An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Thu Dec 14 00:20:20 2017 +0000
Revision:
92:f264fbaa1be5
Parent:
90:aa4e571da8e8
Child:
98:4df3c0f7e707
Adjustable joystick report timing

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 3:3514575d4f86 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
mjr 3:3514575d4f86 2 * Modified Mouse code for Joystick - WH 2012
mjr 3:3514575d4f86 3 *
mjr 3:3514575d4f86 4 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 3:3514575d4f86 5 * and associated documentation files (the "Software"), to deal in the Software without
mjr 3:3514575d4f86 6 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 3:3514575d4f86 7 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 3:3514575d4f86 8 * Software is furnished to do so, subject to the following conditions:
mjr 3:3514575d4f86 9 *
mjr 3:3514575d4f86 10 * The above copyright notice and this permission notice shall be included in all copies or
mjr 3:3514575d4f86 11 * substantial portions of the Software.
mjr 3:3514575d4f86 12 *
mjr 3:3514575d4f86 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 3:3514575d4f86 14 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 3:3514575d4f86 15 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 3:3514575d4f86 16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 3:3514575d4f86 17 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 3:3514575d4f86 18 */
mjr 3:3514575d4f86 19
mjr 3:3514575d4f86 20 #include "stdint.h"
mjr 3:3514575d4f86 21 #include "USBJoystick.h"
mjr 21:5048e16cc9ef 22
mjr 21:5048e16cc9ef 23 #include "config.h" // Pinscape configuration
mjr 21:5048e16cc9ef 24
mjr 35:e959ffba78fd 25
mjr 35:e959ffba78fd 26
mjr 48:058ace2aed1d 27 // Maximum report sizes
mjr 77:0b96f6867312 28 const int MAX_REPORT_JS_TX = USBJoystick::reportLen;
mjr 48:058ace2aed1d 29 const int MAX_REPORT_JS_RX = 8;
mjr 63:5cd1a5f3a41b 30 const int MAX_REPORT_KB_TX = 8;
mjr 63:5cd1a5f3a41b 31 const int MAX_REPORT_KB_RX = 4;
mjr 48:058ace2aed1d 32
mjr 11:bd9da7088e6e 33 bool USBJoystick::update(int16_t x, int16_t y, int16_t z, uint32_t buttons, uint16_t status)
mjr 3:3514575d4f86 34 {
mjr 3:3514575d4f86 35 _x = x;
mjr 3:3514575d4f86 36 _y = y;
mjr 3:3514575d4f86 37 _z = z;
mjr 11:bd9da7088e6e 38 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 39 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 10:976666ffa4ef 40 _status = status;
mjr 3:3514575d4f86 41
mjr 3:3514575d4f86 42 // send the report
mjr 3:3514575d4f86 43 return update();
mjr 3:3514575d4f86 44 }
mjr 35:e959ffba78fd 45
mjr 11:bd9da7088e6e 46 bool USBJoystick::update()
mjr 11:bd9da7088e6e 47 {
mjr 3:3514575d4f86 48 HID_REPORT report;
mjr 63:5cd1a5f3a41b 49
mjr 3:3514575d4f86 50 // Fill the report according to the Joystick Descriptor
mjr 6:cc35eb643e8f 51 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 53:9b2611964afc 52 #define putbe(idx, val) (report.data[(idx)+1] = (val) & 0xff, report.data[idx] = ((val) >> 8) & 0xff)
mjr 40:cc0d9814522b 53 #define putl(idx, val) (put(idx, val), put((idx)+2, (val) >> 16))
mjr 54:fd77a6b2f76c 54 #define putlbe(idx, val) (putbe((idx)+2, val), putbe(idx, (val) >> 16))
mjr 77:0b96f6867312 55 #define put64(idx, val) (putl(idx, val), putl((idx)+4, (val) >> 32))
mjr 63:5cd1a5f3a41b 56 put(0, _status);
mjr 63:5cd1a5f3a41b 57 put(2, 0); // second word of status - zero in high bit identifies as normal joystick report
mjr 63:5cd1a5f3a41b 58 put(4, _buttonsLo);
mjr 63:5cd1a5f3a41b 59 put(6, _buttonsHi);
mjr 63:5cd1a5f3a41b 60 put(8, _x);
mjr 63:5cd1a5f3a41b 61 put(10, _y);
mjr 63:5cd1a5f3a41b 62 put(12, _z);
mjr 21:5048e16cc9ef 63
mjr 21:5048e16cc9ef 64 // important: keep reportLen in sync with the actual byte length of
mjr 21:5048e16cc9ef 65 // the reports we build here
mjr 63:5cd1a5f3a41b 66 report.length = reportLen;
mjr 3:3514575d4f86 67
mjr 5:a70c0bce770d 68 // send the report
mjr 10:976666ffa4ef 69 return sendTO(&report, 100);
mjr 10:976666ffa4ef 70 }
mjr 10:976666ffa4ef 71
mjr 35:e959ffba78fd 72 bool USBJoystick::kbUpdate(uint8_t data[8])
mjr 35:e959ffba78fd 73 {
mjr 35:e959ffba78fd 74 // set up the report
mjr 35:e959ffba78fd 75 HID_REPORT report;
mjr 35:e959ffba78fd 76 report.data[0] = REPORT_ID_KB; // report ID = keyboard
mjr 35:e959ffba78fd 77 memcpy(&report.data[1], data, 8); // copy the kb report data
mjr 35:e959ffba78fd 78 report.length = 9; // length = ID prefix + kb report length
mjr 35:e959ffba78fd 79
mjr 35:e959ffba78fd 80 // send it to endpoint 4 (the keyboard interface endpoint)
mjr 35:e959ffba78fd 81 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 82 }
mjr 35:e959ffba78fd 83
mjr 35:e959ffba78fd 84 bool USBJoystick::mediaUpdate(uint8_t data)
mjr 35:e959ffba78fd 85 {
mjr 35:e959ffba78fd 86 // set up the report
mjr 35:e959ffba78fd 87 HID_REPORT report;
mjr 35:e959ffba78fd 88 report.data[0] = REPORT_ID_MEDIA; // report ID = media
mjr 35:e959ffba78fd 89 report.data[1] = data; // key pressed bits
mjr 35:e959ffba78fd 90 report.length = 2;
mjr 35:e959ffba78fd 91
mjr 35:e959ffba78fd 92 // send it
mjr 35:e959ffba78fd 93 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 94 }
mjr 35:e959ffba78fd 95
mjr 52:8298b2a73eb2 96 bool USBJoystick::sendPlungerStatus(
mjr 87:8d35c74403af 97 int npix, int plungerPos, int flags, uint32_t avgScanTime, uint32_t processingTime)
mjr 52:8298b2a73eb2 98 {
mjr 52:8298b2a73eb2 99 HID_REPORT report;
mjr 52:8298b2a73eb2 100
mjr 52:8298b2a73eb2 101 // Set the special status bits to indicate it's an extended
mjr 52:8298b2a73eb2 102 // exposure report.
mjr 63:5cd1a5f3a41b 103 put(0, 0x87FF);
mjr 52:8298b2a73eb2 104
mjr 52:8298b2a73eb2 105 // start at the second byte
mjr 63:5cd1a5f3a41b 106 int ofs = 2;
mjr 52:8298b2a73eb2 107
mjr 52:8298b2a73eb2 108 // write the report subtype (0) to byte 2
mjr 52:8298b2a73eb2 109 report.data[ofs++] = 0;
mjr 52:8298b2a73eb2 110
mjr 52:8298b2a73eb2 111 // write the number of pixels to bytes 3-4
mjr 52:8298b2a73eb2 112 put(ofs, uint16_t(npix));
mjr 52:8298b2a73eb2 113 ofs += 2;
mjr 52:8298b2a73eb2 114
mjr 87:8d35c74403af 115 // write the detected plunger position to bytes 5-6
mjr 87:8d35c74403af 116 put(ofs, uint16_t(plungerPos));
mjr 52:8298b2a73eb2 117 ofs += 2;
mjr 52:8298b2a73eb2 118
mjr 86:e30a1f60f783 119 // Add the calibration mode flag if applicable
mjr 52:8298b2a73eb2 120 extern bool plungerCalMode;
mjr 86:e30a1f60f783 121 if (plungerCalMode) flags |= 0x04;
mjr 86:e30a1f60f783 122
mjr 86:e30a1f60f783 123 // write the flags to byte 7
mjr 52:8298b2a73eb2 124 report.data[ofs++] = flags;
mjr 52:8298b2a73eb2 125
mjr 52:8298b2a73eb2 126 // write the average scan time in 10us intervals to bytes 8-10
mjr 52:8298b2a73eb2 127 uint32_t t = uint32_t(avgScanTime / 10);
mjr 52:8298b2a73eb2 128 report.data[ofs++] = t & 0xff;
mjr 52:8298b2a73eb2 129 report.data[ofs++] = (t >> 8) & 0xff;
mjr 52:8298b2a73eb2 130 report.data[ofs++] = (t >> 16) & 0xff;
mjr 52:8298b2a73eb2 131
mjr 52:8298b2a73eb2 132 // write the processing time to bytes 11-13
mjr 52:8298b2a73eb2 133 t = uint32_t(processingTime / 10);
mjr 52:8298b2a73eb2 134 report.data[ofs++] = t & 0xff;
mjr 52:8298b2a73eb2 135 report.data[ofs++] = (t >> 8) & 0xff;
mjr 52:8298b2a73eb2 136 report.data[ofs++] = (t >> 16) & 0xff;
mjr 52:8298b2a73eb2 137
mjr 52:8298b2a73eb2 138 // send the report
mjr 63:5cd1a5f3a41b 139 report.length = reportLen;
mjr 52:8298b2a73eb2 140 return sendTO(&report, 100);
mjr 52:8298b2a73eb2 141 }
mjr 52:8298b2a73eb2 142
mjr 86:e30a1f60f783 143 bool USBJoystick::sendPlungerStatus2(
mjr 86:e30a1f60f783 144 int nativeScale,
mjr 86:e30a1f60f783 145 int jitterLo, int jitterHi, int rawPos,
mjr 86:e30a1f60f783 146 int axcTime)
mjr 86:e30a1f60f783 147 {
mjr 86:e30a1f60f783 148 HID_REPORT report;
mjr 86:e30a1f60f783 149 memset(report.data, 0, sizeof(report.data));
mjr 86:e30a1f60f783 150
mjr 86:e30a1f60f783 151 // Set the special status bits to indicate it's an extended
mjr 86:e30a1f60f783 152 // exposure report.
mjr 86:e30a1f60f783 153 put(0, 0x87FF);
mjr 86:e30a1f60f783 154
mjr 86:e30a1f60f783 155 // start at the second byte
mjr 86:e30a1f60f783 156 int ofs = 2;
mjr 86:e30a1f60f783 157
mjr 86:e30a1f60f783 158 // write the report subtype (1) to byte 2
mjr 86:e30a1f60f783 159 report.data[ofs++] = 1;
mjr 86:e30a1f60f783 160
mjr 86:e30a1f60f783 161 // write the native scale to bytes 3:4
mjr 86:e30a1f60f783 162 put(ofs, uint16_t(nativeScale));
mjr 86:e30a1f60f783 163 ofs += 2;
mjr 86:e30a1f60f783 164
mjr 86:e30a1f60f783 165 // limit the jitter filter bounds to the native scale
mjr 86:e30a1f60f783 166 if (jitterLo < 0)
mjr 86:e30a1f60f783 167 jitterLo = 0;
mjr 86:e30a1f60f783 168 else if (jitterLo > nativeScale)
mjr 86:e30a1f60f783 169 jitterLo = nativeScale;
mjr 86:e30a1f60f783 170 if (jitterHi < 0)
mjr 86:e30a1f60f783 171 jitterHi = 0;
mjr 86:e30a1f60f783 172 else if (jitterHi > nativeScale)
mjr 86:e30a1f60f783 173 jitterHi = nativeScale;
mjr 86:e30a1f60f783 174
mjr 86:e30a1f60f783 175 // write the jitter filter window bounds to 5:6 and 7:8
mjr 86:e30a1f60f783 176 put(ofs, uint16_t(jitterLo));
mjr 86:e30a1f60f783 177 ofs += 2;
mjr 86:e30a1f60f783 178 put(ofs, uint16_t(jitterHi));
mjr 86:e30a1f60f783 179 ofs += 2;
mjr 86:e30a1f60f783 180
mjr 86:e30a1f60f783 181 // add the raw position
mjr 86:e30a1f60f783 182 put(ofs, uint16_t(rawPos));
mjr 86:e30a1f60f783 183 ofs += 2;
mjr 86:e30a1f60f783 184
mjr 86:e30a1f60f783 185 // add the auto-exposure time
mjr 86:e30a1f60f783 186 put(ofs, uint16_t(axcTime));
mjr 86:e30a1f60f783 187 ofs += 2;
mjr 86:e30a1f60f783 188
mjr 86:e30a1f60f783 189 // send the report
mjr 86:e30a1f60f783 190 report.length = reportLen;
mjr 86:e30a1f60f783 191 return sendTO(&report, 100);
mjr 86:e30a1f60f783 192 }
mjr 86:e30a1f60f783 193
mjr 87:8d35c74403af 194 bool USBJoystick::sendPlungerStatusBarcode(
mjr 87:8d35c74403af 195 int nbits, int codetype, int startOfs, int pixPerBit, int raw, int mask)
mjr 87:8d35c74403af 196 {
mjr 87:8d35c74403af 197 HID_REPORT report;
mjr 87:8d35c74403af 198 memset(report.data, 0, sizeof(report.data));
mjr 87:8d35c74403af 199
mjr 87:8d35c74403af 200 // Set the special status bits to indicate it's an extended
mjr 87:8d35c74403af 201 // exposure report.
mjr 87:8d35c74403af 202 put(0, 0x87FF);
mjr 87:8d35c74403af 203
mjr 87:8d35c74403af 204 // start at the second byte
mjr 87:8d35c74403af 205 int ofs = 2;
mjr 87:8d35c74403af 206
mjr 87:8d35c74403af 207 // write the report subtype (2) to byte 2
mjr 87:8d35c74403af 208 report.data[ofs++] = 2;
mjr 87:8d35c74403af 209
mjr 87:8d35c74403af 210 // write the bit count and code type
mjr 87:8d35c74403af 211 report.data[ofs++] = nbits;
mjr 87:8d35c74403af 212 report.data[ofs++] = codetype;
mjr 87:8d35c74403af 213
mjr 87:8d35c74403af 214 // write the bar code starting pixel offset
mjr 87:8d35c74403af 215 put(ofs, uint16_t(startOfs));
mjr 87:8d35c74403af 216 ofs += 2;
mjr 87:8d35c74403af 217
mjr 87:8d35c74403af 218 // write the pixel width per bit
mjr 87:8d35c74403af 219 report.data[ofs++] = pixPerBit;
mjr 87:8d35c74403af 220
mjr 87:8d35c74403af 221 // write the raw bar code and success bit mask
mjr 87:8d35c74403af 222 put(ofs, uint16_t(raw));
mjr 87:8d35c74403af 223 ofs += 2;
mjr 87:8d35c74403af 224 put(ofs, uint16_t(mask));
mjr 87:8d35c74403af 225 ofs += 2;
mjr 87:8d35c74403af 226
mjr 87:8d35c74403af 227 // send the report
mjr 87:8d35c74403af 228 report.length = reportLen;
mjr 87:8d35c74403af 229 return sendTO(&report, 100);
mjr 87:8d35c74403af 230 }
mjr 87:8d35c74403af 231
mjr 87:8d35c74403af 232
mjr 52:8298b2a73eb2 233 bool USBJoystick::sendPlungerPix(int &idx, int npix, const uint8_t *pix)
mjr 10:976666ffa4ef 234 {
mjr 10:976666ffa4ef 235 HID_REPORT report;
mjr 10:976666ffa4ef 236
mjr 10:976666ffa4ef 237 // Set the special status bits to indicate it's an exposure report.
mjr 10:976666ffa4ef 238 // The high 5 bits of the status word are set to 10000, and the
mjr 10:976666ffa4ef 239 // low 11 bits are the current pixel index.
mjr 10:976666ffa4ef 240 uint16_t s = idx | 0x8000;
mjr 63:5cd1a5f3a41b 241 put(0, s);
mjr 25:e22b88bd783a 242
mjr 25:e22b88bd783a 243 // start at the second byte
mjr 63:5cd1a5f3a41b 244 int ofs = 2;
mjr 25:e22b88bd783a 245
mjr 47:df7a88cd249c 246 // now fill out the remaining bytes with exposure values
mjr 63:5cd1a5f3a41b 247 report.length = reportLen;
mjr 47:df7a88cd249c 248 for ( ; ofs < report.length ; ++ofs)
mjr 47:df7a88cd249c 249 report.data[ofs] = (idx < npix ? pix[idx++] : 0);
mjr 10:976666ffa4ef 250
mjr 10:976666ffa4ef 251 // send the report
mjr 35:e959ffba78fd 252 return sendTO(&report, 100);
mjr 3:3514575d4f86 253 }
mjr 9:fd65b0a94720 254
mjr 53:9b2611964afc 255 bool USBJoystick::reportID(int index)
mjr 40:cc0d9814522b 256 {
mjr 40:cc0d9814522b 257 HID_REPORT report;
mjr 40:cc0d9814522b 258
mjr 40:cc0d9814522b 259 // initially fill the report with zeros
mjr 40:cc0d9814522b 260 memset(report.data, 0, sizeof(report.data));
mjr 40:cc0d9814522b 261
mjr 40:cc0d9814522b 262 // Set the special status bits to indicate that it's an ID report
mjr 40:cc0d9814522b 263 uint16_t s = 0x9000;
mjr 63:5cd1a5f3a41b 264 put(0, s);
mjr 40:cc0d9814522b 265
mjr 53:9b2611964afc 266 // add the requested ID index
mjr 63:5cd1a5f3a41b 267 report.data[2] = (uint8_t)index;
mjr 53:9b2611964afc 268
mjr 53:9b2611964afc 269 // figure out which ID we're reporting
mjr 53:9b2611964afc 270 switch (index)
mjr 53:9b2611964afc 271 {
mjr 53:9b2611964afc 272 case 1:
mjr 53:9b2611964afc 273 // KL25Z CPU ID
mjr 63:5cd1a5f3a41b 274 putbe(3, SIM->UIDMH);
mjr 63:5cd1a5f3a41b 275 putlbe(5, SIM->UIDML);
mjr 63:5cd1a5f3a41b 276 putlbe(9, SIM->UIDL);
mjr 53:9b2611964afc 277 break;
mjr 53:9b2611964afc 278
mjr 53:9b2611964afc 279 case 2:
mjr 53:9b2611964afc 280 // OpenSDA ID. Copy the low-order 80 bits of the OpenSDA ID.
mjr 53:9b2611964afc 281 // (The stored value is 128 bits = 16 bytes; we only want the last
mjr 53:9b2611964afc 282 // 80 bits = 10 bytes. So skip ahead 16 and back up 10 to get
mjr 53:9b2611964afc 283 // the starting point.)
mjr 53:9b2611964afc 284 extern const char *getOpenSDAID();
mjr 63:5cd1a5f3a41b 285 memcpy(&report.data[3], getOpenSDAID() + 16 - 10, 10);
mjr 53:9b2611964afc 286 break;
mjr 53:9b2611964afc 287 }
mjr 53:9b2611964afc 288
mjr 53:9b2611964afc 289 // send the report
mjr 63:5cd1a5f3a41b 290 report.length = reportLen;
mjr 53:9b2611964afc 291 return sendTO(&report, 100);
mjr 53:9b2611964afc 292 }
mjr 53:9b2611964afc 293
mjr 53:9b2611964afc 294 bool USBJoystick::reportBuildInfo(const char *date)
mjr 53:9b2611964afc 295 {
mjr 53:9b2611964afc 296 HID_REPORT report;
mjr 53:9b2611964afc 297
mjr 53:9b2611964afc 298 // initially fill the report with zeros
mjr 53:9b2611964afc 299 memset(report.data, 0, sizeof(report.data));
mjr 53:9b2611964afc 300
mjr 53:9b2611964afc 301 // Set the special status bits to indicate that it's a build
mjr 53:9b2611964afc 302 // info report
mjr 53:9b2611964afc 303 uint16_t s = 0xA000;
mjr 63:5cd1a5f3a41b 304 put(0, s);
mjr 53:9b2611964afc 305
mjr 53:9b2611964afc 306 // Parse the date. This is given in the standard __DATE__ " " __TIME
mjr 53:9b2611964afc 307 // macro format, "Mon dd yyyy hh:mm:ss" (e.g., "Feb 16 2016 12:15:06").
mjr 53:9b2611964afc 308 static const char mon[][4] = {
mjr 53:9b2611964afc 309 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
mjr 53:9b2611964afc 310 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
mjr 53:9b2611964afc 311 };
mjr 53:9b2611964afc 312 long dd = (atol(date + 7) * 10000L) // YYYY0000
mjr 53:9b2611964afc 313 + (atol(date + 4)); // 000000DD
mjr 53:9b2611964afc 314 for (int i = 0 ; i < 12 ; ++i)
mjr 53:9b2611964afc 315 {
mjr 53:9b2611964afc 316 if (memcmp(mon[i], date, 3) == 0)
mjr 53:9b2611964afc 317 {
mjr 53:9b2611964afc 318 dd += (i+1)*100; // 0000MM00
mjr 53:9b2611964afc 319 break;
mjr 53:9b2611964afc 320 }
mjr 53:9b2611964afc 321 }
mjr 53:9b2611964afc 322
mjr 53:9b2611964afc 323 // parse the time into a long formatted as decimal HHMMSS (e.g.,
mjr 53:9b2611964afc 324 // "12:15:06" turns into 121506 decimal)
mjr 53:9b2611964afc 325 long tt = (atol(date+12)*10000)
mjr 53:9b2611964afc 326 + (atol(date+15)*100)
mjr 53:9b2611964afc 327 + (atol(date+18));
mjr 53:9b2611964afc 328
mjr 53:9b2611964afc 329 // store the build date and time
mjr 63:5cd1a5f3a41b 330 putl(2, dd);
mjr 63:5cd1a5f3a41b 331 putl(6, tt);
mjr 40:cc0d9814522b 332
mjr 40:cc0d9814522b 333 // send the report
mjr 63:5cd1a5f3a41b 334 report.length = reportLen;
mjr 40:cc0d9814522b 335 return sendTO(&report, 100);
mjr 40:cc0d9814522b 336 }
mjr 40:cc0d9814522b 337
mjr 52:8298b2a73eb2 338 bool USBJoystick::reportConfigVar(const uint8_t *data)
mjr 52:8298b2a73eb2 339 {
mjr 52:8298b2a73eb2 340 HID_REPORT report;
mjr 52:8298b2a73eb2 341
mjr 52:8298b2a73eb2 342 // initially fill the report with zeros
mjr 52:8298b2a73eb2 343 memset(report.data, 0, sizeof(report.data));
mjr 52:8298b2a73eb2 344
mjr 52:8298b2a73eb2 345 // Set the special status bits to indicate that it's a config
mjr 52:8298b2a73eb2 346 // variable report
mjr 52:8298b2a73eb2 347 uint16_t s = 0x9800;
mjr 63:5cd1a5f3a41b 348 put(0, s);
mjr 52:8298b2a73eb2 349
mjr 52:8298b2a73eb2 350 // Copy the variable data (7 bytes, starting with the variable ID)
mjr 63:5cd1a5f3a41b 351 memcpy(report.data + 2, data, 7);
mjr 52:8298b2a73eb2 352
mjr 52:8298b2a73eb2 353 // send the report
mjr 63:5cd1a5f3a41b 354 report.length = reportLen;
mjr 52:8298b2a73eb2 355 return sendTO(&report, 100);
mjr 52:8298b2a73eb2 356 }
mjr 52:8298b2a73eb2 357
mjr 52:8298b2a73eb2 358 bool USBJoystick::reportConfig(
mjr 52:8298b2a73eb2 359 int numOutputs, int unitNo,
mjr 52:8298b2a73eb2 360 int plungerZero, int plungerMax, int plungerRlsTime,
mjr 92:f264fbaa1be5 361 bool configured, bool sbxpbx, bool newAccelFeatures,
mjr 92:f264fbaa1be5 362 bool flashStatusFeature, bool reportTimingFeatures,
mjr 73:4e8ce0b18915 363 size_t freeHeapBytes)
mjr 33:d832bcab089e 364 {
mjr 33:d832bcab089e 365 HID_REPORT report;
mjr 33:d832bcab089e 366
mjr 33:d832bcab089e 367 // initially fill the report with zeros
mjr 33:d832bcab089e 368 memset(report.data, 0, sizeof(report.data));
mjr 33:d832bcab089e 369
mjr 33:d832bcab089e 370 // Set the special status bits to indicate that it's a config report.
mjr 33:d832bcab089e 371 uint16_t s = 0x8800;
mjr 63:5cd1a5f3a41b 372 put(0, s);
mjr 33:d832bcab089e 373
mjr 33:d832bcab089e 374 // write the number of configured outputs
mjr 63:5cd1a5f3a41b 375 put(2, numOutputs);
mjr 33:d832bcab089e 376
mjr 33:d832bcab089e 377 // write the unit number
mjr 63:5cd1a5f3a41b 378 put(4, unitNo);
mjr 33:d832bcab089e 379
mjr 35:e959ffba78fd 380 // write the plunger zero and max values
mjr 63:5cd1a5f3a41b 381 put(6, plungerZero);
mjr 63:5cd1a5f3a41b 382 put(8, plungerMax);
mjr 63:5cd1a5f3a41b 383 report.data[10] = uint8_t(plungerRlsTime);
mjr 35:e959ffba78fd 384
mjr 40:cc0d9814522b 385 // write the status bits:
mjr 40:cc0d9814522b 386 // 0x01 -> configuration loaded
mjr 75:677892300e7a 387 // 0x02 -> SBX/PBX protocol extensions supported
mjr 92:f264fbaa1be5 388 // 0x04 -> new accelerometer features supported
mjr 92:f264fbaa1be5 389 // 0x08 -> flash status feature supported
mjr 92:f264fbaa1be5 390 // 0x10 -> joystick report timing features supported
mjr 75:677892300e7a 391 report.data[11] =
mjr 75:677892300e7a 392 (configured ? 0x01 : 0x00)
mjr 78:1e00b3fa11af 393 | (sbxpbx ? 0x02 : 0x00)
mjr 82:4f6209cb5c33 394 | (newAccelFeatures ? 0x04 : 0x00)
mjr 92:f264fbaa1be5 395 | (flashStatusFeature ? 0x08 : 0x00)
mjr 92:f264fbaa1be5 396 | (reportTimingFeatures ? 0x10 : 0x00);
mjr 40:cc0d9814522b 397
mjr 73:4e8ce0b18915 398 // write the free heap space
mjr 73:4e8ce0b18915 399 put(12, freeHeapBytes);
mjr 77:0b96f6867312 400
mjr 33:d832bcab089e 401 // send the report
mjr 63:5cd1a5f3a41b 402 report.length = reportLen;
mjr 35:e959ffba78fd 403 return sendTO(&report, 100);
mjr 33:d832bcab089e 404 }
mjr 33:d832bcab089e 405
mjr 77:0b96f6867312 406 // report physical button status
mjr 73:4e8ce0b18915 407 bool USBJoystick::reportButtonStatus(int numButtons, const uint8_t *state)
mjr 73:4e8ce0b18915 408 {
mjr 77:0b96f6867312 409 // initially fill the report with zeros
mjr 73:4e8ce0b18915 410 HID_REPORT report;
mjr 73:4e8ce0b18915 411 memset(report.data, 0, sizeof(report.data));
mjr 73:4e8ce0b18915 412
mjr 77:0b96f6867312 413 // set the special status bits to indicate that it's a buton report
mjr 73:4e8ce0b18915 414 uint16_t s = 0xA100;
mjr 73:4e8ce0b18915 415 put(0, s);
mjr 73:4e8ce0b18915 416
mjr 73:4e8ce0b18915 417 // write the number of buttons
mjr 77:0b96f6867312 418 report.data[2] = uint8_t(numButtons);
mjr 73:4e8ce0b18915 419
mjr 73:4e8ce0b18915 420 // Write the buttons - these are packed into ceil(numButtons/8) bytes.
mjr 73:4e8ce0b18915 421 size_t btnBytes = (numButtons+7)/8;
mjr 73:4e8ce0b18915 422 if (btnBytes + 3 > reportLen) btnBytes = reportLen - 3;
mjr 73:4e8ce0b18915 423 memcpy(&report.data[3], state, btnBytes);
mjr 73:4e8ce0b18915 424
mjr 73:4e8ce0b18915 425 // send the report
mjr 73:4e8ce0b18915 426 report.length = reportLen;
mjr 73:4e8ce0b18915 427 return sendTO(&report, 100);
mjr 73:4e8ce0b18915 428 }
mjr 73:4e8ce0b18915 429
mjr 77:0b96f6867312 430 // report raw IR timing codes (for learning mode)
mjr 77:0b96f6867312 431 bool USBJoystick::reportRawIR(int n, const uint16_t *data)
mjr 77:0b96f6867312 432 {
mjr 77:0b96f6867312 433 // initially fill the report with zeros
mjr 77:0b96f6867312 434 HID_REPORT report;
mjr 77:0b96f6867312 435 memset(report.data, 0, sizeof(report.data));
mjr 77:0b96f6867312 436
mjr 77:0b96f6867312 437 // set the special status bits to indicate that it's an IR report
mjr 77:0b96f6867312 438 uint16_t s = 0xA200;
mjr 77:0b96f6867312 439 put(0, s);
mjr 77:0b96f6867312 440
mjr 77:0b96f6867312 441 // limit the number of items reported to the available space
mjr 77:0b96f6867312 442 if (n > maxRawIR)
mjr 77:0b96f6867312 443 n = maxRawIR;
mjr 77:0b96f6867312 444
mjr 77:0b96f6867312 445 // write the number of codes
mjr 77:0b96f6867312 446 report.data[2] = uint8_t(n);
mjr 77:0b96f6867312 447
mjr 77:0b96f6867312 448 // write the codes
mjr 77:0b96f6867312 449 for (int i = 0, ofs = 3 ; i < n ; ++i, ofs += 2)
mjr 77:0b96f6867312 450 put(ofs, data[i]);
mjr 77:0b96f6867312 451
mjr 77:0b96f6867312 452 // send the report
mjr 77:0b96f6867312 453 report.length = reportLen;
mjr 77:0b96f6867312 454 return sendTO(&report, 100);
mjr 77:0b96f6867312 455 }
mjr 77:0b96f6867312 456
mjr 77:0b96f6867312 457 // report a decoded IR command
mjr 77:0b96f6867312 458 bool USBJoystick::reportIRCode(uint8_t pro, uint8_t flags, uint64_t code)
mjr 77:0b96f6867312 459 {
mjr 77:0b96f6867312 460 // initially fill the report with zeros
mjr 77:0b96f6867312 461 HID_REPORT report;
mjr 77:0b96f6867312 462 memset(report.data, 0, sizeof(report.data));
mjr 77:0b96f6867312 463
mjr 77:0b96f6867312 464 // set the special status bits to indicate that it's an IR report
mjr 77:0b96f6867312 465 uint16_t s = 0xA200;
mjr 77:0b96f6867312 466 put(0, s);
mjr 77:0b96f6867312 467
mjr 77:0b96f6867312 468 // set the raw count to 0xFF to flag that it's a decoded command
mjr 77:0b96f6867312 469 report.data[2] = 0xFF;
mjr 77:0b96f6867312 470
mjr 77:0b96f6867312 471 // write the data
mjr 77:0b96f6867312 472 report.data[3] = pro;
mjr 77:0b96f6867312 473 report.data[4] = flags;
mjr 77:0b96f6867312 474 put64(5, code);
mjr 77:0b96f6867312 475
mjr 77:0b96f6867312 476 // send the report
mjr 77:0b96f6867312 477 report.length = reportLen;
mjr 77:0b96f6867312 478 return sendTO(&report, 100);
mjr 77:0b96f6867312 479 }
mjr 73:4e8ce0b18915 480
mjr 33:d832bcab089e 481 bool USBJoystick::move(int16_t x, int16_t y)
mjr 33:d832bcab089e 482 {
mjr 3:3514575d4f86 483 _x = x;
mjr 3:3514575d4f86 484 _y = y;
mjr 3:3514575d4f86 485 return update();
mjr 3:3514575d4f86 486 }
mjr 3:3514575d4f86 487
mjr 33:d832bcab089e 488 bool USBJoystick::setZ(int16_t z)
mjr 33:d832bcab089e 489 {
mjr 3:3514575d4f86 490 _z = z;
mjr 3:3514575d4f86 491 return update();
mjr 3:3514575d4f86 492 }
mjr 3:3514575d4f86 493
mjr 33:d832bcab089e 494 bool USBJoystick::buttons(uint32_t buttons)
mjr 33:d832bcab089e 495 {
mjr 11:bd9da7088e6e 496 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 497 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 3:3514575d4f86 498 return update();
mjr 3:3514575d4f86 499 }
mjr 21:5048e16cc9ef 500
mjr 21:5048e16cc9ef 501 bool USBJoystick::updateStatus(uint32_t status)
mjr 21:5048e16cc9ef 502 {
mjr 21:5048e16cc9ef 503 HID_REPORT report;
mjr 21:5048e16cc9ef 504
mjr 63:5cd1a5f3a41b 505 // Fill the report according to the Joystick Descriptor
mjr 63:5cd1a5f3a41b 506 memset(report.data, 0, reportLen);
mjr 63:5cd1a5f3a41b 507 put(0, status);
mjr 63:5cd1a5f3a41b 508 report.length = reportLen;
mjr 21:5048e16cc9ef 509
mjr 21:5048e16cc9ef 510 // send the report
mjr 21:5048e16cc9ef 511 return sendTO(&report, 100);
mjr 21:5048e16cc9ef 512 }
mjr 21:5048e16cc9ef 513
mjr 3:3514575d4f86 514 void USBJoystick::_init() {
mjr 3:3514575d4f86 515
mjr 3:3514575d4f86 516 _x = 0;
mjr 3:3514575d4f86 517 _y = 0;
mjr 3:3514575d4f86 518 _z = 0;
mjr 11:bd9da7088e6e 519 _buttonsLo = 0x0000;
mjr 11:bd9da7088e6e 520 _buttonsHi = 0x0000;
mjr 9:fd65b0a94720 521 _status = 0;
mjr 3:3514575d4f86 522 }
mjr 3:3514575d4f86 523
mjr 3:3514575d4f86 524
mjr 35:e959ffba78fd 525 // --------------------------------------------------------------------------
mjr 35:e959ffba78fd 526 //
mjr 63:5cd1a5f3a41b 527 // USB HID Report Descriptor - Joystick
mjr 35:e959ffba78fd 528 //
mjr 63:5cd1a5f3a41b 529 static const uint8_t reportDescriptorJS[] =
mjr 63:5cd1a5f3a41b 530 {
mjr 63:5cd1a5f3a41b 531 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 63:5cd1a5f3a41b 532 USAGE(1), 0x04, // Joystick
mjr 63:5cd1a5f3a41b 533 COLLECTION(1), 0x01, // Application
mjr 90:aa4e571da8e8 534
mjr 63:5cd1a5f3a41b 535 // input report (device to host)
mjr 63:5cd1a5f3a41b 536 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 63:5cd1a5f3a41b 537 USAGE(1), 0x00, // undefined device control
mjr 63:5cd1a5f3a41b 538 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 63:5cd1a5f3a41b 539 LOGICAL_MAXIMUM(1), 0xFF,
mjr 63:5cd1a5f3a41b 540 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 63:5cd1a5f3a41b 541 REPORT_COUNT(1), 0x04, // 4 reports (4 bytes)
mjr 63:5cd1a5f3a41b 542 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 543
mjr 63:5cd1a5f3a41b 544 USAGE_PAGE(1), 0x09, // Buttons
mjr 63:5cd1a5f3a41b 545 USAGE_MINIMUM(1), 0x01, // { buttons }
mjr 63:5cd1a5f3a41b 546 USAGE_MAXIMUM(1), 0x20, // { 1-32 }
mjr 63:5cd1a5f3a41b 547 LOGICAL_MINIMUM(1), 0x00, // 1-bit buttons - 0...
mjr 63:5cd1a5f3a41b 548 LOGICAL_MAXIMUM(1), 0x01, // ...to 1
mjr 63:5cd1a5f3a41b 549 REPORT_SIZE(1), 0x01, // 1 bit per report
mjr 63:5cd1a5f3a41b 550 REPORT_COUNT(1), 0x20, // 32 reports
mjr 63:5cd1a5f3a41b 551 UNIT_EXPONENT(1), 0x00, // Unit_Exponent (0)
mjr 63:5cd1a5f3a41b 552 UNIT(1), 0x00, // Unit (None)
mjr 63:5cd1a5f3a41b 553 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 554
mjr 63:5cd1a5f3a41b 555 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 63:5cd1a5f3a41b 556 USAGE(1), 0x30, // X axis
mjr 63:5cd1a5f3a41b 557 USAGE(1), 0x31, // Y axis
mjr 63:5cd1a5f3a41b 558 USAGE(1), 0x32, // Z axis
mjr 63:5cd1a5f3a41b 559 LOGICAL_MINIMUM(2), 0x00,0xF0, // each value ranges -4096
mjr 63:5cd1a5f3a41b 560 LOGICAL_MAXIMUM(2), 0x00,0x10, // ...to +4096
mjr 63:5cd1a5f3a41b 561 REPORT_SIZE(1), 0x10, // 16 bits per report
mjr 63:5cd1a5f3a41b 562 REPORT_COUNT(1), 0x03, // 3 reports (X, Y, Z)
mjr 63:5cd1a5f3a41b 563 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 564
mjr 63:5cd1a5f3a41b 565 // output report (host to device)
mjr 63:5cd1a5f3a41b 566 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 63:5cd1a5f3a41b 567 REPORT_COUNT(1), 0x08, // output report count - 8-byte LedWiz format
mjr 63:5cd1a5f3a41b 568 0x09, 0x01, // usage
mjr 63:5cd1a5f3a41b 569 0x91, 0x01, // Output (array)
mjr 35:e959ffba78fd 570
mjr 35:e959ffba78fd 571 END_COLLECTION(0)
mjr 35:e959ffba78fd 572 };
mjr 35:e959ffba78fd 573
mjr 90:aa4e571da8e8 574 // Joystick report descriptor with "R" axis reports. This version
mjr 90:aa4e571da8e8 575 // uses Rx and Ry for the accelerometer readings and Rz for the
mjr 90:aa4e571da8e8 576 // plunger, instead of the standard X/Y/Z axes. This can be used
mjr 90:aa4e571da8e8 577 // to avoid conflicts with other devices reporting on the normal
mjr 90:aa4e571da8e8 578 // X/Y/Z axes.
mjr 90:aa4e571da8e8 579 static const uint8_t reportDescriptorJS_RXRYRZ[] =
mjr 90:aa4e571da8e8 580 {
mjr 90:aa4e571da8e8 581 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 90:aa4e571da8e8 582 USAGE(1), 0x04, // Joystick
mjr 90:aa4e571da8e8 583 COLLECTION(1), 0x01, // Application
mjr 90:aa4e571da8e8 584
mjr 90:aa4e571da8e8 585 // input report (device to host)
mjr 90:aa4e571da8e8 586 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 90:aa4e571da8e8 587 USAGE(1), 0x00, // undefined device control
mjr 90:aa4e571da8e8 588 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 90:aa4e571da8e8 589 LOGICAL_MAXIMUM(1), 0xFF,
mjr 90:aa4e571da8e8 590 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 90:aa4e571da8e8 591 REPORT_COUNT(1), 0x04, // 4 reports (4 bytes)
mjr 90:aa4e571da8e8 592 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 90:aa4e571da8e8 593
mjr 90:aa4e571da8e8 594 USAGE_PAGE(1), 0x09, // Buttons
mjr 90:aa4e571da8e8 595 USAGE_MINIMUM(1), 0x01, // { buttons }
mjr 90:aa4e571da8e8 596 USAGE_MAXIMUM(1), 0x20, // { 1-32 }
mjr 90:aa4e571da8e8 597 LOGICAL_MINIMUM(1), 0x00, // 1-bit buttons - 0...
mjr 90:aa4e571da8e8 598 LOGICAL_MAXIMUM(1), 0x01, // ...to 1
mjr 90:aa4e571da8e8 599 REPORT_SIZE(1), 0x01, // 1 bit per report
mjr 90:aa4e571da8e8 600 REPORT_COUNT(1), 0x20, // 32 reports
mjr 90:aa4e571da8e8 601 UNIT_EXPONENT(1), 0x00, // Unit_Exponent (0)
mjr 90:aa4e571da8e8 602 UNIT(1), 0x00, // Unit (None)
mjr 90:aa4e571da8e8 603 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 90:aa4e571da8e8 604
mjr 90:aa4e571da8e8 605 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 90:aa4e571da8e8 606 USAGE(1), 0x33, // Rx axis ("X rotation")
mjr 90:aa4e571da8e8 607 USAGE(1), 0x34, // Ry axis
mjr 90:aa4e571da8e8 608 USAGE(1), 0x35, // Rz axis
mjr 90:aa4e571da8e8 609 LOGICAL_MINIMUM(2), 0x00,0xF0, // each value ranges -4096
mjr 90:aa4e571da8e8 610 LOGICAL_MAXIMUM(2), 0x00,0x10, // ...to +4096
mjr 90:aa4e571da8e8 611 REPORT_SIZE(1), 0x10, // 16 bits per report
mjr 90:aa4e571da8e8 612 REPORT_COUNT(1), 0x03, // 3 reports (X, Y, Z)
mjr 90:aa4e571da8e8 613 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 90:aa4e571da8e8 614
mjr 90:aa4e571da8e8 615 // output report (host to device)
mjr 90:aa4e571da8e8 616 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 90:aa4e571da8e8 617 REPORT_COUNT(1), 0x08, // output report count - 8-byte LedWiz format
mjr 90:aa4e571da8e8 618 0x09, 0x01, // usage
mjr 90:aa4e571da8e8 619 0x91, 0x01, // Output (array)
mjr 90:aa4e571da8e8 620
mjr 90:aa4e571da8e8 621 END_COLLECTION(0)
mjr 90:aa4e571da8e8 622 };
mjr 90:aa4e571da8e8 623
mjr 90:aa4e571da8e8 624
mjr 63:5cd1a5f3a41b 625 //
mjr 63:5cd1a5f3a41b 626 // USB HID Report Descriptor - Keyboard/Media Control
mjr 63:5cd1a5f3a41b 627 //
mjr 48:058ace2aed1d 628 static const uint8_t reportDescriptorKB[] =
mjr 35:e959ffba78fd 629 {
mjr 63:5cd1a5f3a41b 630 USAGE_PAGE(1), 0x01, // Generic Desktop
mjr 63:5cd1a5f3a41b 631 USAGE(1), 0x06, // Keyboard
mjr 63:5cd1a5f3a41b 632 COLLECTION(1), 0x01, // Application
mjr 63:5cd1a5f3a41b 633 REPORT_ID(1), REPORT_ID_KB,
mjr 63:5cd1a5f3a41b 634
mjr 63:5cd1a5f3a41b 635 USAGE_PAGE(1), 0x07, // Key Codes
mjr 63:5cd1a5f3a41b 636 USAGE_MINIMUM(1), 0xE0,
mjr 63:5cd1a5f3a41b 637 USAGE_MAXIMUM(1), 0xE7,
mjr 63:5cd1a5f3a41b 638 LOGICAL_MINIMUM(1), 0x00,
mjr 63:5cd1a5f3a41b 639 LOGICAL_MAXIMUM(1), 0x01,
mjr 63:5cd1a5f3a41b 640 REPORT_SIZE(1), 0x01,
mjr 63:5cd1a5f3a41b 641 REPORT_COUNT(1), 0x08,
mjr 63:5cd1a5f3a41b 642 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 643 REPORT_COUNT(1), 0x01,
mjr 63:5cd1a5f3a41b 644 REPORT_SIZE(1), 0x08,
mjr 63:5cd1a5f3a41b 645 INPUT(1), 0x01, // Constant
mjr 63:5cd1a5f3a41b 646
mjr 63:5cd1a5f3a41b 647 REPORT_COUNT(1), 0x05,
mjr 63:5cd1a5f3a41b 648 REPORT_SIZE(1), 0x01,
mjr 63:5cd1a5f3a41b 649 USAGE_PAGE(1), 0x08, // LEDs
mjr 63:5cd1a5f3a41b 650 USAGE_MINIMUM(1), 0x01,
mjr 63:5cd1a5f3a41b 651 USAGE_MAXIMUM(1), 0x05,
mjr 63:5cd1a5f3a41b 652 OUTPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 653 REPORT_COUNT(1), 0x01,
mjr 63:5cd1a5f3a41b 654 REPORT_SIZE(1), 0x03,
mjr 63:5cd1a5f3a41b 655 OUTPUT(1), 0x01, // Constant
mjr 63:5cd1a5f3a41b 656
mjr 63:5cd1a5f3a41b 657 REPORT_COUNT(1), 0x06,
mjr 63:5cd1a5f3a41b 658 REPORT_SIZE(1), 0x08,
mjr 63:5cd1a5f3a41b 659 LOGICAL_MINIMUM(1), 0x00,
mjr 68:998faf685b00 660 LOGICAL_MAXIMUM(1), 0xA4,
mjr 63:5cd1a5f3a41b 661 USAGE_PAGE(1), 0x07, // Key Codes
mjr 63:5cd1a5f3a41b 662 USAGE_MINIMUM(1), 0x00,
mjr 68:998faf685b00 663 USAGE_MAXIMUM(1), 0xA4,
mjr 63:5cd1a5f3a41b 664 INPUT(1), 0x00, // Data, Array
mjr 63:5cd1a5f3a41b 665 END_COLLECTION(0),
mjr 63:5cd1a5f3a41b 666
mjr 63:5cd1a5f3a41b 667 // Media Control
mjr 63:5cd1a5f3a41b 668 USAGE_PAGE(1), 0x0C,
mjr 63:5cd1a5f3a41b 669 USAGE(1), 0x01,
mjr 63:5cd1a5f3a41b 670 COLLECTION(1), 0x01,
mjr 63:5cd1a5f3a41b 671 REPORT_ID(1), REPORT_ID_MEDIA,
mjr 63:5cd1a5f3a41b 672 USAGE_PAGE(1), 0x0C,
mjr 63:5cd1a5f3a41b 673 LOGICAL_MINIMUM(1), 0x00,
mjr 63:5cd1a5f3a41b 674 LOGICAL_MAXIMUM(1), 0x01,
mjr 63:5cd1a5f3a41b 675 REPORT_SIZE(1), 0x01,
mjr 63:5cd1a5f3a41b 676 REPORT_COUNT(1), 0x07,
mjr 63:5cd1a5f3a41b 677 USAGE(1), 0xE2, // Mute -> 0x01
mjr 63:5cd1a5f3a41b 678 USAGE(1), 0xE9, // Volume Up -> 0x02
mjr 63:5cd1a5f3a41b 679 USAGE(1), 0xEA, // Volume Down -> 0x04
mjr 63:5cd1a5f3a41b 680 USAGE(1), 0xB5, // Next Track -> 0x08
mjr 63:5cd1a5f3a41b 681 USAGE(1), 0xB6, // Previous Track -> 0x10
mjr 63:5cd1a5f3a41b 682 USAGE(1), 0xB7, // Stop -> 0x20
mjr 63:5cd1a5f3a41b 683 USAGE(1), 0xCD, // Play / Pause -> 0x40
mjr 63:5cd1a5f3a41b 684 INPUT(1), 0x02, // Input (Data, Variable, Absolute) -> 0x80
mjr 63:5cd1a5f3a41b 685 REPORT_COUNT(1), 0x01,
mjr 63:5cd1a5f3a41b 686 INPUT(1), 0x01,
mjr 63:5cd1a5f3a41b 687 END_COLLECTION(0),
mjr 35:e959ffba78fd 688 };
mjr 29:582472d0bc57 689
mjr 63:5cd1a5f3a41b 690 //
mjr 63:5cd1a5f3a41b 691 // USB HID Report Descriptor - LedWiz only, with no joystick or keyboard
mjr 63:5cd1a5f3a41b 692 // input reporting
mjr 63:5cd1a5f3a41b 693 //
mjr 63:5cd1a5f3a41b 694 static const uint8_t reportDescriptorLW[] =
mjr 63:5cd1a5f3a41b 695 {
mjr 63:5cd1a5f3a41b 696 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 63:5cd1a5f3a41b 697 USAGE(1), 0x00, // Undefined
mjr 63:5cd1a5f3a41b 698
mjr 63:5cd1a5f3a41b 699 COLLECTION(1), 0x01, // Application
mjr 63:5cd1a5f3a41b 700
mjr 63:5cd1a5f3a41b 701 // input report (device to host)
mjr 63:5cd1a5f3a41b 702 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 63:5cd1a5f3a41b 703 USAGE(1), 0x00, // undefined device control
mjr 63:5cd1a5f3a41b 704 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 63:5cd1a5f3a41b 705 LOGICAL_MAXIMUM(1), 0xFF,
mjr 63:5cd1a5f3a41b 706 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 77:0b96f6867312 707 REPORT_COUNT(1), USBJoystick::reportLen, // standard report length (same as if we were in joystick mode)
mjr 63:5cd1a5f3a41b 708 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 709
mjr 63:5cd1a5f3a41b 710 // output report (host to device)
mjr 63:5cd1a5f3a41b 711 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 63:5cd1a5f3a41b 712 REPORT_COUNT(1), 0x08, // output report count (LEDWiz messages)
mjr 63:5cd1a5f3a41b 713 0x09, 0x01, // usage
mjr 63:5cd1a5f3a41b 714 0x91, 0x01, // Output (array)
mjr 63:5cd1a5f3a41b 715
mjr 63:5cd1a5f3a41b 716 END_COLLECTION(0)
mjr 35:e959ffba78fd 717 };
mjr 35:e959ffba78fd 718
mjr 63:5cd1a5f3a41b 719
mjr 54:fd77a6b2f76c 720 const uint8_t *USBJoystick::reportDesc(int idx, uint16_t &len)
mjr 35:e959ffba78fd 721 {
mjr 63:5cd1a5f3a41b 722 switch (idx)
mjr 35:e959ffba78fd 723 {
mjr 63:5cd1a5f3a41b 724 case 0:
mjr 63:5cd1a5f3a41b 725 // If the joystick is enabled, this is the joystick.
mjr 63:5cd1a5f3a41b 726 // Otherwise, it's the plain LedWiz control interface.
mjr 63:5cd1a5f3a41b 727 if (enableJoystick)
mjr 63:5cd1a5f3a41b 728 {
mjr 90:aa4e571da8e8 729 switch (axisFormat)
mjr 90:aa4e571da8e8 730 {
mjr 90:aa4e571da8e8 731 case AXIS_FORMAT_XYZ:
mjr 90:aa4e571da8e8 732 default:
mjr 90:aa4e571da8e8 733 len = sizeof(reportDescriptorJS);
mjr 90:aa4e571da8e8 734 return reportDescriptorJS;
mjr 90:aa4e571da8e8 735
mjr 90:aa4e571da8e8 736 case AXIS_FORMAT_RXRYRZ:
mjr 90:aa4e571da8e8 737 len = sizeof(reportDescriptorJS_RXRYRZ);
mjr 90:aa4e571da8e8 738 return reportDescriptorJS_RXRYRZ;
mjr 90:aa4e571da8e8 739 }
mjr 63:5cd1a5f3a41b 740 }
mjr 63:5cd1a5f3a41b 741 else
mjr 63:5cd1a5f3a41b 742 {
mjr 63:5cd1a5f3a41b 743 len = sizeof(reportDescriptorLW);
mjr 63:5cd1a5f3a41b 744 return reportDescriptorLW;
mjr 63:5cd1a5f3a41b 745 }
mjr 63:5cd1a5f3a41b 746
mjr 63:5cd1a5f3a41b 747 case 1:
mjr 63:5cd1a5f3a41b 748 // This is the keyboard, if enabled.
mjr 63:5cd1a5f3a41b 749 if (useKB)
mjr 63:5cd1a5f3a41b 750 {
mjr 63:5cd1a5f3a41b 751 len = sizeof(reportDescriptorKB);
mjr 63:5cd1a5f3a41b 752 return reportDescriptorKB;
mjr 63:5cd1a5f3a41b 753 }
mjr 63:5cd1a5f3a41b 754 else
mjr 63:5cd1a5f3a41b 755 {
mjr 63:5cd1a5f3a41b 756 len = 0;
mjr 63:5cd1a5f3a41b 757 return 0;
mjr 63:5cd1a5f3a41b 758 }
mjr 63:5cd1a5f3a41b 759
mjr 63:5cd1a5f3a41b 760 default:
mjr 63:5cd1a5f3a41b 761 // Unknown interface ID
mjr 54:fd77a6b2f76c 762 len = 0;
mjr 48:058ace2aed1d 763 return 0;
mjr 35:e959ffba78fd 764 }
mjr 35:e959ffba78fd 765 }
mjr 3:3514575d4f86 766
mjr 48:058ace2aed1d 767 const uint8_t *USBJoystick::stringImanufacturerDesc() {
mjr 48:058ace2aed1d 768 static const uint8_t stringImanufacturerDescriptor[] = {
mjr 61:3c7e6e9ec355 769 0x0E, /* bLength */
mjr 61:3c7e6e9ec355 770 STRING_DESCRIPTOR, /* bDescriptorType 0x03 (String Descriptor) */
mjr 61:3c7e6e9ec355 771 'm',0,'j',0,'r',0,'n',0,'e',0,'t',0 /* bString iManufacturer - mjrnet */
mjr 3:3514575d4f86 772 };
mjr 3:3514575d4f86 773 return stringImanufacturerDescriptor;
mjr 3:3514575d4f86 774 }
mjr 3:3514575d4f86 775
mjr 54:fd77a6b2f76c 776 const uint8_t *USBJoystick::stringIserialDesc()
mjr 54:fd77a6b2f76c 777 {
mjr 90:aa4e571da8e8 778 // set up a buffer with space for the length prefix byte, descriptor type
mjr 90:aa4e571da8e8 779 // byte, and serial number (as a wide-character string)
mjr 90:aa4e571da8e8 780 const int numChars = 3 + 16 + 1 + 1 + 3;
mjr 61:3c7e6e9ec355 781 static uint8_t buf[2 + numChars*2];
mjr 54:fd77a6b2f76c 782 uint8_t *dst = buf;
mjr 90:aa4e571da8e8 783
mjr 90:aa4e571da8e8 784 // store a placeholder for the length, followed by the descriptor type byte
mjr 90:aa4e571da8e8 785 *dst++ = 0;
mjr 54:fd77a6b2f76c 786 *dst++ = STRING_DESCRIPTOR;
mjr 54:fd77a6b2f76c 787
mjr 54:fd77a6b2f76c 788 // Create an ASCII version of our unique serial number string:
mjr 54:fd77a6b2f76c 789 //
mjr 90:aa4e571da8e8 790 // PSCxxxxxxxxxxxxxxxxi[a]vvv
mjr 54:fd77a6b2f76c 791 //
mjr 54:fd77a6b2f76c 792 // where:
mjr 54:fd77a6b2f76c 793 //
mjr 54:fd77a6b2f76c 794 // xxx... = decimal representation of low 64 bits of CPU ID (16 hex digits)
mjr 54:fd77a6b2f76c 795 // i = interface type: first character is J if joystick is enabled,
mjr 54:fd77a6b2f76c 796 // L = LedWiz/control interface only, no input
mjr 54:fd77a6b2f76c 797 // J = Joystick + LedWiz
mjr 54:fd77a6b2f76c 798 // K = Keyboard + LedWiz
mjr 54:fd77a6b2f76c 799 // C = Joystick + Keyboard + LedWiz ("C" for combo)
mjr 90:aa4e571da8e8 800 // a = joystick axis types:
mjr 90:aa4e571da8e8 801 // <empty> = X,Y,Z, or no joystick interface at all
mjr 90:aa4e571da8e8 802 // A = Rx,Ry,Rz
mjr 61:3c7e6e9ec355 803 // vvv = version suffix
mjr 54:fd77a6b2f76c 804 //
mjr 54:fd77a6b2f76c 805 // The suffix for the interface type resolves a problem on some Windows systems
mjr 54:fd77a6b2f76c 806 // when switching between interface types. Windows can cache device information
mjr 54:fd77a6b2f76c 807 // that includes the interface descriptors, and it won't recognize a change in
mjr 54:fd77a6b2f76c 808 // the interfaces once the information is cached, causing connection failures.
mjr 54:fd77a6b2f76c 809 // The cache key includes the device serial number, though, so this can be
mjr 54:fd77a6b2f76c 810 // resolved by changing the serial number when the interface setup changes.
mjr 61:3c7e6e9ec355 811 char xbuf[numChars + 1];
mjr 54:fd77a6b2f76c 812 uint32_t x = SIM->UIDML;
mjr 54:fd77a6b2f76c 813 static char ifcCode[] = "LJKC";
mjr 90:aa4e571da8e8 814 static const char *axisCode[] = { "", "A" };
mjr 90:aa4e571da8e8 815 sprintf(xbuf, "PSC%08lX%08lX%c%s008",
mjr 54:fd77a6b2f76c 816 SIM->UIDML,
mjr 54:fd77a6b2f76c 817 SIM->UIDL,
mjr 90:aa4e571da8e8 818 ifcCode[(enableJoystick ? 0x01 : 0x00) | (useKB ? 0x02 : 0x00)],
mjr 90:aa4e571da8e8 819 axisCode[(enableJoystick ? axisFormat : 0)]);
mjr 54:fd77a6b2f76c 820
mjr 54:fd77a6b2f76c 821 // copy the ascii bytes into the descriptor buffer, converting to unicode
mjr 54:fd77a6b2f76c 822 // 16-bit little-endian characters
mjr 54:fd77a6b2f76c 823 for (char *src = xbuf ; *src != '\0' && dst < buf + sizeof(buf) ; )
mjr 54:fd77a6b2f76c 824 {
mjr 54:fd77a6b2f76c 825 *dst++ = *src++;
mjr 54:fd77a6b2f76c 826 *dst++ = '\0';
mjr 54:fd77a6b2f76c 827 }
mjr 54:fd77a6b2f76c 828
mjr 90:aa4e571da8e8 829 // store the final length (in bytes) in the length prefix byte
mjr 90:aa4e571da8e8 830 buf[0] = dst - buf;
mjr 90:aa4e571da8e8 831
mjr 54:fd77a6b2f76c 832 // return the buffer
mjr 54:fd77a6b2f76c 833 return buf;
mjr 3:3514575d4f86 834 }
mjr 3:3514575d4f86 835
mjr 48:058ace2aed1d 836 const uint8_t *USBJoystick::stringIproductDesc() {
mjr 48:058ace2aed1d 837 static const uint8_t stringIproductDescriptor[] = {
mjr 9:fd65b0a94720 838 0x28, /*bLength*/
mjr 3:3514575d4f86 839 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 840 'P',0,'i',0,'n',0,'s',0,'c',0,'a',0,'p',0,'e',0,
mjr 3:3514575d4f86 841 ' ',0,'C',0,'o',0,'n',0,'t',0,'r',0,'o',0,'l',0,
mjr 3:3514575d4f86 842 'l',0,'e',0,'r',0 /*String iProduct */
mjr 3:3514575d4f86 843 };
mjr 3:3514575d4f86 844 return stringIproductDescriptor;
mjr 3:3514575d4f86 845 }
mjr 35:e959ffba78fd 846
mjr 35:e959ffba78fd 847 #define DEFAULT_CONFIGURATION (1)
mjr 35:e959ffba78fd 848
mjr 48:058ace2aed1d 849 const uint8_t *USBJoystick::configurationDesc()
mjr 35:e959ffba78fd 850 {
mjr 63:5cd1a5f3a41b 851 int rptlen0 = reportDescLength(0);
mjr 63:5cd1a5f3a41b 852 int rptlen1 = reportDescLength(1);
mjr 63:5cd1a5f3a41b 853 if (useKB)
mjr 35:e959ffba78fd 854 {
mjr 63:5cd1a5f3a41b 855 const int cfglenKB =
mjr 63:5cd1a5f3a41b 856 ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 857 + (2 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 858 + (2 * HID_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 859 + (4 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 63:5cd1a5f3a41b 860 static uint8_t configurationDescriptorWithKB[] =
mjr 63:5cd1a5f3a41b 861 {
mjr 63:5cd1a5f3a41b 862 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 63:5cd1a5f3a41b 863 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 864 LSB(cfglenKB), // wTotalLength (LSB)
mjr 63:5cd1a5f3a41b 865 MSB(cfglenKB), // wTotalLength (MSB)
mjr 63:5cd1a5f3a41b 866 0x02, // bNumInterfaces - TWO INTERFACES (JOYSTICK + KEYBOARD)
mjr 63:5cd1a5f3a41b 867 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 63:5cd1a5f3a41b 868 0x00, // iConfiguration
mjr 63:5cd1a5f3a41b 869 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 63:5cd1a5f3a41b 870 C_POWER(0), // bMaxPower
mjr 63:5cd1a5f3a41b 871
mjr 63:5cd1a5f3a41b 872 // ***** INTERFACE 0 - JOYSTICK/LEDWIZ ******
mjr 63:5cd1a5f3a41b 873 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 874 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 875 0x00, // bInterfaceNumber
mjr 63:5cd1a5f3a41b 876 0x00, // bAlternateSetting
mjr 63:5cd1a5f3a41b 877 0x02, // bNumEndpoints
mjr 63:5cd1a5f3a41b 878 HID_CLASS, // bInterfaceClass
mjr 63:5cd1a5f3a41b 879 HID_SUBCLASS_NONE, // bInterfaceSubClass
mjr 63:5cd1a5f3a41b 880 HID_PROTOCOL_NONE, // bInterfaceProtocol
mjr 63:5cd1a5f3a41b 881 0x00, // iInterface
mjr 63:5cd1a5f3a41b 882
mjr 63:5cd1a5f3a41b 883 HID_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 884 HID_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 885 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 63:5cd1a5f3a41b 886 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 63:5cd1a5f3a41b 887 0x00, // bCountryCode
mjr 63:5cd1a5f3a41b 888 0x01, // bNumDescriptors
mjr 63:5cd1a5f3a41b 889 REPORT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 890 LSB(rptlen0), // wDescriptorLength (LSB)
mjr 63:5cd1a5f3a41b 891 MSB(rptlen0), // wDescriptorLength (MSB)
mjr 63:5cd1a5f3a41b 892
mjr 63:5cd1a5f3a41b 893 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 894 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 895 PHY_TO_DESC(EPINT_IN), // bEndpointAddress - EPINT == EP1
mjr 63:5cd1a5f3a41b 896 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 897 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 898 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 899 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 900
mjr 63:5cd1a5f3a41b 901 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 902 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 903 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress - EPINT == EP1
mjr 63:5cd1a5f3a41b 904 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 905 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 906 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 907 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 908
mjr 63:5cd1a5f3a41b 909 // ****** INTERFACE 1 - KEYBOARD ******
mjr 63:5cd1a5f3a41b 910 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 911 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 912 0x01, // bInterfaceNumber
mjr 63:5cd1a5f3a41b 913 0x00, // bAlternateSetting
mjr 63:5cd1a5f3a41b 914 0x02, // bNumEndpoints
mjr 63:5cd1a5f3a41b 915 HID_CLASS, // bInterfaceClass
mjr 63:5cd1a5f3a41b 916 HID_SUBCLASS_BOOT, // bInterfaceSubClass
mjr 63:5cd1a5f3a41b 917 HID_PROTOCOL_KB, // bInterfaceProtocol
mjr 63:5cd1a5f3a41b 918 0x00, // iInterface
mjr 63:5cd1a5f3a41b 919
mjr 63:5cd1a5f3a41b 920 HID_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 921 HID_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 922 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 63:5cd1a5f3a41b 923 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 63:5cd1a5f3a41b 924 0x00, // bCountryCode
mjr 63:5cd1a5f3a41b 925 0x01, // bNumDescriptors
mjr 63:5cd1a5f3a41b 926 REPORT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 927 LSB(rptlen1), // wDescriptorLength (LSB)
mjr 63:5cd1a5f3a41b 928 MSB(rptlen1), // wDescriptorLength (MSB)
mjr 63:5cd1a5f3a41b 929
mjr 63:5cd1a5f3a41b 930 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 931 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 932 PHY_TO_DESC(EP4IN), // bEndpointAddress
mjr 63:5cd1a5f3a41b 933 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 934 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 935 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 936 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 937
mjr 63:5cd1a5f3a41b 938 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 939 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 940 PHY_TO_DESC(EP4OUT), // bEndpointAddress
mjr 63:5cd1a5f3a41b 941 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 942 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 943 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 944 1, // bInterval (milliseconds)
mjr 61:3c7e6e9ec355 945
mjr 63:5cd1a5f3a41b 946 };
mjr 63:5cd1a5f3a41b 947
mjr 63:5cd1a5f3a41b 948 // Keyboard + joystick interfaces
mjr 63:5cd1a5f3a41b 949 return configurationDescriptorWithKB;
mjr 63:5cd1a5f3a41b 950 }
mjr 63:5cd1a5f3a41b 951 else
mjr 63:5cd1a5f3a41b 952 {
mjr 63:5cd1a5f3a41b 953 // No keyboard - joystick interface only
mjr 63:5cd1a5f3a41b 954 const int cfglenNoKB =
mjr 63:5cd1a5f3a41b 955 ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 956 + (1 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 957 + (1 * HID_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 958 + (2 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 63:5cd1a5f3a41b 959 static uint8_t configurationDescriptorNoKB[] =
mjr 63:5cd1a5f3a41b 960 {
mjr 63:5cd1a5f3a41b 961 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 63:5cd1a5f3a41b 962 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 963 LSB(cfglenNoKB), // wTotalLength (LSB)
mjr 63:5cd1a5f3a41b 964 MSB(cfglenNoKB), // wTotalLength (MSB)
mjr 63:5cd1a5f3a41b 965 0x01, // bNumInterfaces
mjr 63:5cd1a5f3a41b 966 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 63:5cd1a5f3a41b 967 0x00, // iConfiguration
mjr 63:5cd1a5f3a41b 968 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 63:5cd1a5f3a41b 969 C_POWER(0), // bMaxPower
mjr 63:5cd1a5f3a41b 970
mjr 63:5cd1a5f3a41b 971 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 972 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 973 0x00, // bInterfaceNumber
mjr 63:5cd1a5f3a41b 974 0x00, // bAlternateSetting
mjr 63:5cd1a5f3a41b 975 0x02, // bNumEndpoints
mjr 63:5cd1a5f3a41b 976 HID_CLASS, // bInterfaceClass
mjr 63:5cd1a5f3a41b 977 HID_SUBCLASS_NONE, // bInterfaceSubClass
mjr 63:5cd1a5f3a41b 978 HID_PROTOCOL_NONE, // bInterfaceProtocol (keyboard)
mjr 63:5cd1a5f3a41b 979 0x00, // iInterface
mjr 63:5cd1a5f3a41b 980
mjr 63:5cd1a5f3a41b 981 HID_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 982 HID_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 983 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 63:5cd1a5f3a41b 984 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 63:5cd1a5f3a41b 985 0x00, // bCountryCode
mjr 63:5cd1a5f3a41b 986 0x01, // bNumDescriptors
mjr 63:5cd1a5f3a41b 987 REPORT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 988 (uint8_t)(LSB(rptlen0)), // wDescriptorLength (LSB)
mjr 63:5cd1a5f3a41b 989 (uint8_t)(MSB(rptlen0)), // wDescriptorLength (MSB)
mjr 63:5cd1a5f3a41b 990
mjr 63:5cd1a5f3a41b 991 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 992 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 993 PHY_TO_DESC(EPINT_IN), // bEndpointAddress
mjr 63:5cd1a5f3a41b 994 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 995 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 996 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 997 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 998
mjr 63:5cd1a5f3a41b 999 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 1000 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 1001 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress
mjr 63:5cd1a5f3a41b 1002 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 1003 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 1004 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 1005 1 // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 1006 };
mjr 63:5cd1a5f3a41b 1007
mjr 63:5cd1a5f3a41b 1008 return configurationDescriptorNoKB;
mjr 63:5cd1a5f3a41b 1009 }
mjr 35:e959ffba78fd 1010 }
mjr 35:e959ffba78fd 1011
mjr 35:e959ffba78fd 1012 // Set the configuration. We need to set up the endpoints for
mjr 35:e959ffba78fd 1013 // our active interfaces.
mjr 35:e959ffba78fd 1014 bool USBJoystick::USBCallback_setConfiguration(uint8_t configuration)
mjr 35:e959ffba78fd 1015 {
mjr 35:e959ffba78fd 1016 // we only have one valid configuration
mjr 35:e959ffba78fd 1017 if (configuration != DEFAULT_CONFIGURATION)
mjr 35:e959ffba78fd 1018 return false;
mjr 35:e959ffba78fd 1019
mjr 63:5cd1a5f3a41b 1020 // Configure endpoint 1 - we use this in all cases, for either
mjr 63:5cd1a5f3a41b 1021 // the combined joystick/ledwiz interface or just the ledwiz interface
mjr 48:058ace2aed1d 1022 addEndpoint(EPINT_IN, MAX_REPORT_JS_TX + 1);
mjr 48:058ace2aed1d 1023 addEndpoint(EPINT_OUT, MAX_REPORT_JS_RX + 1);
mjr 48:058ace2aed1d 1024 readStart(EPINT_OUT, MAX_REPORT_JS_TX + 1);
mjr 63:5cd1a5f3a41b 1025
mjr 63:5cd1a5f3a41b 1026 // if the keyboard is enabled, configure endpoint 4 for the kb interface
mjr 63:5cd1a5f3a41b 1027 if (useKB)
mjr 63:5cd1a5f3a41b 1028 {
mjr 63:5cd1a5f3a41b 1029 addEndpoint(EP4IN, MAX_REPORT_KB_TX + 1);
mjr 63:5cd1a5f3a41b 1030 addEndpoint(EP4OUT, MAX_REPORT_KB_RX + 1);
mjr 63:5cd1a5f3a41b 1031 readStart(EP4OUT, MAX_REPORT_KB_TX + 1);
mjr 63:5cd1a5f3a41b 1032 }
mjr 35:e959ffba78fd 1033
mjr 35:e959ffba78fd 1034 // success
mjr 35:e959ffba78fd 1035 return true;
mjr 35:e959ffba78fd 1036 }
mjr 35:e959ffba78fd 1037
mjr 38:091e511ce8a0 1038 // Handle incoming messages on the joystick/LedWiz interface = endpoint 1.
mjr 38:091e511ce8a0 1039 // This interface receives LedWiz protocol commands and commands using our
mjr 38:091e511ce8a0 1040 // custom LedWiz protocol extensions.
mjr 38:091e511ce8a0 1041 //
mjr 38:091e511ce8a0 1042 // We simply queue the messages in our circular buffer for processing in
mjr 38:091e511ce8a0 1043 // the main loop. The circular buffer object is designed for safe access
mjr 38:091e511ce8a0 1044 // from the interrupt handler using the rule that only the interrupt
mjr 38:091e511ce8a0 1045 // handler can change the write pointer, and only the regular code can
mjr 38:091e511ce8a0 1046 // change the read pointer.
mjr 38:091e511ce8a0 1047 bool USBJoystick::EP1_OUT_callback()
mjr 38:091e511ce8a0 1048 {
mjr 38:091e511ce8a0 1049 // Read this message
mjr 63:5cd1a5f3a41b 1050 union {
mjr 63:5cd1a5f3a41b 1051 LedWizMsg msg;
mjr 63:5cd1a5f3a41b 1052 uint8_t buf[MAX_HID_REPORT_SIZE];
mjr 63:5cd1a5f3a41b 1053 } buf;
mjr 38:091e511ce8a0 1054 uint32_t bytesRead = 0;
mjr 63:5cd1a5f3a41b 1055 USBDevice::readEP(EP1OUT, buf.buf, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 1056
mjr 63:5cd1a5f3a41b 1057 // if it's the right length, queue it to our circular buffer
mjr 63:5cd1a5f3a41b 1058 if (bytesRead == 8)
mjr 63:5cd1a5f3a41b 1059 lwbuf.write(buf.msg);
mjr 38:091e511ce8a0 1060
mjr 38:091e511ce8a0 1061 // start the next read
mjr 39:b3815a1c3802 1062 return readStart(EP1OUT, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 1063 }
mjr 63:5cd1a5f3a41b 1064
mjr 63:5cd1a5f3a41b 1065 // Handle incoming messages on the keyboard interface = endpoint 4.
mjr 63:5cd1a5f3a41b 1066 // The host uses this to send updates for the keyboard indicator LEDs
mjr 63:5cd1a5f3a41b 1067 // (caps lock, num lock, etc). We don't do anything with these, but
mjr 63:5cd1a5f3a41b 1068 // we have to read them to keep the pipe open.
mjr 63:5cd1a5f3a41b 1069 bool USBJoystick::EP4_OUT_callback()
mjr 63:5cd1a5f3a41b 1070 {
mjr 63:5cd1a5f3a41b 1071 // read this message
mjr 63:5cd1a5f3a41b 1072 uint32_t bytesRead = 0;
mjr 63:5cd1a5f3a41b 1073 uint8_t led[MAX_HID_REPORT_SIZE];
mjr 63:5cd1a5f3a41b 1074 USBDevice::readEP(EP4OUT, led, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 63:5cd1a5f3a41b 1075
mjr 63:5cd1a5f3a41b 1076 // start the next read
mjr 63:5cd1a5f3a41b 1077 return readStart(EP4OUT, MAX_HID_REPORT_SIZE);
mjr 63:5cd1a5f3a41b 1078 }
mjr 63:5cd1a5f3a41b 1079