An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Sat Apr 30 17:43:38 2016 +0000
Revision:
54:fd77a6b2f76c
Parent:
53:9b2611964afc
Child:
61:3c7e6e9ec355
TLC5940 with SPI DMA setup in interrupt handler (not quite working)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 3:3514575d4f86 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
mjr 3:3514575d4f86 2 * Modified Mouse code for Joystick - WH 2012
mjr 3:3514575d4f86 3 *
mjr 3:3514575d4f86 4 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 3:3514575d4f86 5 * and associated documentation files (the "Software"), to deal in the Software without
mjr 3:3514575d4f86 6 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 3:3514575d4f86 7 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 3:3514575d4f86 8 * Software is furnished to do so, subject to the following conditions:
mjr 3:3514575d4f86 9 *
mjr 3:3514575d4f86 10 * The above copyright notice and this permission notice shall be included in all copies or
mjr 3:3514575d4f86 11 * substantial portions of the Software.
mjr 3:3514575d4f86 12 *
mjr 3:3514575d4f86 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 3:3514575d4f86 14 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 3:3514575d4f86 15 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 3:3514575d4f86 16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 3:3514575d4f86 17 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 3:3514575d4f86 18 */
mjr 3:3514575d4f86 19
mjr 3:3514575d4f86 20 #include "stdint.h"
mjr 3:3514575d4f86 21 #include "USBJoystick.h"
mjr 21:5048e16cc9ef 22
mjr 21:5048e16cc9ef 23 #include "config.h" // Pinscape configuration
mjr 21:5048e16cc9ef 24
mjr 35:e959ffba78fd 25
mjr 35:e959ffba78fd 26
mjr 21:5048e16cc9ef 27 // Length of our joystick reports. Important: This must be kept in sync
mjr 21:5048e16cc9ef 28 // with the actual joystick report format sent in update().
mjr 21:5048e16cc9ef 29 const int reportLen = 14;
mjr 21:5048e16cc9ef 30
mjr 48:058ace2aed1d 31 // Maximum report sizes
mjr 48:058ace2aed1d 32 const int MAX_REPORT_JS_TX = reportLen;
mjr 48:058ace2aed1d 33 const int MAX_REPORT_JS_RX = 8;
mjr 48:058ace2aed1d 34 const int MAX_REPORT_KB_TX = 8;
mjr 48:058ace2aed1d 35 const int MAX_REPORT_KB_RX = 4;
mjr 48:058ace2aed1d 36
mjr 11:bd9da7088e6e 37 bool USBJoystick::update(int16_t x, int16_t y, int16_t z, uint32_t buttons, uint16_t status)
mjr 3:3514575d4f86 38 {
mjr 3:3514575d4f86 39 _x = x;
mjr 3:3514575d4f86 40 _y = y;
mjr 3:3514575d4f86 41 _z = z;
mjr 11:bd9da7088e6e 42 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 43 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 10:976666ffa4ef 44 _status = status;
mjr 3:3514575d4f86 45
mjr 3:3514575d4f86 46 // send the report
mjr 3:3514575d4f86 47 return update();
mjr 3:3514575d4f86 48 }
mjr 35:e959ffba78fd 49
mjr 11:bd9da7088e6e 50 bool USBJoystick::update()
mjr 11:bd9da7088e6e 51 {
mjr 3:3514575d4f86 52 HID_REPORT report;
mjr 11:bd9da7088e6e 53
mjr 3:3514575d4f86 54 // Fill the report according to the Joystick Descriptor
mjr 6:cc35eb643e8f 55 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 53:9b2611964afc 56 #define putbe(idx, val) (report.data[(idx)+1] = (val) & 0xff, report.data[idx] = ((val) >> 8) & 0xff)
mjr 40:cc0d9814522b 57 #define putl(idx, val) (put(idx, val), put((idx)+2, (val) >> 16))
mjr 54:fd77a6b2f76c 58 #define putlbe(idx, val) (putbe((idx)+2, val), putbe(idx, (val) >> 16))
mjr 10:976666ffa4ef 59 put(0, _status);
mjr 40:cc0d9814522b 60 put(2, 0); // second word of status - zero in high bit identifies as normal joystick report
mjr 11:bd9da7088e6e 61 put(4, _buttonsLo);
mjr 11:bd9da7088e6e 62 put(6, _buttonsHi);
mjr 11:bd9da7088e6e 63 put(8, _x);
mjr 11:bd9da7088e6e 64 put(10, _y);
mjr 11:bd9da7088e6e 65 put(12, _z);
mjr 21:5048e16cc9ef 66
mjr 21:5048e16cc9ef 67 // important: keep reportLen in sync with the actual byte length of
mjr 21:5048e16cc9ef 68 // the reports we build here
mjr 11:bd9da7088e6e 69 report.length = reportLen;
mjr 3:3514575d4f86 70
mjr 5:a70c0bce770d 71 // send the report
mjr 10:976666ffa4ef 72 return sendTO(&report, 100);
mjr 10:976666ffa4ef 73 }
mjr 10:976666ffa4ef 74
mjr 35:e959ffba78fd 75 bool USBJoystick::kbUpdate(uint8_t data[8])
mjr 35:e959ffba78fd 76 {
mjr 35:e959ffba78fd 77 // set up the report
mjr 35:e959ffba78fd 78 HID_REPORT report;
mjr 35:e959ffba78fd 79 report.data[0] = REPORT_ID_KB; // report ID = keyboard
mjr 35:e959ffba78fd 80 memcpy(&report.data[1], data, 8); // copy the kb report data
mjr 35:e959ffba78fd 81 report.length = 9; // length = ID prefix + kb report length
mjr 35:e959ffba78fd 82
mjr 35:e959ffba78fd 83 // send it to endpoint 4 (the keyboard interface endpoint)
mjr 35:e959ffba78fd 84 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 85 }
mjr 35:e959ffba78fd 86
mjr 35:e959ffba78fd 87 bool USBJoystick::mediaUpdate(uint8_t data)
mjr 35:e959ffba78fd 88 {
mjr 35:e959ffba78fd 89 // set up the report
mjr 35:e959ffba78fd 90 HID_REPORT report;
mjr 35:e959ffba78fd 91 report.data[0] = REPORT_ID_MEDIA; // report ID = media
mjr 35:e959ffba78fd 92 report.data[1] = data; // key pressed bits
mjr 35:e959ffba78fd 93 report.length = 2;
mjr 35:e959ffba78fd 94
mjr 35:e959ffba78fd 95 // send it
mjr 35:e959ffba78fd 96 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 97 }
mjr 35:e959ffba78fd 98
mjr 52:8298b2a73eb2 99 bool USBJoystick::sendPlungerStatus(
mjr 52:8298b2a73eb2 100 int npix, int edgePos, int dir, uint32_t avgScanTime, uint32_t processingTime)
mjr 52:8298b2a73eb2 101 {
mjr 52:8298b2a73eb2 102 HID_REPORT report;
mjr 52:8298b2a73eb2 103
mjr 52:8298b2a73eb2 104 // Set the special status bits to indicate it's an extended
mjr 52:8298b2a73eb2 105 // exposure report.
mjr 52:8298b2a73eb2 106 put(0, 0x87FF);
mjr 52:8298b2a73eb2 107
mjr 52:8298b2a73eb2 108 // start at the second byte
mjr 52:8298b2a73eb2 109 int ofs = 2;
mjr 52:8298b2a73eb2 110
mjr 52:8298b2a73eb2 111 // write the report subtype (0) to byte 2
mjr 52:8298b2a73eb2 112 report.data[ofs++] = 0;
mjr 52:8298b2a73eb2 113
mjr 52:8298b2a73eb2 114 // write the number of pixels to bytes 3-4
mjr 52:8298b2a73eb2 115 put(ofs, uint16_t(npix));
mjr 52:8298b2a73eb2 116 ofs += 2;
mjr 52:8298b2a73eb2 117
mjr 52:8298b2a73eb2 118 // write the shadow edge position to bytes 5-6
mjr 52:8298b2a73eb2 119 put(ofs, uint16_t(edgePos));
mjr 52:8298b2a73eb2 120 ofs += 2;
mjr 52:8298b2a73eb2 121
mjr 52:8298b2a73eb2 122 // write the flags to byte 7
mjr 52:8298b2a73eb2 123 extern bool plungerCalMode;
mjr 52:8298b2a73eb2 124 uint8_t flags = 0;
mjr 52:8298b2a73eb2 125 if (dir == 1)
mjr 52:8298b2a73eb2 126 flags |= 0x01;
mjr 52:8298b2a73eb2 127 else if (dir == -1)
mjr 52:8298b2a73eb2 128 flags |= 0x02;
mjr 52:8298b2a73eb2 129 if (plungerCalMode)
mjr 52:8298b2a73eb2 130 flags |= 0x04;
mjr 52:8298b2a73eb2 131 report.data[ofs++] = flags;
mjr 52:8298b2a73eb2 132
mjr 52:8298b2a73eb2 133 // write the average scan time in 10us intervals to bytes 8-10
mjr 52:8298b2a73eb2 134 uint32_t t = uint32_t(avgScanTime / 10);
mjr 52:8298b2a73eb2 135 report.data[ofs++] = t & 0xff;
mjr 52:8298b2a73eb2 136 report.data[ofs++] = (t >> 8) & 0xff;
mjr 52:8298b2a73eb2 137 report.data[ofs++] = (t >> 16) & 0xff;
mjr 52:8298b2a73eb2 138
mjr 52:8298b2a73eb2 139 // write the processing time to bytes 11-13
mjr 52:8298b2a73eb2 140 t = uint32_t(processingTime / 10);
mjr 52:8298b2a73eb2 141 report.data[ofs++] = t & 0xff;
mjr 52:8298b2a73eb2 142 report.data[ofs++] = (t >> 8) & 0xff;
mjr 52:8298b2a73eb2 143 report.data[ofs++] = (t >> 16) & 0xff;
mjr 52:8298b2a73eb2 144
mjr 52:8298b2a73eb2 145 // send the report
mjr 52:8298b2a73eb2 146 report.length = reportLen;
mjr 52:8298b2a73eb2 147 return sendTO(&report, 100);
mjr 52:8298b2a73eb2 148 }
mjr 52:8298b2a73eb2 149
mjr 52:8298b2a73eb2 150 bool USBJoystick::sendPlungerPix(int &idx, int npix, const uint8_t *pix)
mjr 10:976666ffa4ef 151 {
mjr 10:976666ffa4ef 152 HID_REPORT report;
mjr 10:976666ffa4ef 153
mjr 10:976666ffa4ef 154 // Set the special status bits to indicate it's an exposure report.
mjr 10:976666ffa4ef 155 // The high 5 bits of the status word are set to 10000, and the
mjr 10:976666ffa4ef 156 // low 11 bits are the current pixel index.
mjr 10:976666ffa4ef 157 uint16_t s = idx | 0x8000;
mjr 10:976666ffa4ef 158 put(0, s);
mjr 25:e22b88bd783a 159
mjr 25:e22b88bd783a 160 // start at the second byte
mjr 25:e22b88bd783a 161 int ofs = 2;
mjr 25:e22b88bd783a 162
mjr 47:df7a88cd249c 163 // now fill out the remaining bytes with exposure values
mjr 11:bd9da7088e6e 164 report.length = reportLen;
mjr 47:df7a88cd249c 165 for ( ; ofs < report.length ; ++ofs)
mjr 47:df7a88cd249c 166 report.data[ofs] = (idx < npix ? pix[idx++] : 0);
mjr 10:976666ffa4ef 167
mjr 10:976666ffa4ef 168 // send the report
mjr 35:e959ffba78fd 169 return sendTO(&report, 100);
mjr 3:3514575d4f86 170 }
mjr 9:fd65b0a94720 171
mjr 53:9b2611964afc 172 bool USBJoystick::reportID(int index)
mjr 40:cc0d9814522b 173 {
mjr 40:cc0d9814522b 174 HID_REPORT report;
mjr 40:cc0d9814522b 175
mjr 40:cc0d9814522b 176 // initially fill the report with zeros
mjr 40:cc0d9814522b 177 memset(report.data, 0, sizeof(report.data));
mjr 40:cc0d9814522b 178
mjr 40:cc0d9814522b 179 // Set the special status bits to indicate that it's an ID report
mjr 40:cc0d9814522b 180 uint16_t s = 0x9000;
mjr 40:cc0d9814522b 181 put(0, s);
mjr 40:cc0d9814522b 182
mjr 53:9b2611964afc 183 // add the requested ID index
mjr 53:9b2611964afc 184 report.data[2] = (uint8_t)index;
mjr 53:9b2611964afc 185
mjr 53:9b2611964afc 186 // figure out which ID we're reporting
mjr 53:9b2611964afc 187 switch (index)
mjr 53:9b2611964afc 188 {
mjr 53:9b2611964afc 189 case 1:
mjr 53:9b2611964afc 190 // KL25Z CPU ID
mjr 53:9b2611964afc 191 putbe(3, SIM->UIDMH);
mjr 53:9b2611964afc 192 putlbe(5, SIM->UIDML);
mjr 53:9b2611964afc 193 putlbe(9, SIM->UIDL);
mjr 53:9b2611964afc 194 break;
mjr 53:9b2611964afc 195
mjr 53:9b2611964afc 196 case 2:
mjr 53:9b2611964afc 197 // OpenSDA ID. Copy the low-order 80 bits of the OpenSDA ID.
mjr 53:9b2611964afc 198 // (The stored value is 128 bits = 16 bytes; we only want the last
mjr 53:9b2611964afc 199 // 80 bits = 10 bytes. So skip ahead 16 and back up 10 to get
mjr 53:9b2611964afc 200 // the starting point.)
mjr 53:9b2611964afc 201 extern const char *getOpenSDAID();
mjr 53:9b2611964afc 202 memcpy(&report.data[3], getOpenSDAID() + 16 - 10, 10);
mjr 53:9b2611964afc 203 break;
mjr 53:9b2611964afc 204 }
mjr 53:9b2611964afc 205
mjr 53:9b2611964afc 206 // send the report
mjr 53:9b2611964afc 207 report.length = reportLen;
mjr 53:9b2611964afc 208 return sendTO(&report, 100);
mjr 53:9b2611964afc 209 }
mjr 53:9b2611964afc 210
mjr 53:9b2611964afc 211 bool USBJoystick::reportBuildInfo(const char *date)
mjr 53:9b2611964afc 212 {
mjr 53:9b2611964afc 213 HID_REPORT report;
mjr 53:9b2611964afc 214
mjr 53:9b2611964afc 215 // initially fill the report with zeros
mjr 53:9b2611964afc 216 memset(report.data, 0, sizeof(report.data));
mjr 53:9b2611964afc 217
mjr 53:9b2611964afc 218 // Set the special status bits to indicate that it's a build
mjr 53:9b2611964afc 219 // info report
mjr 53:9b2611964afc 220 uint16_t s = 0xA000;
mjr 53:9b2611964afc 221 put(0, s);
mjr 53:9b2611964afc 222
mjr 53:9b2611964afc 223 // Parse the date. This is given in the standard __DATE__ " " __TIME
mjr 53:9b2611964afc 224 // macro format, "Mon dd yyyy hh:mm:ss" (e.g., "Feb 16 2016 12:15:06").
mjr 53:9b2611964afc 225 static const char mon[][4] = {
mjr 53:9b2611964afc 226 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
mjr 53:9b2611964afc 227 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
mjr 53:9b2611964afc 228 };
mjr 53:9b2611964afc 229 long dd = (atol(date + 7) * 10000L) // YYYY0000
mjr 53:9b2611964afc 230 + (atol(date + 4)); // 000000DD
mjr 53:9b2611964afc 231 for (int i = 0 ; i < 12 ; ++i)
mjr 53:9b2611964afc 232 {
mjr 53:9b2611964afc 233 if (memcmp(mon[i], date, 3) == 0)
mjr 53:9b2611964afc 234 {
mjr 53:9b2611964afc 235 dd += (i+1)*100; // 0000MM00
mjr 53:9b2611964afc 236 break;
mjr 53:9b2611964afc 237 }
mjr 53:9b2611964afc 238 }
mjr 53:9b2611964afc 239
mjr 53:9b2611964afc 240 // parse the time into a long formatted as decimal HHMMSS (e.g.,
mjr 53:9b2611964afc 241 // "12:15:06" turns into 121506 decimal)
mjr 53:9b2611964afc 242 long tt = (atol(date+12)*10000)
mjr 53:9b2611964afc 243 + (atol(date+15)*100)
mjr 53:9b2611964afc 244 + (atol(date+18));
mjr 53:9b2611964afc 245
mjr 53:9b2611964afc 246 // store the build date and time
mjr 53:9b2611964afc 247 putl(2, dd);
mjr 53:9b2611964afc 248 putl(6, tt);
mjr 40:cc0d9814522b 249
mjr 40:cc0d9814522b 250 // send the report
mjr 40:cc0d9814522b 251 report.length = reportLen;
mjr 40:cc0d9814522b 252 return sendTO(&report, 100);
mjr 40:cc0d9814522b 253 }
mjr 40:cc0d9814522b 254
mjr 52:8298b2a73eb2 255 bool USBJoystick::reportConfigVar(const uint8_t *data)
mjr 52:8298b2a73eb2 256 {
mjr 52:8298b2a73eb2 257 HID_REPORT report;
mjr 52:8298b2a73eb2 258
mjr 52:8298b2a73eb2 259 // initially fill the report with zeros
mjr 52:8298b2a73eb2 260 memset(report.data, 0, sizeof(report.data));
mjr 52:8298b2a73eb2 261
mjr 52:8298b2a73eb2 262 // Set the special status bits to indicate that it's a config
mjr 52:8298b2a73eb2 263 // variable report
mjr 52:8298b2a73eb2 264 uint16_t s = 0x9800;
mjr 52:8298b2a73eb2 265 put(0, s);
mjr 52:8298b2a73eb2 266
mjr 52:8298b2a73eb2 267 // Copy the variable data (7 bytes, starting with the variable ID)
mjr 52:8298b2a73eb2 268 memcpy(report.data + 2, data, 7);
mjr 52:8298b2a73eb2 269
mjr 52:8298b2a73eb2 270 // send the report
mjr 52:8298b2a73eb2 271 report.length = reportLen;
mjr 52:8298b2a73eb2 272 return sendTO(&report, 100);
mjr 52:8298b2a73eb2 273 }
mjr 52:8298b2a73eb2 274
mjr 52:8298b2a73eb2 275 bool USBJoystick::reportConfig(
mjr 52:8298b2a73eb2 276 int numOutputs, int unitNo,
mjr 52:8298b2a73eb2 277 int plungerZero, int plungerMax, int plungerRlsTime,
mjr 52:8298b2a73eb2 278 bool configured)
mjr 33:d832bcab089e 279 {
mjr 33:d832bcab089e 280 HID_REPORT report;
mjr 33:d832bcab089e 281
mjr 33:d832bcab089e 282 // initially fill the report with zeros
mjr 33:d832bcab089e 283 memset(report.data, 0, sizeof(report.data));
mjr 33:d832bcab089e 284
mjr 33:d832bcab089e 285 // Set the special status bits to indicate that it's a config report.
mjr 33:d832bcab089e 286 uint16_t s = 0x8800;
mjr 33:d832bcab089e 287 put(0, s);
mjr 33:d832bcab089e 288
mjr 33:d832bcab089e 289 // write the number of configured outputs
mjr 33:d832bcab089e 290 put(2, numOutputs);
mjr 33:d832bcab089e 291
mjr 33:d832bcab089e 292 // write the unit number
mjr 33:d832bcab089e 293 put(4, unitNo);
mjr 33:d832bcab089e 294
mjr 35:e959ffba78fd 295 // write the plunger zero and max values
mjr 35:e959ffba78fd 296 put(6, plungerZero);
mjr 35:e959ffba78fd 297 put(8, plungerMax);
mjr 52:8298b2a73eb2 298 report.data[10] = uint8_t(plungerRlsTime);
mjr 35:e959ffba78fd 299
mjr 40:cc0d9814522b 300 // write the status bits:
mjr 40:cc0d9814522b 301 // 0x01 -> configuration loaded
mjr 52:8298b2a73eb2 302 report.data[11] = (configured ? 0x01 : 0x00);
mjr 40:cc0d9814522b 303
mjr 33:d832bcab089e 304 // send the report
mjr 33:d832bcab089e 305 report.length = reportLen;
mjr 35:e959ffba78fd 306 return sendTO(&report, 100);
mjr 33:d832bcab089e 307 }
mjr 33:d832bcab089e 308
mjr 33:d832bcab089e 309 bool USBJoystick::move(int16_t x, int16_t y)
mjr 33:d832bcab089e 310 {
mjr 3:3514575d4f86 311 _x = x;
mjr 3:3514575d4f86 312 _y = y;
mjr 3:3514575d4f86 313 return update();
mjr 3:3514575d4f86 314 }
mjr 3:3514575d4f86 315
mjr 33:d832bcab089e 316 bool USBJoystick::setZ(int16_t z)
mjr 33:d832bcab089e 317 {
mjr 3:3514575d4f86 318 _z = z;
mjr 3:3514575d4f86 319 return update();
mjr 3:3514575d4f86 320 }
mjr 3:3514575d4f86 321
mjr 33:d832bcab089e 322 bool USBJoystick::buttons(uint32_t buttons)
mjr 33:d832bcab089e 323 {
mjr 11:bd9da7088e6e 324 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 325 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 3:3514575d4f86 326 return update();
mjr 3:3514575d4f86 327 }
mjr 21:5048e16cc9ef 328
mjr 21:5048e16cc9ef 329 bool USBJoystick::updateStatus(uint32_t status)
mjr 21:5048e16cc9ef 330 {
mjr 21:5048e16cc9ef 331 HID_REPORT report;
mjr 21:5048e16cc9ef 332
mjr 21:5048e16cc9ef 333 // Fill the report according to the Joystick Descriptor
mjr 21:5048e16cc9ef 334 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 21:5048e16cc9ef 335 memset(report.data, 0, reportLen);
mjr 21:5048e16cc9ef 336 put(0, status);
mjr 21:5048e16cc9ef 337 report.length = reportLen;
mjr 21:5048e16cc9ef 338
mjr 21:5048e16cc9ef 339 // send the report
mjr 21:5048e16cc9ef 340 return sendTO(&report, 100);
mjr 21:5048e16cc9ef 341 }
mjr 21:5048e16cc9ef 342
mjr 3:3514575d4f86 343 void USBJoystick::_init() {
mjr 3:3514575d4f86 344
mjr 3:3514575d4f86 345 _x = 0;
mjr 3:3514575d4f86 346 _y = 0;
mjr 3:3514575d4f86 347 _z = 0;
mjr 11:bd9da7088e6e 348 _buttonsLo = 0x0000;
mjr 11:bd9da7088e6e 349 _buttonsHi = 0x0000;
mjr 9:fd65b0a94720 350 _status = 0;
mjr 3:3514575d4f86 351 }
mjr 3:3514575d4f86 352
mjr 3:3514575d4f86 353
mjr 35:e959ffba78fd 354 // --------------------------------------------------------------------------
mjr 35:e959ffba78fd 355 //
mjr 35:e959ffba78fd 356 // USB HID Report Descriptor - Joystick
mjr 35:e959ffba78fd 357 //
mjr 48:058ace2aed1d 358 static const uint8_t reportDescriptorJS[] =
mjr 35:e959ffba78fd 359 {
mjr 35:e959ffba78fd 360 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 35:e959ffba78fd 361 USAGE(1), 0x04, // Joystick
mjr 35:e959ffba78fd 362 COLLECTION(1), 0x01, // Application
mjr 35:e959ffba78fd 363
mjr 35:e959ffba78fd 364 // input report (device to host)
mjr 35:e959ffba78fd 365
mjr 35:e959ffba78fd 366 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 35:e959ffba78fd 367 USAGE(1), 0x00, // undefined device control
mjr 35:e959ffba78fd 368 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 35:e959ffba78fd 369 LOGICAL_MAXIMUM(1), 0xFF,
mjr 35:e959ffba78fd 370 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 35:e959ffba78fd 371 REPORT_COUNT(1), 0x04, // 4 reports (4 bytes)
mjr 35:e959ffba78fd 372 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 373
mjr 35:e959ffba78fd 374 USAGE_PAGE(1), 0x09, // Buttons
mjr 35:e959ffba78fd 375 USAGE_MINIMUM(1), 0x01, // { buttons }
mjr 35:e959ffba78fd 376 USAGE_MAXIMUM(1), 0x20, // { 1-32 }
mjr 35:e959ffba78fd 377 LOGICAL_MINIMUM(1), 0x00, // 1-bit buttons - 0...
mjr 35:e959ffba78fd 378 LOGICAL_MAXIMUM(1), 0x01, // ...to 1
mjr 35:e959ffba78fd 379 REPORT_SIZE(1), 0x01, // 1 bit per report
mjr 35:e959ffba78fd 380 REPORT_COUNT(1), 0x20, // 32 reports
mjr 35:e959ffba78fd 381 UNIT_EXPONENT(1), 0x00, // Unit_Exponent (0)
mjr 35:e959ffba78fd 382 UNIT(1), 0x00, // Unit (None)
mjr 35:e959ffba78fd 383 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 384
mjr 35:e959ffba78fd 385 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 35:e959ffba78fd 386 USAGE(1), 0x30, // X axis
mjr 35:e959ffba78fd 387 USAGE(1), 0x31, // Y axis
mjr 35:e959ffba78fd 388 USAGE(1), 0x32, // Z axis
mjr 35:e959ffba78fd 389 LOGICAL_MINIMUM(2), 0x00,0xF0, // each value ranges -4096
mjr 35:e959ffba78fd 390 LOGICAL_MAXIMUM(2), 0x00,0x10, // ...to +4096
mjr 35:e959ffba78fd 391 REPORT_SIZE(1), 0x10, // 16 bits per report
mjr 35:e959ffba78fd 392 REPORT_COUNT(1), 0x03, // 3 reports (X, Y, Z)
mjr 35:e959ffba78fd 393 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 9:fd65b0a94720 394
mjr 35:e959ffba78fd 395 // output report (host to device)
mjr 35:e959ffba78fd 396 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 35:e959ffba78fd 397 REPORT_COUNT(1), 0x08, // output report count - 8-byte LedWiz format
mjr 35:e959ffba78fd 398 0x09, 0x01, // usage
mjr 35:e959ffba78fd 399 0x91, 0x01, // Output (array)
mjr 35:e959ffba78fd 400
mjr 35:e959ffba78fd 401 END_COLLECTION(0)
mjr 35:e959ffba78fd 402 };
mjr 35:e959ffba78fd 403
mjr 35:e959ffba78fd 404 //
mjr 35:e959ffba78fd 405 // USB HID Report Descriptor - Keyboard/Media Control
mjr 35:e959ffba78fd 406 //
mjr 48:058ace2aed1d 407 static const uint8_t reportDescriptorKB[] =
mjr 35:e959ffba78fd 408 {
mjr 35:e959ffba78fd 409 USAGE_PAGE(1), 0x01, // Generic Desktop
mjr 35:e959ffba78fd 410 USAGE(1), 0x06, // Keyboard
mjr 35:e959ffba78fd 411 COLLECTION(1), 0x01, // Application
mjr 35:e959ffba78fd 412 REPORT_ID(1), REPORT_ID_KB,
mjr 10:976666ffa4ef 413
mjr 35:e959ffba78fd 414 USAGE_PAGE(1), 0x07, // Key Codes
mjr 35:e959ffba78fd 415 USAGE_MINIMUM(1), 0xE0,
mjr 35:e959ffba78fd 416 USAGE_MAXIMUM(1), 0xE7,
mjr 35:e959ffba78fd 417 LOGICAL_MINIMUM(1), 0x00,
mjr 35:e959ffba78fd 418 LOGICAL_MAXIMUM(1), 0x01,
mjr 35:e959ffba78fd 419 REPORT_SIZE(1), 0x01,
mjr 35:e959ffba78fd 420 REPORT_COUNT(1), 0x08,
mjr 35:e959ffba78fd 421 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 422 REPORT_COUNT(1), 0x01,
mjr 35:e959ffba78fd 423 REPORT_SIZE(1), 0x08,
mjr 35:e959ffba78fd 424 INPUT(1), 0x01, // Constant
mjr 35:e959ffba78fd 425
mjr 35:e959ffba78fd 426 REPORT_COUNT(1), 0x05,
mjr 35:e959ffba78fd 427 REPORT_SIZE(1), 0x01,
mjr 35:e959ffba78fd 428 USAGE_PAGE(1), 0x08, // LEDs
mjr 35:e959ffba78fd 429 USAGE_MINIMUM(1), 0x01,
mjr 35:e959ffba78fd 430 USAGE_MAXIMUM(1), 0x05,
mjr 35:e959ffba78fd 431 OUTPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 432 REPORT_COUNT(1), 0x01,
mjr 35:e959ffba78fd 433 REPORT_SIZE(1), 0x03,
mjr 35:e959ffba78fd 434 OUTPUT(1), 0x01, // Constant
mjr 10:976666ffa4ef 435
mjr 35:e959ffba78fd 436 REPORT_COUNT(1), 0x06,
mjr 35:e959ffba78fd 437 REPORT_SIZE(1), 0x08,
mjr 35:e959ffba78fd 438 LOGICAL_MINIMUM(1), 0x00,
mjr 35:e959ffba78fd 439 LOGICAL_MAXIMUM(1), 0x65,
mjr 35:e959ffba78fd 440 USAGE_PAGE(1), 0x07, // Key Codes
mjr 35:e959ffba78fd 441 USAGE_MINIMUM(1), 0x00,
mjr 35:e959ffba78fd 442 USAGE_MAXIMUM(1), 0x65,
mjr 35:e959ffba78fd 443 INPUT(1), 0x00, // Data, Array
mjr 35:e959ffba78fd 444 END_COLLECTION(0),
mjr 3:3514575d4f86 445
mjr 35:e959ffba78fd 446 // Media Control
mjr 35:e959ffba78fd 447 USAGE_PAGE(1), 0x0C,
mjr 35:e959ffba78fd 448 USAGE(1), 0x01,
mjr 35:e959ffba78fd 449 COLLECTION(1), 0x01,
mjr 35:e959ffba78fd 450 REPORT_ID(1), REPORT_ID_MEDIA,
mjr 35:e959ffba78fd 451 USAGE_PAGE(1), 0x0C,
mjr 35:e959ffba78fd 452 LOGICAL_MINIMUM(1), 0x00,
mjr 35:e959ffba78fd 453 LOGICAL_MAXIMUM(1), 0x01,
mjr 35:e959ffba78fd 454 REPORT_SIZE(1), 0x01,
mjr 35:e959ffba78fd 455 REPORT_COUNT(1), 0x07,
mjr 53:9b2611964afc 456 USAGE(1), 0xE2, // Mute -> 0x01
mjr 53:9b2611964afc 457 USAGE(1), 0xE9, // Volume Up -> 0x02
mjr 53:9b2611964afc 458 USAGE(1), 0xEA, // Volume Down -> 0x04
mjr 53:9b2611964afc 459 USAGE(1), 0xB5, // Next Track -> 0x08
mjr 53:9b2611964afc 460 USAGE(1), 0xB6, // Previous Track -> 0x10
mjr 53:9b2611964afc 461 USAGE(1), 0xB7, // Stop -> 0x20
mjr 53:9b2611964afc 462 USAGE(1), 0xCD, // Play / Pause -> 0x40
mjr 53:9b2611964afc 463 INPUT(1), 0x02, // Input (Data, Variable, Absolute) -> 0x80
mjr 35:e959ffba78fd 464 REPORT_COUNT(1), 0x01,
mjr 35:e959ffba78fd 465 INPUT(1), 0x01,
mjr 35:e959ffba78fd 466 END_COLLECTION(0),
mjr 35:e959ffba78fd 467 };
mjr 29:582472d0bc57 468
mjr 35:e959ffba78fd 469 //
mjr 35:e959ffba78fd 470 // USB HID Report Descriptor - LedWiz only, with no joystick or keyboard
mjr 35:e959ffba78fd 471 // input reporting
mjr 35:e959ffba78fd 472 //
mjr 48:058ace2aed1d 473 static const uint8_t reportDescriptorLW[] =
mjr 35:e959ffba78fd 474 {
mjr 35:e959ffba78fd 475 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 35:e959ffba78fd 476 USAGE(1), 0x00, // Undefined
mjr 21:5048e16cc9ef 477
mjr 35:e959ffba78fd 478 COLLECTION(1), 0x01, // Application
mjr 21:5048e16cc9ef 479
mjr 35:e959ffba78fd 480 // input report (device to host)
mjr 35:e959ffba78fd 481 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 35:e959ffba78fd 482 USAGE(1), 0x00, // undefined device control
mjr 35:e959ffba78fd 483 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 35:e959ffba78fd 484 LOGICAL_MAXIMUM(1), 0xFF,
mjr 35:e959ffba78fd 485 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 35:e959ffba78fd 486 REPORT_COUNT(1), reportLen, // standard report length (same as if we were in joystick mode)
mjr 35:e959ffba78fd 487 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 488
mjr 35:e959ffba78fd 489 // output report (host to device)
mjr 35:e959ffba78fd 490 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 35:e959ffba78fd 491 REPORT_COUNT(1), 0x08, // output report count (LEDWiz messages)
mjr 35:e959ffba78fd 492 0x09, 0x01, // usage
mjr 35:e959ffba78fd 493 0x91, 0x01, // Output (array)
mjr 35:e959ffba78fd 494
mjr 35:e959ffba78fd 495 END_COLLECTION(0)
mjr 35:e959ffba78fd 496 };
mjr 35:e959ffba78fd 497
mjr 21:5048e16cc9ef 498
mjr 54:fd77a6b2f76c 499 const uint8_t *USBJoystick::reportDesc(int idx, uint16_t &len)
mjr 35:e959ffba78fd 500 {
mjr 48:058ace2aed1d 501 switch (idx)
mjr 35:e959ffba78fd 502 {
mjr 48:058ace2aed1d 503 case 0:
mjr 48:058ace2aed1d 504 // Interface 0 is either the joystick interface or the plain
mjr 48:058ace2aed1d 505 // LedWiz emulator interface, depending on whether the joystick
mjr 48:058ace2aed1d 506 // feature is enabled.
mjr 48:058ace2aed1d 507 if (enableJoystick)
mjr 35:e959ffba78fd 508 {
mjr 54:fd77a6b2f76c 509 len = sizeof(reportDescriptorJS);
mjr 35:e959ffba78fd 510 return reportDescriptorJS;
mjr 48:058ace2aed1d 511 }
mjr 48:058ace2aed1d 512 else
mjr 48:058ace2aed1d 513 {
mjr 54:fd77a6b2f76c 514 len = sizeof(reportDescriptorLW);
mjr 48:058ace2aed1d 515 return reportDescriptorLW;
mjr 48:058ace2aed1d 516 }
mjr 48:058ace2aed1d 517
mjr 48:058ace2aed1d 518 case 1:
mjr 48:058ace2aed1d 519 // Interface 1 is the keyboard, only if it's enabled
mjr 48:058ace2aed1d 520 if (useKB)
mjr 48:058ace2aed1d 521 {
mjr 54:fd77a6b2f76c 522 len = sizeof(reportDescriptorKB);
mjr 35:e959ffba78fd 523 return reportDescriptorKB;
mjr 48:058ace2aed1d 524 }
mjr 48:058ace2aed1d 525 else
mjr 48:058ace2aed1d 526 {
mjr 54:fd77a6b2f76c 527 len = 0;
mjr 35:e959ffba78fd 528 return 0;
mjr 35:e959ffba78fd 529 }
mjr 48:058ace2aed1d 530
mjr 48:058ace2aed1d 531 default:
mjr 48:058ace2aed1d 532 // Unknown interface ID
mjr 54:fd77a6b2f76c 533 len = 0;
mjr 48:058ace2aed1d 534 return 0;
mjr 35:e959ffba78fd 535 }
mjr 35:e959ffba78fd 536 }
mjr 3:3514575d4f86 537
mjr 48:058ace2aed1d 538 const uint8_t *USBJoystick::stringImanufacturerDesc() {
mjr 48:058ace2aed1d 539 static const uint8_t stringImanufacturerDescriptor[] = {
mjr 3:3514575d4f86 540 0x10, /*bLength*/
mjr 3:3514575d4f86 541 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 542 'm',0,'j',0,'r',0,'c',0,'o',0,'r',0,'p',0 /*bString iManufacturer - mjrcorp*/
mjr 3:3514575d4f86 543 };
mjr 3:3514575d4f86 544 return stringImanufacturerDescriptor;
mjr 3:3514575d4f86 545 }
mjr 3:3514575d4f86 546
mjr 54:fd77a6b2f76c 547 const uint8_t *USBJoystick::stringIserialDesc()
mjr 54:fd77a6b2f76c 548 {
mjr 54:fd77a6b2f76c 549 // set up a buffer with the length prefix and descriptor type
mjr 54:fd77a6b2f76c 550 static uint8_t buf[2 + (3+16+1)*2];
mjr 54:fd77a6b2f76c 551 uint8_t *dst = buf;
mjr 54:fd77a6b2f76c 552 *dst++ = sizeof(buf);
mjr 54:fd77a6b2f76c 553 *dst++ = STRING_DESCRIPTOR;
mjr 54:fd77a6b2f76c 554
mjr 54:fd77a6b2f76c 555 // Create an ASCII version of our unique serial number string:
mjr 54:fd77a6b2f76c 556 //
mjr 54:fd77a6b2f76c 557 // PSCxxxxxxxxxxxxxxxxi
mjr 54:fd77a6b2f76c 558 //
mjr 54:fd77a6b2f76c 559 // where:
mjr 54:fd77a6b2f76c 560 //
mjr 54:fd77a6b2f76c 561 // xxx... = decimal representation of low 64 bits of CPU ID (16 hex digits)
mjr 54:fd77a6b2f76c 562 // i = interface type: first character is J if joystick is enabled,
mjr 54:fd77a6b2f76c 563 // L = LedWiz/control interface only, no input
mjr 54:fd77a6b2f76c 564 // J = Joystick + LedWiz
mjr 54:fd77a6b2f76c 565 // K = Keyboard + LedWiz
mjr 54:fd77a6b2f76c 566 // C = Joystick + Keyboard + LedWiz ("C" for combo)
mjr 54:fd77a6b2f76c 567 //
mjr 54:fd77a6b2f76c 568 // The suffix for the interface type resolves a problem on some Windows systems
mjr 54:fd77a6b2f76c 569 // when switching between interface types. Windows can cache device information
mjr 54:fd77a6b2f76c 570 // that includes the interface descriptors, and it won't recognize a change in
mjr 54:fd77a6b2f76c 571 // the interfaces once the information is cached, causing connection failures.
mjr 54:fd77a6b2f76c 572 // The cache key includes the device serial number, though, so this can be
mjr 54:fd77a6b2f76c 573 // resolved by changing the serial number when the interface setup changes.
mjr 54:fd77a6b2f76c 574 char xbuf[3+16+1+1];
mjr 54:fd77a6b2f76c 575 uint32_t x = SIM->UIDML;
mjr 54:fd77a6b2f76c 576 static char ifcCode[] = "LJKC";
mjr 54:fd77a6b2f76c 577 sprintf(xbuf, "PSC%08lX%08lX%c",
mjr 54:fd77a6b2f76c 578 SIM->UIDML,
mjr 54:fd77a6b2f76c 579 SIM->UIDL,
mjr 54:fd77a6b2f76c 580 ifcCode[(enableJoystick ? 0x01 : 0x00) | (useKB ? 0x02 : 0x00)]);
mjr 54:fd77a6b2f76c 581
mjr 54:fd77a6b2f76c 582 // copy the ascii bytes into the descriptor buffer, converting to unicode
mjr 54:fd77a6b2f76c 583 // 16-bit little-endian characters
mjr 54:fd77a6b2f76c 584 for (char *src = xbuf ; *src != '\0' && dst < buf + sizeof(buf) ; )
mjr 54:fd77a6b2f76c 585 {
mjr 54:fd77a6b2f76c 586 *dst++ = *src++;
mjr 54:fd77a6b2f76c 587 *dst++ = '\0';
mjr 54:fd77a6b2f76c 588 }
mjr 54:fd77a6b2f76c 589
mjr 54:fd77a6b2f76c 590 // return the buffer
mjr 54:fd77a6b2f76c 591 return buf;
mjr 3:3514575d4f86 592 }
mjr 3:3514575d4f86 593
mjr 48:058ace2aed1d 594 const uint8_t *USBJoystick::stringIproductDesc() {
mjr 48:058ace2aed1d 595 static const uint8_t stringIproductDescriptor[] = {
mjr 9:fd65b0a94720 596 0x28, /*bLength*/
mjr 3:3514575d4f86 597 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 598 'P',0,'i',0,'n',0,'s',0,'c',0,'a',0,'p',0,'e',0,
mjr 3:3514575d4f86 599 ' ',0,'C',0,'o',0,'n',0,'t',0,'r',0,'o',0,'l',0,
mjr 3:3514575d4f86 600 'l',0,'e',0,'r',0 /*String iProduct */
mjr 3:3514575d4f86 601 };
mjr 3:3514575d4f86 602 return stringIproductDescriptor;
mjr 3:3514575d4f86 603 }
mjr 35:e959ffba78fd 604
mjr 35:e959ffba78fd 605 #define DEFAULT_CONFIGURATION (1)
mjr 35:e959ffba78fd 606
mjr 48:058ace2aed1d 607 const uint8_t *USBJoystick::configurationDesc()
mjr 35:e959ffba78fd 608 {
mjr 54:fd77a6b2f76c 609 int rptlen0 = reportDescLength(0);
mjr 54:fd77a6b2f76c 610 int rptlen1 = reportDescLength(1);
mjr 35:e959ffba78fd 611 if (useKB)
mjr 35:e959ffba78fd 612 {
mjr 48:058ace2aed1d 613 const int cfglenKB =
mjr 48:058ace2aed1d 614 ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 48:058ace2aed1d 615 + (2 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 48:058ace2aed1d 616 + (2 * HID_DESCRIPTOR_LENGTH)
mjr 48:058ace2aed1d 617 + (4 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 48:058ace2aed1d 618 static const uint8_t configurationDescriptorWithKB[] =
mjr 35:e959ffba78fd 619 {
mjr 35:e959ffba78fd 620 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 35:e959ffba78fd 621 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 622 LSB(cfglenKB), // wTotalLength (LSB)
mjr 35:e959ffba78fd 623 MSB(cfglenKB), // wTotalLength (MSB)
mjr 35:e959ffba78fd 624 0x02, // bNumInterfaces - TWO INTERFACES (JOYSTICK + KEYBOARD)
mjr 35:e959ffba78fd 625 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 35:e959ffba78fd 626 0x00, // iConfiguration
mjr 35:e959ffba78fd 627 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 54:fd77a6b2f76c 628 C_POWER(0), // bMaxPower
mjr 35:e959ffba78fd 629
mjr 39:b3815a1c3802 630 // ***** INTERFACE 0 - JOYSTICK/LEDWIZ ******
mjr 35:e959ffba78fd 631 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 632 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 633 0x00, // bInterfaceNumber - first interface = 0
mjr 35:e959ffba78fd 634 0x00, // bAlternateSetting
mjr 35:e959ffba78fd 635 0x02, // bNumEndpoints
mjr 35:e959ffba78fd 636 HID_CLASS, // bInterfaceClass
mjr 35:e959ffba78fd 637 HID_SUBCLASS_NONE, // bInterfaceSubClass
mjr 35:e959ffba78fd 638 HID_PROTOCOL_NONE, // bInterfaceProtocol
mjr 35:e959ffba78fd 639 0x00, // iInterface
mjr 35:e959ffba78fd 640
mjr 35:e959ffba78fd 641 HID_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 642 HID_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 643 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 35:e959ffba78fd 644 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 35:e959ffba78fd 645 0x00, // bCountryCode
mjr 35:e959ffba78fd 646 0x01, // bNumDescriptors
mjr 35:e959ffba78fd 647 REPORT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 648 LSB(rptlen0), // wDescriptorLength (LSB)
mjr 35:e959ffba78fd 649 MSB(rptlen0), // wDescriptorLength (MSB)
mjr 35:e959ffba78fd 650
mjr 35:e959ffba78fd 651 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 652 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 653 PHY_TO_DESC(EPINT_IN), // bEndpointAddress - EPINT == EP1
mjr 35:e959ffba78fd 654 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 655 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 656 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 657 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 658
mjr 35:e959ffba78fd 659 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 660 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 661 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress - EPINT == EP1
mjr 35:e959ffba78fd 662 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 663 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 664 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 665 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 666
mjr 39:b3815a1c3802 667 // ****** INTERFACE 1 - KEYBOARD ******
mjr 35:e959ffba78fd 668 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 669 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 670 0x01, // bInterfaceNumber - second interface = 1
mjr 35:e959ffba78fd 671 0x00, // bAlternateSetting
mjr 35:e959ffba78fd 672 0x02, // bNumEndpoints
mjr 35:e959ffba78fd 673 HID_CLASS, // bInterfaceClass
mjr 35:e959ffba78fd 674 1, // bInterfaceSubClass - KEYBOARD
mjr 35:e959ffba78fd 675 1, // bInterfaceProtocol - KEYBOARD
mjr 35:e959ffba78fd 676 0x00, // iInterface
mjr 35:e959ffba78fd 677
mjr 35:e959ffba78fd 678 HID_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 679 HID_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 680 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 35:e959ffba78fd 681 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 35:e959ffba78fd 682 0x00, // bCountryCode
mjr 35:e959ffba78fd 683 0x01, // bNumDescriptors
mjr 35:e959ffba78fd 684 REPORT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 685 LSB(rptlen1), // wDescriptorLength (LSB)
mjr 35:e959ffba78fd 686 MSB(rptlen1), // wDescriptorLength (MSB)
mjr 35:e959ffba78fd 687
mjr 35:e959ffba78fd 688 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 689 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 690 PHY_TO_DESC(EP4IN), // bEndpointAddress
mjr 35:e959ffba78fd 691 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 692 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 693 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 694 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 695
mjr 35:e959ffba78fd 696 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 697 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 698 PHY_TO_DESC(EP4OUT), // bEndpointAddress
mjr 35:e959ffba78fd 699 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 700 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 701 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 54:fd77a6b2f76c 702 1 // bInterval (milliseconds)
mjr 35:e959ffba78fd 703 };
mjr 35:e959ffba78fd 704
mjr 35:e959ffba78fd 705 // Keyboard + joystick interfaces
mjr 35:e959ffba78fd 706 return configurationDescriptorWithKB;
mjr 35:e959ffba78fd 707 }
mjr 35:e959ffba78fd 708 else
mjr 35:e959ffba78fd 709 {
mjr 35:e959ffba78fd 710 // No keyboard - joystick interface only
mjr 48:058ace2aed1d 711 const int cfglenNoKB =
mjr 48:058ace2aed1d 712 ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 48:058ace2aed1d 713 + (1 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 48:058ace2aed1d 714 + (1 * HID_DESCRIPTOR_LENGTH)
mjr 48:058ace2aed1d 715 + (2 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 48:058ace2aed1d 716 static const uint8_t configurationDescriptorNoKB[] =
mjr 35:e959ffba78fd 717 {
mjr 35:e959ffba78fd 718 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 35:e959ffba78fd 719 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 720 LSB(cfglenNoKB), // wTotalLength (LSB)
mjr 35:e959ffba78fd 721 MSB(cfglenNoKB), // wTotalLength (MSB)
mjr 35:e959ffba78fd 722 0x01, // bNumInterfaces
mjr 35:e959ffba78fd 723 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 35:e959ffba78fd 724 0x00, // iConfiguration
mjr 35:e959ffba78fd 725 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 54:fd77a6b2f76c 726 C_POWER(0), // bMaxPower
mjr 35:e959ffba78fd 727
mjr 35:e959ffba78fd 728 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 729 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 730 0x00, // bInterfaceNumber
mjr 35:e959ffba78fd 731 0x00, // bAlternateSetting
mjr 35:e959ffba78fd 732 0x02, // bNumEndpoints
mjr 35:e959ffba78fd 733 HID_CLASS, // bInterfaceClass
mjr 35:e959ffba78fd 734 1, // bInterfaceSubClass
mjr 35:e959ffba78fd 735 1, // bInterfaceProtocol (keyboard)
mjr 35:e959ffba78fd 736 0x00, // iInterface
mjr 35:e959ffba78fd 737
mjr 35:e959ffba78fd 738 HID_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 739 HID_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 740 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 35:e959ffba78fd 741 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 35:e959ffba78fd 742 0x00, // bCountryCode
mjr 35:e959ffba78fd 743 0x01, // bNumDescriptors
mjr 35:e959ffba78fd 744 REPORT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 745 (uint8_t)(LSB(rptlen0)), // wDescriptorLength (LSB)
mjr 35:e959ffba78fd 746 (uint8_t)(MSB(rptlen0)), // wDescriptorLength (MSB)
mjr 35:e959ffba78fd 747
mjr 35:e959ffba78fd 748 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 749 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 750 PHY_TO_DESC(EPINT_IN), // bEndpointAddress
mjr 35:e959ffba78fd 751 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 752 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 753 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 754 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 755
mjr 35:e959ffba78fd 756 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 757 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 758 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress
mjr 35:e959ffba78fd 759 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 760 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 761 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 54:fd77a6b2f76c 762 1 // bInterval (milliseconds)
mjr 35:e959ffba78fd 763 };
mjr 35:e959ffba78fd 764
mjr 35:e959ffba78fd 765 return configurationDescriptorNoKB;
mjr 35:e959ffba78fd 766 }
mjr 35:e959ffba78fd 767 }
mjr 35:e959ffba78fd 768
mjr 35:e959ffba78fd 769 // Set the configuration. We need to set up the endpoints for
mjr 35:e959ffba78fd 770 // our active interfaces.
mjr 35:e959ffba78fd 771 bool USBJoystick::USBCallback_setConfiguration(uint8_t configuration)
mjr 35:e959ffba78fd 772 {
mjr 35:e959ffba78fd 773 // we only have one valid configuration
mjr 35:e959ffba78fd 774 if (configuration != DEFAULT_CONFIGURATION)
mjr 35:e959ffba78fd 775 return false;
mjr 35:e959ffba78fd 776
mjr 35:e959ffba78fd 777 // Configure endpoint 1 - we use this in all cases, for either
mjr 35:e959ffba78fd 778 // the combined joystick/ledwiz interface or just the ledwiz interface
mjr 48:058ace2aed1d 779 addEndpoint(EPINT_IN, MAX_REPORT_JS_TX + 1);
mjr 48:058ace2aed1d 780 addEndpoint(EPINT_OUT, MAX_REPORT_JS_RX + 1);
mjr 48:058ace2aed1d 781 readStart(EPINT_OUT, MAX_REPORT_JS_TX + 1);
mjr 35:e959ffba78fd 782
mjr 35:e959ffba78fd 783 // if the keyboard is enabled, configure endpoint 4 for the kb interface
mjr 35:e959ffba78fd 784 if (useKB)
mjr 35:e959ffba78fd 785 {
mjr 48:058ace2aed1d 786 addEndpoint(EP4IN, MAX_REPORT_KB_TX + 1);
mjr 48:058ace2aed1d 787 addEndpoint(EP4OUT, MAX_REPORT_KB_RX + 1);
mjr 48:058ace2aed1d 788 readStart(EP4OUT, MAX_REPORT_KB_TX + 1);
mjr 35:e959ffba78fd 789 }
mjr 35:e959ffba78fd 790
mjr 35:e959ffba78fd 791 // success
mjr 35:e959ffba78fd 792 return true;
mjr 35:e959ffba78fd 793 }
mjr 35:e959ffba78fd 794
mjr 38:091e511ce8a0 795 // Handle incoming messages on the joystick/LedWiz interface = endpoint 1.
mjr 38:091e511ce8a0 796 // This interface receives LedWiz protocol commands and commands using our
mjr 38:091e511ce8a0 797 // custom LedWiz protocol extensions.
mjr 38:091e511ce8a0 798 //
mjr 38:091e511ce8a0 799 // We simply queue the messages in our circular buffer for processing in
mjr 38:091e511ce8a0 800 // the main loop. The circular buffer object is designed for safe access
mjr 38:091e511ce8a0 801 // from the interrupt handler using the rule that only the interrupt
mjr 38:091e511ce8a0 802 // handler can change the write pointer, and only the regular code can
mjr 38:091e511ce8a0 803 // change the read pointer.
mjr 38:091e511ce8a0 804 bool USBJoystick::EP1_OUT_callback()
mjr 38:091e511ce8a0 805 {
mjr 38:091e511ce8a0 806 // Read this message
mjr 38:091e511ce8a0 807 union {
mjr 38:091e511ce8a0 808 LedWizMsg msg;
mjr 38:091e511ce8a0 809 uint8_t buf[MAX_HID_REPORT_SIZE];
mjr 38:091e511ce8a0 810 } buf;
mjr 38:091e511ce8a0 811 uint32_t bytesRead = 0;
mjr 38:091e511ce8a0 812 USBDevice::readEP(EP1OUT, buf.buf, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 813
mjr 38:091e511ce8a0 814 // if it's the right length, queue it to our circular buffer
mjr 38:091e511ce8a0 815 if (bytesRead == 8)
mjr 38:091e511ce8a0 816 lwbuf.write(buf.msg);
mjr 38:091e511ce8a0 817
mjr 38:091e511ce8a0 818 // start the next read
mjr 39:b3815a1c3802 819 return readStart(EP1OUT, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 820 }
mjr 38:091e511ce8a0 821
mjr 38:091e511ce8a0 822 // Handle incoming messages on the keyboard interface = endpoint 4.
mjr 35:e959ffba78fd 823 // The host uses this to send updates for the keyboard indicator LEDs
mjr 35:e959ffba78fd 824 // (caps lock, num lock, etc). We don't do anything with these, but
mjr 37:ed52738445fc 825 // we have to read them to keep the pipe open.
mjr 35:e959ffba78fd 826 bool USBJoystick::EP4_OUT_callback()
mjr 35:e959ffba78fd 827 {
mjr 35:e959ffba78fd 828 // read this message
mjr 35:e959ffba78fd 829 uint32_t bytesRead = 0;
mjr 37:ed52738445fc 830 uint8_t led[MAX_HID_REPORT_SIZE];
mjr 35:e959ffba78fd 831 USBDevice::readEP(EP4OUT, led, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 35:e959ffba78fd 832
mjr 35:e959ffba78fd 833 // start the next read
mjr 35:e959ffba78fd 834 return readStart(EP4OUT, MAX_HID_REPORT_SIZE);
mjr 35:e959ffba78fd 835 }
mjr 39:b3815a1c3802 836