byte 7
mjr 52:8298b2a73eb2 124 report.data[ofs++] = flags;
mjr 52:8298b2a73eb2 125
mjr 52:8298b2a73eb2 126 // write the average scan time in 10us intervals to bytes 8-10
mjr 52:8298b2a73eb2 127 uint32_t t = uint32_t(avgScanTime / 10);
mjr 52:8298b2a73eb2 128 report.data[ofs++] = t & 0xff;
mjr 52:8298b2a73eb2 129 report.data[ofs++] = (t >> 8) & 0xff;
mjr 52:8298b2a73eb2 130 report.data[ofs++] = (t >> 16) & 0xff;
mjr 52:8298b2a73eb2 131
mjr 52:8298b2a73eb2 132 // write the processing time to bytes 11-13
mjr 52:8298b2a73eb2 133 t = uint32_t(processingTime / 10);
mjr 52:8298b2a73eb2 134 report.data[ofs++] = t & 0xff;
mjr 52:8298b2a73eb2 135 report.data[ofs++] = (t >> 8) & 0xff;
mjr 52:8298b2a73eb2 136 report.data[ofs++] = (t >> 16) & 0xff;
mjr 52:8298b2a73eb2 137
mjr 52:8298b2a73eb2 138 // send the report
mjr 63:5cd1a5f3a41b 139 report.length = reportLen;
mjr 52:8298b2a73eb2 140 return sendTO(&report, 100);
mjr 52:8298b2a73eb2 141 }
mjr 52:8298b2a73eb2 142
mjr 86:e30a1f60f783 143 bool USBJoystick::sendPlungerStatus2(
mjr 86:e30a1f60f783 144 int nativeScale,
mjr 86:e30a1f60f783 145 int jitterLo, int jitterHi, int rawPos,
mjr 86:e30a1f60f783 146 int axcTime)
mjr 86:e30a1f60f783 147 {
mjr 86:e30a1f60f783 148 HID_REPORT report;
mjr 86:e30a1f60f783 149 memset(report.data, 0, sizeof(report.data));
mjr 86:e30a1f60f783 150
mjr 86:e30a1f60f783 151 // Set the special status bits to indicate it's an extended
mjr 86:e30a1f60f783 152 // exposure report.
mjr 86:e30a1f60f783 153 put(0, 0x87FF);
mjr 86:e30a1f60f783 154
mjr 86:e30a1f60f783 155 // start at the second byte
mjr 86:e30a1f60f783 156 int ofs = 2;
mjr 86:e30a1f60f783 157
mjr 86:e30a1f60f783 158 // write the report subtype (1) to byte 2
mjr 86:e30a1f60f783 159 report.data[ofs++] = 1;
mjr 86:e30a1f60f783 160
mjr 86:e30a1f60f783 161 // write the native scale to bytes 3:4
mjr 86:e30a1f60f783 162 put(ofs, uint16_t(nativeScale));
mjr 86:e30a1f60f783 163 ofs += 2;
mjr 86:e30a1f60f783 164
mjr 86:e30a1f60f783 165 // limit the jitter filter bounds to the native scale
mjr 86:e30a1f60f783 166 if (jitterLo < 0)
mjr 86:e30a1f60f783 167 jitterLo = 0;
mjr 86:e30a1f60f783 168 else if (jitterLo > nativeScale)
mjr 86:e30a1f60f783 169 jitterLo = nativeScale;
mjr 86:e30a1f60f783 170 if (jitterHi < 0)
mjr 86:e30a1f60f783 171 jitterHi = 0;
mjr 86:e30a1f60f783 172 else if (jitterHi > nativeScale)
mjr 86:e30a1f60f783 173 jitterHi = nativeScale;
mjr 86:e30a1f60f783 174
mjr 86:e30a1f60f783 175 // write the jitter filter window bounds to 5:6 and 7:8
mjr 86:e30a1f60f783 176 put(ofs, uint16_t(jitterLo));
mjr 86:e30a1f60f783 177 ofs += 2;
mjr 86:e30a1f60f783 178 put(ofs, uint16_t(jitterHi));
mjr 86:e30a1f60f783 179 ofs += 2;
mjr 86:e30a1f60f783 180
mjr 86:e30a1f60f783 181 // add the raw position
mjr 86:e30a1f60f783 182 put(ofs, uint16_t(rawPos));
mjr 86:e30a1f60f783 183 ofs += 2;
mjr 86:e30a1f60f783 184
mjr 86:e30a1f60f783 185 // add the auto-exposure time
mjr 86:e30a1f60f783 186 put(ofs, uint16_t(axcTime));
mjr 86:e30a1f60f783 187 ofs += 2;
mjr 86:e30a1f60f783 188
mjr 86:e30a1f60f783 189 // send the report
mjr 86:e30a1f60f783 190 report.length = reportLen;
mjr 86:e30a1f60f783 191 return sendTO(&report, 100);
mjr 86:e30a1f60f783 192 }
mjr 86:e30a1f60f783 193
mjr 87:8d35c74403af 194 bool USBJoystick::sendPlungerStatusBarcode(
mjr 87:8d35c74403af 195 int nbits, int codetype, int startOfs, int pixPerBit, int raw, int mask)
mjr 87:8d35c74403af 196 {
mjr 87:8d35c74403af 197 HID_REPORT report;
mjr 87:8d35c74403af 198 memset(report.data, 0, sizeof(report.data));
mjr 87:8d35c74403af 199
mjr 87:8d35c74403af 200 // Set the special status bits to indicate it's an extended
mjr 108:bd5d4bd4383b 201 // status report for barcode sensors
mjr 87:8d35c74403af 202 put(0, 0x87FF);
mjr 87:8d35c74403af 203
mjr 87:8d35c74403af 204 // start at the second byte
mjr 87:8d35c74403af 205 int ofs = 2;
mjr 87:8d35c74403af 206
mjr 87:8d35c74403af 207 // write the report subtype (2) to byte 2
mjr 87:8d35c74403af 208 report.data[ofs++] = 2;
mjr 87:8d35c74403af 209
mjr 87:8d35c74403af 210 // write the bit count and code type
mjr 87:8d35c74403af 211 report.data[ofs++] = nbits;
mjr 87:8d35c74403af 212 report.data[ofs++] = codetype;
mjr 87:8d35c74403af 213
mjr 87:8d35c74403af 214 // write the bar code starting pixel offset
mjr 87:8d35c74403af 215 put(ofs, uint16_t(startOfs));
mjr 87:8d35c74403af 216 ofs += 2;
mjr 87:8d35c74403af 217
mjr 87:8d35c74403af 218 // write the pixel width per bit
mjr 87:8d35c74403af 219 report.data[ofs++] = pixPerBit;
mjr 87:8d35c74403af 220
mjr 87:8d35c74403af 221 // write the raw bar code and success bit mask
mjr 87:8d35c74403af 222 put(ofs, uint16_t(raw));
mjr 87:8d35c74403af 223 ofs += 2;
mjr 87:8d35c74403af 224 put(ofs, uint16_t(mask));
mjr 87:8d35c74403af 225 ofs += 2;
mjr 87:8d35c74403af 226
mjr 87:8d35c74403af 227 // send the report
mjr 87:8d35c74403af 228 report.length = reportLen;
mjr 87:8d35c74403af 229 return sendTO(&report, 100);
mjr 87:8d35c74403af 230 }
mjr 87:8d35c74403af 231
mjr 108:bd5d4bd4383b 232 bool USBJoystick::sendPlungerStatusQuadrature(int chA, int chB)
mjr 108:bd5d4bd4383b 233 {
mjr 108:bd5d4bd4383b 234 HID_REPORT report;
mjr 108:bd5d4bd4383b 235 memset(report.data, 0, sizeof(report.data));
mjr 108:bd5d4bd4383b 236
mjr 108:bd5d4bd4383b 237 // set the status bits to indicate that it's an extended
mjr 108:bd5d4bd4383b 238 // status report for quadrature sensors
mjr 108:bd5d4bd4383b 239 put(0, 0x87FF);
mjr 108:bd5d4bd4383b 240 int ofs = 2;
mjr 108:bd5d4bd4383b 241
mjr 108:bd5d4bd4383b 242 // write the report subtype (3)
mjr 108:bd5d4bd4383b 243 report.data[ofs++] = 3;
mjr 108:bd5d4bd4383b 244
mjr 108:bd5d4bd4383b 245 // write the channel "A" and channel "B" values
mjr 108:bd5d4bd4383b 246 report.data[ofs++] = static_cast<uint8_t>(chA);
mjr 108:bd5d4bd4383b 247 report.data[ofs++] = static_cast<uint8_t>(chB);
mjr 108:bd5d4bd4383b 248
mjr 108:bd5d4bd4383b 249 // send the report
mjr 108:bd5d4bd4383b 250 report.length = reportLen;
mjr 108:bd5d4bd4383b 251 return sendTO(&report, 100);
mjr 108:bd5d4bd4383b 252 }
mjr 108:bd5d4bd4383b 253
mjr 113:7330439f2ffc 254 bool USBJoystick::sendPlungerStatusVCNL4010(int filteredProxCount, int rawProxCount)
mjr 113:7330439f2ffc 255 {
mjr 113:7330439f2ffc 256 HID_REPORT report;
mjr 113:7330439f2ffc 257 memset(report.data, 0, sizeof(report.data));
mjr 113:7330439f2ffc 258
mjr 113:7330439f2ffc 259 // set the status bits to indicate that it's an extended
mjr 113:7330439f2ffc 260 // status report for quadrature sensors
mjr 113:7330439f2ffc 261 put(0, 0x87FF);
mjr 113:7330439f2ffc 262 int ofs = 2;
mjr 113:7330439f2ffc 263
mjr 113:7330439f2ffc 264 // write the report subtype (4)
mjr 113:7330439f2ffc 265 report.data[ofs++] = 4;
mjr 113:7330439f2ffc 266
mjr 113:7330439f2ffc 267 // write the filtered and raw proximity count from the sensor
mjr 113:7330439f2ffc 268 put(ofs, static_cast<uint16_t>(filteredProxCount));
mjr 113:7330439f2ffc 269 put(ofs + 2, static_cast<uint16_t>(rawProxCount));
mjr 113:7330439f2ffc 270
mjr 113:7330439f2ffc 271 // send the report
mjr 113:7330439f2ffc 272 report.length = reportLen;
mjr 113:7330439f2ffc 273 return sendTO(&report, 100);
mjr 113:7330439f2ffc 274 }
mjr 113:7330439f2ffc 275
mjr 87:8d35c74403af 276
mjr 52:8298b2a73eb2 277 bool USBJoystick::sendPlungerPix(int &idx, int npix, const uint8_t *pix)
mjr 10:976666ffa4ef 278 {
mjr 10:976666ffa4ef 279 HID_REPORT report;
mjr 10:976666ffa4ef 280
mjr 10:976666ffa4ef 281 // Set the special status bits to indicate it's an exposure report.
mjr 10:976666ffa4ef 282 // The high 5 bits of the status word are set to 10000, and the
mjr 10:976666ffa4ef 283 // low 11 bits are the current pixel index.
mjr 10:976666ffa4ef 284 uint16_t s = idx | 0x8000;
mjr 63:5cd1a5f3a41b 285 put(0, s);
mjr 25:e22b88bd783a 286
mjr 25:e22b88bd783a 287 // start at the second byte
mjr 63:5cd1a5f3a41b 288 int ofs = 2;
mjr 25:e22b88bd783a 289
mjr 47:df7a88cd249c 290 // now fill out the remaining bytes with exposure values
mjr 63:5cd1a5f3a41b 291 report.length = reportLen;
mjr 47:df7a88cd249c 292 for ( ; ofs < report.length ; ++ofs)
mjr 47:df7a88cd249c 293 report.data[ofs] = (idx < npix ? pix[idx++] : 0);
mjr 10:976666ffa4ef 294
mjr 10:976666ffa4ef 295 // send the report
mjr 35:e959ffba78fd 296 return sendTO(&report, 100);
mjr 3:3514575d4f86 297 }
mjr 9:fd65b0a94720 298
mjr 53:9b2611964afc 299 bool USBJoystick::reportID(int index)
mjr 40:cc0d9814522b 300 {
mjr 40:cc0d9814522b 301 HID_REPORT report;
mjr 40:cc0d9814522b 302
mjr 40:cc0d9814522b 303 // initially fill the report with zeros
mjr 40:cc0d9814522b 304 memset(report.data, 0, sizeof(report.data));
mjr 40:cc0d9814522b 305
mjr 40:cc0d9814522b 306 // Set the special status bits to indicate that it's an ID report
mjr 40:cc0d9814522b 307 uint16_t s = 0x9000;
mjr 63:5cd1a5f3a41b 308 put(0, s);
mjr 40:cc0d9814522b 309
mjr 53:9b2611964afc 310 // add the requested ID index
mjr 63:5cd1a5f3a41b 311 report.data[2] = (uint8_t)index;
mjr 53:9b2611964afc 312
mjr 53:9b2611964afc 313 // figure out which ID we're reporting
mjr 53:9b2611964afc 314 switch (index)
mjr 53:9b2611964afc 315 {
mjr 53:9b2611964afc 316 case 1:
mjr 53:9b2611964afc 317 // KL25Z CPU ID
mjr 63:5cd1a5f3a41b 318 putbe(3, SIM->UIDMH);
mjr 63:5cd1a5f3a41b 319 putlbe(5, SIM->UIDML);
mjr 63:5cd1a5f3a41b 320 putlbe(9, SIM->UIDL);
mjr 53:9b2611964afc 321 break;
mjr 53:9b2611964afc 322
mjr 53:9b2611964afc 323 case 2:
mjr 53:9b2611964afc 324 // OpenSDA ID. Copy the low-order 80 bits of the OpenSDA ID.
mjr 53:9b2611964afc 325 // (The stored value is 128 bits = 16 bytes; we only want the last
mjr 53:9b2611964afc 326 // 80 bits = 10 bytes. So skip ahead 16 and back up 10 to get
mjr 53:9b2611964afc 327 // the starting point.)
mjr 53:9b2611964afc 328 extern const char *getOpenSDAID();
mjr 63:5cd1a5f3a41b 329 memcpy(&report.data[3], getOpenSDAID() + 16 - 10, 10);
mjr 53:9b2611964afc 330 break;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 53:9b2611964afc 333 // send the report
mjr 63:5cd1a5f3a41b 334 report.length = reportLen;
mjr 53:9b2611964afc 335 return sendTO(&report, 100);
mjr 53:9b2611964afc 336 }
mjr 53:9b2611964afc 337
mjr 53:9b2611964afc 338 bool USBJoystick::reportBuildInfo(const char *date)
mjr 53:9b2611964afc 339 {
mjr 53:9b2611964afc 340 HID_REPORT report;
mjr 53:9b2611964afc 341
mjr 53:9b2611964afc 342 // initially fill the report with zeros
mjr 53:9b2611964afc 343 memset(report.data, 0, sizeof(report.data));
mjr 53:9b2611964afc 344
mjr 53:9b2611964afc 345 // Set the special status bits to indicate that it's a build
mjr 53:9b2611964afc 346 // info report
mjr 53:9b2611964afc 347 uint16_t s = 0xA000;
mjr 63:5cd1a5f3a41b 348 put(0, s);
mjr 53:9b2611964afc 349
mjr 53:9b2611964afc 350 // Parse the date. This is given in the standard __DATE__ " " __TIME
mjr 53:9b2611964afc 351 // macro format, "Mon dd yyyy hh:mm:ss" (e.g., "Feb 16 2016 12:15:06").
mjr 53:9b2611964afc 352 static const char mon[][4] = {
mjr 53:9b2611964afc 353 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
mjr 53:9b2611964afc 354 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
mjr 53:9b2611964afc 355 };
mjr 53:9b2611964afc 356 long dd = (atol(date + 7) * 10000L) // YYYY0000
mjr 53:9b2611964afc 357 + (atol(date + 4)); // 000000DD
mjr 53:9b2611964afc 358 for (int i = 0 ; i < 12 ; ++i)
mjr 53:9b2611964afc 359 {
mjr 53:9b2611964afc 360 if (memcmp(mon[i], date, 3) == 0)
mjr 53:9b2611964afc 361 {
mjr 53:9b2611964afc 362 dd += (i+1)*100; // 0000MM00
mjr 53:9b2611964afc 363 break;
mjr 53:9b2611964afc 364 }
mjr 53:9b2611964afc 365 }
mjr 53:9b2611964afc 366
mjr 53:9b2611964afc 367 // parse the time into a long formatted as decimal HHMMSS (e.g.,
mjr 53:9b2611964afc 368 // "12:15:06" turns into 121506 decimal)
mjr 53:9b2611964afc 369 long tt = (atol(date+12)*10000)
mjr 53:9b2611964afc 370 + (atol(date+15)*100)
mjr 53:9b2611964afc 371 + (atol(date+18));
mjr 53:9b2611964afc 372
mjr 53:9b2611964afc 373 // store the build date and time
mjr 63:5cd1a5f3a41b 374 putl(2, dd);
mjr 63:5cd1a5f3a41b 375 putl(6, tt);
mjr 40:cc0d9814522b 376
mjr 40:cc0d9814522b 377 // send the report
mjr 63:5cd1a5f3a41b 378 report.length = reportLen;
mjr 40:cc0d9814522b 379 return sendTO(&report, 100);
mjr 40:cc0d9814522b 380 }
mjr 40:cc0d9814522b 381
mjr 52:8298b2a73eb2 382 bool USBJoystick::reportConfigVar(const uint8_t *data)
mjr 52:8298b2a73eb2 383 {
mjr 52:8298b2a73eb2 384 HID_REPORT report;
mjr 52:8298b2a73eb2 385
mjr 52:8298b2a73eb2 386 // initially fill the report with zeros
mjr 52:8298b2a73eb2 387 memset(report.data, 0, sizeof(report.data));
mjr 52:8298b2a73eb2 388
mjr 52:8298b2a73eb2 389 // Set the special status bits to indicate that it's a config
mjr 52:8298b2a73eb2 390 // variable report
mjr 52:8298b2a73eb2 391 uint16_t s = 0x9800;
mjr 63:5cd1a5f3a41b 392 put(0, s);
mjr 52:8298b2a73eb2 393
mjr 52:8298b2a73eb2 394 // Copy the variable data (7 bytes, starting with the variable ID)
mjr 63:5cd1a5f3a41b 395 memcpy(report.data + 2, data, 7);
mjr 52:8298b2a73eb2 396
mjr 52:8298b2a73eb2 397 // send the report
mjr 63:5cd1a5f3a41b 398 report.length = reportLen;
mjr 52:8298b2a73eb2 399 return sendTO(&report, 100);
mjr 52:8298b2a73eb2 400 }
mjr 52:8298b2a73eb2 401
mjr 52:8298b2a73eb2 402 bool USBJoystick::reportConfig(
mjr 52:8298b2a73eb2 403 int numOutputs, int unitNo,
mjr 52:8298b2a73eb2 404 int plungerZero, int plungerMax, int plungerRlsTime,
mjr 92:f264fbaa1be5 405 bool configured, bool sbxpbx, bool newAccelFeatures,
mjr 92:f264fbaa1be5 406 bool flashStatusFeature, bool reportTimingFeatures,
mjr 99:8139b0c274f4 407 bool chimeLogicFeature, size_t freeHeapBytes)
mjr 33:d832bcab089e 408 {
mjr 33:d832bcab089e 409 HID_REPORT report;
mjr 33:d832bcab089e 410
mjr 33:d832bcab089e 411 // initially fill the report with zeros
mjr 33:d832bcab089e 412 memset(report.data, 0, sizeof(report.data));
mjr 33:d832bcab089e 413
mjr 33:d832bcab089e 414 // Set the special status bits to indicate that it's a config report.
mjr 33:d832bcab089e 415 uint16_t s = 0x8800;
mjr 63:5cd1a5f3a41b 416 put(0, s);
mjr 33:d832bcab089e 417
mjr 33:d832bcab089e 418 // write the number of configured outputs
mjr 63:5cd1a5f3a41b 419 put(2, numOutputs);
mjr 33:d832bcab089e 420
mjr 33:d832bcab089e 421 // write the unit number
mjr 63:5cd1a5f3a41b 422 put(4, unitNo);
mjr 33:d832bcab089e 423
mjr 35:e959ffba78fd 424 // write the plunger zero and max values
mjr 63:5cd1a5f3a41b 425 put(6, plungerZero);
mjr 63:5cd1a5f3a41b 426 put(8, plungerMax);
mjr 63:5cd1a5f3a41b 427 report.data[10] = uint8_t(plungerRlsTime);
mjr 35:e959ffba78fd 428
mjr 40:cc0d9814522b 429 // write the status bits:
mjr 40:cc0d9814522b 430 // 0x01 -> configuration loaded
mjr 75:677892300e7a 431 // 0x02 -> SBX/PBX protocol extensions supported
mjr 92:f264fbaa1be5 432 // 0x04 -> new accelerometer features supported
mjr 92:f264fbaa1be5 433 // 0x08 -> flash status feature supported
mjr 92:f264fbaa1be5 434 // 0x10 -> joystick report timing features supported
mjr 99:8139b0c274f4 435 // 0x20 -> chime logic feature supported
mjr 75:677892300e7a 436 report.data[11] =
mjr 75:677892300e7a 437 (configured ? 0x01 : 0x00)
mjr 78:1e00b3fa11af 438 | (sbxpbx ? 0x02 : 0x00)
mjr 82:4f6209cb5c33 439 | (newAccelFeatures ? 0x04 : 0x00)
mjr 92:f264fbaa1be5 440 | (flashStatusFeature ? 0x08 : 0x00)
mjr 98:4df3c0f7e707 441 | (reportTimingFeatures ? 0x10 : 0x00)
mjr 99:8139b0c274f4 442 | (chimeLogicFeature ? 0x20 : 0x00);
mjr 40:cc0d9814522b 443
mjr 73:4e8ce0b18915 444 // write the free heap space
mjr 73:4e8ce0b18915 445 put(12, freeHeapBytes);
mjr 77:0b96f6867312 446
mjr 33:d832bcab089e 447 // send the report
mjr 63:5cd1a5f3a41b 448 report.length = reportLen;
mjr 35:e959ffba78fd 449 return sendTO(&report, 100);
mjr 33:d832bcab089e 450 }
mjr 33:d832bcab089e 451
mjr 77:0b96f6867312 452 // report physical button status
mjr 73:4e8ce0b18915 453 bool USBJoystick::reportButtonStatus(int numButtons, const uint8_t *state)
mjr 73:4e8ce0b18915 454 {
mjr 77:0b96f6867312 455 // initially fill the report with zeros
mjr 73:4e8ce0b18915 456 HID_REPORT report;
mjr 73:4e8ce0b18915 457 memset(report.data, 0, sizeof(report.data));
mjr 73:4e8ce0b18915 458
mjr 77:0b96f6867312 459 // set the special status bits to indicate that it's a buton report
mjr 73:4e8ce0b18915 460 uint16_t s = 0xA100;
mjr 73:4e8ce0b18915 461 put(0, s);
mjr 73:4e8ce0b18915 462
mjr 73:4e8ce0b18915 463 // write the number of buttons
mjr 77:0b96f6867312 464 report.data[2] = uint8_t(numButtons);
mjr 73:4e8ce0b18915 465
mjr 73:4e8ce0b18915 466 // Write the buttons - these are packed into ceil(numButtons/8) bytes.
mjr 73:4e8ce0b18915 467 size_t btnBytes = (numButtons+7)/8;
mjr 73:4e8ce0b18915 468 if (btnBytes + 3 > reportLen) btnBytes = reportLen - 3;
mjr 73:4e8ce0b18915 469 memcpy(&report.data[3], state, btnBytes);
mjr 73:4e8ce0b18915 470
mjr 73:4e8ce0b18915 471 // send the report
mjr 73:4e8ce0b18915 472 report.length = reportLen;
mjr 73:4e8ce0b18915 473 return sendTO(&report, 100);
mjr 73:4e8ce0b18915 474 }
mjr 73:4e8ce0b18915 475
mjr 77:0b96f6867312 476 // report raw IR timing codes (for learning mode)
mjr 77:0b96f6867312 477 bool USBJoystick::reportRawIR(int n, const uint16_t *data)
mjr 77:0b96f6867312 478 {
mjr 77:0b96f6867312 479 // initially fill the report with zeros
mjr 77:0b96f6867312 480 HID_REPORT report;
mjr 77:0b96f6867312 481 memset(report.data, 0, sizeof(report.data));
mjr 77:0b96f6867312 482
mjr 77:0b96f6867312 483 // set the special status bits to indicate that it's an IR report
mjr 77:0b96f6867312 484 uint16_t s = 0xA200;
mjr 77:0b96f6867312 485 put(0, s);
mjr 77:0b96f6867312 486
mjr 77:0b96f6867312 487 // limit the number of items reported to the available space
mjr 77:0b96f6867312 488 if (n > maxRawIR)
mjr 77:0b96f6867312 489 n = maxRawIR;
mjr 77:0b96f6867312 490
mjr 77:0b96f6867312 491 // write the number of codes
mjr 77:0b96f6867312 492 report.data[2] = uint8_t(n);
mjr 77:0b96f6867312 493
mjr 77:0b96f6867312 494 // write the codes
mjr 77:0b96f6867312 495 for (int i = 0, ofs = 3 ; i < n ; ++i, ofs += 2)
mjr 77:0b96f6867312 496 put(ofs, data[i]);
mjr 77:0b96f6867312 497
mjr 77:0b96f6867312 498 // send the report
mjr 77:0b96f6867312 499 report.length = reportLen;
mjr 77:0b96f6867312 500 return sendTO(&report, 100);
mjr 77:0b96f6867312 501 }
mjr 77:0b96f6867312 502
mjr 77:0b96f6867312 503 // report a decoded IR command
mjr 77:0b96f6867312 504 bool USBJoystick::reportIRCode(uint8_t pro, uint8_t flags, uint64_t code)
mjr 77:0b96f6867312 505 {
mjr 77:0b96f6867312 506 // initially fill the report with zeros
mjr 77:0b96f6867312 507 HID_REPORT report;
mjr 77:0b96f6867312 508 memset(report.data, 0, sizeof(report.data));
mjr 77:0b96f6867312 509
mjr 77:0b96f6867312 510 // set the special status bits to indicate that it's an IR report
mjr 77:0b96f6867312 511 uint16_t s = 0xA200;
mjr 77:0b96f6867312 512 put(0, s);
mjr 77:0b96f6867312 513
mjr 77:0b96f6867312 514 // set the raw count to 0xFF to flag that it's a decoded command
mjr 77:0b96f6867312 515 report.data[2] = 0xFF;
mjr 77:0b96f6867312 516
mjr 77:0b96f6867312 517 // write the data
mjr 77:0b96f6867312 518 report.data[3] = pro;
mjr 77:0b96f6867312 519 report.data[4] = flags;
mjr 77:0b96f6867312 520 put64(5, code);
mjr 77:0b96f6867312 521
mjr 77:0b96f6867312 522 // send the report
mjr 77:0b96f6867312 523 report.length = reportLen;
mjr 77:0b96f6867312 524 return sendTO(&report, 100);
mjr 77:0b96f6867312 525 }
mjr 73:4e8ce0b18915 526
mjr 33:d832bcab089e 527 bool USBJoystick::move(int16_t x, int16_t y)
mjr 33:d832bcab089e 528 {
mjr 3:3514575d4f86 529 _x = x;
mjr 3:3514575d4f86 530 _y = y;
mjr 3:3514575d4f86 531 return update();
mjr 3:3514575d4f86 532 }
mjr 3:3514575d4f86 533
mjr 33:d832bcab089e 534 bool USBJoystick::setZ(int16_t z)
mjr 33:d832bcab089e 535 {
mjr 3:3514575d4f86 536 _z = z;
mjr 3:3514575d4f86 537 return update();
mjr 3:3514575d4f86 538 }
mjr 3:3514575d4f86 539
mjr 33:d832bcab089e 540 bool USBJoystick::buttons(uint32_t buttons)
mjr 33:d832bcab089e 541 {
mjr 11:bd9da7088e6e 542 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 543 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 3:3514575d4f86 544 return update();
mjr 3:3514575d4f86 545 }
mjr 21:5048e16cc9ef 546
mjr 21:5048e16cc9ef 547 bool USBJoystick::updateStatus(uint32_t status)
mjr 21:5048e16cc9ef 548 {
mjr 21:5048e16cc9ef 549 HID_REPORT report;
mjr 21:5048e16cc9ef 550
mjr 63:5cd1a5f3a41b 551 // Fill the report according to the Joystick Descriptor
mjr 63:5cd1a5f3a41b 552 memset(report.data, 0, reportLen);
mjr 63:5cd1a5f3a41b 553 put(0, status);
mjr 63:5cd1a5f3a41b 554 report.length = reportLen;
mjr 21:5048e16cc9ef 555
mjr 21:5048e16cc9ef 556 // send the report
mjr 21:5048e16cc9ef 557 return sendTO(&report, 100);
mjr 21:5048e16cc9ef 558 }
mjr 21:5048e16cc9ef 559
mjr 3:3514575d4f86 560 void USBJoystick::_init() {
mjr 3:3514575d4f86 561
mjr 3:3514575d4f86 562 _x = 0;
mjr 3:3514575d4f86 563 _y = 0;
mjr 3:3514575d4f86 564 _z = 0;
mjr 11:bd9da7088e6e 565 _buttonsLo = 0x0000;
mjr 11:bd9da7088e6e 566 _buttonsHi = 0x0000;
mjr 9:fd65b0a94720 567 _status = 0;
mjr 3:3514575d4f86 568 }
mjr 3:3514575d4f86 569
mjr 3:3514575d4f86 570
mjr 35:e959ffba78fd 571 // --------------------------------------------------------------------------
mjr 35:e959ffba78fd 572 //
mjr 63:5cd1a5f3a41b 573 // USB HID Report Descriptor - Joystick
mjr 35:e959ffba78fd 574 //
mjr 63:5cd1a5f3a41b 575 static const uint8_t reportDescriptorJS[] =
mjr 63:5cd1a5f3a41b 576 {
mjr 63:5cd1a5f3a41b 577 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 63:5cd1a5f3a41b 578 USAGE(1), 0x04, // Joystick
mjr 63:5cd1a5f3a41b 579 COLLECTION(1), 0x01, // Application
mjr 90:aa4e571da8e8 580
mjr 63:5cd1a5f3a41b 581 // input report (device to host)
mjr 63:5cd1a5f3a41b 582 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 63:5cd1a5f3a41b 583 USAGE(1), 0x00, // undefined device control
mjr 63:5cd1a5f3a41b 584 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 63:5cd1a5f3a41b 585 LOGICAL_MAXIMUM(1), 0xFF,
mjr 63:5cd1a5f3a41b 586 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 63:5cd1a5f3a41b 587 REPORT_COUNT(1), 0x04, // 4 reports (4 bytes)
mjr 63:5cd1a5f3a41b 588 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 589
mjr 63:5cd1a5f3a41b 590 USAGE_PAGE(1), 0x09, // Buttons
mjr 63:5cd1a5f3a41b 591 USAGE_MINIMUM(1), 0x01, // { buttons }
mjr 63:5cd1a5f3a41b 592 USAGE_MAXIMUM(1), 0x20, // { 1-32 }
mjr 63:5cd1a5f3a41b 593 LOGICAL_MINIMUM(1), 0x00, // 1-bit buttons - 0...
mjr 63:5cd1a5f3a41b 594 LOGICAL_MAXIMUM(1), 0x01, // ...to 1
mjr 63:5cd1a5f3a41b 595 REPORT_SIZE(1), 0x01, // 1 bit per report
mjr 63:5cd1a5f3a41b 596 REPORT_COUNT(1), 0x20, // 32 reports
mjr 63:5cd1a5f3a41b 597 UNIT_EXPONENT(1), 0x00, // Unit_Exponent (0)
mjr 63:5cd1a5f3a41b 598 UNIT(1), 0x00, // Unit (None)
mjr 63:5cd1a5f3a41b 599 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 600
mjr 63:5cd1a5f3a41b 601 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 63:5cd1a5f3a41b 602 USAGE(1), 0x30, // X axis
mjr 63:5cd1a5f3a41b 603 USAGE(1), 0x31, // Y axis
mjr 63:5cd1a5f3a41b 604 USAGE(1), 0x32, // Z axis
mjr 63:5cd1a5f3a41b 605 LOGICAL_MINIMUM(2), 0x00,0xF0, // each value ranges -4096
mjr 63:5cd1a5f3a41b 606 LOGICAL_MAXIMUM(2), 0x00,0x10, // ...to +4096
mjr 63:5cd1a5f3a41b 607 REPORT_SIZE(1), 0x10, // 16 bits per report
mjr 63:5cd1a5f3a41b 608 REPORT_COUNT(1), 0x03, // 3 reports (X, Y, Z)
mjr 63:5cd1a5f3a41b 609 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 610
mjr 63:5cd1a5f3a41b 611 // output report (host to device)
mjr 63:5cd1a5f3a41b 612 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 63:5cd1a5f3a41b 613 REPORT_COUNT(1), 0x08, // output report count - 8-byte LedWiz format
mjr 63:5cd1a5f3a41b 614 0x09, 0x01, // usage
mjr 63:5cd1a5f3a41b 615 0x91, 0x01, // Output (array)
mjr 35:e959ffba78fd 616
mjr 35:e959ffba78fd 617 END_COLLECTION(0)
mjr 35:e959ffba78fd 618 };
mjr 35:e959ffba78fd 619
mjr 90:aa4e571da8e8 620 // Joystick report descriptor with "R" axis reports. This version
mjr 90:aa4e571da8e8 621 // uses Rx and Ry for the accelerometer readings and Rz for the
mjr 90:aa4e571da8e8 622 // plunger, instead of the standard X/Y/Z axes. This can be used
mjr 90:aa4e571da8e8 623 // to avoid conflicts with other devices reporting on the normal
mjr 90:aa4e571da8e8 624 // X/Y/Z axes.
mjr 90:aa4e571da8e8 625 static const uint8_t reportDescriptorJS_RXRYRZ[] =
mjr 90:aa4e571da8e8 626 {
mjr 90:aa4e571da8e8 627 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 90:aa4e571da8e8 628 USAGE(1), 0x04, // Joystick
mjr 90:aa4e571da8e8 629 COLLECTION(1), 0x01, // Application
mjr 90:aa4e571da8e8 630
mjr 90:aa4e571da8e8 631 // input report (device to host)
mjr 90:aa4e571da8e8 632 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 90:aa4e571da8e8 633 USAGE(1), 0x00, // undefined device control
mjr 90:aa4e571da8e8 634 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 90:aa4e571da8e8 635 LOGICAL_MAXIMUM(1), 0xFF,
mjr 90:aa4e571da8e8 636 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 90:aa4e571da8e8 637 REPORT_COUNT(1), 0x04, // 4 reports (4 bytes)
mjr 90:aa4e571da8e8 638 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 90:aa4e571da8e8 639
mjr 90:aa4e571da8e8 640 USAGE_PAGE(1), 0x09, // Buttons
mjr 90:aa4e571da8e8 641 USAGE_MINIMUM(1), 0x01, // { buttons }
mjr 90:aa4e571da8e8 642 USAGE_MAXIMUM(1), 0x20, // { 1-32 }
mjr 90:aa4e571da8e8 643 LOGICAL_MINIMUM(1), 0x00, // 1-bit buttons - 0...
mjr 90:aa4e571da8e8 644 LOGICAL_MAXIMUM(1), 0x01, // ...to 1
mjr 90:aa4e571da8e8 645 REPORT_SIZE(1), 0x01, // 1 bit per report
mjr 90:aa4e571da8e8 646 REPORT_COUNT(1), 0x20, // 32 reports
mjr 90:aa4e571da8e8 647 UNIT_EXPONENT(1), 0x00, // Unit_Exponent (0)
mjr 90:aa4e571da8e8 648 UNIT(1), 0x00, // Unit (None)
mjr 90:aa4e571da8e8 649 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 90:aa4e571da8e8 650
mjr 90:aa4e571da8e8 651 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 90:aa4e571da8e8 652 USAGE(1), 0x33, // Rx axis ("X rotation")
mjr 90:aa4e571da8e8 653 USAGE(1), 0x34, // Ry axis
mjr 90:aa4e571da8e8 654 USAGE(1), 0x35, // Rz axis
mjr 90:aa4e571da8e8 655 LOGICAL_MINIMUM(2), 0x00,0xF0, // each value ranges -4096
mjr 90:aa4e571da8e8 656 LOGICAL_MAXIMUM(2), 0x00,0x10, // ...to +4096
mjr 90:aa4e571da8e8 657 REPORT_SIZE(1), 0x10, // 16 bits per report
mjr 90:aa4e571da8e8 658 REPORT_COUNT(1), 0x03, // 3 reports (X, Y, Z)
mjr 90:aa4e571da8e8 659 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 90:aa4e571da8e8 660
mjr 90:aa4e571da8e8 661 // output report (host to device)
mjr 90:aa4e571da8e8 662 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 90:aa4e571da8e8 663 REPORT_COUNT(1), 0x08, // output report count - 8-byte LedWiz format
mjr 90:aa4e571da8e8 664 0x09, 0x01, // usage
mjr 90:aa4e571da8e8 665 0x91, 0x01, // Output (array)
mjr 90:aa4e571da8e8 666
mjr 90:aa4e571da8e8 667 END_COLLECTION(0)
mjr 90:aa4e571da8e8 668 };
mjr 90:aa4e571da8e8 669
mjr 90:aa4e571da8e8 670
mjr 63:5cd1a5f3a41b 671 //
mjr 63:5cd1a5f3a41b 672 // USB HID Report Descriptor - Keyboard/Media Control
mjr 63:5cd1a5f3a41b 673 //
mjr 48:058ace2aed1d 674 static const uint8_t reportDescriptorKB[] =
mjr 35:e959ffba78fd 675 {
mjr 63:5cd1a5f3a41b 676 USAGE_PAGE(1), 0x01, // Generic Desktop
mjr 63:5cd1a5f3a41b 677 USAGE(1), 0x06, // Keyboard
mjr 63:5cd1a5f3a41b 678 COLLECTION(1), 0x01, // Application
mjr 63:5cd1a5f3a41b 679 REPORT_ID(1), REPORT_ID_KB,
mjr 63:5cd1a5f3a41b 680
mjr 63:5cd1a5f3a41b 681 USAGE_PAGE(1), 0x07, // Key Codes
mjr 63:5cd1a5f3a41b 682 USAGE_MINIMUM(1), 0xE0,
mjr 63:5cd1a5f3a41b 683 USAGE_MAXIMUM(1), 0xE7,
mjr 63:5cd1a5f3a41b 684 LOGICAL_MINIMUM(1), 0x00,
mjr 63:5cd1a5f3a41b 685 LOGICAL_MAXIMUM(1), 0x01,
mjr 63:5cd1a5f3a41b 686 REPORT_SIZE(1), 0x01,
mjr 63:5cd1a5f3a41b 687 REPORT_COUNT(1), 0x08,
mjr 63:5cd1a5f3a41b 688 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 689 REPORT_COUNT(1), 0x01,
mjr 63:5cd1a5f3a41b 690 REPORT_SIZE(1), 0x08,
mjr 63:5cd1a5f3a41b 691 INPUT(1), 0x01, // Constant
mjr 63:5cd1a5f3a41b 692
mjr 63:5cd1a5f3a41b 693 REPORT_COUNT(1), 0x05,
mjr 63:5cd1a5f3a41b 694 REPORT_SIZE(1), 0x01,
mjr 63:5cd1a5f3a41b 695 USAGE_PAGE(1), 0x08, // LEDs
mjr 63:5cd1a5f3a41b 696 USAGE_MINIMUM(1), 0x01,
mjr 63:5cd1a5f3a41b 697 USAGE_MAXIMUM(1), 0x05,
mjr 63:5cd1a5f3a41b 698 OUTPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 699 REPORT_COUNT(1), 0x01,
mjr 63:5cd1a5f3a41b 700 REPORT_SIZE(1), 0x03,
mjr 63:5cd1a5f3a41b 701 OUTPUT(1), 0x01, // Constant
mjr 63:5cd1a5f3a41b 702
mjr 63:5cd1a5f3a41b 703 REPORT_COUNT(1), 0x06,
mjr 63:5cd1a5f3a41b 704 REPORT_SIZE(1), 0x08,
mjr 63:5cd1a5f3a41b 705 LOGICAL_MINIMUM(1), 0x00,
mjr 68:998faf685b00 706 LOGICAL_MAXIMUM(1), 0xA4,
mjr 63:5cd1a5f3a41b 707 USAGE_PAGE(1), 0x07, // Key Codes
mjr 63:5cd1a5f3a41b 708 USAGE_MINIMUM(1), 0x00,
mjr 68:998faf685b00 709 USAGE_MAXIMUM(1), 0xA4,
mjr 63:5cd1a5f3a41b 710 INPUT(1), 0x00, // Data, Array
mjr 63:5cd1a5f3a41b 711 END_COLLECTION(0),
mjr 63:5cd1a5f3a41b 712
mjr 63:5cd1a5f3a41b 713 // Media Control
mjr 63:5cd1a5f3a41b 714 USAGE_PAGE(1), 0x0C,
mjr 63:5cd1a5f3a41b 715 USAGE(1), 0x01,
mjr 63:5cd1a5f3a41b 716 COLLECTION(1), 0x01,
mjr 63:5cd1a5f3a41b 717 REPORT_ID(1), REPORT_ID_MEDIA,
mjr 63:5cd1a5f3a41b 718 USAGE_PAGE(1), 0x0C,
mjr 63:5cd1a5f3a41b 719 LOGICAL_MINIMUM(1), 0x00,
mjr 63:5cd1a5f3a41b 720 LOGICAL_MAXIMUM(1), 0x01,
mjr 63:5cd1a5f3a41b 721 REPORT_SIZE(1), 0x01,
mjr 63:5cd1a5f3a41b 722 REPORT_COUNT(1), 0x07,
mjr 63:5cd1a5f3a41b 723 USAGE(1), 0xE2, // Mute -> 0x01
mjr 63:5cd1a5f3a41b 724 USAGE(1), 0xE9, // Volume Up -> 0x02
mjr 63:5cd1a5f3a41b 725 USAGE(1), 0xEA, // Volume Down -> 0x04
mjr 63:5cd1a5f3a41b 726 USAGE(1), 0xB5, // Next Track -> 0x08
mjr 63:5cd1a5f3a41b 727 USAGE(1), 0xB6, // Previous Track -> 0x10
mjr 63:5cd1a5f3a41b 728 USAGE(1), 0xB7, // Stop -> 0x20
mjr 63:5cd1a5f3a41b 729 USAGE(1), 0xCD, // Play / Pause -> 0x40
mjr 63:5cd1a5f3a41b 730 INPUT(1), 0x02, // Input (Data, Variable, Absolute) -> 0x80
mjr 63:5cd1a5f3a41b 731 REPORT_COUNT(1), 0x01,
mjr 63:5cd1a5f3a41b 732 INPUT(1), 0x01,
mjr 63:5cd1a5f3a41b 733 END_COLLECTION(0),
mjr 35:e959ffba78fd 734 };
mjr 29:582472d0bc57 735
mjr 63:5cd1a5f3a41b 736 //
mjr 63:5cd1a5f3a41b 737 // USB HID Report Descriptor - LedWiz only, with no joystick or keyboard
mjr 63:5cd1a5f3a41b 738 // input reporting
mjr 63:5cd1a5f3a41b 739 //
mjr 63:5cd1a5f3a41b 740 static const uint8_t reportDescriptorLW[] =
mjr 63:5cd1a5f3a41b 741 {
mjr 63:5cd1a5f3a41b 742 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 63:5cd1a5f3a41b 743 USAGE(1), 0x00, // Undefined
mjr 63:5cd1a5f3a41b 744
mjr 63:5cd1a5f3a41b 745 COLLECTION(1), 0x01, // Application
mjr 63:5cd1a5f3a41b 746
mjr 63:5cd1a5f3a41b 747 // input report (device to host)
mjr 63:5cd1a5f3a41b 748 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 63:5cd1a5f3a41b 749 USAGE(1), 0x00, // undefined device control
mjr 63:5cd1a5f3a41b 750 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 63:5cd1a5f3a41b 751 LOGICAL_MAXIMUM(1), 0xFF,
mjr 63:5cd1a5f3a41b 752 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 77:0b96f6867312 753 REPORT_COUNT(1), USBJoystick::reportLen, // standard report length (same as if we were in joystick mode)
mjr 63:5cd1a5f3a41b 754 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 755
mjr 63:5cd1a5f3a41b 756 // output report (host to device)
mjr 63:5cd1a5f3a41b 757 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 63:5cd1a5f3a41b 758 REPORT_COUNT(1), 0x08, // output report count (LEDWiz messages)
mjr 63:5cd1a5f3a41b 759 0x09, 0x01, // usage
mjr 63:5cd1a5f3a41b 760 0x91, 0x01, // Output (array)
mjr 63:5cd1a5f3a41b 761
mjr 63:5cd1a5f3a41b 762 END_COLLECTION(0)
mjr 35:e959ffba78fd 763 };
mjr 35:e959ffba78fd 764
mjr 63:5cd1a5f3a41b 765
mjr 54:fd77a6b2f76c 766 const uint8_t *USBJoystick::reportDesc(int idx, uint16_t &len)
mjr 35:e959ffba78fd 767 {
mjr 63:5cd1a5f3a41b 768 switch (idx)
mjr 35:e959ffba78fd 769 {
mjr 63:5cd1a5f3a41b 770 case 0:
mjr 63:5cd1a5f3a41b 771 // If the joystick is enabled, this is the joystick.
mjr 63:5cd1a5f3a41b 772 // Otherwise, it's the plain LedWiz control interface.
mjr 63:5cd1a5f3a41b 773 if (enableJoystick)
mjr 63:5cd1a5f3a41b 774 {
mjr 90:aa4e571da8e8 775 switch (axisFormat)
mjr 90:aa4e571da8e8 776 {
mjr 90:aa4e571da8e8 777 case AXIS_FORMAT_XYZ:
mjr 90:aa4e571da8e8 778 default:
mjr 90:aa4e571da8e8 779 len = sizeof(reportDescriptorJS);
mjr 90:aa4e571da8e8 780 return reportDescriptorJS;
mjr 90:aa4e571da8e8 781
mjr 90:aa4e571da8e8 782 case AXIS_FORMAT_RXRYRZ:
mjr 90:aa4e571da8e8 783 len = sizeof(reportDescriptorJS_RXRYRZ);
mjr 90:aa4e571da8e8 784 return reportDescriptorJS_RXRYRZ;
mjr 90:aa4e571da8e8 785 }
mjr 63:5cd1a5f3a41b 786 }
mjr 63:5cd1a5f3a41b 787 else
mjr 63:5cd1a5f3a41b 788 {
mjr 63:5cd1a5f3a41b 789 len = sizeof(reportDescriptorLW);
mjr 63:5cd1a5f3a41b 790 return reportDescriptorLW;
mjr 63:5cd1a5f3a41b 791 }
mjr 63:5cd1a5f3a41b 792
mjr 63:5cd1a5f3a41b 793 case 1:
mjr 63:5cd1a5f3a41b 794 // This is the keyboard, if enabled.
mjr 63:5cd1a5f3a41b 795 if (useKB)
mjr 63:5cd1a5f3a41b 796 {
mjr 63:5cd1a5f3a41b 797 len = sizeof(reportDescriptorKB);
mjr 63:5cd1a5f3a41b 798 return reportDescriptorKB;
mjr 63:5cd1a5f3a41b 799 }
mjr 63:5cd1a5f3a41b 800 else
mjr 63:5cd1a5f3a41b 801 {
mjr 63:5cd1a5f3a41b 802 len = 0;
mjr 63:5cd1a5f3a41b 803 return 0;
mjr 63:5cd1a5f3a41b 804 }
mjr 63:5cd1a5f3a41b 805
mjr 63:5cd1a5f3a41b 806 default:
mjr 63:5cd1a5f3a41b 807 // Unknown interface ID
mjr 54:fd77a6b2f76c 808 len = 0;
mjr 48:058ace2aed1d 809 return 0;
mjr 35:e959ffba78fd 810 }
mjr 35:e959ffba78fd 811 }
mjr 3:3514575d4f86 812
mjr 48:058ace2aed1d 813 const uint8_t *USBJoystick::stringImanufacturerDesc() {
mjr 48:058ace2aed1d 814 static const uint8_t stringImanufacturerDescriptor[] = {
mjr 61:3c7e6e9ec355 815 0x0E, /* bLength */
mjr 61:3c7e6e9ec355 816 STRING_DESCRIPTOR, /* bDescriptorType 0x03 (String Descriptor) */
mjr 61:3c7e6e9ec355 817 'm',0,'j',0,'r',0,'n',0,'e',0,'t',0 /* bString iManufacturer - mjrnet */
mjr 3:3514575d4f86 818 };
mjr 3:3514575d4f86 819 return stringImanufacturerDescriptor;
mjr 3:3514575d4f86 820 }
mjr 3:3514575d4f86 821
mjr 54:fd77a6b2f76c 822 const uint8_t *USBJoystick::stringIserialDesc()
mjr 54:fd77a6b2f76c 823 {
mjr 90:aa4e571da8e8 824 // set up a buffer with space for the length prefix byte, descriptor type
mjr 90:aa4e571da8e8 825 // byte, and serial number (as a wide-character string)
mjr 90:aa4e571da8e8 826 const int numChars = 3 + 16 + 1 + 1 + 3;
mjr 61:3c7e6e9ec355 827 static uint8_t buf[2 + numChars*2];
mjr 54:fd77a6b2f76c 828 uint8_t *dst = buf;
mjr 90:aa4e571da8e8 829
mjr 90:aa4e571da8e8 830 // store a placeholder for the length, followed by the descriptor type byte
mjr 90:aa4e571da8e8 831 *dst++ = 0;
mjr 54:fd77a6b2f76c 832 *dst++ = STRING_DESCRIPTOR;
mjr 54:fd77a6b2f76c 833
mjr 54:fd77a6b2f76c 834 // Create an ASCII version of our unique serial number string:
mjr 54:fd77a6b2f76c 835 //
mjr 90:aa4e571da8e8 836 // PSCxxxxxxxxxxxxxxxxi[a]vvv
mjr 54:fd77a6b2f76c 837 //
mjr 54:fd77a6b2f76c 838 // where:
mjr 54:fd77a6b2f76c 839 //
mjr 54:fd77a6b2f76c 840 // xxx... = decimal representation of low 64 bits of CPU ID (16 hex digits)
mjr 54:fd77a6b2f76c 841 // i = interface type: first character is J if joystick is enabled,
mjr 54:fd77a6b2f76c 842 // L = LedWiz/control interface only, no input
mjr 54:fd77a6b2f76c 843 // J = Joystick + LedWiz
mjr 54:fd77a6b2f76c 844 // K = Keyboard + LedWiz
mjr 54:fd77a6b2f76c 845 // C = Joystick + Keyboard + LedWiz ("C" for combo)
mjr 90:aa4e571da8e8 846 // a = joystick axis types:
mjr 90:aa4e571da8e8 847 // <empty> = X,Y,Z, or no joystick interface at all
mjr 90:aa4e571da8e8 848 // A = Rx,Ry,Rz
mjr 61:3c7e6e9ec355 849 // vvv = version suffix
mjr 54:fd77a6b2f76c 850 //
mjr 54:fd77a6b2f76c 851 // The suffix for the interface type resolves a problem on some Windows systems
mjr 54:fd77a6b2f76c 852 // when switching between interface types. Windows can cache device information
mjr 54:fd77a6b2f76c 853 // that includes the interface descriptors, and it won't recognize a change in
mjr 54:fd77a6b2f76c 854 // the interfaces once the information is cached, causing connection failures.
mjr 54:fd77a6b2f76c 855 // The cache key includes the device serial number, though, so this can be
mjr 54:fd77a6b2f76c 856 // resolved by changing the serial number when the interface setup changes.
mjr 61:3c7e6e9ec355 857 char xbuf[numChars + 1];
mjr 54:fd77a6b2f76c 858 uint32_t x = SIM->UIDML;
mjr 54:fd77a6b2f76c 859 static char ifcCode[] = "LJKC";
mjr 90:aa4e571da8e8 860 static const char *axisCode[] = { "", "A" };
mjr 90:aa4e571da8e8 861 sprintf(xbuf, "PSC%08lX%08lX%c%s008",
mjr 54:fd77a6b2f76c 862 SIM->UIDML,
mjr 54:fd77a6b2f76c 863 SIM->UIDL,
mjr 90:aa4e571da8e8 864 ifcCode[(enableJoystick ? 0x01 : 0x00) | (useKB ? 0x02 : 0x00)],
mjr 90:aa4e571da8e8 865 axisCode[(enableJoystick ? axisFormat : 0)]);
mjr 54:fd77a6b2f76c 866
mjr 54:fd77a6b2f76c 867 // copy the ascii bytes into the descriptor buffer, converting to unicode
mjr 54:fd77a6b2f76c 868 // 16-bit little-endian characters
mjr 54:fd77a6b2f76c 869 for (char *src = xbuf ; *src != '\0' && dst < buf + sizeof(buf) ; )
mjr 54:fd77a6b2f76c 870 {
mjr 54:fd77a6b2f76c 871 *dst++ = *src++;
mjr 54:fd77a6b2f76c 872 *dst++ = '\0';
mjr 54:fd77a6b2f76c 873 }
mjr 54:fd77a6b2f76c 874
mjr 90:aa4e571da8e8 875 // store the final length (in bytes) in the length prefix byte
mjr 90:aa4e571da8e8 876 buf[0] = dst - buf;
mjr 90:aa4e571da8e8 877
mjr 54:fd77a6b2f76c 878 // return the buffer
mjr 54:fd77a6b2f76c 879 return buf;
mjr 3:3514575d4f86 880 }
mjr 3:3514575d4f86 881
mjr 48:058ace2aed1d 882 const uint8_t *USBJoystick::stringIproductDesc() {
mjr 48:058ace2aed1d 883 static const uint8_t stringIproductDescriptor[] = {
mjr 9:fd65b0a94720 884 0x28, /*bLength*/
mjr 3:3514575d4f86 885 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 886 'P',0,'i',0,'n',0,'s',0,'c',0,'a',0,'p',0,'e',0,
mjr 3:3514575d4f86 887 ' ',0,'C',0,'o',0,'n',0,'t',0,'r',0,'o',0,'l',0,
mjr 3:3514575d4f86 888 'l',0,'e',0,'r',0 /*String iProduct */
mjr 3:3514575d4f86 889 };
mjr 3:3514575d4f86 890 return stringIproductDescriptor;
mjr 3:3514575d4f86 891 }
mjr 35:e959ffba78fd 892
mjr 35:e959ffba78fd 893 #define DEFAULT_CONFIGURATION (1)
mjr 35:e959ffba78fd 894
mjr 48:058ace2aed1d 895 const uint8_t *USBJoystick::configurationDesc()
mjr 35:e959ffba78fd 896 {
mjr 63:5cd1a5f3a41b 897 int rptlen0 = reportDescLength(0);
mjr 63:5cd1a5f3a41b 898 int rptlen1 = reportDescLength(1);
mjr 63:5cd1a5f3a41b 899 if (useKB)
mjr 35:e959ffba78fd 900 {
mjr 63:5cd1a5f3a41b 901 const int cfglenKB =
mjr 63:5cd1a5f3a41b 902 ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 903 + (2 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 904 + (2 * HID_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 905 + (4 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 63:5cd1a5f3a41b 906 static uint8_t configurationDescriptorWithKB[] =
mjr 63:5cd1a5f3a41b 907 {
mjr 63:5cd1a5f3a41b 908 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 63:5cd1a5f3a41b 909 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 910 LSB(cfglenKB), // wTotalLength (LSB)
mjr 63:5cd1a5f3a41b 911 MSB(cfglenKB), // wTotalLength (MSB)
mjr 63:5cd1a5f3a41b 912 0x02, // bNumInterfaces - TWO INTERFACES (JOYSTICK + KEYBOARD)
mjr 63:5cd1a5f3a41b 913 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 63:5cd1a5f3a41b 914 0x00, // iConfiguration
mjr 63:5cd1a5f3a41b 915 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 63:5cd1a5f3a41b 916 C_POWER(0), // bMaxPower
mjr 63:5cd1a5f3a41b 917
mjr 63:5cd1a5f3a41b 918 // ***** INTERFACE 0 - JOYSTICK/LEDWIZ ******
mjr 63:5cd1a5f3a41b 919 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 920 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 921 0x00, // bInterfaceNumber
mjr 63:5cd1a5f3a41b 922 0x00, // bAlternateSetting
mjr 63:5cd1a5f3a41b 923 0x02, // bNumEndpoints
mjr 63:5cd1a5f3a41b 924 HID_CLASS, // bInterfaceClass
mjr 63:5cd1a5f3a41b 925 HID_SUBCLASS_NONE, // bInterfaceSubClass
mjr 63:5cd1a5f3a41b 926 HID_PROTOCOL_NONE, // bInterfaceProtocol
mjr 63:5cd1a5f3a41b 927 0x00, // iInterface
mjr 63:5cd1a5f3a41b 928
mjr 63:5cd1a5f3a41b 929 HID_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 930 HID_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 931 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 63:5cd1a5f3a41b 932 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 63:5cd1a5f3a41b 933 0x00, // bCountryCode
mjr 63:5cd1a5f3a41b 934 0x01, // bNumDescriptors
mjr 63:5cd1a5f3a41b 935 REPORT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 936 LSB(rptlen0), // wDescriptorLength (LSB)
mjr 63:5cd1a5f3a41b 937 MSB(rptlen0), // wDescriptorLength (MSB)
mjr 63:5cd1a5f3a41b 938
mjr 63:5cd1a5f3a41b 939 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 940 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 941 PHY_TO_DESC(EPINT_IN), // bEndpointAddress - EPINT == EP1
mjr 63:5cd1a5f3a41b 942 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 943 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 944 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 945 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 946
mjr 63:5cd1a5f3a41b 947 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 948 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 949 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress - EPINT == EP1
mjr 63:5cd1a5f3a41b 950 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 951 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 952 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 953 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 954
mjr 63:5cd1a5f3a41b 955 // ****** INTERFACE 1 - KEYBOARD ******
mjr 63:5cd1a5f3a41b 956 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 957 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 958 0x01, // bInterfaceNumber
mjr 63:5cd1a5f3a41b 959 0x00, // bAlternateSetting
mjr 63:5cd1a5f3a41b 960 0x02, // bNumEndpoints
mjr 63:5cd1a5f3a41b 961 HID_CLASS, // bInterfaceClass
mjr 63:5cd1a5f3a41b 962 HID_SUBCLASS_BOOT, // bInterfaceSubClass
mjr 63:5cd1a5f3a41b 963 HID_PROTOCOL_KB, // bInterfaceProtocol
mjr 63:5cd1a5f3a41b 964 0x00, // iInterface
mjr 63:5cd1a5f3a41b 965
mjr 63:5cd1a5f3a41b 966 HID_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 967 HID_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 968 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 63:5cd1a5f3a41b 969 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 63:5cd1a5f3a41b 970 0x00, // bCountryCode
mjr 63:5cd1a5f3a41b 971 0x01, // bNumDescriptors
mjr 63:5cd1a5f3a41b 972 REPORT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 973 LSB(rptlen1), // wDescriptorLength (LSB)
mjr 63:5cd1a5f3a41b 974 MSB(rptlen1), // wDescriptorLength (MSB)
mjr 63:5cd1a5f3a41b 975
mjr 63:5cd1a5f3a41b 976 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 977 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 978 PHY_TO_DESC(EP4IN), // bEndpointAddress
mjr 63:5cd1a5f3a41b 979 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 980 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 981 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 982 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 983
mjr 63:5cd1a5f3a41b 984 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 985 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 986 PHY_TO_DESC(EP4OUT), // bEndpointAddress
mjr 63:5cd1a5f3a41b 987 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 988 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 989 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 990 1, // bInterval (milliseconds)
mjr 61:3c7e6e9ec355 991
mjr 63:5cd1a5f3a41b 992 };
mjr 63:5cd1a5f3a41b 993
mjr 63:5cd1a5f3a41b 994 // Keyboard + joystick interfaces
mjr 63:5cd1a5f3a41b 995 return configurationDescriptorWithKB;
mjr 63:5cd1a5f3a41b 996 }
mjr 63:5cd1a5f3a41b 997 else
mjr 63:5cd1a5f3a41b 998 {
mjr 63:5cd1a5f3a41b 999 // No keyboard - joystick interface only
mjr 63:5cd1a5f3a41b 1000 const int cfglenNoKB =
mjr 63:5cd1a5f3a41b 1001 ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 1002 + (1 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 1003 + (1 * HID_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 1004 + (2 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 63:5cd1a5f3a41b 1005 static uint8_t configurationDescriptorNoKB[] =
mjr 63:5cd1a5f3a41b 1006 {
mjr 63:5cd1a5f3a41b 1007 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 63:5cd1a5f3a41b 1008 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 1009 LSB(cfglenNoKB), // wTotalLength (LSB)
mjr 63:5cd1a5f3a41b 1010 MSB(cfglenNoKB), // wTotalLength (MSB)
mjr 63:5cd1a5f3a41b 1011 0x01, // bNumInterfaces
mjr 63:5cd1a5f3a41b 1012 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 63:5cd1a5f3a41b 1013 0x00, // iConfiguration
mjr 63:5cd1a5f3a41b 1014 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 63:5cd1a5f3a41b 1015 C_POWER(0), // bMaxPower
mjr 63:5cd1a5f3a41b 1016
mjr 63:5cd1a5f3a41b 1017 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 1018 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 1019 0x00, // bInterfaceNumber
mjr 63:5cd1a5f3a41b 1020 0x00, // bAlternateSetting
mjr 63:5cd1a5f3a41b 1021 0x02, // bNumEndpoints
mjr 63:5cd1a5f3a41b 1022 HID_CLASS, // bInterfaceClass
mjr 63:5cd1a5f3a41b 1023 HID_SUBCLASS_NONE, // bInterfaceSubClass
mjr 63:5cd1a5f3a41b 1024 HID_PROTOCOL_NONE, // bInterfaceProtocol (keyboard)
mjr 63:5cd1a5f3a41b 1025 0x00, // iInterface
mjr 63:5cd1a5f3a41b 1026
mjr 63:5cd1a5f3a41b 1027 HID_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 1028 HID_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 1029 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 63:5cd1a5f3a41b 1030 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 63:5cd1a5f3a41b 1031 0x00, // bCountryCode
mjr 63:5cd1a5f3a41b 1032 0x01, // bNumDescriptors
mjr 63:5cd1a5f3a41b 1033 REPORT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 1034 (uint8_t)(LSB(rptlen0)), // wDescriptorLength (LSB)
mjr 63:5cd1a5f3a41b 1035 (uint8_t)(MSB(rptlen0)), // wDescriptorLength (MSB)
mjr 63:5cd1a5f3a41b 1036
mjr 63:5cd1a5f3a41b 1037 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 1038 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 1039 PHY_TO_DESC(EPINT_IN), // bEndpointAddress
mjr 63:5cd1a5f3a41b 1040 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 1041 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 1042 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 1043 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 1044
mjr 63:5cd1a5f3a41b 1045 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 1046 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 1047 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress
mjr 63:5cd1a5f3a41b 1048 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 1049 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 1050 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 1051 1 // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 1052 };
mjr 63:5cd1a5f3a41b 1053
mjr 63:5cd1a5f3a41b 1054 return configurationDescriptorNoKB;
mjr 63:5cd1a5f3a41b 1055 }
mjr 35:e959ffba78fd 1056 }
mjr 35:e959ffba78fd 1057
mjr 35:e959ffba78fd 1058 // Set the configuration. We need to set up the endpoints for
mjr 35:e959ffba78fd 1059 // our active interfaces.
mjr 35:e959ffba78fd 1060 bool USBJoystick::USBCallback_setConfiguration(uint8_t configuration)
mjr 35:e959ffba78fd 1061 {
mjr 35:e959ffba78fd 1062 // we only have one valid configuration
mjr 35:e959ffba78fd 1063 if (configuration != DEFAULT_CONFIGURATION)
mjr 35:e959ffba78fd 1064 return false;
mjr 35:e959ffba78fd 1065
mjr 63:5cd1a5f3a41b 1066 // Configure endpoint 1 - we use this in all cases, for either
mjr 63:5cd1a5f3a41b 1067 // the combined joystick/ledwiz interface or just the ledwiz interface
mjr 48:058ace2aed1d 1068 addEndpoint(EPINT_IN, MAX_REPORT_JS_TX + 1);
mjr 48:058ace2aed1d 1069 addEndpoint(EPINT_OUT, MAX_REPORT_JS_RX + 1);
mjr 48:058ace2aed1d 1070 readStart(EPINT_OUT, MAX_REPORT_JS_TX + 1);
mjr 63:5cd1a5f3a41b 1071
mjr 63:5cd1a5f3a41b 1072 // if the keyboard is enabled, configure endpoint 4 for the kb interface
mjr 63:5cd1a5f3a41b 1073 if (useKB)
mjr 63:5cd1a5f3a41b 1074 {
mjr 63:5cd1a5f3a41b 1075 addEndpoint(EP4IN, MAX_REPORT_KB_TX + 1);
mjr 63:5cd1a5f3a41b 1076 addEndpoint(EP4OUT, MAX_REPORT_KB_RX + 1);
mjr 63:5cd1a5f3a41b 1077 readStart(EP4OUT, MAX_REPORT_KB_TX + 1);
mjr 63:5cd1a5f3a41b 1078 }
mjr 35:e959ffba78fd 1079
mjr 35:e959ffba78fd 1080 // success
mjr 35:e959ffba78fd 1081 return true;
mjr 35:e959ffba78fd 1082 }
mjr 35:e959ffba78fd 1083
mjr 38:091e511ce8a0 1084 // Handle incoming messages on the joystick/LedWiz interface = endpoint 1.
mjr 38:091e511ce8a0 1085 // This interface receives LedWiz protocol commands and commands using our
mjr 38:091e511ce8a0 1086 // custom LedWiz protocol extensions.
mjr 38:091e511ce8a0 1087 //
mjr 38:091e511ce8a0 1088 // We simply queue the messages in our circular buffer for processing in
mjr 38:091e511ce8a0 1089 // the main loop. The circular buffer object is designed for safe access
mjr 38:091e511ce8a0 1090 // from the interrupt handler using the rule that only the interrupt
mjr 38:091e511ce8a0 1091 // handler can change the write pointer, and only the regular code can
mjr 38:091e511ce8a0 1092 // change the read pointer.
mjr 38:091e511ce8a0 1093 bool USBJoystick::EP1_OUT_callback()
mjr 38:091e511ce8a0 1094 {
mjr 38:091e511ce8a0 1095 // Read this message
mjr 63:5cd1a5f3a41b 1096 union {
mjr 63:5cd1a5f3a41b 1097 LedWizMsg msg;
mjr 63:5cd1a5f3a41b 1098 uint8_t buf[MAX_HID_REPORT_SIZE];
mjr 63:5cd1a5f3a41b 1099 } buf;
mjr 38:091e511ce8a0 1100 uint32_t bytesRead = 0;
mjr 63:5cd1a5f3a41b 1101 USBDevice::readEP(EP1OUT, buf.buf, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 1102
mjr 63:5cd1a5f3a41b 1103 // if it's the right length, queue it to our circular buffer
mjr 63:5cd1a5f3a41b 1104 if (bytesRead == 8)
mjr 63:5cd1a5f3a41b 1105 lwbuf.write(buf.msg);
mjr 38:091e511ce8a0 1106
mjr 38:091e511ce8a0 1107 // start the next read
mjr 39:b3815a1c3802 1108 return readStart(EP1OUT, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 1109 }
mjr 63:5cd1a5f3a41b 1110
mjr 63:5cd1a5f3a41b 1111 // Handle incoming messages on the keyboard interface = endpoint 4.
mjr 63:5cd1a5f3a41b 1112 // The host uses this to send updates for the keyboard indicator LEDs
mjr 63:5cd1a5f3a41b 1113 // (caps lock, num lock, etc). We don't do anything with these, but
mjr 63:5cd1a5f3a41b 1114 // we have to read them to keep the pipe open.
mjr 63:5cd1a5f3a41b 1115 bool USBJoystick::EP4_OUT_callback()
mjr 63:5cd1a5f3a41b 1116 {
mjr 63:5cd1a5f3a41b 1117 // read this message
mjr 63:5cd1a5f3a41b 1118 uint32_t bytesRead = 0;
mjr 63:5cd1a5f3a41b 1119 uint8_t led[MAX_HID_REPORT_SIZE];
mjr 63:5cd1a5f3a41b 1120 USBDevice::readEP(EP4OUT, led, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 63:5cd1a5f3a41b 1121
mjr 63:5cd1a5f3a41b 1122 // start the next read
mjr 63:5cd1a5f3a41b 1123 return readStart(EP4OUT, MAX_HID_REPORT_SIZE);
mjr 63:5cd1a5f3a41b 1124 }
mjr 63:5cd1a5f3a41b 1125