An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Fri Feb 26 18:42:03 2016 +0000
Revision:
48:058ace2aed1d
Parent:
47:df7a88cd249c
Child:
52:8298b2a73eb2
New plunger processing 1

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 3:3514575d4f86 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
mjr 3:3514575d4f86 2 * Modified Mouse code for Joystick - WH 2012
mjr 3:3514575d4f86 3 *
mjr 3:3514575d4f86 4 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 3:3514575d4f86 5 * and associated documentation files (the "Software"), to deal in the Software without
mjr 3:3514575d4f86 6 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 3:3514575d4f86 7 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 3:3514575d4f86 8 * Software is furnished to do so, subject to the following conditions:
mjr 3:3514575d4f86 9 *
mjr 3:3514575d4f86 10 * The above copyright notice and this permission notice shall be included in all copies or
mjr 3:3514575d4f86 11 * substantial portions of the Software.
mjr 3:3514575d4f86 12 *
mjr 3:3514575d4f86 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 3:3514575d4f86 14 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 3:3514575d4f86 15 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 3:3514575d4f86 16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 3:3514575d4f86 17 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 3:3514575d4f86 18 */
mjr 3:3514575d4f86 19
mjr 3:3514575d4f86 20 #include "stdint.h"
mjr 3:3514575d4f86 21 #include "USBJoystick.h"
mjr 21:5048e16cc9ef 22
mjr 21:5048e16cc9ef 23 #include "config.h" // Pinscape configuration
mjr 21:5048e16cc9ef 24
mjr 35:e959ffba78fd 25
mjr 35:e959ffba78fd 26
mjr 21:5048e16cc9ef 27 // Length of our joystick reports. Important: This must be kept in sync
mjr 21:5048e16cc9ef 28 // with the actual joystick report format sent in update().
mjr 21:5048e16cc9ef 29 const int reportLen = 14;
mjr 21:5048e16cc9ef 30
mjr 48:058ace2aed1d 31 // Maximum report sizes
mjr 48:058ace2aed1d 32 const int MAX_REPORT_JS_TX = reportLen;
mjr 48:058ace2aed1d 33 const int MAX_REPORT_JS_RX = 8;
mjr 48:058ace2aed1d 34 const int MAX_REPORT_KB_TX = 8;
mjr 48:058ace2aed1d 35 const int MAX_REPORT_KB_RX = 4;
mjr 48:058ace2aed1d 36
mjr 11:bd9da7088e6e 37 bool USBJoystick::update(int16_t x, int16_t y, int16_t z, uint32_t buttons, uint16_t status)
mjr 3:3514575d4f86 38 {
mjr 3:3514575d4f86 39 _x = x;
mjr 3:3514575d4f86 40 _y = y;
mjr 3:3514575d4f86 41 _z = z;
mjr 11:bd9da7088e6e 42 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 43 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 10:976666ffa4ef 44 _status = status;
mjr 3:3514575d4f86 45
mjr 3:3514575d4f86 46 // send the report
mjr 3:3514575d4f86 47 return update();
mjr 3:3514575d4f86 48 }
mjr 35:e959ffba78fd 49
mjr 11:bd9da7088e6e 50 bool USBJoystick::update()
mjr 11:bd9da7088e6e 51 {
mjr 3:3514575d4f86 52 HID_REPORT report;
mjr 11:bd9da7088e6e 53
mjr 3:3514575d4f86 54 // Fill the report according to the Joystick Descriptor
mjr 6:cc35eb643e8f 55 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 40:cc0d9814522b 56 #define putl(idx, val) (put(idx, val), put((idx)+2, (val) >> 16))
mjr 10:976666ffa4ef 57 put(0, _status);
mjr 40:cc0d9814522b 58 put(2, 0); // second word of status - zero in high bit identifies as normal joystick report
mjr 11:bd9da7088e6e 59 put(4, _buttonsLo);
mjr 11:bd9da7088e6e 60 put(6, _buttonsHi);
mjr 11:bd9da7088e6e 61 put(8, _x);
mjr 11:bd9da7088e6e 62 put(10, _y);
mjr 11:bd9da7088e6e 63 put(12, _z);
mjr 21:5048e16cc9ef 64
mjr 21:5048e16cc9ef 65 // important: keep reportLen in sync with the actual byte length of
mjr 21:5048e16cc9ef 66 // the reports we build here
mjr 11:bd9da7088e6e 67 report.length = reportLen;
mjr 3:3514575d4f86 68
mjr 5:a70c0bce770d 69 // send the report
mjr 10:976666ffa4ef 70 return sendTO(&report, 100);
mjr 10:976666ffa4ef 71 }
mjr 10:976666ffa4ef 72
mjr 35:e959ffba78fd 73 bool USBJoystick::kbUpdate(uint8_t data[8])
mjr 35:e959ffba78fd 74 {
mjr 35:e959ffba78fd 75 // set up the report
mjr 35:e959ffba78fd 76 HID_REPORT report;
mjr 35:e959ffba78fd 77 report.data[0] = REPORT_ID_KB; // report ID = keyboard
mjr 35:e959ffba78fd 78 memcpy(&report.data[1], data, 8); // copy the kb report data
mjr 35:e959ffba78fd 79 report.length = 9; // length = ID prefix + kb report length
mjr 35:e959ffba78fd 80
mjr 35:e959ffba78fd 81 // send it to endpoint 4 (the keyboard interface endpoint)
mjr 35:e959ffba78fd 82 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 83 }
mjr 35:e959ffba78fd 84
mjr 35:e959ffba78fd 85 bool USBJoystick::mediaUpdate(uint8_t data)
mjr 35:e959ffba78fd 86 {
mjr 35:e959ffba78fd 87 // set up the report
mjr 35:e959ffba78fd 88 HID_REPORT report;
mjr 35:e959ffba78fd 89 report.data[0] = REPORT_ID_MEDIA; // report ID = media
mjr 35:e959ffba78fd 90 report.data[1] = data; // key pressed bits
mjr 35:e959ffba78fd 91 report.length = 2;
mjr 35:e959ffba78fd 92
mjr 35:e959ffba78fd 93 // send it
mjr 35:e959ffba78fd 94 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 95 }
mjr 35:e959ffba78fd 96
mjr 47:df7a88cd249c 97 bool USBJoystick::updateExposure(int &idx, int npix, const uint8_t *pix)
mjr 10:976666ffa4ef 98 {
mjr 10:976666ffa4ef 99 HID_REPORT report;
mjr 10:976666ffa4ef 100
mjr 10:976666ffa4ef 101 // Set the special status bits to indicate it's an exposure report.
mjr 10:976666ffa4ef 102 // The high 5 bits of the status word are set to 10000, and the
mjr 10:976666ffa4ef 103 // low 11 bits are the current pixel index.
mjr 10:976666ffa4ef 104 uint16_t s = idx | 0x8000;
mjr 10:976666ffa4ef 105 put(0, s);
mjr 25:e22b88bd783a 106
mjr 25:e22b88bd783a 107 // start at the second byte
mjr 25:e22b88bd783a 108 int ofs = 2;
mjr 25:e22b88bd783a 109
mjr 25:e22b88bd783a 110 // in the first report, add the total pixel count as the next two bytes
mjr 25:e22b88bd783a 111 if (idx == 0)
mjr 25:e22b88bd783a 112 {
mjr 25:e22b88bd783a 113 put(ofs, npix);
mjr 25:e22b88bd783a 114 ofs += 2;
mjr 25:e22b88bd783a 115 }
mjr 10:976666ffa4ef 116
mjr 47:df7a88cd249c 117 // now fill out the remaining bytes with exposure values
mjr 11:bd9da7088e6e 118 report.length = reportLen;
mjr 47:df7a88cd249c 119 for ( ; ofs < report.length ; ++ofs)
mjr 47:df7a88cd249c 120 report.data[ofs] = (idx < npix ? pix[idx++] : 0);
mjr 10:976666ffa4ef 121
mjr 10:976666ffa4ef 122 // send the report
mjr 35:e959ffba78fd 123 return sendTO(&report, 100);
mjr 3:3514575d4f86 124 }
mjr 9:fd65b0a94720 125
mjr 48:058ace2aed1d 126 bool USBJoystick::updateExposureExt(
mjr 48:058ace2aed1d 127 int edgePos, int dir, uint32_t avgScanTime, uint32_t processingTime)
mjr 48:058ace2aed1d 128 {
mjr 48:058ace2aed1d 129 HID_REPORT report;
mjr 48:058ace2aed1d 130
mjr 48:058ace2aed1d 131 // Set the special status bits to indicate it's an extended
mjr 48:058ace2aed1d 132 // exposure report.
mjr 48:058ace2aed1d 133 put(0, 0x87FF);
mjr 48:058ace2aed1d 134
mjr 48:058ace2aed1d 135 // start at the second byte
mjr 48:058ace2aed1d 136 int ofs = 2;
mjr 48:058ace2aed1d 137
mjr 48:058ace2aed1d 138 // write the report subtype (0) to byte 2
mjr 48:058ace2aed1d 139 report.data[ofs++] = 0;
mjr 48:058ace2aed1d 140
mjr 48:058ace2aed1d 141 // write the shadow edge position to bytes 3-4
mjr 48:058ace2aed1d 142 put(ofs, uint16_t(edgePos));
mjr 48:058ace2aed1d 143 ofs += 2;
mjr 48:058ace2aed1d 144
mjr 48:058ace2aed1d 145 // write the flags to byte 5:
mjr 48:058ace2aed1d 146 // 0x01 -> standard orientation detected (dir == 1)
mjr 48:058ace2aed1d 147 // 0x02 -> reverse orientation detected (dir == -1)
mjr 48:058ace2aed1d 148 uint8_t flags = 0;
mjr 48:058ace2aed1d 149 if (dir == 1) flags |= 0x01;
mjr 48:058ace2aed1d 150 if (dir == -1) flags |= 0x02;
mjr 48:058ace2aed1d 151 report.data[ofs++] = flags;
mjr 48:058ace2aed1d 152
mjr 48:058ace2aed1d 153 // write the average scan time in 10us intervals to bytes 6-8
mjr 48:058ace2aed1d 154 uint32_t t = uint32_t(avgScanTime / 10);
mjr 48:058ace2aed1d 155 report.data[ofs++] = t & 0xff;
mjr 48:058ace2aed1d 156 report.data[ofs++] = (t >> 8) & 0xff;
mjr 48:058ace2aed1d 157 report.data[ofs++] = (t >> 16) & 0xff;
mjr 48:058ace2aed1d 158
mjr 48:058ace2aed1d 159 // write the processing time to bytes 9-11
mjr 48:058ace2aed1d 160 t = uint32_t(processingTime / 10);
mjr 48:058ace2aed1d 161 report.data[ofs++] = t & 0xff;
mjr 48:058ace2aed1d 162 report.data[ofs++] = (t >> 8) & 0xff;
mjr 48:058ace2aed1d 163 report.data[ofs++] = (t >> 16) & 0xff;
mjr 48:058ace2aed1d 164
mjr 48:058ace2aed1d 165 // send the report
mjr 48:058ace2aed1d 166 report.length = reportLen;
mjr 48:058ace2aed1d 167 return sendTO(&report, 100);
mjr 48:058ace2aed1d 168 }
mjr 48:058ace2aed1d 169
mjr 48:058ace2aed1d 170
mjr 40:cc0d9814522b 171 bool USBJoystick::reportID()
mjr 40:cc0d9814522b 172 {
mjr 40:cc0d9814522b 173 HID_REPORT report;
mjr 40:cc0d9814522b 174
mjr 40:cc0d9814522b 175 // initially fill the report with zeros
mjr 40:cc0d9814522b 176 memset(report.data, 0, sizeof(report.data));
mjr 40:cc0d9814522b 177
mjr 40:cc0d9814522b 178 // Set the special status bits to indicate that it's an ID report
mjr 40:cc0d9814522b 179 uint16_t s = 0x9000;
mjr 40:cc0d9814522b 180 put(0, s);
mjr 40:cc0d9814522b 181
mjr 40:cc0d9814522b 182 // write the 80-bit ID
mjr 40:cc0d9814522b 183 put(2, SIM->UIDMH);
mjr 40:cc0d9814522b 184 putl(4, SIM->UIDML);
mjr 40:cc0d9814522b 185 putl(8, SIM->UIDL);
mjr 40:cc0d9814522b 186
mjr 40:cc0d9814522b 187 // send the report
mjr 40:cc0d9814522b 188 report.length = reportLen;
mjr 40:cc0d9814522b 189 return sendTO(&report, 100);
mjr 40:cc0d9814522b 190 }
mjr 40:cc0d9814522b 191
mjr 40:cc0d9814522b 192 bool USBJoystick::reportConfig(int numOutputs, int unitNo, int plungerZero, int plungerMax, bool configured)
mjr 33:d832bcab089e 193 {
mjr 33:d832bcab089e 194 HID_REPORT report;
mjr 33:d832bcab089e 195
mjr 33:d832bcab089e 196 // initially fill the report with zeros
mjr 33:d832bcab089e 197 memset(report.data, 0, sizeof(report.data));
mjr 33:d832bcab089e 198
mjr 33:d832bcab089e 199 // Set the special status bits to indicate that it's a config report.
mjr 33:d832bcab089e 200 uint16_t s = 0x8800;
mjr 33:d832bcab089e 201 put(0, s);
mjr 33:d832bcab089e 202
mjr 33:d832bcab089e 203 // write the number of configured outputs
mjr 33:d832bcab089e 204 put(2, numOutputs);
mjr 33:d832bcab089e 205
mjr 33:d832bcab089e 206 // write the unit number
mjr 33:d832bcab089e 207 put(4, unitNo);
mjr 33:d832bcab089e 208
mjr 35:e959ffba78fd 209 // write the plunger zero and max values
mjr 35:e959ffba78fd 210 put(6, plungerZero);
mjr 35:e959ffba78fd 211 put(8, plungerMax);
mjr 35:e959ffba78fd 212
mjr 40:cc0d9814522b 213 // write the status bits:
mjr 40:cc0d9814522b 214 // 0x01 -> configuration loaded
mjr 40:cc0d9814522b 215 report.data[10] = (configured ? 0x01 : 0x00);
mjr 40:cc0d9814522b 216
mjr 33:d832bcab089e 217 // send the report
mjr 33:d832bcab089e 218 report.length = reportLen;
mjr 35:e959ffba78fd 219 return sendTO(&report, 100);
mjr 33:d832bcab089e 220 }
mjr 33:d832bcab089e 221
mjr 33:d832bcab089e 222 bool USBJoystick::move(int16_t x, int16_t y)
mjr 33:d832bcab089e 223 {
mjr 3:3514575d4f86 224 _x = x;
mjr 3:3514575d4f86 225 _y = y;
mjr 3:3514575d4f86 226 return update();
mjr 3:3514575d4f86 227 }
mjr 3:3514575d4f86 228
mjr 33:d832bcab089e 229 bool USBJoystick::setZ(int16_t z)
mjr 33:d832bcab089e 230 {
mjr 3:3514575d4f86 231 _z = z;
mjr 3:3514575d4f86 232 return update();
mjr 3:3514575d4f86 233 }
mjr 3:3514575d4f86 234
mjr 33:d832bcab089e 235 bool USBJoystick::buttons(uint32_t buttons)
mjr 33:d832bcab089e 236 {
mjr 11:bd9da7088e6e 237 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 238 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 3:3514575d4f86 239 return update();
mjr 3:3514575d4f86 240 }
mjr 21:5048e16cc9ef 241
mjr 21:5048e16cc9ef 242 bool USBJoystick::updateStatus(uint32_t status)
mjr 21:5048e16cc9ef 243 {
mjr 21:5048e16cc9ef 244 HID_REPORT report;
mjr 21:5048e16cc9ef 245
mjr 21:5048e16cc9ef 246 // Fill the report according to the Joystick Descriptor
mjr 21:5048e16cc9ef 247 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 21:5048e16cc9ef 248 memset(report.data, 0, reportLen);
mjr 21:5048e16cc9ef 249 put(0, status);
mjr 21:5048e16cc9ef 250 report.length = reportLen;
mjr 21:5048e16cc9ef 251
mjr 21:5048e16cc9ef 252 // send the report
mjr 21:5048e16cc9ef 253 return sendTO(&report, 100);
mjr 21:5048e16cc9ef 254 }
mjr 21:5048e16cc9ef 255
mjr 3:3514575d4f86 256 void USBJoystick::_init() {
mjr 3:3514575d4f86 257
mjr 3:3514575d4f86 258 _x = 0;
mjr 3:3514575d4f86 259 _y = 0;
mjr 3:3514575d4f86 260 _z = 0;
mjr 11:bd9da7088e6e 261 _buttonsLo = 0x0000;
mjr 11:bd9da7088e6e 262 _buttonsHi = 0x0000;
mjr 9:fd65b0a94720 263 _status = 0;
mjr 3:3514575d4f86 264 }
mjr 3:3514575d4f86 265
mjr 3:3514575d4f86 266
mjr 35:e959ffba78fd 267 // --------------------------------------------------------------------------
mjr 35:e959ffba78fd 268 //
mjr 35:e959ffba78fd 269 // USB HID Report Descriptor - Joystick
mjr 35:e959ffba78fd 270 //
mjr 48:058ace2aed1d 271 static const uint8_t reportDescriptorJS[] =
mjr 35:e959ffba78fd 272 {
mjr 35:e959ffba78fd 273 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 35:e959ffba78fd 274 USAGE(1), 0x04, // Joystick
mjr 35:e959ffba78fd 275 COLLECTION(1), 0x01, // Application
mjr 35:e959ffba78fd 276
mjr 35:e959ffba78fd 277 // input report (device to host)
mjr 35:e959ffba78fd 278
mjr 35:e959ffba78fd 279 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 35:e959ffba78fd 280 USAGE(1), 0x00, // undefined device control
mjr 35:e959ffba78fd 281 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 35:e959ffba78fd 282 LOGICAL_MAXIMUM(1), 0xFF,
mjr 35:e959ffba78fd 283 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 35:e959ffba78fd 284 REPORT_COUNT(1), 0x04, // 4 reports (4 bytes)
mjr 35:e959ffba78fd 285 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 286
mjr 35:e959ffba78fd 287 USAGE_PAGE(1), 0x09, // Buttons
mjr 35:e959ffba78fd 288 USAGE_MINIMUM(1), 0x01, // { buttons }
mjr 35:e959ffba78fd 289 USAGE_MAXIMUM(1), 0x20, // { 1-32 }
mjr 35:e959ffba78fd 290 LOGICAL_MINIMUM(1), 0x00, // 1-bit buttons - 0...
mjr 35:e959ffba78fd 291 LOGICAL_MAXIMUM(1), 0x01, // ...to 1
mjr 35:e959ffba78fd 292 REPORT_SIZE(1), 0x01, // 1 bit per report
mjr 35:e959ffba78fd 293 REPORT_COUNT(1), 0x20, // 32 reports
mjr 35:e959ffba78fd 294 UNIT_EXPONENT(1), 0x00, // Unit_Exponent (0)
mjr 35:e959ffba78fd 295 UNIT(1), 0x00, // Unit (None)
mjr 35:e959ffba78fd 296 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 297
mjr 35:e959ffba78fd 298 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 35:e959ffba78fd 299 USAGE(1), 0x30, // X axis
mjr 35:e959ffba78fd 300 USAGE(1), 0x31, // Y axis
mjr 35:e959ffba78fd 301 USAGE(1), 0x32, // Z axis
mjr 35:e959ffba78fd 302 LOGICAL_MINIMUM(2), 0x00,0xF0, // each value ranges -4096
mjr 35:e959ffba78fd 303 LOGICAL_MAXIMUM(2), 0x00,0x10, // ...to +4096
mjr 35:e959ffba78fd 304 REPORT_SIZE(1), 0x10, // 16 bits per report
mjr 35:e959ffba78fd 305 REPORT_COUNT(1), 0x03, // 3 reports (X, Y, Z)
mjr 35:e959ffba78fd 306 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 9:fd65b0a94720 307
mjr 35:e959ffba78fd 308 // output report (host to device)
mjr 35:e959ffba78fd 309 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 35:e959ffba78fd 310 REPORT_COUNT(1), 0x08, // output report count - 8-byte LedWiz format
mjr 35:e959ffba78fd 311 0x09, 0x01, // usage
mjr 35:e959ffba78fd 312 0x91, 0x01, // Output (array)
mjr 35:e959ffba78fd 313
mjr 35:e959ffba78fd 314 END_COLLECTION(0)
mjr 35:e959ffba78fd 315 };
mjr 35:e959ffba78fd 316
mjr 35:e959ffba78fd 317 //
mjr 35:e959ffba78fd 318 // USB HID Report Descriptor - Keyboard/Media Control
mjr 35:e959ffba78fd 319 //
mjr 48:058ace2aed1d 320 static const uint8_t reportDescriptorKB[] =
mjr 35:e959ffba78fd 321 {
mjr 35:e959ffba78fd 322 USAGE_PAGE(1), 0x01, // Generic Desktop
mjr 35:e959ffba78fd 323 USAGE(1), 0x06, // Keyboard
mjr 35:e959ffba78fd 324 COLLECTION(1), 0x01, // Application
mjr 35:e959ffba78fd 325 REPORT_ID(1), REPORT_ID_KB,
mjr 10:976666ffa4ef 326
mjr 35:e959ffba78fd 327 USAGE_PAGE(1), 0x07, // Key Codes
mjr 35:e959ffba78fd 328 USAGE_MINIMUM(1), 0xE0,
mjr 35:e959ffba78fd 329 USAGE_MAXIMUM(1), 0xE7,
mjr 35:e959ffba78fd 330 LOGICAL_MINIMUM(1), 0x00,
mjr 35:e959ffba78fd 331 LOGICAL_MAXIMUM(1), 0x01,
mjr 35:e959ffba78fd 332 REPORT_SIZE(1), 0x01,
mjr 35:e959ffba78fd 333 REPORT_COUNT(1), 0x08,
mjr 35:e959ffba78fd 334 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 335 REPORT_COUNT(1), 0x01,
mjr 35:e959ffba78fd 336 REPORT_SIZE(1), 0x08,
mjr 35:e959ffba78fd 337 INPUT(1), 0x01, // Constant
mjr 35:e959ffba78fd 338
mjr 35:e959ffba78fd 339 REPORT_COUNT(1), 0x05,
mjr 35:e959ffba78fd 340 REPORT_SIZE(1), 0x01,
mjr 35:e959ffba78fd 341 USAGE_PAGE(1), 0x08, // LEDs
mjr 35:e959ffba78fd 342 USAGE_MINIMUM(1), 0x01,
mjr 35:e959ffba78fd 343 USAGE_MAXIMUM(1), 0x05,
mjr 35:e959ffba78fd 344 OUTPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 345 REPORT_COUNT(1), 0x01,
mjr 35:e959ffba78fd 346 REPORT_SIZE(1), 0x03,
mjr 35:e959ffba78fd 347 OUTPUT(1), 0x01, // Constant
mjr 10:976666ffa4ef 348
mjr 35:e959ffba78fd 349 REPORT_COUNT(1), 0x06,
mjr 35:e959ffba78fd 350 REPORT_SIZE(1), 0x08,
mjr 35:e959ffba78fd 351 LOGICAL_MINIMUM(1), 0x00,
mjr 35:e959ffba78fd 352 LOGICAL_MAXIMUM(1), 0x65,
mjr 35:e959ffba78fd 353 USAGE_PAGE(1), 0x07, // Key Codes
mjr 35:e959ffba78fd 354 USAGE_MINIMUM(1), 0x00,
mjr 35:e959ffba78fd 355 USAGE_MAXIMUM(1), 0x65,
mjr 35:e959ffba78fd 356 INPUT(1), 0x00, // Data, Array
mjr 35:e959ffba78fd 357 END_COLLECTION(0),
mjr 3:3514575d4f86 358
mjr 35:e959ffba78fd 359 // Media Control
mjr 35:e959ffba78fd 360 USAGE_PAGE(1), 0x0C,
mjr 35:e959ffba78fd 361 USAGE(1), 0x01,
mjr 35:e959ffba78fd 362 COLLECTION(1), 0x01,
mjr 35:e959ffba78fd 363 REPORT_ID(1), REPORT_ID_MEDIA,
mjr 35:e959ffba78fd 364 USAGE_PAGE(1), 0x0C,
mjr 35:e959ffba78fd 365 LOGICAL_MINIMUM(1), 0x00,
mjr 35:e959ffba78fd 366 LOGICAL_MAXIMUM(1), 0x01,
mjr 35:e959ffba78fd 367 REPORT_SIZE(1), 0x01,
mjr 35:e959ffba78fd 368 REPORT_COUNT(1), 0x07,
mjr 35:e959ffba78fd 369 USAGE(1), 0xE9, // Volume Up
mjr 35:e959ffba78fd 370 USAGE(1), 0xEA, // Volume Down
mjr 35:e959ffba78fd 371 USAGE(1), 0xE2, // Mute
mjr 35:e959ffba78fd 372 USAGE(1), 0xB5, // Next Track
mjr 35:e959ffba78fd 373 USAGE(1), 0xB6, // Previous Track
mjr 35:e959ffba78fd 374 USAGE(1), 0xB7, // Stop
mjr 35:e959ffba78fd 375 USAGE(1), 0xCD, // Play / Pause
mjr 35:e959ffba78fd 376 INPUT(1), 0x02, // Input (Data, Variable, Absolute)
mjr 35:e959ffba78fd 377 REPORT_COUNT(1), 0x01,
mjr 35:e959ffba78fd 378 INPUT(1), 0x01,
mjr 35:e959ffba78fd 379 END_COLLECTION(0),
mjr 35:e959ffba78fd 380 };
mjr 29:582472d0bc57 381
mjr 35:e959ffba78fd 382 //
mjr 35:e959ffba78fd 383 // USB HID Report Descriptor - LedWiz only, with no joystick or keyboard
mjr 35:e959ffba78fd 384 // input reporting
mjr 35:e959ffba78fd 385 //
mjr 48:058ace2aed1d 386 static const uint8_t reportDescriptorLW[] =
mjr 35:e959ffba78fd 387 {
mjr 35:e959ffba78fd 388 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 35:e959ffba78fd 389 USAGE(1), 0x00, // Undefined
mjr 21:5048e16cc9ef 390
mjr 35:e959ffba78fd 391 COLLECTION(1), 0x01, // Application
mjr 21:5048e16cc9ef 392
mjr 35:e959ffba78fd 393 // input report (device to host)
mjr 35:e959ffba78fd 394 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 35:e959ffba78fd 395 USAGE(1), 0x00, // undefined device control
mjr 35:e959ffba78fd 396 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 35:e959ffba78fd 397 LOGICAL_MAXIMUM(1), 0xFF,
mjr 35:e959ffba78fd 398 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 35:e959ffba78fd 399 REPORT_COUNT(1), reportLen, // standard report length (same as if we were in joystick mode)
mjr 35:e959ffba78fd 400 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 401
mjr 35:e959ffba78fd 402 // output report (host to device)
mjr 35:e959ffba78fd 403 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 35:e959ffba78fd 404 REPORT_COUNT(1), 0x08, // output report count (LEDWiz messages)
mjr 35:e959ffba78fd 405 0x09, 0x01, // usage
mjr 35:e959ffba78fd 406 0x91, 0x01, // Output (array)
mjr 35:e959ffba78fd 407
mjr 35:e959ffba78fd 408 END_COLLECTION(0)
mjr 35:e959ffba78fd 409 };
mjr 35:e959ffba78fd 410
mjr 21:5048e16cc9ef 411
mjr 48:058ace2aed1d 412 const uint8_t *USBJoystick::reportDescN(int idx)
mjr 35:e959ffba78fd 413 {
mjr 48:058ace2aed1d 414 switch (idx)
mjr 35:e959ffba78fd 415 {
mjr 48:058ace2aed1d 416 case 0:
mjr 48:058ace2aed1d 417 // Interface 0 is either the joystick interface or the plain
mjr 48:058ace2aed1d 418 // LedWiz emulator interface, depending on whether the joystick
mjr 48:058ace2aed1d 419 // feature is enabled.
mjr 48:058ace2aed1d 420 if (enableJoystick)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 reportLength = sizeof(reportDescriptorJS);
mjr 35:e959ffba78fd 423 return reportDescriptorJS;
mjr 48:058ace2aed1d 424 }
mjr 48:058ace2aed1d 425 else
mjr 48:058ace2aed1d 426 {
mjr 48:058ace2aed1d 427 reportLength = sizeof(reportDescriptorLW);
mjr 48:058ace2aed1d 428 return reportDescriptorLW;
mjr 48:058ace2aed1d 429 }
mjr 48:058ace2aed1d 430
mjr 48:058ace2aed1d 431 case 1:
mjr 48:058ace2aed1d 432 // Interface 1 is the keyboard, only if it's enabled
mjr 48:058ace2aed1d 433 if (useKB)
mjr 48:058ace2aed1d 434 {
mjr 35:e959ffba78fd 435 reportLength = sizeof(reportDescriptorKB);
mjr 35:e959ffba78fd 436 return reportDescriptorKB;
mjr 48:058ace2aed1d 437 }
mjr 48:058ace2aed1d 438 else
mjr 48:058ace2aed1d 439 {
mjr 35:e959ffba78fd 440 reportLength = 0;
mjr 35:e959ffba78fd 441 return 0;
mjr 35:e959ffba78fd 442 }
mjr 48:058ace2aed1d 443
mjr 48:058ace2aed1d 444 default:
mjr 48:058ace2aed1d 445 // Unknown interface ID
mjr 48:058ace2aed1d 446 reportLength = 0;
mjr 48:058ace2aed1d 447 return 0;
mjr 35:e959ffba78fd 448 }
mjr 35:e959ffba78fd 449 }
mjr 3:3514575d4f86 450
mjr 48:058ace2aed1d 451 const uint8_t *USBJoystick::stringImanufacturerDesc() {
mjr 48:058ace2aed1d 452 static const uint8_t stringImanufacturerDescriptor[] = {
mjr 3:3514575d4f86 453 0x10, /*bLength*/
mjr 3:3514575d4f86 454 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 455 'm',0,'j',0,'r',0,'c',0,'o',0,'r',0,'p',0 /*bString iManufacturer - mjrcorp*/
mjr 3:3514575d4f86 456 };
mjr 3:3514575d4f86 457 return stringImanufacturerDescriptor;
mjr 3:3514575d4f86 458 }
mjr 3:3514575d4f86 459
mjr 48:058ace2aed1d 460 const uint8_t *USBJoystick::stringIserialDesc() {
mjr 48:058ace2aed1d 461 static const uint8_t stringIserialDescriptor[] = {
mjr 3:3514575d4f86 462 0x16, /*bLength*/
mjr 3:3514575d4f86 463 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 464 '0',0,'1',0,'2',0,'3',0,'4',0,'5',0,'6',0,'7',0,'8',0,'9',0, /*bString iSerial - 0123456789*/
mjr 3:3514575d4f86 465 };
mjr 3:3514575d4f86 466 return stringIserialDescriptor;
mjr 3:3514575d4f86 467 }
mjr 3:3514575d4f86 468
mjr 48:058ace2aed1d 469 const uint8_t *USBJoystick::stringIproductDesc() {
mjr 48:058ace2aed1d 470 static const uint8_t stringIproductDescriptor[] = {
mjr 9:fd65b0a94720 471 0x28, /*bLength*/
mjr 3:3514575d4f86 472 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 473 'P',0,'i',0,'n',0,'s',0,'c',0,'a',0,'p',0,'e',0,
mjr 3:3514575d4f86 474 ' ',0,'C',0,'o',0,'n',0,'t',0,'r',0,'o',0,'l',0,
mjr 3:3514575d4f86 475 'l',0,'e',0,'r',0 /*String iProduct */
mjr 3:3514575d4f86 476 };
mjr 3:3514575d4f86 477 return stringIproductDescriptor;
mjr 3:3514575d4f86 478 }
mjr 35:e959ffba78fd 479
mjr 35:e959ffba78fd 480 #define DEFAULT_CONFIGURATION (1)
mjr 35:e959ffba78fd 481
mjr 48:058ace2aed1d 482 const uint8_t *USBJoystick::configurationDesc()
mjr 35:e959ffba78fd 483 {
mjr 35:e959ffba78fd 484 int rptlen0 = reportDescLengthN(0);
mjr 35:e959ffba78fd 485 int rptlen1 = reportDescLengthN(1);
mjr 35:e959ffba78fd 486 if (useKB)
mjr 35:e959ffba78fd 487 {
mjr 48:058ace2aed1d 488 const int cfglenKB =
mjr 48:058ace2aed1d 489 ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 48:058ace2aed1d 490 + (2 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 48:058ace2aed1d 491 + (2 * HID_DESCRIPTOR_LENGTH)
mjr 48:058ace2aed1d 492 + (4 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 48:058ace2aed1d 493 static const uint8_t configurationDescriptorWithKB[] =
mjr 35:e959ffba78fd 494 {
mjr 35:e959ffba78fd 495 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 35:e959ffba78fd 496 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 497 LSB(cfglenKB), // wTotalLength (LSB)
mjr 35:e959ffba78fd 498 MSB(cfglenKB), // wTotalLength (MSB)
mjr 35:e959ffba78fd 499 0x02, // bNumInterfaces - TWO INTERFACES (JOYSTICK + KEYBOARD)
mjr 35:e959ffba78fd 500 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 35:e959ffba78fd 501 0x00, // iConfiguration
mjr 35:e959ffba78fd 502 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 35:e959ffba78fd 503 C_POWER(0), // bMaxPowerHello World from Mbed
mjr 35:e959ffba78fd 504
mjr 39:b3815a1c3802 505 // ***** INTERFACE 0 - JOYSTICK/LEDWIZ ******
mjr 35:e959ffba78fd 506 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 507 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 508 0x00, // bInterfaceNumber - first interface = 0
mjr 35:e959ffba78fd 509 0x00, // bAlternateSetting
mjr 35:e959ffba78fd 510 0x02, // bNumEndpoints
mjr 35:e959ffba78fd 511 HID_CLASS, // bInterfaceClass
mjr 35:e959ffba78fd 512 HID_SUBCLASS_NONE, // bInterfaceSubClass
mjr 35:e959ffba78fd 513 HID_PROTOCOL_NONE, // bInterfaceProtocol
mjr 35:e959ffba78fd 514 0x00, // iInterface
mjr 35:e959ffba78fd 515
mjr 35:e959ffba78fd 516 HID_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 517 HID_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 518 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 35:e959ffba78fd 519 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 35:e959ffba78fd 520 0x00, // bCountryCode
mjr 35:e959ffba78fd 521 0x01, // bNumDescriptors
mjr 35:e959ffba78fd 522 REPORT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 523 LSB(rptlen0), // wDescriptorLength (LSB)
mjr 35:e959ffba78fd 524 MSB(rptlen0), // wDescriptorLength (MSB)
mjr 35:e959ffba78fd 525
mjr 35:e959ffba78fd 526 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 527 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 528 PHY_TO_DESC(EPINT_IN), // bEndpointAddress - EPINT == EP1
mjr 35:e959ffba78fd 529 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 530 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 531 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 532 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 533
mjr 35:e959ffba78fd 534 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 535 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 536 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress - EPINT == EP1
mjr 35:e959ffba78fd 537 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 538 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 539 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 540 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 541
mjr 39:b3815a1c3802 542 // ****** INTERFACE 1 - KEYBOARD ******
mjr 35:e959ffba78fd 543 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 544 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 545 0x01, // bInterfaceNumber - second interface = 1
mjr 35:e959ffba78fd 546 0x00, // bAlternateSetting
mjr 35:e959ffba78fd 547 0x02, // bNumEndpoints
mjr 35:e959ffba78fd 548 HID_CLASS, // bInterfaceClass
mjr 35:e959ffba78fd 549 1, // bInterfaceSubClass - KEYBOARD
mjr 35:e959ffba78fd 550 1, // bInterfaceProtocol - KEYBOARD
mjr 35:e959ffba78fd 551 0x00, // iInterface
mjr 35:e959ffba78fd 552
mjr 35:e959ffba78fd 553 HID_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 554 HID_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 555 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 35:e959ffba78fd 556 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 35:e959ffba78fd 557 0x00, // bCountryCode
mjr 35:e959ffba78fd 558 0x01, // bNumDescriptors
mjr 35:e959ffba78fd 559 REPORT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 560 LSB(rptlen1), // wDescriptorLength (LSB)
mjr 35:e959ffba78fd 561 MSB(rptlen1), // wDescriptorLength (MSB)
mjr 35:e959ffba78fd 562
mjr 35:e959ffba78fd 563 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 564 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 565 PHY_TO_DESC(EP4IN), // bEndpointAddress
mjr 35:e959ffba78fd 566 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 567 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 568 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 569 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 570
mjr 35:e959ffba78fd 571 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 572 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 573 PHY_TO_DESC(EP4OUT), // bEndpointAddress
mjr 35:e959ffba78fd 574 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 575 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 576 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 577 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 578 };
mjr 35:e959ffba78fd 579
mjr 35:e959ffba78fd 580 // Keyboard + joystick interfaces
mjr 35:e959ffba78fd 581 return configurationDescriptorWithKB;
mjr 35:e959ffba78fd 582 }
mjr 35:e959ffba78fd 583 else
mjr 35:e959ffba78fd 584 {
mjr 35:e959ffba78fd 585 // No keyboard - joystick interface only
mjr 48:058ace2aed1d 586 const int cfglenNoKB =
mjr 48:058ace2aed1d 587 ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 48:058ace2aed1d 588 + (1 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 48:058ace2aed1d 589 + (1 * HID_DESCRIPTOR_LENGTH)
mjr 48:058ace2aed1d 590 + (2 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 48:058ace2aed1d 591 static const uint8_t configurationDescriptorNoKB[] =
mjr 35:e959ffba78fd 592 {
mjr 35:e959ffba78fd 593 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 35:e959ffba78fd 594 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 595 LSB(cfglenNoKB), // wTotalLength (LSB)
mjr 35:e959ffba78fd 596 MSB(cfglenNoKB), // wTotalLength (MSB)
mjr 35:e959ffba78fd 597 0x01, // bNumInterfaces
mjr 35:e959ffba78fd 598 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 35:e959ffba78fd 599 0x00, // iConfiguration
mjr 35:e959ffba78fd 600 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 35:e959ffba78fd 601 C_POWER(0), // bMaxPowerHello World from Mbed
mjr 35:e959ffba78fd 602
mjr 35:e959ffba78fd 603 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 604 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 605 0x00, // bInterfaceNumber
mjr 35:e959ffba78fd 606 0x00, // bAlternateSetting
mjr 35:e959ffba78fd 607 0x02, // bNumEndpoints
mjr 35:e959ffba78fd 608 HID_CLASS, // bInterfaceClass
mjr 35:e959ffba78fd 609 1, // bInterfaceSubClass
mjr 35:e959ffba78fd 610 1, // bInterfaceProtocol (keyboard)
mjr 35:e959ffba78fd 611 0x00, // iInterface
mjr 35:e959ffba78fd 612
mjr 35:e959ffba78fd 613 HID_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 614 HID_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 615 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 35:e959ffba78fd 616 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 35:e959ffba78fd 617 0x00, // bCountryCode
mjr 35:e959ffba78fd 618 0x01, // bNumDescriptors
mjr 35:e959ffba78fd 619 REPORT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 620 (uint8_t)(LSB(rptlen0)), // wDescriptorLength (LSB)
mjr 35:e959ffba78fd 621 (uint8_t)(MSB(rptlen0)), // wDescriptorLength (MSB)
mjr 35:e959ffba78fd 622
mjr 35:e959ffba78fd 623 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 624 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 625 PHY_TO_DESC(EPINT_IN), // bEndpointAddress
mjr 35:e959ffba78fd 626 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 627 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 628 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 629 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 630
mjr 35:e959ffba78fd 631 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 632 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 633 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress
mjr 35:e959ffba78fd 634 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 635 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 636 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 637 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 638 };
mjr 35:e959ffba78fd 639
mjr 35:e959ffba78fd 640 return configurationDescriptorNoKB;
mjr 35:e959ffba78fd 641 }
mjr 35:e959ffba78fd 642 }
mjr 35:e959ffba78fd 643
mjr 35:e959ffba78fd 644 // Set the configuration. We need to set up the endpoints for
mjr 35:e959ffba78fd 645 // our active interfaces.
mjr 35:e959ffba78fd 646 bool USBJoystick::USBCallback_setConfiguration(uint8_t configuration)
mjr 35:e959ffba78fd 647 {
mjr 35:e959ffba78fd 648 // we only have one valid configuration
mjr 35:e959ffba78fd 649 if (configuration != DEFAULT_CONFIGURATION)
mjr 35:e959ffba78fd 650 return false;
mjr 35:e959ffba78fd 651
mjr 35:e959ffba78fd 652 // Configure endpoint 1 - we use this in all cases, for either
mjr 35:e959ffba78fd 653 // the combined joystick/ledwiz interface or just the ledwiz interface
mjr 48:058ace2aed1d 654 addEndpoint(EPINT_IN, MAX_REPORT_JS_TX + 1);
mjr 48:058ace2aed1d 655 addEndpoint(EPINT_OUT, MAX_REPORT_JS_RX + 1);
mjr 48:058ace2aed1d 656 readStart(EPINT_OUT, MAX_REPORT_JS_TX + 1);
mjr 35:e959ffba78fd 657
mjr 35:e959ffba78fd 658 // if the keyboard is enabled, configure endpoint 4 for the kb interface
mjr 35:e959ffba78fd 659 if (useKB)
mjr 35:e959ffba78fd 660 {
mjr 48:058ace2aed1d 661 addEndpoint(EP4IN, MAX_REPORT_KB_TX + 1);
mjr 48:058ace2aed1d 662 addEndpoint(EP4OUT, MAX_REPORT_KB_RX + 1);
mjr 48:058ace2aed1d 663 readStart(EP4OUT, MAX_REPORT_KB_TX + 1);
mjr 35:e959ffba78fd 664 }
mjr 35:e959ffba78fd 665
mjr 35:e959ffba78fd 666 // success
mjr 35:e959ffba78fd 667 return true;
mjr 35:e959ffba78fd 668 }
mjr 35:e959ffba78fd 669
mjr 38:091e511ce8a0 670 // Handle incoming messages on the joystick/LedWiz interface = endpoint 1.
mjr 38:091e511ce8a0 671 // This interface receives LedWiz protocol commands and commands using our
mjr 38:091e511ce8a0 672 // custom LedWiz protocol extensions.
mjr 38:091e511ce8a0 673 //
mjr 38:091e511ce8a0 674 // We simply queue the messages in our circular buffer for processing in
mjr 38:091e511ce8a0 675 // the main loop. The circular buffer object is designed for safe access
mjr 38:091e511ce8a0 676 // from the interrupt handler using the rule that only the interrupt
mjr 38:091e511ce8a0 677 // handler can change the write pointer, and only the regular code can
mjr 38:091e511ce8a0 678 // change the read pointer.
mjr 38:091e511ce8a0 679 bool USBJoystick::EP1_OUT_callback()
mjr 38:091e511ce8a0 680 {
mjr 38:091e511ce8a0 681 // Read this message
mjr 38:091e511ce8a0 682 union {
mjr 38:091e511ce8a0 683 LedWizMsg msg;
mjr 38:091e511ce8a0 684 uint8_t buf[MAX_HID_REPORT_SIZE];
mjr 38:091e511ce8a0 685 } buf;
mjr 38:091e511ce8a0 686 uint32_t bytesRead = 0;
mjr 38:091e511ce8a0 687 USBDevice::readEP(EP1OUT, buf.buf, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 688
mjr 38:091e511ce8a0 689 // if it's the right length, queue it to our circular buffer
mjr 38:091e511ce8a0 690 if (bytesRead == 8)
mjr 38:091e511ce8a0 691 lwbuf.write(buf.msg);
mjr 38:091e511ce8a0 692
mjr 38:091e511ce8a0 693 // start the next read
mjr 39:b3815a1c3802 694 return readStart(EP1OUT, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 695 }
mjr 38:091e511ce8a0 696
mjr 38:091e511ce8a0 697 // Handle incoming messages on the keyboard interface = endpoint 4.
mjr 35:e959ffba78fd 698 // The host uses this to send updates for the keyboard indicator LEDs
mjr 35:e959ffba78fd 699 // (caps lock, num lock, etc). We don't do anything with these, but
mjr 37:ed52738445fc 700 // we have to read them to keep the pipe open.
mjr 35:e959ffba78fd 701 bool USBJoystick::EP4_OUT_callback()
mjr 35:e959ffba78fd 702 {
mjr 35:e959ffba78fd 703 // read this message
mjr 35:e959ffba78fd 704 uint32_t bytesRead = 0;
mjr 37:ed52738445fc 705 uint8_t led[MAX_HID_REPORT_SIZE];
mjr 35:e959ffba78fd 706 USBDevice::readEP(EP4OUT, led, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 35:e959ffba78fd 707
mjr 35:e959ffba78fd 708 // start the next read
mjr 35:e959ffba78fd 709 return readStart(EP4OUT, MAX_HID_REPORT_SIZE);
mjr 35:e959ffba78fd 710 }
mjr 39:b3815a1c3802 711