An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Thu Apr 13 23:20:28 2017 +0000
Revision:
82:4f6209cb5c33
Parent:
78:1e00b3fa11af
Child:
86:e30a1f60f783
Plunger refactoring; AEDR-8300 added; TSL1401CL in progress; VL6180X added

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 3:3514575d4f86 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
mjr 3:3514575d4f86 2 * Modified Mouse code for Joystick - WH 2012
mjr 3:3514575d4f86 3 *
mjr 3:3514575d4f86 4 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 3:3514575d4f86 5 * and associated documentation files (the "Software"), to deal in the Software without
mjr 3:3514575d4f86 6 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 3:3514575d4f86 7 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 3:3514575d4f86 8 * Software is furnished to do so, subject to the following conditions:
mjr 3:3514575d4f86 9 *
mjr 3:3514575d4f86 10 * The above copyright notice and this permission notice shall be included in all copies or
mjr 3:3514575d4f86 11 * substantial portions of the Software.
mjr 3:3514575d4f86 12 *
mjr 3:3514575d4f86 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 3:3514575d4f86 14 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 3:3514575d4f86 15 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 3:3514575d4f86 16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 3:3514575d4f86 17 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 3:3514575d4f86 18 */
mjr 3:3514575d4f86 19
mjr 3:3514575d4f86 20 #include "stdint.h"
mjr 3:3514575d4f86 21 #include "USBJoystick.h"
mjr 21:5048e16cc9ef 22
mjr 21:5048e16cc9ef 23 #include "config.h" // Pinscape configuration
mjr 21:5048e16cc9ef 24
mjr 35:e959ffba78fd 25
mjr 35:e959ffba78fd 26
mjr 48:058ace2aed1d 27 // Maximum report sizes
mjr 77:0b96f6867312 28 const int MAX_REPORT_JS_TX = USBJoystick::reportLen;
mjr 48:058ace2aed1d 29 const int MAX_REPORT_JS_RX = 8;
mjr 63:5cd1a5f3a41b 30 const int MAX_REPORT_KB_TX = 8;
mjr 63:5cd1a5f3a41b 31 const int MAX_REPORT_KB_RX = 4;
mjr 48:058ace2aed1d 32
mjr 11:bd9da7088e6e 33 bool USBJoystick::update(int16_t x, int16_t y, int16_t z, uint32_t buttons, uint16_t status)
mjr 3:3514575d4f86 34 {
mjr 3:3514575d4f86 35 _x = x;
mjr 3:3514575d4f86 36 _y = y;
mjr 3:3514575d4f86 37 _z = z;
mjr 11:bd9da7088e6e 38 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 39 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 10:976666ffa4ef 40 _status = status;
mjr 3:3514575d4f86 41
mjr 3:3514575d4f86 42 // send the report
mjr 3:3514575d4f86 43 return update();
mjr 3:3514575d4f86 44 }
mjr 35:e959ffba78fd 45
mjr 11:bd9da7088e6e 46 bool USBJoystick::update()
mjr 11:bd9da7088e6e 47 {
mjr 3:3514575d4f86 48 HID_REPORT report;
mjr 63:5cd1a5f3a41b 49
mjr 3:3514575d4f86 50 // Fill the report according to the Joystick Descriptor
mjr 6:cc35eb643e8f 51 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 53:9b2611964afc 52 #define putbe(idx, val) (report.data[(idx)+1] = (val) & 0xff, report.data[idx] = ((val) >> 8) & 0xff)
mjr 40:cc0d9814522b 53 #define putl(idx, val) (put(idx, val), put((idx)+2, (val) >> 16))
mjr 54:fd77a6b2f76c 54 #define putlbe(idx, val) (putbe((idx)+2, val), putbe(idx, (val) >> 16))
mjr 77:0b96f6867312 55 #define put64(idx, val) (putl(idx, val), putl((idx)+4, (val) >> 32))
mjr 63:5cd1a5f3a41b 56 put(0, _status);
mjr 63:5cd1a5f3a41b 57 put(2, 0); // second word of status - zero in high bit identifies as normal joystick report
mjr 63:5cd1a5f3a41b 58 put(4, _buttonsLo);
mjr 63:5cd1a5f3a41b 59 put(6, _buttonsHi);
mjr 63:5cd1a5f3a41b 60 put(8, _x);
mjr 63:5cd1a5f3a41b 61 put(10, _y);
mjr 63:5cd1a5f3a41b 62 put(12, _z);
mjr 21:5048e16cc9ef 63
mjr 21:5048e16cc9ef 64 // important: keep reportLen in sync with the actual byte length of
mjr 21:5048e16cc9ef 65 // the reports we build here
mjr 63:5cd1a5f3a41b 66 report.length = reportLen;
mjr 3:3514575d4f86 67
mjr 5:a70c0bce770d 68 // send the report
mjr 10:976666ffa4ef 69 return sendTO(&report, 100);
mjr 10:976666ffa4ef 70 }
mjr 10:976666ffa4ef 71
mjr 35:e959ffba78fd 72 bool USBJoystick::kbUpdate(uint8_t data[8])
mjr 35:e959ffba78fd 73 {
mjr 35:e959ffba78fd 74 // set up the report
mjr 35:e959ffba78fd 75 HID_REPORT report;
mjr 35:e959ffba78fd 76 report.data[0] = REPORT_ID_KB; // report ID = keyboard
mjr 35:e959ffba78fd 77 memcpy(&report.data[1], data, 8); // copy the kb report data
mjr 35:e959ffba78fd 78 report.length = 9; // length = ID prefix + kb report length
mjr 35:e959ffba78fd 79
mjr 35:e959ffba78fd 80 // send it to endpoint 4 (the keyboard interface endpoint)
mjr 35:e959ffba78fd 81 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 82 }
mjr 35:e959ffba78fd 83
mjr 35:e959ffba78fd 84 bool USBJoystick::mediaUpdate(uint8_t data)
mjr 35:e959ffba78fd 85 {
mjr 35:e959ffba78fd 86 // set up the report
mjr 35:e959ffba78fd 87 HID_REPORT report;
mjr 35:e959ffba78fd 88 report.data[0] = REPORT_ID_MEDIA; // report ID = media
mjr 35:e959ffba78fd 89 report.data[1] = data; // key pressed bits
mjr 35:e959ffba78fd 90 report.length = 2;
mjr 35:e959ffba78fd 91
mjr 35:e959ffba78fd 92 // send it
mjr 35:e959ffba78fd 93 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 94 }
mjr 35:e959ffba78fd 95
mjr 52:8298b2a73eb2 96 bool USBJoystick::sendPlungerStatus(
mjr 52:8298b2a73eb2 97 int npix, int edgePos, int dir, uint32_t avgScanTime, uint32_t processingTime)
mjr 52:8298b2a73eb2 98 {
mjr 52:8298b2a73eb2 99 HID_REPORT report;
mjr 52:8298b2a73eb2 100
mjr 52:8298b2a73eb2 101 // Set the special status bits to indicate it's an extended
mjr 52:8298b2a73eb2 102 // exposure report.
mjr 63:5cd1a5f3a41b 103 put(0, 0x87FF);
mjr 52:8298b2a73eb2 104
mjr 52:8298b2a73eb2 105 // start at the second byte
mjr 63:5cd1a5f3a41b 106 int ofs = 2;
mjr 52:8298b2a73eb2 107
mjr 52:8298b2a73eb2 108 // write the report subtype (0) to byte 2
mjr 52:8298b2a73eb2 109 report.data[ofs++] = 0;
mjr 52:8298b2a73eb2 110
mjr 52:8298b2a73eb2 111 // write the number of pixels to bytes 3-4
mjr 52:8298b2a73eb2 112 put(ofs, uint16_t(npix));
mjr 52:8298b2a73eb2 113 ofs += 2;
mjr 52:8298b2a73eb2 114
mjr 52:8298b2a73eb2 115 // write the shadow edge position to bytes 5-6
mjr 52:8298b2a73eb2 116 put(ofs, uint16_t(edgePos));
mjr 52:8298b2a73eb2 117 ofs += 2;
mjr 52:8298b2a73eb2 118
mjr 52:8298b2a73eb2 119 // write the flags to byte 7
mjr 52:8298b2a73eb2 120 extern bool plungerCalMode;
mjr 52:8298b2a73eb2 121 uint8_t flags = 0;
mjr 52:8298b2a73eb2 122 if (dir == 1)
mjr 52:8298b2a73eb2 123 flags |= 0x01;
mjr 52:8298b2a73eb2 124 else if (dir == -1)
mjr 52:8298b2a73eb2 125 flags |= 0x02;
mjr 52:8298b2a73eb2 126 if (plungerCalMode)
mjr 52:8298b2a73eb2 127 flags |= 0x04;
mjr 52:8298b2a73eb2 128 report.data[ofs++] = flags;
mjr 52:8298b2a73eb2 129
mjr 52:8298b2a73eb2 130 // write the average scan time in 10us intervals to bytes 8-10
mjr 52:8298b2a73eb2 131 uint32_t t = uint32_t(avgScanTime / 10);
mjr 52:8298b2a73eb2 132 report.data[ofs++] = t & 0xff;
mjr 52:8298b2a73eb2 133 report.data[ofs++] = (t >> 8) & 0xff;
mjr 52:8298b2a73eb2 134 report.data[ofs++] = (t >> 16) & 0xff;
mjr 52:8298b2a73eb2 135
mjr 52:8298b2a73eb2 136 // write the processing time to bytes 11-13
mjr 52:8298b2a73eb2 137 t = uint32_t(processingTime / 10);
mjr 52:8298b2a73eb2 138 report.data[ofs++] = t & 0xff;
mjr 52:8298b2a73eb2 139 report.data[ofs++] = (t >> 8) & 0xff;
mjr 52:8298b2a73eb2 140 report.data[ofs++] = (t >> 16) & 0xff;
mjr 52:8298b2a73eb2 141
mjr 52:8298b2a73eb2 142 // send the report
mjr 63:5cd1a5f3a41b 143 report.length = reportLen;
mjr 52:8298b2a73eb2 144 return sendTO(&report, 100);
mjr 52:8298b2a73eb2 145 }
mjr 52:8298b2a73eb2 146
mjr 52:8298b2a73eb2 147 bool USBJoystick::sendPlungerPix(int &idx, int npix, const uint8_t *pix)
mjr 10:976666ffa4ef 148 {
mjr 10:976666ffa4ef 149 HID_REPORT report;
mjr 10:976666ffa4ef 150
mjr 10:976666ffa4ef 151 // Set the special status bits to indicate it's an exposure report.
mjr 10:976666ffa4ef 152 // The high 5 bits of the status word are set to 10000, and the
mjr 10:976666ffa4ef 153 // low 11 bits are the current pixel index.
mjr 10:976666ffa4ef 154 uint16_t s = idx | 0x8000;
mjr 63:5cd1a5f3a41b 155 put(0, s);
mjr 25:e22b88bd783a 156
mjr 25:e22b88bd783a 157 // start at the second byte
mjr 63:5cd1a5f3a41b 158 int ofs = 2;
mjr 25:e22b88bd783a 159
mjr 47:df7a88cd249c 160 // now fill out the remaining bytes with exposure values
mjr 63:5cd1a5f3a41b 161 report.length = reportLen;
mjr 47:df7a88cd249c 162 for ( ; ofs < report.length ; ++ofs)
mjr 47:df7a88cd249c 163 report.data[ofs] = (idx < npix ? pix[idx++] : 0);
mjr 10:976666ffa4ef 164
mjr 10:976666ffa4ef 165 // send the report
mjr 35:e959ffba78fd 166 return sendTO(&report, 100);
mjr 3:3514575d4f86 167 }
mjr 9:fd65b0a94720 168
mjr 53:9b2611964afc 169 bool USBJoystick::reportID(int index)
mjr 40:cc0d9814522b 170 {
mjr 40:cc0d9814522b 171 HID_REPORT report;
mjr 40:cc0d9814522b 172
mjr 40:cc0d9814522b 173 // initially fill the report with zeros
mjr 40:cc0d9814522b 174 memset(report.data, 0, sizeof(report.data));
mjr 40:cc0d9814522b 175
mjr 40:cc0d9814522b 176 // Set the special status bits to indicate that it's an ID report
mjr 40:cc0d9814522b 177 uint16_t s = 0x9000;
mjr 63:5cd1a5f3a41b 178 put(0, s);
mjr 40:cc0d9814522b 179
mjr 53:9b2611964afc 180 // add the requested ID index
mjr 63:5cd1a5f3a41b 181 report.data[2] = (uint8_t)index;
mjr 53:9b2611964afc 182
mjr 53:9b2611964afc 183 // figure out which ID we're reporting
mjr 53:9b2611964afc 184 switch (index)
mjr 53:9b2611964afc 185 {
mjr 53:9b2611964afc 186 case 1:
mjr 53:9b2611964afc 187 // KL25Z CPU ID
mjr 63:5cd1a5f3a41b 188 putbe(3, SIM->UIDMH);
mjr 63:5cd1a5f3a41b 189 putlbe(5, SIM->UIDML);
mjr 63:5cd1a5f3a41b 190 putlbe(9, SIM->UIDL);
mjr 53:9b2611964afc 191 break;
mjr 53:9b2611964afc 192
mjr 53:9b2611964afc 193 case 2:
mjr 53:9b2611964afc 194 // OpenSDA ID. Copy the low-order 80 bits of the OpenSDA ID.
mjr 53:9b2611964afc 195 // (The stored value is 128 bits = 16 bytes; we only want the last
mjr 53:9b2611964afc 196 // 80 bits = 10 bytes. So skip ahead 16 and back up 10 to get
mjr 53:9b2611964afc 197 // the starting point.)
mjr 53:9b2611964afc 198 extern const char *getOpenSDAID();
mjr 63:5cd1a5f3a41b 199 memcpy(&report.data[3], getOpenSDAID() + 16 - 10, 10);
mjr 53:9b2611964afc 200 break;
mjr 53:9b2611964afc 201 }
mjr 53:9b2611964afc 202
mjr 53:9b2611964afc 203 // send the report
mjr 63:5cd1a5f3a41b 204 report.length = reportLen;
mjr 53:9b2611964afc 205 return sendTO(&report, 100);
mjr 53:9b2611964afc 206 }
mjr 53:9b2611964afc 207
mjr 53:9b2611964afc 208 bool USBJoystick::reportBuildInfo(const char *date)
mjr 53:9b2611964afc 209 {
mjr 53:9b2611964afc 210 HID_REPORT report;
mjr 53:9b2611964afc 211
mjr 53:9b2611964afc 212 // initially fill the report with zeros
mjr 53:9b2611964afc 213 memset(report.data, 0, sizeof(report.data));
mjr 53:9b2611964afc 214
mjr 53:9b2611964afc 215 // Set the special status bits to indicate that it's a build
mjr 53:9b2611964afc 216 // info report
mjr 53:9b2611964afc 217 uint16_t s = 0xA000;
mjr 63:5cd1a5f3a41b 218 put(0, s);
mjr 53:9b2611964afc 219
mjr 53:9b2611964afc 220 // Parse the date. This is given in the standard __DATE__ " " __TIME
mjr 53:9b2611964afc 221 // macro format, "Mon dd yyyy hh:mm:ss" (e.g., "Feb 16 2016 12:15:06").
mjr 53:9b2611964afc 222 static const char mon[][4] = {
mjr 53:9b2611964afc 223 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
mjr 53:9b2611964afc 224 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
mjr 53:9b2611964afc 225 };
mjr 53:9b2611964afc 226 long dd = (atol(date + 7) * 10000L) // YYYY0000
mjr 53:9b2611964afc 227 + (atol(date + 4)); // 000000DD
mjr 53:9b2611964afc 228 for (int i = 0 ; i < 12 ; ++i)
mjr 53:9b2611964afc 229 {
mjr 53:9b2611964afc 230 if (memcmp(mon[i], date, 3) == 0)
mjr 53:9b2611964afc 231 {
mjr 53:9b2611964afc 232 dd += (i+1)*100; // 0000MM00
mjr 53:9b2611964afc 233 break;
mjr 53:9b2611964afc 234 }
mjr 53:9b2611964afc 235 }
mjr 53:9b2611964afc 236
mjr 53:9b2611964afc 237 // parse the time into a long formatted as decimal HHMMSS (e.g.,
mjr 53:9b2611964afc 238 // "12:15:06" turns into 121506 decimal)
mjr 53:9b2611964afc 239 long tt = (atol(date+12)*10000)
mjr 53:9b2611964afc 240 + (atol(date+15)*100)
mjr 53:9b2611964afc 241 + (atol(date+18));
mjr 53:9b2611964afc 242
mjr 53:9b2611964afc 243 // store the build date and time
mjr 63:5cd1a5f3a41b 244 putl(2, dd);
mjr 63:5cd1a5f3a41b 245 putl(6, tt);
mjr 40:cc0d9814522b 246
mjr 40:cc0d9814522b 247 // send the report
mjr 63:5cd1a5f3a41b 248 report.length = reportLen;
mjr 40:cc0d9814522b 249 return sendTO(&report, 100);
mjr 40:cc0d9814522b 250 }
mjr 40:cc0d9814522b 251
mjr 52:8298b2a73eb2 252 bool USBJoystick::reportConfigVar(const uint8_t *data)
mjr 52:8298b2a73eb2 253 {
mjr 52:8298b2a73eb2 254 HID_REPORT report;
mjr 52:8298b2a73eb2 255
mjr 52:8298b2a73eb2 256 // initially fill the report with zeros
mjr 52:8298b2a73eb2 257 memset(report.data, 0, sizeof(report.data));
mjr 52:8298b2a73eb2 258
mjr 52:8298b2a73eb2 259 // Set the special status bits to indicate that it's a config
mjr 52:8298b2a73eb2 260 // variable report
mjr 52:8298b2a73eb2 261 uint16_t s = 0x9800;
mjr 63:5cd1a5f3a41b 262 put(0, s);
mjr 52:8298b2a73eb2 263
mjr 52:8298b2a73eb2 264 // Copy the variable data (7 bytes, starting with the variable ID)
mjr 63:5cd1a5f3a41b 265 memcpy(report.data + 2, data, 7);
mjr 52:8298b2a73eb2 266
mjr 52:8298b2a73eb2 267 // send the report
mjr 63:5cd1a5f3a41b 268 report.length = reportLen;
mjr 52:8298b2a73eb2 269 return sendTO(&report, 100);
mjr 52:8298b2a73eb2 270 }
mjr 52:8298b2a73eb2 271
mjr 52:8298b2a73eb2 272 bool USBJoystick::reportConfig(
mjr 52:8298b2a73eb2 273 int numOutputs, int unitNo,
mjr 52:8298b2a73eb2 274 int plungerZero, int plungerMax, int plungerRlsTime,
mjr 82:4f6209cb5c33 275 bool configured, bool sbxpbx, bool newAccelFeatures, bool flashStatusFeature,
mjr 73:4e8ce0b18915 276 size_t freeHeapBytes)
mjr 33:d832bcab089e 277 {
mjr 33:d832bcab089e 278 HID_REPORT report;
mjr 33:d832bcab089e 279
mjr 33:d832bcab089e 280 // initially fill the report with zeros
mjr 33:d832bcab089e 281 memset(report.data, 0, sizeof(report.data));
mjr 33:d832bcab089e 282
mjr 33:d832bcab089e 283 // Set the special status bits to indicate that it's a config report.
mjr 33:d832bcab089e 284 uint16_t s = 0x8800;
mjr 63:5cd1a5f3a41b 285 put(0, s);
mjr 33:d832bcab089e 286
mjr 33:d832bcab089e 287 // write the number of configured outputs
mjr 63:5cd1a5f3a41b 288 put(2, numOutputs);
mjr 33:d832bcab089e 289
mjr 33:d832bcab089e 290 // write the unit number
mjr 63:5cd1a5f3a41b 291 put(4, unitNo);
mjr 33:d832bcab089e 292
mjr 35:e959ffba78fd 293 // write the plunger zero and max values
mjr 63:5cd1a5f3a41b 294 put(6, plungerZero);
mjr 63:5cd1a5f3a41b 295 put(8, plungerMax);
mjr 63:5cd1a5f3a41b 296 report.data[10] = uint8_t(plungerRlsTime);
mjr 35:e959ffba78fd 297
mjr 40:cc0d9814522b 298 // write the status bits:
mjr 40:cc0d9814522b 299 // 0x01 -> configuration loaded
mjr 75:677892300e7a 300 // 0x02 -> SBX/PBX protocol extensions supported
mjr 75:677892300e7a 301 report.data[11] =
mjr 75:677892300e7a 302 (configured ? 0x01 : 0x00)
mjr 78:1e00b3fa11af 303 | (sbxpbx ? 0x02 : 0x00)
mjr 82:4f6209cb5c33 304 | (newAccelFeatures ? 0x04 : 0x00)
mjr 82:4f6209cb5c33 305 | (flashStatusFeature ? 0x08 : 0x00);
mjr 40:cc0d9814522b 306
mjr 73:4e8ce0b18915 307 // write the free heap space
mjr 73:4e8ce0b18915 308 put(12, freeHeapBytes);
mjr 77:0b96f6867312 309
mjr 33:d832bcab089e 310 // send the report
mjr 63:5cd1a5f3a41b 311 report.length = reportLen;
mjr 35:e959ffba78fd 312 return sendTO(&report, 100);
mjr 33:d832bcab089e 313 }
mjr 33:d832bcab089e 314
mjr 77:0b96f6867312 315 // report physical button status
mjr 73:4e8ce0b18915 316 bool USBJoystick::reportButtonStatus(int numButtons, const uint8_t *state)
mjr 73:4e8ce0b18915 317 {
mjr 77:0b96f6867312 318 // initially fill the report with zeros
mjr 73:4e8ce0b18915 319 HID_REPORT report;
mjr 73:4e8ce0b18915 320 memset(report.data, 0, sizeof(report.data));
mjr 73:4e8ce0b18915 321
mjr 77:0b96f6867312 322 // set the special status bits to indicate that it's a buton report
mjr 73:4e8ce0b18915 323 uint16_t s = 0xA100;
mjr 73:4e8ce0b18915 324 put(0, s);
mjr 73:4e8ce0b18915 325
mjr 73:4e8ce0b18915 326 // write the number of buttons
mjr 77:0b96f6867312 327 report.data[2] = uint8_t(numButtons);
mjr 73:4e8ce0b18915 328
mjr 73:4e8ce0b18915 329 // Write the buttons - these are packed into ceil(numButtons/8) bytes.
mjr 73:4e8ce0b18915 330 size_t btnBytes = (numButtons+7)/8;
mjr 73:4e8ce0b18915 331 if (btnBytes + 3 > reportLen) btnBytes = reportLen - 3;
mjr 73:4e8ce0b18915 332 memcpy(&report.data[3], state, btnBytes);
mjr 73:4e8ce0b18915 333
mjr 73:4e8ce0b18915 334 // send the report
mjr 73:4e8ce0b18915 335 report.length = reportLen;
mjr 73:4e8ce0b18915 336 return sendTO(&report, 100);
mjr 73:4e8ce0b18915 337 }
mjr 73:4e8ce0b18915 338
mjr 77:0b96f6867312 339 // report raw IR timing codes (for learning mode)
mjr 77:0b96f6867312 340 bool USBJoystick::reportRawIR(int n, const uint16_t *data)
mjr 77:0b96f6867312 341 {
mjr 77:0b96f6867312 342 // initially fill the report with zeros
mjr 77:0b96f6867312 343 HID_REPORT report;
mjr 77:0b96f6867312 344 memset(report.data, 0, sizeof(report.data));
mjr 77:0b96f6867312 345
mjr 77:0b96f6867312 346 // set the special status bits to indicate that it's an IR report
mjr 77:0b96f6867312 347 uint16_t s = 0xA200;
mjr 77:0b96f6867312 348 put(0, s);
mjr 77:0b96f6867312 349
mjr 77:0b96f6867312 350 // limit the number of items reported to the available space
mjr 77:0b96f6867312 351 if (n > maxRawIR)
mjr 77:0b96f6867312 352 n = maxRawIR;
mjr 77:0b96f6867312 353
mjr 77:0b96f6867312 354 // write the number of codes
mjr 77:0b96f6867312 355 report.data[2] = uint8_t(n);
mjr 77:0b96f6867312 356
mjr 77:0b96f6867312 357 // write the codes
mjr 77:0b96f6867312 358 for (int i = 0, ofs = 3 ; i < n ; ++i, ofs += 2)
mjr 77:0b96f6867312 359 put(ofs, data[i]);
mjr 77:0b96f6867312 360
mjr 77:0b96f6867312 361 // send the report
mjr 77:0b96f6867312 362 report.length = reportLen;
mjr 77:0b96f6867312 363 return sendTO(&report, 100);
mjr 77:0b96f6867312 364 }
mjr 77:0b96f6867312 365
mjr 77:0b96f6867312 366 // report a decoded IR command
mjr 77:0b96f6867312 367 bool USBJoystick::reportIRCode(uint8_t pro, uint8_t flags, uint64_t code)
mjr 77:0b96f6867312 368 {
mjr 77:0b96f6867312 369 // initially fill the report with zeros
mjr 77:0b96f6867312 370 HID_REPORT report;
mjr 77:0b96f6867312 371 memset(report.data, 0, sizeof(report.data));
mjr 77:0b96f6867312 372
mjr 77:0b96f6867312 373 // set the special status bits to indicate that it's an IR report
mjr 77:0b96f6867312 374 uint16_t s = 0xA200;
mjr 77:0b96f6867312 375 put(0, s);
mjr 77:0b96f6867312 376
mjr 77:0b96f6867312 377 // set the raw count to 0xFF to flag that it's a decoded command
mjr 77:0b96f6867312 378 report.data[2] = 0xFF;
mjr 77:0b96f6867312 379
mjr 77:0b96f6867312 380 // write the data
mjr 77:0b96f6867312 381 report.data[3] = pro;
mjr 77:0b96f6867312 382 report.data[4] = flags;
mjr 77:0b96f6867312 383 put64(5, code);
mjr 77:0b96f6867312 384
mjr 77:0b96f6867312 385 // send the report
mjr 77:0b96f6867312 386 report.length = reportLen;
mjr 77:0b96f6867312 387 return sendTO(&report, 100);
mjr 77:0b96f6867312 388 }
mjr 73:4e8ce0b18915 389
mjr 33:d832bcab089e 390 bool USBJoystick::move(int16_t x, int16_t y)
mjr 33:d832bcab089e 391 {
mjr 3:3514575d4f86 392 _x = x;
mjr 3:3514575d4f86 393 _y = y;
mjr 3:3514575d4f86 394 return update();
mjr 3:3514575d4f86 395 }
mjr 3:3514575d4f86 396
mjr 33:d832bcab089e 397 bool USBJoystick::setZ(int16_t z)
mjr 33:d832bcab089e 398 {
mjr 3:3514575d4f86 399 _z = z;
mjr 3:3514575d4f86 400 return update();
mjr 3:3514575d4f86 401 }
mjr 3:3514575d4f86 402
mjr 33:d832bcab089e 403 bool USBJoystick::buttons(uint32_t buttons)
mjr 33:d832bcab089e 404 {
mjr 11:bd9da7088e6e 405 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 406 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 3:3514575d4f86 407 return update();
mjr 3:3514575d4f86 408 }
mjr 21:5048e16cc9ef 409
mjr 21:5048e16cc9ef 410 bool USBJoystick::updateStatus(uint32_t status)
mjr 21:5048e16cc9ef 411 {
mjr 21:5048e16cc9ef 412 HID_REPORT report;
mjr 21:5048e16cc9ef 413
mjr 63:5cd1a5f3a41b 414 // Fill the report according to the Joystick Descriptor
mjr 63:5cd1a5f3a41b 415 memset(report.data, 0, reportLen);
mjr 63:5cd1a5f3a41b 416 put(0, status);
mjr 63:5cd1a5f3a41b 417 report.length = reportLen;
mjr 21:5048e16cc9ef 418
mjr 21:5048e16cc9ef 419 // send the report
mjr 21:5048e16cc9ef 420 return sendTO(&report, 100);
mjr 21:5048e16cc9ef 421 }
mjr 21:5048e16cc9ef 422
mjr 3:3514575d4f86 423 void USBJoystick::_init() {
mjr 3:3514575d4f86 424
mjr 3:3514575d4f86 425 _x = 0;
mjr 3:3514575d4f86 426 _y = 0;
mjr 3:3514575d4f86 427 _z = 0;
mjr 11:bd9da7088e6e 428 _buttonsLo = 0x0000;
mjr 11:bd9da7088e6e 429 _buttonsHi = 0x0000;
mjr 9:fd65b0a94720 430 _status = 0;
mjr 3:3514575d4f86 431 }
mjr 3:3514575d4f86 432
mjr 3:3514575d4f86 433
mjr 35:e959ffba78fd 434 // --------------------------------------------------------------------------
mjr 35:e959ffba78fd 435 //
mjr 63:5cd1a5f3a41b 436 // USB HID Report Descriptor - Joystick
mjr 35:e959ffba78fd 437 //
mjr 63:5cd1a5f3a41b 438 static const uint8_t reportDescriptorJS[] =
mjr 63:5cd1a5f3a41b 439 {
mjr 63:5cd1a5f3a41b 440 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 63:5cd1a5f3a41b 441 USAGE(1), 0x04, // Joystick
mjr 63:5cd1a5f3a41b 442 COLLECTION(1), 0x01, // Application
mjr 63:5cd1a5f3a41b 443 // input report (device to host)
mjr 35:e959ffba78fd 444
mjr 63:5cd1a5f3a41b 445 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 63:5cd1a5f3a41b 446 USAGE(1), 0x00, // undefined device control
mjr 63:5cd1a5f3a41b 447 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 63:5cd1a5f3a41b 448 LOGICAL_MAXIMUM(1), 0xFF,
mjr 63:5cd1a5f3a41b 449 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 63:5cd1a5f3a41b 450 REPORT_COUNT(1), 0x04, // 4 reports (4 bytes)
mjr 63:5cd1a5f3a41b 451 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 452
mjr 63:5cd1a5f3a41b 453 USAGE_PAGE(1), 0x09, // Buttons
mjr 63:5cd1a5f3a41b 454 USAGE_MINIMUM(1), 0x01, // { buttons }
mjr 63:5cd1a5f3a41b 455 USAGE_MAXIMUM(1), 0x20, // { 1-32 }
mjr 63:5cd1a5f3a41b 456 LOGICAL_MINIMUM(1), 0x00, // 1-bit buttons - 0...
mjr 63:5cd1a5f3a41b 457 LOGICAL_MAXIMUM(1), 0x01, // ...to 1
mjr 63:5cd1a5f3a41b 458 REPORT_SIZE(1), 0x01, // 1 bit per report
mjr 63:5cd1a5f3a41b 459 REPORT_COUNT(1), 0x20, // 32 reports
mjr 63:5cd1a5f3a41b 460 UNIT_EXPONENT(1), 0x00, // Unit_Exponent (0)
mjr 63:5cd1a5f3a41b 461 UNIT(1), 0x00, // Unit (None)
mjr 63:5cd1a5f3a41b 462 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 463
mjr 63:5cd1a5f3a41b 464 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 63:5cd1a5f3a41b 465 USAGE(1), 0x30, // X axis
mjr 63:5cd1a5f3a41b 466 USAGE(1), 0x31, // Y axis
mjr 63:5cd1a5f3a41b 467 USAGE(1), 0x32, // Z axis
mjr 63:5cd1a5f3a41b 468 LOGICAL_MINIMUM(2), 0x00,0xF0, // each value ranges -4096
mjr 63:5cd1a5f3a41b 469 LOGICAL_MAXIMUM(2), 0x00,0x10, // ...to +4096
mjr 63:5cd1a5f3a41b 470 REPORT_SIZE(1), 0x10, // 16 bits per report
mjr 63:5cd1a5f3a41b 471 REPORT_COUNT(1), 0x03, // 3 reports (X, Y, Z)
mjr 63:5cd1a5f3a41b 472 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 473
mjr 63:5cd1a5f3a41b 474 // output report (host to device)
mjr 63:5cd1a5f3a41b 475 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 63:5cd1a5f3a41b 476 REPORT_COUNT(1), 0x08, // output report count - 8-byte LedWiz format
mjr 63:5cd1a5f3a41b 477 0x09, 0x01, // usage
mjr 63:5cd1a5f3a41b 478 0x91, 0x01, // Output (array)
mjr 35:e959ffba78fd 479
mjr 35:e959ffba78fd 480 END_COLLECTION(0)
mjr 35:e959ffba78fd 481 };
mjr 35:e959ffba78fd 482
mjr 63:5cd1a5f3a41b 483 //
mjr 63:5cd1a5f3a41b 484 // USB HID Report Descriptor - Keyboard/Media Control
mjr 63:5cd1a5f3a41b 485 //
mjr 48:058ace2aed1d 486 static const uint8_t reportDescriptorKB[] =
mjr 35:e959ffba78fd 487 {
mjr 63:5cd1a5f3a41b 488 USAGE_PAGE(1), 0x01, // Generic Desktop
mjr 63:5cd1a5f3a41b 489 USAGE(1), 0x06, // Keyboard
mjr 63:5cd1a5f3a41b 490 COLLECTION(1), 0x01, // Application
mjr 63:5cd1a5f3a41b 491 REPORT_ID(1), REPORT_ID_KB,
mjr 63:5cd1a5f3a41b 492
mjr 63:5cd1a5f3a41b 493 USAGE_PAGE(1), 0x07, // Key Codes
mjr 63:5cd1a5f3a41b 494 USAGE_MINIMUM(1), 0xE0,
mjr 63:5cd1a5f3a41b 495 USAGE_MAXIMUM(1), 0xE7,
mjr 63:5cd1a5f3a41b 496 LOGICAL_MINIMUM(1), 0x00,
mjr 63:5cd1a5f3a41b 497 LOGICAL_MAXIMUM(1), 0x01,
mjr 63:5cd1a5f3a41b 498 REPORT_SIZE(1), 0x01,
mjr 63:5cd1a5f3a41b 499 REPORT_COUNT(1), 0x08,
mjr 63:5cd1a5f3a41b 500 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 501 REPORT_COUNT(1), 0x01,
mjr 63:5cd1a5f3a41b 502 REPORT_SIZE(1), 0x08,
mjr 63:5cd1a5f3a41b 503 INPUT(1), 0x01, // Constant
mjr 63:5cd1a5f3a41b 504
mjr 63:5cd1a5f3a41b 505 REPORT_COUNT(1), 0x05,
mjr 63:5cd1a5f3a41b 506 REPORT_SIZE(1), 0x01,
mjr 63:5cd1a5f3a41b 507 USAGE_PAGE(1), 0x08, // LEDs
mjr 63:5cd1a5f3a41b 508 USAGE_MINIMUM(1), 0x01,
mjr 63:5cd1a5f3a41b 509 USAGE_MAXIMUM(1), 0x05,
mjr 63:5cd1a5f3a41b 510 OUTPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 511 REPORT_COUNT(1), 0x01,
mjr 63:5cd1a5f3a41b 512 REPORT_SIZE(1), 0x03,
mjr 63:5cd1a5f3a41b 513 OUTPUT(1), 0x01, // Constant
mjr 63:5cd1a5f3a41b 514
mjr 63:5cd1a5f3a41b 515 REPORT_COUNT(1), 0x06,
mjr 63:5cd1a5f3a41b 516 REPORT_SIZE(1), 0x08,
mjr 63:5cd1a5f3a41b 517 LOGICAL_MINIMUM(1), 0x00,
mjr 68:998faf685b00 518 LOGICAL_MAXIMUM(1), 0xA4,
mjr 63:5cd1a5f3a41b 519 USAGE_PAGE(1), 0x07, // Key Codes
mjr 63:5cd1a5f3a41b 520 USAGE_MINIMUM(1), 0x00,
mjr 68:998faf685b00 521 USAGE_MAXIMUM(1), 0xA4,
mjr 63:5cd1a5f3a41b 522 INPUT(1), 0x00, // Data, Array
mjr 63:5cd1a5f3a41b 523 END_COLLECTION(0),
mjr 63:5cd1a5f3a41b 524
mjr 63:5cd1a5f3a41b 525 // Media Control
mjr 63:5cd1a5f3a41b 526 USAGE_PAGE(1), 0x0C,
mjr 63:5cd1a5f3a41b 527 USAGE(1), 0x01,
mjr 63:5cd1a5f3a41b 528 COLLECTION(1), 0x01,
mjr 63:5cd1a5f3a41b 529 REPORT_ID(1), REPORT_ID_MEDIA,
mjr 63:5cd1a5f3a41b 530 USAGE_PAGE(1), 0x0C,
mjr 63:5cd1a5f3a41b 531 LOGICAL_MINIMUM(1), 0x00,
mjr 63:5cd1a5f3a41b 532 LOGICAL_MAXIMUM(1), 0x01,
mjr 63:5cd1a5f3a41b 533 REPORT_SIZE(1), 0x01,
mjr 63:5cd1a5f3a41b 534 REPORT_COUNT(1), 0x07,
mjr 63:5cd1a5f3a41b 535 USAGE(1), 0xE2, // Mute -> 0x01
mjr 63:5cd1a5f3a41b 536 USAGE(1), 0xE9, // Volume Up -> 0x02
mjr 63:5cd1a5f3a41b 537 USAGE(1), 0xEA, // Volume Down -> 0x04
mjr 63:5cd1a5f3a41b 538 USAGE(1), 0xB5, // Next Track -> 0x08
mjr 63:5cd1a5f3a41b 539 USAGE(1), 0xB6, // Previous Track -> 0x10
mjr 63:5cd1a5f3a41b 540 USAGE(1), 0xB7, // Stop -> 0x20
mjr 63:5cd1a5f3a41b 541 USAGE(1), 0xCD, // Play / Pause -> 0x40
mjr 63:5cd1a5f3a41b 542 INPUT(1), 0x02, // Input (Data, Variable, Absolute) -> 0x80
mjr 63:5cd1a5f3a41b 543 REPORT_COUNT(1), 0x01,
mjr 63:5cd1a5f3a41b 544 INPUT(1), 0x01,
mjr 63:5cd1a5f3a41b 545 END_COLLECTION(0),
mjr 35:e959ffba78fd 546 };
mjr 29:582472d0bc57 547
mjr 63:5cd1a5f3a41b 548 //
mjr 63:5cd1a5f3a41b 549 // USB HID Report Descriptor - LedWiz only, with no joystick or keyboard
mjr 63:5cd1a5f3a41b 550 // input reporting
mjr 63:5cd1a5f3a41b 551 //
mjr 63:5cd1a5f3a41b 552 static const uint8_t reportDescriptorLW[] =
mjr 63:5cd1a5f3a41b 553 {
mjr 63:5cd1a5f3a41b 554 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 63:5cd1a5f3a41b 555 USAGE(1), 0x00, // Undefined
mjr 63:5cd1a5f3a41b 556
mjr 63:5cd1a5f3a41b 557 COLLECTION(1), 0x01, // Application
mjr 63:5cd1a5f3a41b 558
mjr 63:5cd1a5f3a41b 559 // input report (device to host)
mjr 63:5cd1a5f3a41b 560 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 63:5cd1a5f3a41b 561 USAGE(1), 0x00, // undefined device control
mjr 63:5cd1a5f3a41b 562 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 63:5cd1a5f3a41b 563 LOGICAL_MAXIMUM(1), 0xFF,
mjr 63:5cd1a5f3a41b 564 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 77:0b96f6867312 565 REPORT_COUNT(1), USBJoystick::reportLen, // standard report length (same as if we were in joystick mode)
mjr 63:5cd1a5f3a41b 566 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 567
mjr 63:5cd1a5f3a41b 568 // output report (host to device)
mjr 63:5cd1a5f3a41b 569 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 63:5cd1a5f3a41b 570 REPORT_COUNT(1), 0x08, // output report count (LEDWiz messages)
mjr 63:5cd1a5f3a41b 571 0x09, 0x01, // usage
mjr 63:5cd1a5f3a41b 572 0x91, 0x01, // Output (array)
mjr 63:5cd1a5f3a41b 573
mjr 63:5cd1a5f3a41b 574 END_COLLECTION(0)
mjr 35:e959ffba78fd 575 };
mjr 35:e959ffba78fd 576
mjr 63:5cd1a5f3a41b 577
mjr 54:fd77a6b2f76c 578 const uint8_t *USBJoystick::reportDesc(int idx, uint16_t &len)
mjr 35:e959ffba78fd 579 {
mjr 63:5cd1a5f3a41b 580 switch (idx)
mjr 35:e959ffba78fd 581 {
mjr 63:5cd1a5f3a41b 582 case 0:
mjr 63:5cd1a5f3a41b 583 // If the joystick is enabled, this is the joystick.
mjr 63:5cd1a5f3a41b 584 // Otherwise, it's the plain LedWiz control interface.
mjr 63:5cd1a5f3a41b 585 if (enableJoystick)
mjr 63:5cd1a5f3a41b 586 {
mjr 63:5cd1a5f3a41b 587 len = sizeof(reportDescriptorJS);
mjr 63:5cd1a5f3a41b 588 return reportDescriptorJS;
mjr 63:5cd1a5f3a41b 589 }
mjr 63:5cd1a5f3a41b 590 else
mjr 63:5cd1a5f3a41b 591 {
mjr 63:5cd1a5f3a41b 592 len = sizeof(reportDescriptorLW);
mjr 63:5cd1a5f3a41b 593 return reportDescriptorLW;
mjr 63:5cd1a5f3a41b 594 }
mjr 63:5cd1a5f3a41b 595
mjr 63:5cd1a5f3a41b 596 case 1:
mjr 63:5cd1a5f3a41b 597 // This is the keyboard, if enabled.
mjr 63:5cd1a5f3a41b 598 if (useKB)
mjr 63:5cd1a5f3a41b 599 {
mjr 63:5cd1a5f3a41b 600 len = sizeof(reportDescriptorKB);
mjr 63:5cd1a5f3a41b 601 return reportDescriptorKB;
mjr 63:5cd1a5f3a41b 602 }
mjr 63:5cd1a5f3a41b 603 else
mjr 63:5cd1a5f3a41b 604 {
mjr 63:5cd1a5f3a41b 605 len = 0;
mjr 63:5cd1a5f3a41b 606 return 0;
mjr 63:5cd1a5f3a41b 607 }
mjr 63:5cd1a5f3a41b 608
mjr 63:5cd1a5f3a41b 609 default:
mjr 63:5cd1a5f3a41b 610 // Unknown interface ID
mjr 54:fd77a6b2f76c 611 len = 0;
mjr 48:058ace2aed1d 612 return 0;
mjr 35:e959ffba78fd 613 }
mjr 35:e959ffba78fd 614 }
mjr 3:3514575d4f86 615
mjr 48:058ace2aed1d 616 const uint8_t *USBJoystick::stringImanufacturerDesc() {
mjr 48:058ace2aed1d 617 static const uint8_t stringImanufacturerDescriptor[] = {
mjr 61:3c7e6e9ec355 618 0x0E, /* bLength */
mjr 61:3c7e6e9ec355 619 STRING_DESCRIPTOR, /* bDescriptorType 0x03 (String Descriptor) */
mjr 61:3c7e6e9ec355 620 'm',0,'j',0,'r',0,'n',0,'e',0,'t',0 /* bString iManufacturer - mjrnet */
mjr 3:3514575d4f86 621 };
mjr 3:3514575d4f86 622 return stringImanufacturerDescriptor;
mjr 3:3514575d4f86 623 }
mjr 3:3514575d4f86 624
mjr 54:fd77a6b2f76c 625 const uint8_t *USBJoystick::stringIserialDesc()
mjr 54:fd77a6b2f76c 626 {
mjr 54:fd77a6b2f76c 627 // set up a buffer with the length prefix and descriptor type
mjr 61:3c7e6e9ec355 628 const int numChars = 3 + 16 + 1 + 3;
mjr 61:3c7e6e9ec355 629 static uint8_t buf[2 + numChars*2];
mjr 54:fd77a6b2f76c 630 uint8_t *dst = buf;
mjr 54:fd77a6b2f76c 631 *dst++ = sizeof(buf);
mjr 54:fd77a6b2f76c 632 *dst++ = STRING_DESCRIPTOR;
mjr 54:fd77a6b2f76c 633
mjr 54:fd77a6b2f76c 634 // Create an ASCII version of our unique serial number string:
mjr 54:fd77a6b2f76c 635 //
mjr 61:3c7e6e9ec355 636 // PSCxxxxxxxxxxxxxxxxivvv
mjr 54:fd77a6b2f76c 637 //
mjr 54:fd77a6b2f76c 638 // where:
mjr 54:fd77a6b2f76c 639 //
mjr 54:fd77a6b2f76c 640 // xxx... = decimal representation of low 64 bits of CPU ID (16 hex digits)
mjr 54:fd77a6b2f76c 641 // i = interface type: first character is J if joystick is enabled,
mjr 54:fd77a6b2f76c 642 // L = LedWiz/control interface only, no input
mjr 54:fd77a6b2f76c 643 // J = Joystick + LedWiz
mjr 54:fd77a6b2f76c 644 // K = Keyboard + LedWiz
mjr 54:fd77a6b2f76c 645 // C = Joystick + Keyboard + LedWiz ("C" for combo)
mjr 61:3c7e6e9ec355 646 // vvv = version suffix
mjr 54:fd77a6b2f76c 647 //
mjr 54:fd77a6b2f76c 648 // The suffix for the interface type resolves a problem on some Windows systems
mjr 54:fd77a6b2f76c 649 // when switching between interface types. Windows can cache device information
mjr 54:fd77a6b2f76c 650 // that includes the interface descriptors, and it won't recognize a change in
mjr 54:fd77a6b2f76c 651 // the interfaces once the information is cached, causing connection failures.
mjr 54:fd77a6b2f76c 652 // The cache key includes the device serial number, though, so this can be
mjr 54:fd77a6b2f76c 653 // resolved by changing the serial number when the interface setup changes.
mjr 61:3c7e6e9ec355 654 char xbuf[numChars + 1];
mjr 54:fd77a6b2f76c 655 uint32_t x = SIM->UIDML;
mjr 54:fd77a6b2f76c 656 static char ifcCode[] = "LJKC";
mjr 63:5cd1a5f3a41b 657 sprintf(xbuf, "PSC%08lX%08lX%c008",
mjr 54:fd77a6b2f76c 658 SIM->UIDML,
mjr 54:fd77a6b2f76c 659 SIM->UIDL,
mjr 54:fd77a6b2f76c 660 ifcCode[(enableJoystick ? 0x01 : 0x00) | (useKB ? 0x02 : 0x00)]);
mjr 54:fd77a6b2f76c 661
mjr 54:fd77a6b2f76c 662 // copy the ascii bytes into the descriptor buffer, converting to unicode
mjr 54:fd77a6b2f76c 663 // 16-bit little-endian characters
mjr 54:fd77a6b2f76c 664 for (char *src = xbuf ; *src != '\0' && dst < buf + sizeof(buf) ; )
mjr 54:fd77a6b2f76c 665 {
mjr 54:fd77a6b2f76c 666 *dst++ = *src++;
mjr 54:fd77a6b2f76c 667 *dst++ = '\0';
mjr 54:fd77a6b2f76c 668 }
mjr 54:fd77a6b2f76c 669
mjr 54:fd77a6b2f76c 670 // return the buffer
mjr 54:fd77a6b2f76c 671 return buf;
mjr 3:3514575d4f86 672 }
mjr 3:3514575d4f86 673
mjr 48:058ace2aed1d 674 const uint8_t *USBJoystick::stringIproductDesc() {
mjr 48:058ace2aed1d 675 static const uint8_t stringIproductDescriptor[] = {
mjr 9:fd65b0a94720 676 0x28, /*bLength*/
mjr 3:3514575d4f86 677 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 678 'P',0,'i',0,'n',0,'s',0,'c',0,'a',0,'p',0,'e',0,
mjr 3:3514575d4f86 679 ' ',0,'C',0,'o',0,'n',0,'t',0,'r',0,'o',0,'l',0,
mjr 3:3514575d4f86 680 'l',0,'e',0,'r',0 /*String iProduct */
mjr 3:3514575d4f86 681 };
mjr 3:3514575d4f86 682 return stringIproductDescriptor;
mjr 3:3514575d4f86 683 }
mjr 35:e959ffba78fd 684
mjr 35:e959ffba78fd 685 #define DEFAULT_CONFIGURATION (1)
mjr 35:e959ffba78fd 686
mjr 48:058ace2aed1d 687 const uint8_t *USBJoystick::configurationDesc()
mjr 35:e959ffba78fd 688 {
mjr 63:5cd1a5f3a41b 689 int rptlen0 = reportDescLength(0);
mjr 63:5cd1a5f3a41b 690 int rptlen1 = reportDescLength(1);
mjr 63:5cd1a5f3a41b 691 if (useKB)
mjr 35:e959ffba78fd 692 {
mjr 63:5cd1a5f3a41b 693 const int cfglenKB =
mjr 63:5cd1a5f3a41b 694 ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 695 + (2 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 696 + (2 * HID_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 697 + (4 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 63:5cd1a5f3a41b 698 static uint8_t configurationDescriptorWithKB[] =
mjr 63:5cd1a5f3a41b 699 {
mjr 63:5cd1a5f3a41b 700 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 63:5cd1a5f3a41b 701 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 702 LSB(cfglenKB), // wTotalLength (LSB)
mjr 63:5cd1a5f3a41b 703 MSB(cfglenKB), // wTotalLength (MSB)
mjr 63:5cd1a5f3a41b 704 0x02, // bNumInterfaces - TWO INTERFACES (JOYSTICK + KEYBOARD)
mjr 63:5cd1a5f3a41b 705 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 63:5cd1a5f3a41b 706 0x00, // iConfiguration
mjr 63:5cd1a5f3a41b 707 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 63:5cd1a5f3a41b 708 C_POWER(0), // bMaxPower
mjr 63:5cd1a5f3a41b 709
mjr 63:5cd1a5f3a41b 710 // ***** INTERFACE 0 - JOYSTICK/LEDWIZ ******
mjr 63:5cd1a5f3a41b 711 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 712 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 713 0x00, // bInterfaceNumber
mjr 63:5cd1a5f3a41b 714 0x00, // bAlternateSetting
mjr 63:5cd1a5f3a41b 715 0x02, // bNumEndpoints
mjr 63:5cd1a5f3a41b 716 HID_CLASS, // bInterfaceClass
mjr 63:5cd1a5f3a41b 717 HID_SUBCLASS_NONE, // bInterfaceSubClass
mjr 63:5cd1a5f3a41b 718 HID_PROTOCOL_NONE, // bInterfaceProtocol
mjr 63:5cd1a5f3a41b 719 0x00, // iInterface
mjr 63:5cd1a5f3a41b 720
mjr 63:5cd1a5f3a41b 721 HID_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 722 HID_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 723 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 63:5cd1a5f3a41b 724 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 63:5cd1a5f3a41b 725 0x00, // bCountryCode
mjr 63:5cd1a5f3a41b 726 0x01, // bNumDescriptors
mjr 63:5cd1a5f3a41b 727 REPORT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 728 LSB(rptlen0), // wDescriptorLength (LSB)
mjr 63:5cd1a5f3a41b 729 MSB(rptlen0), // wDescriptorLength (MSB)
mjr 63:5cd1a5f3a41b 730
mjr 63:5cd1a5f3a41b 731 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 732 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 733 PHY_TO_DESC(EPINT_IN), // bEndpointAddress - EPINT == EP1
mjr 63:5cd1a5f3a41b 734 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 735 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 736 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 737 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 738
mjr 63:5cd1a5f3a41b 739 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 740 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 741 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress - EPINT == EP1
mjr 63:5cd1a5f3a41b 742 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 743 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 744 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 745 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 746
mjr 63:5cd1a5f3a41b 747 // ****** INTERFACE 1 - KEYBOARD ******
mjr 63:5cd1a5f3a41b 748 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 749 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 750 0x01, // bInterfaceNumber
mjr 63:5cd1a5f3a41b 751 0x00, // bAlternateSetting
mjr 63:5cd1a5f3a41b 752 0x02, // bNumEndpoints
mjr 63:5cd1a5f3a41b 753 HID_CLASS, // bInterfaceClass
mjr 63:5cd1a5f3a41b 754 HID_SUBCLASS_BOOT, // bInterfaceSubClass
mjr 63:5cd1a5f3a41b 755 HID_PROTOCOL_KB, // bInterfaceProtocol
mjr 63:5cd1a5f3a41b 756 0x00, // iInterface
mjr 63:5cd1a5f3a41b 757
mjr 63:5cd1a5f3a41b 758 HID_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 759 HID_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 760 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 63:5cd1a5f3a41b 761 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 63:5cd1a5f3a41b 762 0x00, // bCountryCode
mjr 63:5cd1a5f3a41b 763 0x01, // bNumDescriptors
mjr 63:5cd1a5f3a41b 764 REPORT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 765 LSB(rptlen1), // wDescriptorLength (LSB)
mjr 63:5cd1a5f3a41b 766 MSB(rptlen1), // wDescriptorLength (MSB)
mjr 63:5cd1a5f3a41b 767
mjr 63:5cd1a5f3a41b 768 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 769 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 770 PHY_TO_DESC(EP4IN), // bEndpointAddress
mjr 63:5cd1a5f3a41b 771 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 772 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 773 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 774 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 775
mjr 63:5cd1a5f3a41b 776 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 777 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 778 PHY_TO_DESC(EP4OUT), // bEndpointAddress
mjr 63:5cd1a5f3a41b 779 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 780 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 781 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 782 1, // bInterval (milliseconds)
mjr 61:3c7e6e9ec355 783
mjr 63:5cd1a5f3a41b 784 };
mjr 63:5cd1a5f3a41b 785
mjr 63:5cd1a5f3a41b 786 // Keyboard + joystick interfaces
mjr 63:5cd1a5f3a41b 787 return configurationDescriptorWithKB;
mjr 63:5cd1a5f3a41b 788 }
mjr 63:5cd1a5f3a41b 789 else
mjr 63:5cd1a5f3a41b 790 {
mjr 63:5cd1a5f3a41b 791 // No keyboard - joystick interface only
mjr 63:5cd1a5f3a41b 792 const int cfglenNoKB =
mjr 63:5cd1a5f3a41b 793 ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 794 + (1 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 795 + (1 * HID_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 796 + (2 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 63:5cd1a5f3a41b 797 static uint8_t configurationDescriptorNoKB[] =
mjr 63:5cd1a5f3a41b 798 {
mjr 63:5cd1a5f3a41b 799 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 63:5cd1a5f3a41b 800 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 801 LSB(cfglenNoKB), // wTotalLength (LSB)
mjr 63:5cd1a5f3a41b 802 MSB(cfglenNoKB), // wTotalLength (MSB)
mjr 63:5cd1a5f3a41b 803 0x01, // bNumInterfaces
mjr 63:5cd1a5f3a41b 804 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 63:5cd1a5f3a41b 805 0x00, // iConfiguration
mjr 63:5cd1a5f3a41b 806 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 63:5cd1a5f3a41b 807 C_POWER(0), // bMaxPower
mjr 63:5cd1a5f3a41b 808
mjr 63:5cd1a5f3a41b 809 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 810 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 811 0x00, // bInterfaceNumber
mjr 63:5cd1a5f3a41b 812 0x00, // bAlternateSetting
mjr 63:5cd1a5f3a41b 813 0x02, // bNumEndpoints
mjr 63:5cd1a5f3a41b 814 HID_CLASS, // bInterfaceClass
mjr 63:5cd1a5f3a41b 815 HID_SUBCLASS_NONE, // bInterfaceSubClass
mjr 63:5cd1a5f3a41b 816 HID_PROTOCOL_NONE, // bInterfaceProtocol (keyboard)
mjr 63:5cd1a5f3a41b 817 0x00, // iInterface
mjr 63:5cd1a5f3a41b 818
mjr 63:5cd1a5f3a41b 819 HID_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 820 HID_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 821 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 63:5cd1a5f3a41b 822 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 63:5cd1a5f3a41b 823 0x00, // bCountryCode
mjr 63:5cd1a5f3a41b 824 0x01, // bNumDescriptors
mjr 63:5cd1a5f3a41b 825 REPORT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 826 (uint8_t)(LSB(rptlen0)), // wDescriptorLength (LSB)
mjr 63:5cd1a5f3a41b 827 (uint8_t)(MSB(rptlen0)), // wDescriptorLength (MSB)
mjr 63:5cd1a5f3a41b 828
mjr 63:5cd1a5f3a41b 829 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 830 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 831 PHY_TO_DESC(EPINT_IN), // bEndpointAddress
mjr 63:5cd1a5f3a41b 832 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 833 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 834 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 835 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 836
mjr 63:5cd1a5f3a41b 837 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 838 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 839 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress
mjr 63:5cd1a5f3a41b 840 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 841 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 842 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 843 1 // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 844 };
mjr 63:5cd1a5f3a41b 845
mjr 63:5cd1a5f3a41b 846 return configurationDescriptorNoKB;
mjr 63:5cd1a5f3a41b 847 }
mjr 35:e959ffba78fd 848 }
mjr 35:e959ffba78fd 849
mjr 35:e959ffba78fd 850 // Set the configuration. We need to set up the endpoints for
mjr 35:e959ffba78fd 851 // our active interfaces.
mjr 35:e959ffba78fd 852 bool USBJoystick::USBCallback_setConfiguration(uint8_t configuration)
mjr 35:e959ffba78fd 853 {
mjr 35:e959ffba78fd 854 // we only have one valid configuration
mjr 35:e959ffba78fd 855 if (configuration != DEFAULT_CONFIGURATION)
mjr 35:e959ffba78fd 856 return false;
mjr 35:e959ffba78fd 857
mjr 63:5cd1a5f3a41b 858 // Configure endpoint 1 - we use this in all cases, for either
mjr 63:5cd1a5f3a41b 859 // the combined joystick/ledwiz interface or just the ledwiz interface
mjr 48:058ace2aed1d 860 addEndpoint(EPINT_IN, MAX_REPORT_JS_TX + 1);
mjr 48:058ace2aed1d 861 addEndpoint(EPINT_OUT, MAX_REPORT_JS_RX + 1);
mjr 48:058ace2aed1d 862 readStart(EPINT_OUT, MAX_REPORT_JS_TX + 1);
mjr 63:5cd1a5f3a41b 863
mjr 63:5cd1a5f3a41b 864 // if the keyboard is enabled, configure endpoint 4 for the kb interface
mjr 63:5cd1a5f3a41b 865 if (useKB)
mjr 63:5cd1a5f3a41b 866 {
mjr 63:5cd1a5f3a41b 867 addEndpoint(EP4IN, MAX_REPORT_KB_TX + 1);
mjr 63:5cd1a5f3a41b 868 addEndpoint(EP4OUT, MAX_REPORT_KB_RX + 1);
mjr 63:5cd1a5f3a41b 869 readStart(EP4OUT, MAX_REPORT_KB_TX + 1);
mjr 63:5cd1a5f3a41b 870 }
mjr 35:e959ffba78fd 871
mjr 35:e959ffba78fd 872 // success
mjr 35:e959ffba78fd 873 return true;
mjr 35:e959ffba78fd 874 }
mjr 35:e959ffba78fd 875
mjr 38:091e511ce8a0 876 // Handle incoming messages on the joystick/LedWiz interface = endpoint 1.
mjr 38:091e511ce8a0 877 // This interface receives LedWiz protocol commands and commands using our
mjr 38:091e511ce8a0 878 // custom LedWiz protocol extensions.
mjr 38:091e511ce8a0 879 //
mjr 38:091e511ce8a0 880 // We simply queue the messages in our circular buffer for processing in
mjr 38:091e511ce8a0 881 // the main loop. The circular buffer object is designed for safe access
mjr 38:091e511ce8a0 882 // from the interrupt handler using the rule that only the interrupt
mjr 38:091e511ce8a0 883 // handler can change the write pointer, and only the regular code can
mjr 38:091e511ce8a0 884 // change the read pointer.
mjr 38:091e511ce8a0 885 bool USBJoystick::EP1_OUT_callback()
mjr 38:091e511ce8a0 886 {
mjr 38:091e511ce8a0 887 // Read this message
mjr 63:5cd1a5f3a41b 888 union {
mjr 63:5cd1a5f3a41b 889 LedWizMsg msg;
mjr 63:5cd1a5f3a41b 890 uint8_t buf[MAX_HID_REPORT_SIZE];
mjr 63:5cd1a5f3a41b 891 } buf;
mjr 38:091e511ce8a0 892 uint32_t bytesRead = 0;
mjr 63:5cd1a5f3a41b 893 USBDevice::readEP(EP1OUT, buf.buf, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 894
mjr 63:5cd1a5f3a41b 895 // if it's the right length, queue it to our circular buffer
mjr 63:5cd1a5f3a41b 896 if (bytesRead == 8)
mjr 63:5cd1a5f3a41b 897 lwbuf.write(buf.msg);
mjr 38:091e511ce8a0 898
mjr 38:091e511ce8a0 899 // start the next read
mjr 39:b3815a1c3802 900 return readStart(EP1OUT, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 901 }
mjr 63:5cd1a5f3a41b 902
mjr 63:5cd1a5f3a41b 903 // Handle incoming messages on the keyboard interface = endpoint 4.
mjr 63:5cd1a5f3a41b 904 // The host uses this to send updates for the keyboard indicator LEDs
mjr 63:5cd1a5f3a41b 905 // (caps lock, num lock, etc). We don't do anything with these, but
mjr 63:5cd1a5f3a41b 906 // we have to read them to keep the pipe open.
mjr 63:5cd1a5f3a41b 907 bool USBJoystick::EP4_OUT_callback()
mjr 63:5cd1a5f3a41b 908 {
mjr 63:5cd1a5f3a41b 909 // read this message
mjr 63:5cd1a5f3a41b 910 uint32_t bytesRead = 0;
mjr 63:5cd1a5f3a41b 911 uint8_t led[MAX_HID_REPORT_SIZE];
mjr 63:5cd1a5f3a41b 912 USBDevice::readEP(EP4OUT, led, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 63:5cd1a5f3a41b 913
mjr 63:5cd1a5f3a41b 914 // start the next read
mjr 63:5cd1a5f3a41b 915 return readStart(EP4OUT, MAX_HID_REPORT_SIZE);
mjr 63:5cd1a5f3a41b 916 }
mjr 63:5cd1a5f3a41b 917