An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Wed Feb 03 22:57:25 2016 +0000
Revision:
40:cc0d9814522b
Parent:
39:b3815a1c3802
Child:
47:df7a88cd249c
Gamma correction option for outputs; work in progress on new config program

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 3:3514575d4f86 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
mjr 3:3514575d4f86 2 * Modified Mouse code for Joystick - WH 2012
mjr 3:3514575d4f86 3 *
mjr 3:3514575d4f86 4 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 3:3514575d4f86 5 * and associated documentation files (the "Software"), to deal in the Software without
mjr 3:3514575d4f86 6 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 3:3514575d4f86 7 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 3:3514575d4f86 8 * Software is furnished to do so, subject to the following conditions:
mjr 3:3514575d4f86 9 *
mjr 3:3514575d4f86 10 * The above copyright notice and this permission notice shall be included in all copies or
mjr 3:3514575d4f86 11 * substantial portions of the Software.
mjr 3:3514575d4f86 12 *
mjr 3:3514575d4f86 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 3:3514575d4f86 14 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 3:3514575d4f86 15 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 3:3514575d4f86 16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 3:3514575d4f86 17 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 3:3514575d4f86 18 */
mjr 3:3514575d4f86 19
mjr 3:3514575d4f86 20 #include "stdint.h"
mjr 3:3514575d4f86 21 #include "USBJoystick.h"
mjr 21:5048e16cc9ef 22
mjr 21:5048e16cc9ef 23 #include "config.h" // Pinscape configuration
mjr 21:5048e16cc9ef 24
mjr 35:e959ffba78fd 25
mjr 35:e959ffba78fd 26
mjr 21:5048e16cc9ef 27 // Length of our joystick reports. Important: This must be kept in sync
mjr 21:5048e16cc9ef 28 // with the actual joystick report format sent in update().
mjr 21:5048e16cc9ef 29 const int reportLen = 14;
mjr 21:5048e16cc9ef 30
mjr 11:bd9da7088e6e 31 bool USBJoystick::update(int16_t x, int16_t y, int16_t z, uint32_t buttons, uint16_t status)
mjr 3:3514575d4f86 32 {
mjr 3:3514575d4f86 33 _x = x;
mjr 3:3514575d4f86 34 _y = y;
mjr 3:3514575d4f86 35 _z = z;
mjr 11:bd9da7088e6e 36 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 37 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 10:976666ffa4ef 38 _status = status;
mjr 3:3514575d4f86 39
mjr 3:3514575d4f86 40 // send the report
mjr 3:3514575d4f86 41 return update();
mjr 3:3514575d4f86 42 }
mjr 35:e959ffba78fd 43
mjr 11:bd9da7088e6e 44 bool USBJoystick::update()
mjr 11:bd9da7088e6e 45 {
mjr 3:3514575d4f86 46 HID_REPORT report;
mjr 11:bd9da7088e6e 47
mjr 3:3514575d4f86 48 // Fill the report according to the Joystick Descriptor
mjr 6:cc35eb643e8f 49 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 40:cc0d9814522b 50 #define putl(idx, val) (put(idx, val), put((idx)+2, (val) >> 16))
mjr 10:976666ffa4ef 51 put(0, _status);
mjr 40:cc0d9814522b 52 put(2, 0); // second word of status - zero in high bit identifies as normal joystick report
mjr 11:bd9da7088e6e 53 put(4, _buttonsLo);
mjr 11:bd9da7088e6e 54 put(6, _buttonsHi);
mjr 11:bd9da7088e6e 55 put(8, _x);
mjr 11:bd9da7088e6e 56 put(10, _y);
mjr 11:bd9da7088e6e 57 put(12, _z);
mjr 21:5048e16cc9ef 58
mjr 21:5048e16cc9ef 59 // important: keep reportLen in sync with the actual byte length of
mjr 21:5048e16cc9ef 60 // the reports we build here
mjr 11:bd9da7088e6e 61 report.length = reportLen;
mjr 3:3514575d4f86 62
mjr 5:a70c0bce770d 63 // send the report
mjr 10:976666ffa4ef 64 return sendTO(&report, 100);
mjr 10:976666ffa4ef 65 }
mjr 10:976666ffa4ef 66
mjr 35:e959ffba78fd 67 bool USBJoystick::kbUpdate(uint8_t data[8])
mjr 35:e959ffba78fd 68 {
mjr 35:e959ffba78fd 69 // set up the report
mjr 35:e959ffba78fd 70 HID_REPORT report;
mjr 35:e959ffba78fd 71 report.data[0] = REPORT_ID_KB; // report ID = keyboard
mjr 35:e959ffba78fd 72 memcpy(&report.data[1], data, 8); // copy the kb report data
mjr 35:e959ffba78fd 73 report.length = 9; // length = ID prefix + kb report length
mjr 35:e959ffba78fd 74
mjr 35:e959ffba78fd 75 // send it to endpoint 4 (the keyboard interface endpoint)
mjr 35:e959ffba78fd 76 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 77 }
mjr 35:e959ffba78fd 78
mjr 35:e959ffba78fd 79 bool USBJoystick::mediaUpdate(uint8_t data)
mjr 35:e959ffba78fd 80 {
mjr 35:e959ffba78fd 81 // set up the report
mjr 35:e959ffba78fd 82 HID_REPORT report;
mjr 35:e959ffba78fd 83 report.data[0] = REPORT_ID_MEDIA; // report ID = media
mjr 35:e959ffba78fd 84 report.data[1] = data; // key pressed bits
mjr 35:e959ffba78fd 85 report.length = 2;
mjr 35:e959ffba78fd 86
mjr 35:e959ffba78fd 87 // send it
mjr 35:e959ffba78fd 88 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 89 }
mjr 35:e959ffba78fd 90
mjr 10:976666ffa4ef 91 bool USBJoystick::updateExposure(int &idx, int npix, const uint16_t *pix)
mjr 10:976666ffa4ef 92 {
mjr 10:976666ffa4ef 93 HID_REPORT report;
mjr 10:976666ffa4ef 94
mjr 10:976666ffa4ef 95 // Set the special status bits to indicate it's an exposure report.
mjr 10:976666ffa4ef 96 // The high 5 bits of the status word are set to 10000, and the
mjr 10:976666ffa4ef 97 // low 11 bits are the current pixel index.
mjr 10:976666ffa4ef 98 uint16_t s = idx | 0x8000;
mjr 10:976666ffa4ef 99 put(0, s);
mjr 25:e22b88bd783a 100
mjr 25:e22b88bd783a 101 // start at the second byte
mjr 25:e22b88bd783a 102 int ofs = 2;
mjr 25:e22b88bd783a 103
mjr 25:e22b88bd783a 104 // in the first report, add the total pixel count as the next two bytes
mjr 25:e22b88bd783a 105 if (idx == 0)
mjr 25:e22b88bd783a 106 {
mjr 25:e22b88bd783a 107 put(ofs, npix);
mjr 25:e22b88bd783a 108 ofs += 2;
mjr 25:e22b88bd783a 109 }
mjr 10:976666ffa4ef 110
mjr 10:976666ffa4ef 111 // now fill out the remaining words with exposure values
mjr 11:bd9da7088e6e 112 report.length = reportLen;
mjr 25:e22b88bd783a 113 for ( ; ofs + 1 < report.length ; ofs += 2)
mjr 10:976666ffa4ef 114 {
mjr 10:976666ffa4ef 115 uint16_t p = (idx < npix ? pix[idx++] : 0);
mjr 10:976666ffa4ef 116 put(ofs, p);
mjr 10:976666ffa4ef 117 }
mjr 10:976666ffa4ef 118
mjr 10:976666ffa4ef 119 // send the report
mjr 35:e959ffba78fd 120 return sendTO(&report, 100);
mjr 3:3514575d4f86 121 }
mjr 9:fd65b0a94720 122
mjr 40:cc0d9814522b 123 bool USBJoystick::reportID()
mjr 40:cc0d9814522b 124 {
mjr 40:cc0d9814522b 125 HID_REPORT report;
mjr 40:cc0d9814522b 126
mjr 40:cc0d9814522b 127 // initially fill the report with zeros
mjr 40:cc0d9814522b 128 memset(report.data, 0, sizeof(report.data));
mjr 40:cc0d9814522b 129
mjr 40:cc0d9814522b 130 // Set the special status bits to indicate that it's an ID report
mjr 40:cc0d9814522b 131 uint16_t s = 0x9000;
mjr 40:cc0d9814522b 132 put(0, s);
mjr 40:cc0d9814522b 133
mjr 40:cc0d9814522b 134 // write the 80-bit ID
mjr 40:cc0d9814522b 135 put(2, SIM->UIDMH);
mjr 40:cc0d9814522b 136 putl(4, SIM->UIDML);
mjr 40:cc0d9814522b 137 putl(8, SIM->UIDL);
mjr 40:cc0d9814522b 138
mjr 40:cc0d9814522b 139 // send the report
mjr 40:cc0d9814522b 140 report.length = reportLen;
mjr 40:cc0d9814522b 141 return sendTO(&report, 100);
mjr 40:cc0d9814522b 142 }
mjr 40:cc0d9814522b 143
mjr 40:cc0d9814522b 144 bool USBJoystick::reportConfig(int numOutputs, int unitNo, int plungerZero, int plungerMax, bool configured)
mjr 33:d832bcab089e 145 {
mjr 33:d832bcab089e 146 HID_REPORT report;
mjr 33:d832bcab089e 147
mjr 33:d832bcab089e 148 // initially fill the report with zeros
mjr 33:d832bcab089e 149 memset(report.data, 0, sizeof(report.data));
mjr 33:d832bcab089e 150
mjr 33:d832bcab089e 151 // Set the special status bits to indicate that it's a config report.
mjr 33:d832bcab089e 152 uint16_t s = 0x8800;
mjr 33:d832bcab089e 153 put(0, s);
mjr 33:d832bcab089e 154
mjr 33:d832bcab089e 155 // write the number of configured outputs
mjr 33:d832bcab089e 156 put(2, numOutputs);
mjr 33:d832bcab089e 157
mjr 33:d832bcab089e 158 // write the unit number
mjr 33:d832bcab089e 159 put(4, unitNo);
mjr 33:d832bcab089e 160
mjr 35:e959ffba78fd 161 // write the plunger zero and max values
mjr 35:e959ffba78fd 162 put(6, plungerZero);
mjr 35:e959ffba78fd 163 put(8, plungerMax);
mjr 35:e959ffba78fd 164
mjr 40:cc0d9814522b 165 // write the status bits:
mjr 40:cc0d9814522b 166 // 0x01 -> configuration loaded
mjr 40:cc0d9814522b 167 report.data[10] = (configured ? 0x01 : 0x00);
mjr 40:cc0d9814522b 168
mjr 33:d832bcab089e 169 // send the report
mjr 33:d832bcab089e 170 report.length = reportLen;
mjr 35:e959ffba78fd 171 return sendTO(&report, 100);
mjr 33:d832bcab089e 172 }
mjr 33:d832bcab089e 173
mjr 33:d832bcab089e 174 bool USBJoystick::move(int16_t x, int16_t y)
mjr 33:d832bcab089e 175 {
mjr 3:3514575d4f86 176 _x = x;
mjr 3:3514575d4f86 177 _y = y;
mjr 3:3514575d4f86 178 return update();
mjr 3:3514575d4f86 179 }
mjr 3:3514575d4f86 180
mjr 33:d832bcab089e 181 bool USBJoystick::setZ(int16_t z)
mjr 33:d832bcab089e 182 {
mjr 3:3514575d4f86 183 _z = z;
mjr 3:3514575d4f86 184 return update();
mjr 3:3514575d4f86 185 }
mjr 3:3514575d4f86 186
mjr 33:d832bcab089e 187 bool USBJoystick::buttons(uint32_t buttons)
mjr 33:d832bcab089e 188 {
mjr 11:bd9da7088e6e 189 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 190 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 3:3514575d4f86 191 return update();
mjr 3:3514575d4f86 192 }
mjr 21:5048e16cc9ef 193
mjr 21:5048e16cc9ef 194 bool USBJoystick::updateStatus(uint32_t status)
mjr 21:5048e16cc9ef 195 {
mjr 21:5048e16cc9ef 196 HID_REPORT report;
mjr 21:5048e16cc9ef 197
mjr 21:5048e16cc9ef 198 // Fill the report according to the Joystick Descriptor
mjr 21:5048e16cc9ef 199 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 21:5048e16cc9ef 200 memset(report.data, 0, reportLen);
mjr 21:5048e16cc9ef 201 put(0, status);
mjr 21:5048e16cc9ef 202 report.length = reportLen;
mjr 21:5048e16cc9ef 203
mjr 21:5048e16cc9ef 204 // send the report
mjr 21:5048e16cc9ef 205 return sendTO(&report, 100);
mjr 21:5048e16cc9ef 206 }
mjr 21:5048e16cc9ef 207
mjr 3:3514575d4f86 208 void USBJoystick::_init() {
mjr 3:3514575d4f86 209
mjr 3:3514575d4f86 210 _x = 0;
mjr 3:3514575d4f86 211 _y = 0;
mjr 3:3514575d4f86 212 _z = 0;
mjr 11:bd9da7088e6e 213 _buttonsLo = 0x0000;
mjr 11:bd9da7088e6e 214 _buttonsHi = 0x0000;
mjr 9:fd65b0a94720 215 _status = 0;
mjr 3:3514575d4f86 216 }
mjr 3:3514575d4f86 217
mjr 3:3514575d4f86 218
mjr 35:e959ffba78fd 219 // --------------------------------------------------------------------------
mjr 35:e959ffba78fd 220 //
mjr 35:e959ffba78fd 221 // USB HID Report Descriptor - Joystick
mjr 35:e959ffba78fd 222 //
mjr 35:e959ffba78fd 223 static uint8_t reportDescriptorJS[] =
mjr 35:e959ffba78fd 224 {
mjr 35:e959ffba78fd 225 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 35:e959ffba78fd 226 USAGE(1), 0x04, // Joystick
mjr 35:e959ffba78fd 227 COLLECTION(1), 0x01, // Application
mjr 35:e959ffba78fd 228
mjr 35:e959ffba78fd 229 // input report (device to host)
mjr 35:e959ffba78fd 230
mjr 35:e959ffba78fd 231 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 35:e959ffba78fd 232 USAGE(1), 0x00, // undefined device control
mjr 35:e959ffba78fd 233 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 35:e959ffba78fd 234 LOGICAL_MAXIMUM(1), 0xFF,
mjr 35:e959ffba78fd 235 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 35:e959ffba78fd 236 REPORT_COUNT(1), 0x04, // 4 reports (4 bytes)
mjr 35:e959ffba78fd 237 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 238
mjr 35:e959ffba78fd 239 USAGE_PAGE(1), 0x09, // Buttons
mjr 35:e959ffba78fd 240 USAGE_MINIMUM(1), 0x01, // { buttons }
mjr 35:e959ffba78fd 241 USAGE_MAXIMUM(1), 0x20, // { 1-32 }
mjr 35:e959ffba78fd 242 LOGICAL_MINIMUM(1), 0x00, // 1-bit buttons - 0...
mjr 35:e959ffba78fd 243 LOGICAL_MAXIMUM(1), 0x01, // ...to 1
mjr 35:e959ffba78fd 244 REPORT_SIZE(1), 0x01, // 1 bit per report
mjr 35:e959ffba78fd 245 REPORT_COUNT(1), 0x20, // 32 reports
mjr 35:e959ffba78fd 246 UNIT_EXPONENT(1), 0x00, // Unit_Exponent (0)
mjr 35:e959ffba78fd 247 UNIT(1), 0x00, // Unit (None)
mjr 35:e959ffba78fd 248 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 249
mjr 35:e959ffba78fd 250 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 35:e959ffba78fd 251 USAGE(1), 0x30, // X axis
mjr 35:e959ffba78fd 252 USAGE(1), 0x31, // Y axis
mjr 35:e959ffba78fd 253 USAGE(1), 0x32, // Z axis
mjr 35:e959ffba78fd 254 LOGICAL_MINIMUM(2), 0x00,0xF0, // each value ranges -4096
mjr 35:e959ffba78fd 255 LOGICAL_MAXIMUM(2), 0x00,0x10, // ...to +4096
mjr 35:e959ffba78fd 256 REPORT_SIZE(1), 0x10, // 16 bits per report
mjr 35:e959ffba78fd 257 REPORT_COUNT(1), 0x03, // 3 reports (X, Y, Z)
mjr 35:e959ffba78fd 258 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 9:fd65b0a94720 259
mjr 35:e959ffba78fd 260 // output report (host to device)
mjr 35:e959ffba78fd 261 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 35:e959ffba78fd 262 REPORT_COUNT(1), 0x08, // output report count - 8-byte LedWiz format
mjr 35:e959ffba78fd 263 0x09, 0x01, // usage
mjr 35:e959ffba78fd 264 0x91, 0x01, // Output (array)
mjr 35:e959ffba78fd 265
mjr 35:e959ffba78fd 266 END_COLLECTION(0)
mjr 35:e959ffba78fd 267 };
mjr 35:e959ffba78fd 268
mjr 35:e959ffba78fd 269 //
mjr 35:e959ffba78fd 270 // USB HID Report Descriptor - Keyboard/Media Control
mjr 35:e959ffba78fd 271 //
mjr 35:e959ffba78fd 272 static uint8_t reportDescriptorKB[] =
mjr 35:e959ffba78fd 273 {
mjr 35:e959ffba78fd 274 USAGE_PAGE(1), 0x01, // Generic Desktop
mjr 35:e959ffba78fd 275 USAGE(1), 0x06, // Keyboard
mjr 35:e959ffba78fd 276 COLLECTION(1), 0x01, // Application
mjr 35:e959ffba78fd 277 REPORT_ID(1), REPORT_ID_KB,
mjr 10:976666ffa4ef 278
mjr 35:e959ffba78fd 279 USAGE_PAGE(1), 0x07, // Key Codes
mjr 35:e959ffba78fd 280 USAGE_MINIMUM(1), 0xE0,
mjr 35:e959ffba78fd 281 USAGE_MAXIMUM(1), 0xE7,
mjr 35:e959ffba78fd 282 LOGICAL_MINIMUM(1), 0x00,
mjr 35:e959ffba78fd 283 LOGICAL_MAXIMUM(1), 0x01,
mjr 35:e959ffba78fd 284 REPORT_SIZE(1), 0x01,
mjr 35:e959ffba78fd 285 REPORT_COUNT(1), 0x08,
mjr 35:e959ffba78fd 286 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 287 REPORT_COUNT(1), 0x01,
mjr 35:e959ffba78fd 288 REPORT_SIZE(1), 0x08,
mjr 35:e959ffba78fd 289 INPUT(1), 0x01, // Constant
mjr 35:e959ffba78fd 290
mjr 35:e959ffba78fd 291 REPORT_COUNT(1), 0x05,
mjr 35:e959ffba78fd 292 REPORT_SIZE(1), 0x01,
mjr 35:e959ffba78fd 293 USAGE_PAGE(1), 0x08, // LEDs
mjr 35:e959ffba78fd 294 USAGE_MINIMUM(1), 0x01,
mjr 35:e959ffba78fd 295 USAGE_MAXIMUM(1), 0x05,
mjr 35:e959ffba78fd 296 OUTPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 297 REPORT_COUNT(1), 0x01,
mjr 35:e959ffba78fd 298 REPORT_SIZE(1), 0x03,
mjr 35:e959ffba78fd 299 OUTPUT(1), 0x01, // Constant
mjr 10:976666ffa4ef 300
mjr 35:e959ffba78fd 301 REPORT_COUNT(1), 0x06,
mjr 35:e959ffba78fd 302 REPORT_SIZE(1), 0x08,
mjr 35:e959ffba78fd 303 LOGICAL_MINIMUM(1), 0x00,
mjr 35:e959ffba78fd 304 LOGICAL_MAXIMUM(1), 0x65,
mjr 35:e959ffba78fd 305 USAGE_PAGE(1), 0x07, // Key Codes
mjr 35:e959ffba78fd 306 USAGE_MINIMUM(1), 0x00,
mjr 35:e959ffba78fd 307 USAGE_MAXIMUM(1), 0x65,
mjr 35:e959ffba78fd 308 INPUT(1), 0x00, // Data, Array
mjr 35:e959ffba78fd 309 END_COLLECTION(0),
mjr 3:3514575d4f86 310
mjr 35:e959ffba78fd 311 // Media Control
mjr 35:e959ffba78fd 312 USAGE_PAGE(1), 0x0C,
mjr 35:e959ffba78fd 313 USAGE(1), 0x01,
mjr 35:e959ffba78fd 314 COLLECTION(1), 0x01,
mjr 35:e959ffba78fd 315 REPORT_ID(1), REPORT_ID_MEDIA,
mjr 35:e959ffba78fd 316 USAGE_PAGE(1), 0x0C,
mjr 35:e959ffba78fd 317 LOGICAL_MINIMUM(1), 0x00,
mjr 35:e959ffba78fd 318 LOGICAL_MAXIMUM(1), 0x01,
mjr 35:e959ffba78fd 319 REPORT_SIZE(1), 0x01,
mjr 35:e959ffba78fd 320 REPORT_COUNT(1), 0x07,
mjr 35:e959ffba78fd 321 USAGE(1), 0xE9, // Volume Up
mjr 35:e959ffba78fd 322 USAGE(1), 0xEA, // Volume Down
mjr 35:e959ffba78fd 323 USAGE(1), 0xE2, // Mute
mjr 35:e959ffba78fd 324 USAGE(1), 0xB5, // Next Track
mjr 35:e959ffba78fd 325 USAGE(1), 0xB6, // Previous Track
mjr 35:e959ffba78fd 326 USAGE(1), 0xB7, // Stop
mjr 35:e959ffba78fd 327 USAGE(1), 0xCD, // Play / Pause
mjr 35:e959ffba78fd 328 INPUT(1), 0x02, // Input (Data, Variable, Absolute)
mjr 35:e959ffba78fd 329 REPORT_COUNT(1), 0x01,
mjr 35:e959ffba78fd 330 INPUT(1), 0x01,
mjr 35:e959ffba78fd 331 END_COLLECTION(0),
mjr 35:e959ffba78fd 332 };
mjr 29:582472d0bc57 333
mjr 35:e959ffba78fd 334 //
mjr 35:e959ffba78fd 335 // USB HID Report Descriptor - LedWiz only, with no joystick or keyboard
mjr 35:e959ffba78fd 336 // input reporting
mjr 35:e959ffba78fd 337 //
mjr 35:e959ffba78fd 338 static uint8_t reportDescriptorLW[] =
mjr 35:e959ffba78fd 339 {
mjr 35:e959ffba78fd 340 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 35:e959ffba78fd 341 USAGE(1), 0x00, // Undefined
mjr 21:5048e16cc9ef 342
mjr 35:e959ffba78fd 343 COLLECTION(1), 0x01, // Application
mjr 21:5048e16cc9ef 344
mjr 35:e959ffba78fd 345 // input report (device to host)
mjr 35:e959ffba78fd 346 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 35:e959ffba78fd 347 USAGE(1), 0x00, // undefined device control
mjr 35:e959ffba78fd 348 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 35:e959ffba78fd 349 LOGICAL_MAXIMUM(1), 0xFF,
mjr 35:e959ffba78fd 350 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 35:e959ffba78fd 351 REPORT_COUNT(1), reportLen, // standard report length (same as if we were in joystick mode)
mjr 35:e959ffba78fd 352 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 353
mjr 35:e959ffba78fd 354 // output report (host to device)
mjr 35:e959ffba78fd 355 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 35:e959ffba78fd 356 REPORT_COUNT(1), 0x08, // output report count (LEDWiz messages)
mjr 35:e959ffba78fd 357 0x09, 0x01, // usage
mjr 35:e959ffba78fd 358 0x91, 0x01, // Output (array)
mjr 35:e959ffba78fd 359
mjr 35:e959ffba78fd 360 END_COLLECTION(0)
mjr 35:e959ffba78fd 361 };
mjr 35:e959ffba78fd 362
mjr 21:5048e16cc9ef 363
mjr 35:e959ffba78fd 364 uint8_t * USBJoystick::reportDescN(int idx)
mjr 35:e959ffba78fd 365 {
mjr 35:e959ffba78fd 366 if (enableJoystick)
mjr 35:e959ffba78fd 367 {
mjr 35:e959ffba78fd 368 // Joystick reports are enabled. Use the full joystick report
mjr 35:e959ffba78fd 369 // format, or full keyboard report format, depending on which
mjr 35:e959ffba78fd 370 // interface is being requested.
mjr 35:e959ffba78fd 371 switch (idx)
mjr 35:e959ffba78fd 372 {
mjr 35:e959ffba78fd 373 case 0:
mjr 35:e959ffba78fd 374 // joystick interface
mjr 35:e959ffba78fd 375 reportLength = sizeof(reportDescriptorJS);
mjr 35:e959ffba78fd 376 return reportDescriptorJS;
mjr 35:e959ffba78fd 377
mjr 35:e959ffba78fd 378 case 1:
mjr 35:e959ffba78fd 379 // keyboard interface
mjr 35:e959ffba78fd 380 reportLength = sizeof(reportDescriptorKB);
mjr 35:e959ffba78fd 381 return reportDescriptorKB;
mjr 35:e959ffba78fd 382
mjr 35:e959ffba78fd 383 default:
mjr 35:e959ffba78fd 384 // unknown interface
mjr 35:e959ffba78fd 385 reportLength = 0;
mjr 35:e959ffba78fd 386 return 0;
mjr 35:e959ffba78fd 387 }
mjr 35:e959ffba78fd 388 }
mjr 35:e959ffba78fd 389 else
mjr 35:e959ffba78fd 390 {
mjr 35:e959ffba78fd 391 // Joystick reports are disabled. Use the LedWiz-only format.
mjr 35:e959ffba78fd 392 reportLength = sizeof(reportDescriptorLW);
mjr 35:e959ffba78fd 393 return reportDescriptorLW;
mjr 35:e959ffba78fd 394 }
mjr 35:e959ffba78fd 395 }
mjr 3:3514575d4f86 396
mjr 3:3514575d4f86 397 uint8_t * USBJoystick::stringImanufacturerDesc() {
mjr 3:3514575d4f86 398 static uint8_t stringImanufacturerDescriptor[] = {
mjr 3:3514575d4f86 399 0x10, /*bLength*/
mjr 3:3514575d4f86 400 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 401 'm',0,'j',0,'r',0,'c',0,'o',0,'r',0,'p',0 /*bString iManufacturer - mjrcorp*/
mjr 3:3514575d4f86 402 };
mjr 3:3514575d4f86 403 return stringImanufacturerDescriptor;
mjr 3:3514575d4f86 404 }
mjr 3:3514575d4f86 405
mjr 3:3514575d4f86 406 uint8_t * USBJoystick::stringIserialDesc() {
mjr 3:3514575d4f86 407 static uint8_t stringIserialDescriptor[] = {
mjr 3:3514575d4f86 408 0x16, /*bLength*/
mjr 3:3514575d4f86 409 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 410 '0',0,'1',0,'2',0,'3',0,'4',0,'5',0,'6',0,'7',0,'8',0,'9',0, /*bString iSerial - 0123456789*/
mjr 3:3514575d4f86 411 };
mjr 3:3514575d4f86 412 return stringIserialDescriptor;
mjr 3:3514575d4f86 413 }
mjr 3:3514575d4f86 414
mjr 3:3514575d4f86 415 uint8_t * USBJoystick::stringIproductDesc() {
mjr 3:3514575d4f86 416 static uint8_t stringIproductDescriptor[] = {
mjr 9:fd65b0a94720 417 0x28, /*bLength*/
mjr 3:3514575d4f86 418 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 419 'P',0,'i',0,'n',0,'s',0,'c',0,'a',0,'p',0,'e',0,
mjr 3:3514575d4f86 420 ' ',0,'C',0,'o',0,'n',0,'t',0,'r',0,'o',0,'l',0,
mjr 3:3514575d4f86 421 'l',0,'e',0,'r',0 /*String iProduct */
mjr 3:3514575d4f86 422 };
mjr 3:3514575d4f86 423 return stringIproductDescriptor;
mjr 3:3514575d4f86 424 }
mjr 35:e959ffba78fd 425
mjr 35:e959ffba78fd 426 #define DEFAULT_CONFIGURATION (1)
mjr 35:e959ffba78fd 427
mjr 35:e959ffba78fd 428 uint8_t * USBJoystick::configurationDesc()
mjr 35:e959ffba78fd 429 {
mjr 35:e959ffba78fd 430 int rptlen0 = reportDescLengthN(0);
mjr 35:e959ffba78fd 431 int rptlen1 = reportDescLengthN(1);
mjr 35:e959ffba78fd 432 if (useKB)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 int cfglenKB = ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 35:e959ffba78fd 435 + (2 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 35:e959ffba78fd 436 + (2 * HID_DESCRIPTOR_LENGTH)
mjr 35:e959ffba78fd 437 + (4 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 35:e959ffba78fd 438 static uint8_t configurationDescriptorWithKB[] =
mjr 35:e959ffba78fd 439 {
mjr 35:e959ffba78fd 440 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 35:e959ffba78fd 441 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 442 LSB(cfglenKB), // wTotalLength (LSB)
mjr 35:e959ffba78fd 443 MSB(cfglenKB), // wTotalLength (MSB)
mjr 35:e959ffba78fd 444 0x02, // bNumInterfaces - TWO INTERFACES (JOYSTICK + KEYBOARD)
mjr 35:e959ffba78fd 445 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 35:e959ffba78fd 446 0x00, // iConfiguration
mjr 35:e959ffba78fd 447 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 35:e959ffba78fd 448 C_POWER(0), // bMaxPowerHello World from Mbed
mjr 35:e959ffba78fd 449
mjr 39:b3815a1c3802 450 // ***** INTERFACE 0 - JOYSTICK/LEDWIZ ******
mjr 35:e959ffba78fd 451 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 452 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 453 0x00, // bInterfaceNumber - first interface = 0
mjr 35:e959ffba78fd 454 0x00, // bAlternateSetting
mjr 35:e959ffba78fd 455 0x02, // bNumEndpoints
mjr 35:e959ffba78fd 456 HID_CLASS, // bInterfaceClass
mjr 35:e959ffba78fd 457 HID_SUBCLASS_NONE, // bInterfaceSubClass
mjr 35:e959ffba78fd 458 HID_PROTOCOL_NONE, // bInterfaceProtocol
mjr 35:e959ffba78fd 459 0x00, // iInterface
mjr 35:e959ffba78fd 460
mjr 35:e959ffba78fd 461 HID_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 462 HID_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 463 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 35:e959ffba78fd 464 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 35:e959ffba78fd 465 0x00, // bCountryCode
mjr 35:e959ffba78fd 466 0x01, // bNumDescriptors
mjr 35:e959ffba78fd 467 REPORT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 468 LSB(rptlen0), // wDescriptorLength (LSB)
mjr 35:e959ffba78fd 469 MSB(rptlen0), // wDescriptorLength (MSB)
mjr 35:e959ffba78fd 470
mjr 35:e959ffba78fd 471 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 472 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 473 PHY_TO_DESC(EPINT_IN), // bEndpointAddress - EPINT == EP1
mjr 35:e959ffba78fd 474 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 475 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 476 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 477 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 478
mjr 35:e959ffba78fd 479 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 480 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 481 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress - EPINT == EP1
mjr 35:e959ffba78fd 482 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 483 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 484 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 485 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 486
mjr 39:b3815a1c3802 487 // ****** INTERFACE 1 - KEYBOARD ******
mjr 35:e959ffba78fd 488 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 489 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 490 0x01, // bInterfaceNumber - second interface = 1
mjr 35:e959ffba78fd 491 0x00, // bAlternateSetting
mjr 35:e959ffba78fd 492 0x02, // bNumEndpoints
mjr 35:e959ffba78fd 493 HID_CLASS, // bInterfaceClass
mjr 35:e959ffba78fd 494 1, // bInterfaceSubClass - KEYBOARD
mjr 35:e959ffba78fd 495 1, // bInterfaceProtocol - KEYBOARD
mjr 35:e959ffba78fd 496 0x00, // iInterface
mjr 35:e959ffba78fd 497
mjr 35:e959ffba78fd 498 HID_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 499 HID_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 500 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 35:e959ffba78fd 501 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 35:e959ffba78fd 502 0x00, // bCountryCode
mjr 35:e959ffba78fd 503 0x01, // bNumDescriptors
mjr 35:e959ffba78fd 504 REPORT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 505 LSB(rptlen1), // wDescriptorLength (LSB)
mjr 35:e959ffba78fd 506 MSB(rptlen1), // wDescriptorLength (MSB)
mjr 35:e959ffba78fd 507
mjr 35:e959ffba78fd 508 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 509 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 510 PHY_TO_DESC(EP4IN), // bEndpointAddress
mjr 35:e959ffba78fd 511 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 512 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 513 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 514 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 515
mjr 35:e959ffba78fd 516 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 517 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 518 PHY_TO_DESC(EP4OUT), // bEndpointAddress
mjr 35:e959ffba78fd 519 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 520 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 521 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 522 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 523 };
mjr 35:e959ffba78fd 524
mjr 35:e959ffba78fd 525 // Keyboard + joystick interfaces
mjr 35:e959ffba78fd 526 return configurationDescriptorWithKB;
mjr 35:e959ffba78fd 527 }
mjr 35:e959ffba78fd 528 else
mjr 35:e959ffba78fd 529 {
mjr 35:e959ffba78fd 530 // No keyboard - joystick interface only
mjr 35:e959ffba78fd 531 int cfglenNoKB = ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 35:e959ffba78fd 532 + (1 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 35:e959ffba78fd 533 + (1 * HID_DESCRIPTOR_LENGTH)
mjr 35:e959ffba78fd 534 + (2 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 35:e959ffba78fd 535 static uint8_t configurationDescriptorNoKB[] =
mjr 35:e959ffba78fd 536 {
mjr 35:e959ffba78fd 537 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 35:e959ffba78fd 538 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 539 LSB(cfglenNoKB), // wTotalLength (LSB)
mjr 35:e959ffba78fd 540 MSB(cfglenNoKB), // wTotalLength (MSB)
mjr 35:e959ffba78fd 541 0x01, // bNumInterfaces
mjr 35:e959ffba78fd 542 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 35:e959ffba78fd 543 0x00, // iConfiguration
mjr 35:e959ffba78fd 544 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 35:e959ffba78fd 545 C_POWER(0), // bMaxPowerHello World from Mbed
mjr 35:e959ffba78fd 546
mjr 35:e959ffba78fd 547 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 548 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 549 0x00, // bInterfaceNumber
mjr 35:e959ffba78fd 550 0x00, // bAlternateSetting
mjr 35:e959ffba78fd 551 0x02, // bNumEndpoints
mjr 35:e959ffba78fd 552 HID_CLASS, // bInterfaceClass
mjr 35:e959ffba78fd 553 1, // bInterfaceSubClass
mjr 35:e959ffba78fd 554 1, // bInterfaceProtocol (keyboard)
mjr 35:e959ffba78fd 555 0x00, // iInterface
mjr 35:e959ffba78fd 556
mjr 35:e959ffba78fd 557 HID_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 558 HID_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 559 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 35:e959ffba78fd 560 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 35:e959ffba78fd 561 0x00, // bCountryCode
mjr 35:e959ffba78fd 562 0x01, // bNumDescriptors
mjr 35:e959ffba78fd 563 REPORT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 564 (uint8_t)(LSB(rptlen0)), // wDescriptorLength (LSB)
mjr 35:e959ffba78fd 565 (uint8_t)(MSB(rptlen0)), // wDescriptorLength (MSB)
mjr 35:e959ffba78fd 566
mjr 35:e959ffba78fd 567 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 568 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 569 PHY_TO_DESC(EPINT_IN), // bEndpointAddress
mjr 35:e959ffba78fd 570 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 571 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 572 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 573 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 574
mjr 35:e959ffba78fd 575 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 35:e959ffba78fd 576 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 35:e959ffba78fd 577 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress
mjr 35:e959ffba78fd 578 E_INTERRUPT, // bmAttributes
mjr 35:e959ffba78fd 579 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 35:e959ffba78fd 580 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 35:e959ffba78fd 581 1, // bInterval (milliseconds)
mjr 35:e959ffba78fd 582 };
mjr 35:e959ffba78fd 583
mjr 35:e959ffba78fd 584 return configurationDescriptorNoKB;
mjr 35:e959ffba78fd 585 }
mjr 35:e959ffba78fd 586 }
mjr 35:e959ffba78fd 587
mjr 35:e959ffba78fd 588 // Set the configuration. We need to set up the endpoints for
mjr 35:e959ffba78fd 589 // our active interfaces.
mjr 35:e959ffba78fd 590 bool USBJoystick::USBCallback_setConfiguration(uint8_t configuration)
mjr 35:e959ffba78fd 591 {
mjr 35:e959ffba78fd 592 // we only have one valid configuration
mjr 35:e959ffba78fd 593 if (configuration != DEFAULT_CONFIGURATION)
mjr 35:e959ffba78fd 594 return false;
mjr 35:e959ffba78fd 595
mjr 35:e959ffba78fd 596 // Configure endpoint 1 - we use this in all cases, for either
mjr 35:e959ffba78fd 597 // the combined joystick/ledwiz interface or just the ledwiz interface
mjr 35:e959ffba78fd 598 addEndpoint(EPINT_IN, MAX_PACKET_SIZE_EPINT);
mjr 35:e959ffba78fd 599 addEndpoint(EPINT_OUT, MAX_PACKET_SIZE_EPINT);
mjr 35:e959ffba78fd 600 readStart(EPINT_OUT, MAX_HID_REPORT_SIZE);
mjr 35:e959ffba78fd 601
mjr 35:e959ffba78fd 602 // if the keyboard is enabled, configure endpoint 4 for the kb interface
mjr 35:e959ffba78fd 603 if (useKB)
mjr 35:e959ffba78fd 604 {
mjr 35:e959ffba78fd 605 addEndpoint(EP4IN, MAX_PACKET_SIZE_EPINT);
mjr 35:e959ffba78fd 606 addEndpoint(EP4OUT, MAX_PACKET_SIZE_EPINT);
mjr 35:e959ffba78fd 607 readStart(EP4OUT, MAX_PACKET_SIZE_EPINT);
mjr 35:e959ffba78fd 608 }
mjr 35:e959ffba78fd 609
mjr 35:e959ffba78fd 610 // success
mjr 35:e959ffba78fd 611 return true;
mjr 35:e959ffba78fd 612 }
mjr 35:e959ffba78fd 613
mjr 38:091e511ce8a0 614 // Handle incoming messages on the joystick/LedWiz interface = endpoint 1.
mjr 38:091e511ce8a0 615 // This interface receives LedWiz protocol commands and commands using our
mjr 38:091e511ce8a0 616 // custom LedWiz protocol extensions.
mjr 38:091e511ce8a0 617 //
mjr 38:091e511ce8a0 618 // We simply queue the messages in our circular buffer for processing in
mjr 38:091e511ce8a0 619 // the main loop. The circular buffer object is designed for safe access
mjr 38:091e511ce8a0 620 // from the interrupt handler using the rule that only the interrupt
mjr 38:091e511ce8a0 621 // handler can change the write pointer, and only the regular code can
mjr 38:091e511ce8a0 622 // change the read pointer.
mjr 38:091e511ce8a0 623 bool USBJoystick::EP1_OUT_callback()
mjr 38:091e511ce8a0 624 {
mjr 38:091e511ce8a0 625 // Read this message
mjr 38:091e511ce8a0 626 union {
mjr 38:091e511ce8a0 627 LedWizMsg msg;
mjr 38:091e511ce8a0 628 uint8_t buf[MAX_HID_REPORT_SIZE];
mjr 38:091e511ce8a0 629 } buf;
mjr 38:091e511ce8a0 630 uint32_t bytesRead = 0;
mjr 38:091e511ce8a0 631 USBDevice::readEP(EP1OUT, buf.buf, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 632
mjr 39:b3815a1c3802 633 // printf("joy.read len=%d [%2x %2x %2x %2x %2x %2x %2x %2x], msg=[%2x %2x %2x %2x %2x %2x %2x %2x]\r\n", bytesRead,
mjr 39:b3815a1c3802 634 // buf.buf[0], buf.buf[1], buf.buf[2], buf.buf[3], buf.buf[4], buf.buf[5], buf.buf[6], buf.buf[7],
mjr 39:b3815a1c3802 635 // buf.msg.data[0], buf.msg.data[1], buf.msg.data[2], buf.msg.data[3], buf.msg.data[4], buf.msg.data[5], buf.msg.data[6], buf.msg.data[7]);
mjr 39:b3815a1c3802 636
mjr 38:091e511ce8a0 637 // if it's the right length, queue it to our circular buffer
mjr 38:091e511ce8a0 638 if (bytesRead == 8)
mjr 38:091e511ce8a0 639 lwbuf.write(buf.msg);
mjr 38:091e511ce8a0 640
mjr 38:091e511ce8a0 641 // start the next read
mjr 39:b3815a1c3802 642 return readStart(EP1OUT, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 643 }
mjr 38:091e511ce8a0 644
mjr 38:091e511ce8a0 645 // Handle incoming messages on the keyboard interface = endpoint 4.
mjr 35:e959ffba78fd 646 // The host uses this to send updates for the keyboard indicator LEDs
mjr 35:e959ffba78fd 647 // (caps lock, num lock, etc). We don't do anything with these, but
mjr 37:ed52738445fc 648 // we have to read them to keep the pipe open.
mjr 35:e959ffba78fd 649 bool USBJoystick::EP4_OUT_callback()
mjr 35:e959ffba78fd 650 {
mjr 35:e959ffba78fd 651 // read this message
mjr 35:e959ffba78fd 652 uint32_t bytesRead = 0;
mjr 37:ed52738445fc 653 uint8_t led[MAX_HID_REPORT_SIZE];
mjr 35:e959ffba78fd 654 USBDevice::readEP(EP4OUT, led, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 35:e959ffba78fd 655
mjr 35:e959ffba78fd 656 // start the next read
mjr 35:e959ffba78fd 657 return readStart(EP4OUT, MAX_HID_REPORT_SIZE);
mjr 35:e959ffba78fd 658 }
mjr 39:b3815a1c3802 659