Mirror with some correction
Dependencies: mbed FastIO FastPWM USBDevice
main.cpp@78:1e00b3fa11af, 2017-03-19 (annotated)
- Committer:
- mjr
- Date:
- Sun Mar 19 05:30:53 2017 +0000
- Revision:
- 78:1e00b3fa11af
- Parent:
- 77:0b96f6867312
- Child:
- 79:682ae3171a08
Ad hoc IR command send; Shift button 'AND' and 'OR' modes; new accelerometer auto centering options
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
mjr | 51:57eb311faafa | 1 | /* Copyright 2014, 2016 M J Roberts, MIT License |
mjr | 5:a70c0bce770d | 2 | * |
mjr | 5:a70c0bce770d | 3 | * Permission is hereby granted, free of charge, to any person obtaining a copy of this software |
mjr | 5:a70c0bce770d | 4 | * and associated documentation files (the "Software"), to deal in the Software without |
mjr | 5:a70c0bce770d | 5 | * restriction, including without limitation the rights to use, copy, modify, merge, publish, |
mjr | 5:a70c0bce770d | 6 | * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the |
mjr | 5:a70c0bce770d | 7 | * Software is furnished to do so, subject to the following conditions: |
mjr | 5:a70c0bce770d | 8 | * |
mjr | 5:a70c0bce770d | 9 | * The above copyright notice and this permission notice shall be included in all copies or |
mjr | 5:a70c0bce770d | 10 | * substantial portions of the Software. |
mjr | 5:a70c0bce770d | 11 | * |
mjr | 5:a70c0bce770d | 12 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING |
mjr | 48:058ace2aed1d | 13 | * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND |
mjr | 5:a70c0bce770d | 14 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, |
mjr | 5:a70c0bce770d | 15 | * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
mjr | 5:a70c0bce770d | 16 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
mjr | 5:a70c0bce770d | 17 | */ |
mjr | 5:a70c0bce770d | 18 | |
mjr | 5:a70c0bce770d | 19 | // |
mjr | 35:e959ffba78fd | 20 | // The Pinscape Controller |
mjr | 35:e959ffba78fd | 21 | // A comprehensive input/output controller for virtual pinball machines |
mjr | 5:a70c0bce770d | 22 | // |
mjr | 48:058ace2aed1d | 23 | // This project implements an I/O controller for virtual pinball cabinets. The |
mjr | 48:058ace2aed1d | 24 | // controller's function is to connect Visual Pinball (and other Windows pinball |
mjr | 48:058ace2aed1d | 25 | // emulators) with physical devices in the cabinet: buttons, sensors, and |
mjr | 48:058ace2aed1d | 26 | // feedback devices that create visual or mechanical effects during play. |
mjr | 38:091e511ce8a0 | 27 | // |
mjr | 48:058ace2aed1d | 28 | // The controller can perform several different functions, which can be used |
mjr | 38:091e511ce8a0 | 29 | // individually or in any combination: |
mjr | 5:a70c0bce770d | 30 | // |
mjr | 38:091e511ce8a0 | 31 | // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the |
mjr | 38:091e511ce8a0 | 32 | // motion of the cabinet when you nudge it. Visual Pinball and other pinball |
mjr | 38:091e511ce8a0 | 33 | // emulators on the PC have native handling for this type of input, so that |
mjr | 38:091e511ce8a0 | 34 | // physical nudges on the cabinet turn into simulated effects on the virtual |
mjr | 38:091e511ce8a0 | 35 | // ball. The KL25Z measures accelerations as analog readings and is quite |
mjr | 38:091e511ce8a0 | 36 | // sensitive, so the effect of a nudge on the simulation is proportional |
mjr | 38:091e511ce8a0 | 37 | // to the strength of the nudge. Accelerations are reported to the PC via a |
mjr | 38:091e511ce8a0 | 38 | // simulated joystick (using the X and Y axes); you just have to set some |
mjr | 38:091e511ce8a0 | 39 | // preferences in your pinball software to tell it that an accelerometer |
mjr | 38:091e511ce8a0 | 40 | // is attached. |
mjr | 5:a70c0bce770d | 41 | // |
mjr | 74:822a92bc11d2 | 42 | // - Plunger position sensing, with multiple sensor options. To use this feature, |
mjr | 35:e959ffba78fd | 43 | // you need to choose a sensor and set it up, connect the sensor electrically to |
mjr | 35:e959ffba78fd | 44 | // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how |
mjr | 35:e959ffba78fd | 45 | // the sensor is hooked up. The Pinscape software monitors the sensor and sends |
mjr | 35:e959ffba78fd | 46 | // readings to Visual Pinball via the joystick Z axis. VP and other PC software |
mjr | 38:091e511ce8a0 | 47 | // have native support for this type of input; as with the nudge setup, you just |
mjr | 38:091e511ce8a0 | 48 | // have to set some options in VP to activate the plunger. |
mjr | 17:ab3cec0c8bf4 | 49 | // |
mjr | 35:e959ffba78fd | 50 | // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R |
mjr | 35:e959ffba78fd | 51 | // linear sensor arrays) as well as slide potentiometers. The specific equipment |
mjr | 35:e959ffba78fd | 52 | // that's supported, along with physical mounting and wiring details, can be found |
mjr | 35:e959ffba78fd | 53 | // in the Build Guide. |
mjr | 35:e959ffba78fd | 54 | // |
mjr | 77:0b96f6867312 | 55 | // Note that VP has built-in support for plunger devices like this one, but |
mjr | 77:0b96f6867312 | 56 | // some VP tables can't use it without some additional scripting work. The |
mjr | 77:0b96f6867312 | 57 | // Build Guide has advice on adjusting tables to add plunger support when |
mjr | 77:0b96f6867312 | 58 | // necessary. |
mjr | 5:a70c0bce770d | 59 | // |
mjr | 6:cc35eb643e8f | 60 | // For best results, the plunger sensor should be calibrated. The calibration |
mjr | 6:cc35eb643e8f | 61 | // is stored in non-volatile memory on board the KL25Z, so it's only necessary |
mjr | 6:cc35eb643e8f | 62 | // to do the calibration once, when you first install everything. (You might |
mjr | 6:cc35eb643e8f | 63 | // also want to re-calibrate if you physically remove and reinstall the CCD |
mjr | 17:ab3cec0c8bf4 | 64 | // sensor or the mechanical plunger, since their alignment shift change slightly |
mjr | 17:ab3cec0c8bf4 | 65 | // when you put everything back together.) You can optionally install a |
mjr | 17:ab3cec0c8bf4 | 66 | // dedicated momentary switch or pushbutton to activate the calibration mode; |
mjr | 17:ab3cec0c8bf4 | 67 | // this is describe in the project documentation. If you don't want to bother |
mjr | 17:ab3cec0c8bf4 | 68 | // with the extra button, you can also trigger calibration using the Windows |
mjr | 17:ab3cec0c8bf4 | 69 | // setup software, which you can find on the Pinscape project page. |
mjr | 6:cc35eb643e8f | 70 | // |
mjr | 17:ab3cec0c8bf4 | 71 | // The calibration procedure is described in the project documentation. Briefly, |
mjr | 17:ab3cec0c8bf4 | 72 | // when you trigger calibration mode, the software will scan the CCD for about |
mjr | 17:ab3cec0c8bf4 | 73 | // 15 seconds, during which you should simply pull the physical plunger back |
mjr | 17:ab3cec0c8bf4 | 74 | // all the way, hold it for a moment, and then slowly return it to the rest |
mjr | 17:ab3cec0c8bf4 | 75 | // position. (DON'T just release it from the retracted position, since that |
mjr | 17:ab3cec0c8bf4 | 76 | // let it shoot forward too far. We want to measure the range from the park |
mjr | 17:ab3cec0c8bf4 | 77 | // position to the fully retracted position only.) |
mjr | 5:a70c0bce770d | 78 | // |
mjr | 77:0b96f6867312 | 79 | // - Button input wiring. You can assign GPIO ports as inputs for physical |
mjr | 77:0b96f6867312 | 80 | // pinball-style buttons, such as flipper buttons, a Start button, coin |
mjr | 77:0b96f6867312 | 81 | // chute switches, tilt bobs, and service panel buttons. You can configure |
mjr | 77:0b96f6867312 | 82 | // each button input to report a keyboard key or joystick button press to |
mjr | 77:0b96f6867312 | 83 | // the PC when the physical button is pushed. |
mjr | 13:72dda449c3c0 | 84 | // |
mjr | 53:9b2611964afc | 85 | // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets |
mjr | 53:9b2611964afc | 86 | // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the |
mjr | 53:9b2611964afc | 87 | // KL25Z, and lets PC software (such as Visual Pinball) control them during game |
mjr | 53:9b2611964afc | 88 | // play to create a more immersive playing experience. The Pinscape software |
mjr | 53:9b2611964afc | 89 | // presents itself to the host as an LedWiz device and accepts the full LedWiz |
mjr | 53:9b2611964afc | 90 | // command set, so software on the PC designed for real LedWiz'es can control |
mjr | 53:9b2611964afc | 91 | // attached devices without any modifications. |
mjr | 5:a70c0bce770d | 92 | // |
mjr | 53:9b2611964afc | 93 | // Even though the software provides a very thorough LedWiz emulation, the KL25Z |
mjr | 53:9b2611964afc | 94 | // GPIO hardware design imposes some serious limitations. The big one is that |
mjr | 53:9b2611964afc | 95 | // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have |
mjr | 53:9b2611964afc | 96 | // varying-intensity outputs (e.g., for controlling the brightness level of an |
mjr | 53:9b2611964afc | 97 | // LED or the speed or a motor). You can control more than 10 output ports, but |
mjr | 53:9b2611964afc | 98 | // only 10 can have PWM control; the rest are simple "digital" ports that can only |
mjr | 53:9b2611964afc | 99 | // be switched fully on or fully off. The second limitation is that the KL25Z |
mjr | 53:9b2611964afc | 100 | // just doesn't have that many GPIO ports overall. There are enough to populate |
mjr | 53:9b2611964afc | 101 | // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is |
mjr | 53:9b2611964afc | 102 | // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade |
mjr | 53:9b2611964afc | 103 | // off more outputs for fewer inputs, or vice versa. The third limitation is that |
mjr | 53:9b2611964afc | 104 | // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't |
mjr | 53:9b2611964afc | 105 | // even enough to control a small LED. So in order to connect any kind of feedback |
mjr | 53:9b2611964afc | 106 | // device to an output, you *must* build some external circuitry to boost the |
mjr | 53:9b2611964afc | 107 | // current handing. The Build Guide has a reference circuit design for this |
mjr | 53:9b2611964afc | 108 | // purpose that's simple and inexpensive to build. |
mjr | 6:cc35eb643e8f | 109 | // |
mjr | 26:cb71c4af2912 | 110 | // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach |
mjr | 26:cb71c4af2912 | 111 | // external PWM controller chips for controlling device outputs, instead of using |
mjr | 53:9b2611964afc | 112 | // the on-board GPIO ports as described above. The software can control a set of |
mjr | 53:9b2611964afc | 113 | // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just |
mjr | 53:9b2611964afc | 114 | // need two of them to get the full complement of 32 output ports of a real LedWiz. |
mjr | 53:9b2611964afc | 115 | // You can hook up even more, though. Four chips gives you 64 ports, which should |
mjr | 53:9b2611964afc | 116 | // be plenty for nearly any virtual pinball project. To accommodate the larger |
mjr | 53:9b2611964afc | 117 | // supply of ports possible with the PWM chips, the controller software provides |
mjr | 53:9b2611964afc | 118 | // a custom, extended version of the LedWiz protocol that can handle up to 128 |
mjr | 53:9b2611964afc | 119 | // ports. PC software designed only for the real LedWiz obviously won't know |
mjr | 53:9b2611964afc | 120 | // about the extended protocol and won't be able to take advantage of its extra |
mjr | 53:9b2611964afc | 121 | // capabilities, but the latest version of DOF (DirectOutput Framework) *does* |
mjr | 53:9b2611964afc | 122 | // know the new language and can take full advantage. Older software will still |
mjr | 53:9b2611964afc | 123 | // work, though - the new extensions are all backward compatible, so old software |
mjr | 53:9b2611964afc | 124 | // that only knows about the original LedWiz protocol will still work, with the |
mjr | 53:9b2611964afc | 125 | // obvious limitation that it can only access the first 32 ports. |
mjr | 53:9b2611964afc | 126 | // |
mjr | 53:9b2611964afc | 127 | // The Pinscape Expansion Board project (which appeared in early 2016) provides |
mjr | 53:9b2611964afc | 128 | // a reference hardware design, with EAGLE circuit board layouts, that takes full |
mjr | 53:9b2611964afc | 129 | // advantage of the TLC5940 capability. It lets you create a customized set of |
mjr | 53:9b2611964afc | 130 | // outputs with full PWM control and power handling for high-current devices |
mjr | 53:9b2611964afc | 131 | // built in to the boards. |
mjr | 26:cb71c4af2912 | 132 | // |
mjr | 38:091e511ce8a0 | 133 | // - Night Mode control for output devices. You can connect a switch or button |
mjr | 38:091e511ce8a0 | 134 | // to the controller to activate "Night Mode", which disables feedback devices |
mjr | 38:091e511ce8a0 | 135 | // that you designate as noisy. You can designate outputs individually as being |
mjr | 38:091e511ce8a0 | 136 | // included in this set or not. This is useful if you want to play a game on |
mjr | 38:091e511ce8a0 | 137 | // your cabinet late at night without waking the kids and annoying the neighbors. |
mjr | 38:091e511ce8a0 | 138 | // |
mjr | 38:091e511ce8a0 | 139 | // - TV ON switch. The controller can pulse a relay to turn on your TVs after |
mjr | 38:091e511ce8a0 | 140 | // power to the cabinet comes on, with a configurable delay timer. This feature |
mjr | 38:091e511ce8a0 | 141 | // is for TVs that don't turn themselves on automatically when first plugged in. |
mjr | 38:091e511ce8a0 | 142 | // To use this feature, you have to build some external circuitry to allow the |
mjr | 77:0b96f6867312 | 143 | // software to sense the power supply status. The Build Guide has details |
mjr | 77:0b96f6867312 | 144 | // on the necessary circuitry. You can use this to switch your TV on via a |
mjr | 77:0b96f6867312 | 145 | // hardwired connection to the TV's "on" button, which requires taking the |
mjr | 77:0b96f6867312 | 146 | // TV apart to gain access to its internal wiring, or optionally via the IR |
mjr | 77:0b96f6867312 | 147 | // remote control transmitter feature below. |
mjr | 77:0b96f6867312 | 148 | // |
mjr | 77:0b96f6867312 | 149 | // - Infrared (IR) remote control receiver and transmitter. You can attach an |
mjr | 77:0b96f6867312 | 150 | // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the |
mjr | 77:0b96f6867312 | 151 | // KL25Z capable of sending and/or receiving IR remote control signals. This |
mjr | 77:0b96f6867312 | 152 | // can be used with the TV ON feature above to turn your TV(s) on when the |
mjr | 77:0b96f6867312 | 153 | // system power comes on by sending the "on" command to them via IR, as though |
mjr | 77:0b96f6867312 | 154 | // you pressed the "on" button on the remote control. The sensor lets the |
mjr | 77:0b96f6867312 | 155 | // Pinscape software learn the IR codes from your existing remotes, in the |
mjr | 77:0b96f6867312 | 156 | // same manner as a handheld universal remote control, and the IR LED lets |
mjr | 77:0b96f6867312 | 157 | // it transmit learned codes. The sensor can also be used to receive codes |
mjr | 77:0b96f6867312 | 158 | // during normal operation and turn them into PC keystrokes; this lets you |
mjr | 77:0b96f6867312 | 159 | // access extra commands on the PC without adding more buttons to your |
mjr | 77:0b96f6867312 | 160 | // cabinet. The IR LED can also be used to transmit other codes when you |
mjr | 77:0b96f6867312 | 161 | // press selected cabinet buttons, allowing you to assign cabinet buttons |
mjr | 77:0b96f6867312 | 162 | // to send IR commands to your cabinet TV or other devices. |
mjr | 38:091e511ce8a0 | 163 | // |
mjr | 35:e959ffba78fd | 164 | // |
mjr | 35:e959ffba78fd | 165 | // |
mjr | 33:d832bcab089e | 166 | // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current |
mjr | 33:d832bcab089e | 167 | // device status. The flash patterns are: |
mjr | 6:cc35eb643e8f | 168 | // |
mjr | 48:058ace2aed1d | 169 | // short yellow flash = waiting to connect |
mjr | 6:cc35eb643e8f | 170 | // |
mjr | 48:058ace2aed1d | 171 | // short red flash = the connection is suspended (the host is in sleep |
mjr | 48:058ace2aed1d | 172 | // or suspend mode, the USB cable is unplugged after a connection |
mjr | 48:058ace2aed1d | 173 | // has been established) |
mjr | 48:058ace2aed1d | 174 | // |
mjr | 48:058ace2aed1d | 175 | // two short red flashes = connection lost (the device should immediately |
mjr | 48:058ace2aed1d | 176 | // go back to short-yellow "waiting to reconnect" mode when a connection |
mjr | 48:058ace2aed1d | 177 | // is lost, so this display shouldn't normally appear) |
mjr | 6:cc35eb643e8f | 178 | // |
mjr | 38:091e511ce8a0 | 179 | // long red/yellow = USB connection problem. The device still has a USB |
mjr | 48:058ace2aed1d | 180 | // connection to the host (or so it appears to the device), but data |
mjr | 48:058ace2aed1d | 181 | // transmissions are failing. |
mjr | 38:091e511ce8a0 | 182 | // |
mjr | 73:4e8ce0b18915 | 183 | // medium blue flash = TV ON delay timer running. This means that the |
mjr | 73:4e8ce0b18915 | 184 | // power to the secondary PSU has just been turned on, and the TV ON |
mjr | 73:4e8ce0b18915 | 185 | // timer is waiting for the configured delay time before pulsing the |
mjr | 73:4e8ce0b18915 | 186 | // TV power button relay. This is only shown if the TV ON feature is |
mjr | 73:4e8ce0b18915 | 187 | // enabled. |
mjr | 73:4e8ce0b18915 | 188 | // |
mjr | 6:cc35eb643e8f | 189 | // long yellow/green = everything's working, but the plunger hasn't |
mjr | 38:091e511ce8a0 | 190 | // been calibrated. Follow the calibration procedure described in |
mjr | 38:091e511ce8a0 | 191 | // the project documentation. This flash mode won't appear if there's |
mjr | 38:091e511ce8a0 | 192 | // no plunger sensor configured. |
mjr | 6:cc35eb643e8f | 193 | // |
mjr | 38:091e511ce8a0 | 194 | // alternating blue/green = everything's working normally, and plunger |
mjr | 38:091e511ce8a0 | 195 | // calibration has been completed (or there's no plunger attached) |
mjr | 10:976666ffa4ef | 196 | // |
mjr | 48:058ace2aed1d | 197 | // fast red/purple = out of memory. The controller halts and displays |
mjr | 48:058ace2aed1d | 198 | // this diagnostic code until you manually reset it. If this happens, |
mjr | 48:058ace2aed1d | 199 | // it's probably because the configuration is too complex, in which |
mjr | 48:058ace2aed1d | 200 | // case the same error will occur after the reset. If it's stuck |
mjr | 48:058ace2aed1d | 201 | // in this cycle, you'll have to restore the default configuration |
mjr | 48:058ace2aed1d | 202 | // by re-installing the controller software (the Pinscape .bin file). |
mjr | 10:976666ffa4ef | 203 | // |
mjr | 48:058ace2aed1d | 204 | // |
mjr | 48:058ace2aed1d | 205 | // USB PROTOCOL: Most of our USB messaging is through standard USB HID |
mjr | 48:058ace2aed1d | 206 | // classes (joystick, keyboard). We also accept control messages on our |
mjr | 48:058ace2aed1d | 207 | // primary HID interface "OUT endpoint" using a custom protocol that's |
mjr | 48:058ace2aed1d | 208 | // not defined in any USB standards (we do have to provide a USB HID |
mjr | 48:058ace2aed1d | 209 | // Report Descriptor for it, but this just describes the protocol as |
mjr | 48:058ace2aed1d | 210 | // opaque vendor-defined bytes). The control protocol incorporates the |
mjr | 48:058ace2aed1d | 211 | // LedWiz protocol as a subset, and adds our own private extensions. |
mjr | 48:058ace2aed1d | 212 | // For full details, see USBProtocol.h. |
mjr | 33:d832bcab089e | 213 | |
mjr | 33:d832bcab089e | 214 | |
mjr | 0:5acbbe3f4cf4 | 215 | #include "mbed.h" |
mjr | 6:cc35eb643e8f | 216 | #include "math.h" |
mjr | 74:822a92bc11d2 | 217 | #include "diags.h" |
mjr | 48:058ace2aed1d | 218 | #include "pinscape.h" |
mjr | 0:5acbbe3f4cf4 | 219 | #include "USBJoystick.h" |
mjr | 0:5acbbe3f4cf4 | 220 | #include "MMA8451Q.h" |
mjr | 1:d913e0afb2ac | 221 | #include "tsl1410r.h" |
mjr | 1:d913e0afb2ac | 222 | #include "FreescaleIAP.h" |
mjr | 2:c174f9ee414a | 223 | #include "crc32.h" |
mjr | 26:cb71c4af2912 | 224 | #include "TLC5940.h" |
mjr | 34:6b981a2afab7 | 225 | #include "74HC595.h" |
mjr | 35:e959ffba78fd | 226 | #include "nvm.h" |
mjr | 35:e959ffba78fd | 227 | #include "plunger.h" |
mjr | 35:e959ffba78fd | 228 | #include "ccdSensor.h" |
mjr | 35:e959ffba78fd | 229 | #include "potSensor.h" |
mjr | 35:e959ffba78fd | 230 | #include "nullSensor.h" |
mjr | 48:058ace2aed1d | 231 | #include "TinyDigitalIn.h" |
mjr | 77:0b96f6867312 | 232 | #include "IRReceiver.h" |
mjr | 77:0b96f6867312 | 233 | #include "IRTransmitter.h" |
mjr | 77:0b96f6867312 | 234 | #include "NewPwm.h" |
mjr | 74:822a92bc11d2 | 235 | |
mjr | 2:c174f9ee414a | 236 | |
mjr | 21:5048e16cc9ef | 237 | #define DECL_EXTERNS |
mjr | 17:ab3cec0c8bf4 | 238 | #include "config.h" |
mjr | 17:ab3cec0c8bf4 | 239 | |
mjr | 76:7f5912b6340e | 240 | // forward declarations |
mjr | 76:7f5912b6340e | 241 | static void waitPlungerIdle(void); |
mjr | 53:9b2611964afc | 242 | |
mjr | 53:9b2611964afc | 243 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 244 | // |
mjr | 53:9b2611964afc | 245 | // OpenSDA module identifier. This is for the benefit of the Windows |
mjr | 53:9b2611964afc | 246 | // configuration tool. When the config tool installs a .bin file onto |
mjr | 53:9b2611964afc | 247 | // the KL25Z, it will first find the sentinel string within the .bin file, |
mjr | 53:9b2611964afc | 248 | // and patch the "\0" bytes that follow the sentinel string with the |
mjr | 53:9b2611964afc | 249 | // OpenSDA module ID data. This allows us to report the OpenSDA |
mjr | 53:9b2611964afc | 250 | // identifiers back to the host system via USB, which in turn allows the |
mjr | 53:9b2611964afc | 251 | // config tool to figure out which OpenSDA MSD (mass storage device - a |
mjr | 53:9b2611964afc | 252 | // virtual disk drive) correlates to which Pinscape controller USB |
mjr | 53:9b2611964afc | 253 | // interface. |
mjr | 53:9b2611964afc | 254 | // |
mjr | 53:9b2611964afc | 255 | // This is only important if multiple Pinscape devices are attached to |
mjr | 53:9b2611964afc | 256 | // the same host. There doesn't seem to be any other way to figure out |
mjr | 53:9b2611964afc | 257 | // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA |
mjr | 53:9b2611964afc | 258 | // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't |
mjr | 53:9b2611964afc | 259 | // have any way to learn about the OpenSDA module it's connected to. The |
mjr | 53:9b2611964afc | 260 | // only way to pass this information to the KL25Z side that I can come up |
mjr | 53:9b2611964afc | 261 | // with is to have the Windows host embed it in the .bin file before |
mjr | 53:9b2611964afc | 262 | // downloading it to the OpenSDA MSD. |
mjr | 53:9b2611964afc | 263 | // |
mjr | 53:9b2611964afc | 264 | // We initialize the const data buffer (the part after the sentinel string) |
mjr | 53:9b2611964afc | 265 | // with all "\0" bytes, so that's what will be in the executable image that |
mjr | 53:9b2611964afc | 266 | // comes out of the mbed compiler. If you manually install the resulting |
mjr | 53:9b2611964afc | 267 | // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes |
mjr | 53:9b2611964afc | 268 | // will stay this way and read as all 0's at run-time. Since a real TUID |
mjr | 53:9b2611964afc | 269 | // would never be all 0's, that tells us that we were never patched and |
mjr | 53:9b2611964afc | 270 | // thus don't have any information on the OpenSDA module. |
mjr | 53:9b2611964afc | 271 | // |
mjr | 53:9b2611964afc | 272 | const char *getOpenSDAID() |
mjr | 53:9b2611964afc | 273 | { |
mjr | 53:9b2611964afc | 274 | #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///" |
mjr | 53:9b2611964afc | 275 | static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///"; |
mjr | 53:9b2611964afc | 276 | const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1; |
mjr | 53:9b2611964afc | 277 | |
mjr | 53:9b2611964afc | 278 | return OpenSDA + OpenSDA_prefix_length; |
mjr | 53:9b2611964afc | 279 | } |
mjr | 53:9b2611964afc | 280 | |
mjr | 53:9b2611964afc | 281 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 282 | // |
mjr | 53:9b2611964afc | 283 | // Build ID. We use the date and time of compiling the program as a build |
mjr | 53:9b2611964afc | 284 | // identifier. It would be a little nicer to use a simple serial number |
mjr | 53:9b2611964afc | 285 | // instead, but the mbed platform doesn't have a way to automate that. The |
mjr | 53:9b2611964afc | 286 | // timestamp is a pretty good proxy for a serial number in that it will |
mjr | 53:9b2611964afc | 287 | // naturally increase on each new build, which is the primary property we |
mjr | 53:9b2611964afc | 288 | // want from this. |
mjr | 53:9b2611964afc | 289 | // |
mjr | 53:9b2611964afc | 290 | // As with the embedded OpenSDA ID, we store the build timestamp with a |
mjr | 53:9b2611964afc | 291 | // sentinel string prefix, to allow automated tools to find the static data |
mjr | 53:9b2611964afc | 292 | // in the .bin file by searching for the sentinel string. In contrast to |
mjr | 53:9b2611964afc | 293 | // the OpenSDA ID, the value we store here is for tools to extract rather |
mjr | 53:9b2611964afc | 294 | // than store, since we automatically populate it via the preprocessor |
mjr | 53:9b2611964afc | 295 | // macros. |
mjr | 53:9b2611964afc | 296 | // |
mjr | 53:9b2611964afc | 297 | const char *getBuildID() |
mjr | 53:9b2611964afc | 298 | { |
mjr | 53:9b2611964afc | 299 | #define BUILDID_PREFIX "///Pinscape.Build.ID///" |
mjr | 53:9b2611964afc | 300 | static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///"; |
mjr | 53:9b2611964afc | 301 | const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1; |
mjr | 53:9b2611964afc | 302 | |
mjr | 53:9b2611964afc | 303 | return BuildID + BuildID_prefix_length; |
mjr | 53:9b2611964afc | 304 | } |
mjr | 53:9b2611964afc | 305 | |
mjr | 74:822a92bc11d2 | 306 | // -------------------------------------------------------------------------- |
mjr | 74:822a92bc11d2 | 307 | // Main loop iteration timing statistics. Collected only if |
mjr | 74:822a92bc11d2 | 308 | // ENABLE_DIAGNOSTICS is set in diags.h. |
mjr | 76:7f5912b6340e | 309 | #if ENABLE_DIAGNOSTICS |
mjr | 76:7f5912b6340e | 310 | uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount; |
mjr | 76:7f5912b6340e | 311 | uint64_t mainLoopMsgTime, mainLoopMsgCount; |
mjr | 76:7f5912b6340e | 312 | Timer mainLoopTimer; |
mjr | 76:7f5912b6340e | 313 | #endif |
mjr | 76:7f5912b6340e | 314 | |
mjr | 53:9b2611964afc | 315 | |
mjr | 48:058ace2aed1d | 316 | // -------------------------------------------------------------------------- |
mjr | 48:058ace2aed1d | 317 | // |
mjr | 59:94eb9265b6d7 | 318 | // Custom memory allocator. We use our own version of malloc() for more |
mjr | 59:94eb9265b6d7 | 319 | // efficient memory usage, and to provide diagnostics if we run out of heap. |
mjr | 48:058ace2aed1d | 320 | // |
mjr | 59:94eb9265b6d7 | 321 | // We can implement a more efficient malloc than the library can because we |
mjr | 59:94eb9265b6d7 | 322 | // can make an assumption that the library can't: allocations are permanent. |
mjr | 59:94eb9265b6d7 | 323 | // The normal malloc has to assume that allocations can be freed, so it has |
mjr | 59:94eb9265b6d7 | 324 | // to track blocks individually. For the purposes of this program, though, |
mjr | 59:94eb9265b6d7 | 325 | // we don't have to do this because virtually all of our allocations are |
mjr | 59:94eb9265b6d7 | 326 | // de facto permanent. We only allocate dyanmic memory during setup, and |
mjr | 59:94eb9265b6d7 | 327 | // once we set things up, we never delete anything. This means that we can |
mjr | 59:94eb9265b6d7 | 328 | // allocate memory in bare blocks without any bookkeeping overhead. |
mjr | 59:94eb9265b6d7 | 329 | // |
mjr | 78:1e00b3fa11af | 330 | // In addition, we can make a larger overall pool of memory available in |
mjr | 78:1e00b3fa11af | 331 | // a custom allocator. The RTL malloc() seems to have a pool of about 3K |
mjr | 78:1e00b3fa11af | 332 | // to work with, even though there really seems to be at least 8K left after |
mjr | 78:1e00b3fa11af | 333 | // reserving a reasonable amount of space for the stack. |
mjr | 77:0b96f6867312 | 334 | |
mjr | 77:0b96f6867312 | 335 | // halt with a diagnostic display if we run out of memory |
mjr | 77:0b96f6867312 | 336 | void HaltOutOfMem() |
mjr | 77:0b96f6867312 | 337 | { |
mjr | 77:0b96f6867312 | 338 | printf("\r\nOut Of Memory\r\n"); |
mjr | 77:0b96f6867312 | 339 | // halt with the diagnostic display (by looping forever) |
mjr | 77:0b96f6867312 | 340 | for (;;) |
mjr | 77:0b96f6867312 | 341 | { |
mjr | 77:0b96f6867312 | 342 | diagLED(1, 0, 0); |
mjr | 77:0b96f6867312 | 343 | wait_us(200000); |
mjr | 77:0b96f6867312 | 344 | diagLED(1, 0, 1); |
mjr | 77:0b96f6867312 | 345 | wait_us(200000); |
mjr | 77:0b96f6867312 | 346 | } |
mjr | 77:0b96f6867312 | 347 | } |
mjr | 77:0b96f6867312 | 348 | |
mjr | 77:0b96f6867312 | 349 | // For our custom malloc, we take advantage of the known layout of the |
mjr | 77:0b96f6867312 | 350 | // mbed library memory management. The mbed library puts all of the |
mjr | 77:0b96f6867312 | 351 | // static read/write data at the low end of RAM; this includes the |
mjr | 77:0b96f6867312 | 352 | // initialized statics and the "ZI" (zero-initialized) statics. The |
mjr | 77:0b96f6867312 | 353 | // malloc heap starts just after the last static, growing upwards as |
mjr | 77:0b96f6867312 | 354 | // memory is allocated. The stack starts at the top of RAM and grows |
mjr | 77:0b96f6867312 | 355 | // downwards. |
mjr | 77:0b96f6867312 | 356 | // |
mjr | 77:0b96f6867312 | 357 | // To figure out where the free memory starts, we simply call the system |
mjr | 77:0b96f6867312 | 358 | // malloc() to make a dummy allocation the first time we're called, and |
mjr | 77:0b96f6867312 | 359 | // use the address it returns as the start of our free memory pool. The |
mjr | 77:0b96f6867312 | 360 | // first malloc() call presumably returns the lowest byte of the pool in |
mjr | 77:0b96f6867312 | 361 | // the compiler RTL's way of thinking, and from what we know about the |
mjr | 77:0b96f6867312 | 362 | // mbed heap layout, we know everything above this point should be free, |
mjr | 77:0b96f6867312 | 363 | // at least until we reach the lowest address used by the stack. |
mjr | 77:0b96f6867312 | 364 | // |
mjr | 77:0b96f6867312 | 365 | // The ultimate size of the stack is of course dynamic and unpredictable. |
mjr | 77:0b96f6867312 | 366 | // In testing, it appears that we currently need a little over 1K. To be |
mjr | 77:0b96f6867312 | 367 | // conservative, we'll reserve 2K for the stack, by taking it out of the |
mjr | 77:0b96f6867312 | 368 | // space at top of memory we consider fair game for malloc. |
mjr | 77:0b96f6867312 | 369 | // |
mjr | 77:0b96f6867312 | 370 | // Note that we could do this a little more low-level-ly if we wanted. |
mjr | 77:0b96f6867312 | 371 | // The ARM linker provides a pre-defined extern char[] variable named |
mjr | 77:0b96f6867312 | 372 | // Image$$RW_IRAM1$$ZI$$Limit, which is always placed just after the |
mjr | 77:0b96f6867312 | 373 | // last static data variable. In principle, this tells us the start |
mjr | 77:0b96f6867312 | 374 | // of the available malloc pool. However, in testing, it doesn't seem |
mjr | 77:0b96f6867312 | 375 | // safe to use this as the start of our malloc pool. I'm not sure why, |
mjr | 77:0b96f6867312 | 376 | // but probably something in the startup code (either in the C RTL or |
mjr | 77:0b96f6867312 | 377 | // the mbed library) is allocating from the pool before we get control. |
mjr | 77:0b96f6867312 | 378 | // So we won't use that approach. Besides, that would tie us even more |
mjr | 77:0b96f6867312 | 379 | // closely to the ARM compiler. With our malloc() probe approach, we're |
mjr | 77:0b96f6867312 | 380 | // at least portable to any compiler that uses the same basic memory |
mjr | 77:0b96f6867312 | 381 | // layout, with the heap above the statics and the stack at top of |
mjr | 77:0b96f6867312 | 382 | // memory; this isn't universal, but it's very typical. |
mjr | 77:0b96f6867312 | 383 | |
mjr | 77:0b96f6867312 | 384 | static char *xmalloc_nxt = 0; |
mjr | 77:0b96f6867312 | 385 | size_t xmalloc_rem = 0; |
mjr | 77:0b96f6867312 | 386 | void *xmalloc(size_t siz) |
mjr | 77:0b96f6867312 | 387 | { |
mjr | 77:0b96f6867312 | 388 | if (xmalloc_nxt == 0) |
mjr | 77:0b96f6867312 | 389 | { |
mjr | 77:0b96f6867312 | 390 | xmalloc_nxt = (char *)malloc(4); |
mjr | 77:0b96f6867312 | 391 | xmalloc_rem = 0x20003000UL - 2*1024 - uint32_t(xmalloc_nxt); |
mjr | 77:0b96f6867312 | 392 | } |
mjr | 77:0b96f6867312 | 393 | |
mjr | 77:0b96f6867312 | 394 | siz = (siz + 3) & ~3; |
mjr | 77:0b96f6867312 | 395 | if (siz > xmalloc_rem) |
mjr | 77:0b96f6867312 | 396 | HaltOutOfMem(); |
mjr | 77:0b96f6867312 | 397 | |
mjr | 77:0b96f6867312 | 398 | char *ret = xmalloc_nxt; |
mjr | 77:0b96f6867312 | 399 | xmalloc_nxt += siz; |
mjr | 77:0b96f6867312 | 400 | xmalloc_rem -= siz; |
mjr | 77:0b96f6867312 | 401 | |
mjr | 77:0b96f6867312 | 402 | return ret; |
mjr | 77:0b96f6867312 | 403 | } |
mjr | 48:058ace2aed1d | 404 | |
mjr | 59:94eb9265b6d7 | 405 | // Overload operator new to call our custom malloc. This ensures that |
mjr | 59:94eb9265b6d7 | 406 | // all 'new' allocations throughout the program (including library code) |
mjr | 59:94eb9265b6d7 | 407 | // go through our private allocator. |
mjr | 48:058ace2aed1d | 408 | void *operator new(size_t siz) { return xmalloc(siz); } |
mjr | 48:058ace2aed1d | 409 | void *operator new[](size_t siz) { return xmalloc(siz); } |
mjr | 5:a70c0bce770d | 410 | |
mjr | 59:94eb9265b6d7 | 411 | // Since we don't do bookkeeping to track released memory, 'delete' does |
mjr | 59:94eb9265b6d7 | 412 | // nothing. In actual testing, this routine appears to never be called. |
mjr | 59:94eb9265b6d7 | 413 | // If it *is* ever called, it will simply leave the block in place, which |
mjr | 59:94eb9265b6d7 | 414 | // will make it unavailable for re-use but will otherwise be harmless. |
mjr | 59:94eb9265b6d7 | 415 | void operator delete(void *ptr) { } |
mjr | 59:94eb9265b6d7 | 416 | |
mjr | 59:94eb9265b6d7 | 417 | |
mjr | 5:a70c0bce770d | 418 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 419 | // |
mjr | 38:091e511ce8a0 | 420 | // Forward declarations |
mjr | 38:091e511ce8a0 | 421 | // |
mjr | 38:091e511ce8a0 | 422 | void setNightMode(bool on); |
mjr | 38:091e511ce8a0 | 423 | void toggleNightMode(); |
mjr | 38:091e511ce8a0 | 424 | |
mjr | 38:091e511ce8a0 | 425 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 426 | // utilities |
mjr | 17:ab3cec0c8bf4 | 427 | |
mjr | 77:0b96f6867312 | 428 | // int/float point square of a number |
mjr | 77:0b96f6867312 | 429 | inline int square(int x) { return x*x; } |
mjr | 26:cb71c4af2912 | 430 | inline float square(float x) { return x*x; } |
mjr | 26:cb71c4af2912 | 431 | |
mjr | 26:cb71c4af2912 | 432 | // floating point rounding |
mjr | 26:cb71c4af2912 | 433 | inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); } |
mjr | 26:cb71c4af2912 | 434 | |
mjr | 17:ab3cec0c8bf4 | 435 | |
mjr | 33:d832bcab089e | 436 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 437 | // |
mjr | 40:cc0d9814522b | 438 | // Extended verison of Timer class. This adds the ability to interrogate |
mjr | 40:cc0d9814522b | 439 | // the running state. |
mjr | 40:cc0d9814522b | 440 | // |
mjr | 77:0b96f6867312 | 441 | class ExtTimer: public Timer |
mjr | 40:cc0d9814522b | 442 | { |
mjr | 40:cc0d9814522b | 443 | public: |
mjr | 77:0b96f6867312 | 444 | ExtTimer() : running(false) { } |
mjr | 40:cc0d9814522b | 445 | |
mjr | 40:cc0d9814522b | 446 | void start() { running = true; Timer::start(); } |
mjr | 40:cc0d9814522b | 447 | void stop() { running = false; Timer::stop(); } |
mjr | 40:cc0d9814522b | 448 | |
mjr | 40:cc0d9814522b | 449 | bool isRunning() const { return running; } |
mjr | 40:cc0d9814522b | 450 | |
mjr | 40:cc0d9814522b | 451 | private: |
mjr | 40:cc0d9814522b | 452 | bool running; |
mjr | 40:cc0d9814522b | 453 | }; |
mjr | 40:cc0d9814522b | 454 | |
mjr | 53:9b2611964afc | 455 | |
mjr | 53:9b2611964afc | 456 | // -------------------------------------------------------------------------- |
mjr | 40:cc0d9814522b | 457 | // |
mjr | 33:d832bcab089e | 458 | // USB product version number |
mjr | 5:a70c0bce770d | 459 | // |
mjr | 47:df7a88cd249c | 460 | const uint16_t USB_VERSION_NO = 0x000A; |
mjr | 33:d832bcab089e | 461 | |
mjr | 33:d832bcab089e | 462 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 463 | // |
mjr | 6:cc35eb643e8f | 464 | // Joystick axis report range - we report from -JOYMAX to +JOYMAX |
mjr | 33:d832bcab089e | 465 | // |
mjr | 6:cc35eb643e8f | 466 | #define JOYMAX 4096 |
mjr | 6:cc35eb643e8f | 467 | |
mjr | 9:fd65b0a94720 | 468 | |
mjr | 17:ab3cec0c8bf4 | 469 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 470 | // |
mjr | 40:cc0d9814522b | 471 | // Wire protocol value translations. These translate byte values to and |
mjr | 40:cc0d9814522b | 472 | // from the USB protocol to local native format. |
mjr | 35:e959ffba78fd | 473 | // |
mjr | 35:e959ffba78fd | 474 | |
mjr | 35:e959ffba78fd | 475 | // unsigned 16-bit integer |
mjr | 35:e959ffba78fd | 476 | inline uint16_t wireUI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 477 | { |
mjr | 35:e959ffba78fd | 478 | return b[0] | ((uint16_t)b[1] << 8); |
mjr | 35:e959ffba78fd | 479 | } |
mjr | 40:cc0d9814522b | 480 | inline void ui16Wire(uint8_t *b, uint16_t val) |
mjr | 40:cc0d9814522b | 481 | { |
mjr | 40:cc0d9814522b | 482 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 483 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 484 | } |
mjr | 35:e959ffba78fd | 485 | |
mjr | 35:e959ffba78fd | 486 | inline int16_t wireI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 487 | { |
mjr | 35:e959ffba78fd | 488 | return (int16_t)wireUI16(b); |
mjr | 35:e959ffba78fd | 489 | } |
mjr | 40:cc0d9814522b | 490 | inline void i16Wire(uint8_t *b, int16_t val) |
mjr | 40:cc0d9814522b | 491 | { |
mjr | 40:cc0d9814522b | 492 | ui16Wire(b, (uint16_t)val); |
mjr | 40:cc0d9814522b | 493 | } |
mjr | 35:e959ffba78fd | 494 | |
mjr | 35:e959ffba78fd | 495 | inline uint32_t wireUI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 496 | { |
mjr | 35:e959ffba78fd | 497 | return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24); |
mjr | 35:e959ffba78fd | 498 | } |
mjr | 40:cc0d9814522b | 499 | inline void ui32Wire(uint8_t *b, uint32_t val) |
mjr | 40:cc0d9814522b | 500 | { |
mjr | 40:cc0d9814522b | 501 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 502 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 503 | b[2] = (uint8_t)((val >> 16) & 0xff); |
mjr | 40:cc0d9814522b | 504 | b[3] = (uint8_t)((val >> 24) & 0xff); |
mjr | 40:cc0d9814522b | 505 | } |
mjr | 35:e959ffba78fd | 506 | |
mjr | 35:e959ffba78fd | 507 | inline int32_t wireI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 508 | { |
mjr | 35:e959ffba78fd | 509 | return (int32_t)wireUI32(b); |
mjr | 35:e959ffba78fd | 510 | } |
mjr | 35:e959ffba78fd | 511 | |
mjr | 53:9b2611964afc | 512 | // Convert "wire" (USB) pin codes to/from PinName values. |
mjr | 53:9b2611964afc | 513 | // |
mjr | 53:9b2611964afc | 514 | // The internal mbed PinName format is |
mjr | 53:9b2611964afc | 515 | // |
mjr | 53:9b2611964afc | 516 | // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT |
mjr | 53:9b2611964afc | 517 | // |
mjr | 53:9b2611964afc | 518 | // where 'port' is 0-4 for Port A to Port E, and 'pin' is |
mjr | 53:9b2611964afc | 519 | // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2). |
mjr | 53:9b2611964afc | 520 | // |
mjr | 53:9b2611964afc | 521 | // We remap this to our more compact wire format where each |
mjr | 53:9b2611964afc | 522 | // pin name fits in 8 bits: |
mjr | 53:9b2611964afc | 523 | // |
mjr | 53:9b2611964afc | 524 | // ((port) << 5) | pin) // WIRE FORMAT |
mjr | 53:9b2611964afc | 525 | // |
mjr | 53:9b2611964afc | 526 | // E.g., E31 is (4 << 5) | 31. |
mjr | 53:9b2611964afc | 527 | // |
mjr | 53:9b2611964afc | 528 | // Wire code FF corresponds to PinName NC (not connected). |
mjr | 53:9b2611964afc | 529 | // |
mjr | 53:9b2611964afc | 530 | inline PinName wirePinName(uint8_t c) |
mjr | 35:e959ffba78fd | 531 | { |
mjr | 53:9b2611964afc | 532 | if (c == 0xFF) |
mjr | 53:9b2611964afc | 533 | return NC; // 0xFF -> NC |
mjr | 53:9b2611964afc | 534 | else |
mjr | 53:9b2611964afc | 535 | return PinName( |
mjr | 53:9b2611964afc | 536 | (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port |
mjr | 53:9b2611964afc | 537 | | (int(c & 0x1F) << 2)); // bottom five bits are pin |
mjr | 40:cc0d9814522b | 538 | } |
mjr | 40:cc0d9814522b | 539 | inline void pinNameWire(uint8_t *b, PinName n) |
mjr | 40:cc0d9814522b | 540 | { |
mjr | 53:9b2611964afc | 541 | *b = PINNAME_TO_WIRE(n); |
mjr | 35:e959ffba78fd | 542 | } |
mjr | 35:e959ffba78fd | 543 | |
mjr | 35:e959ffba78fd | 544 | |
mjr | 35:e959ffba78fd | 545 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 546 | // |
mjr | 38:091e511ce8a0 | 547 | // On-board RGB LED elements - we use these for diagnostic displays. |
mjr | 38:091e511ce8a0 | 548 | // |
mjr | 38:091e511ce8a0 | 549 | // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1, |
mjr | 38:091e511ce8a0 | 550 | // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard |
mjr | 38:091e511ce8a0 | 551 | // input or a device output). This is kind of unfortunate in that it's |
mjr | 38:091e511ce8a0 | 552 | // one of only two ports exposed on the jumper pins that can be muxed to |
mjr | 38:091e511ce8a0 | 553 | // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the |
mjr | 38:091e511ce8a0 | 554 | // SPI capability. |
mjr | 38:091e511ce8a0 | 555 | // |
mjr | 38:091e511ce8a0 | 556 | DigitalOut *ledR, *ledG, *ledB; |
mjr | 38:091e511ce8a0 | 557 | |
mjr | 73:4e8ce0b18915 | 558 | // Power on timer state for diagnostics. We flash the blue LED when |
mjr | 77:0b96f6867312 | 559 | // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also |
mjr | 77:0b96f6867312 | 560 | // show red when transmitting an LED signal, indicated by state 4. |
mjr | 73:4e8ce0b18915 | 561 | uint8_t powerTimerDiagState = 0; |
mjr | 73:4e8ce0b18915 | 562 | |
mjr | 38:091e511ce8a0 | 563 | // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is |
mjr | 38:091e511ce8a0 | 564 | // on, and -1 is no change (leaves the current setting intact). |
mjr | 73:4e8ce0b18915 | 565 | static uint8_t diagLEDState = 0; |
mjr | 38:091e511ce8a0 | 566 | void diagLED(int r, int g, int b) |
mjr | 38:091e511ce8a0 | 567 | { |
mjr | 73:4e8ce0b18915 | 568 | // remember the new state |
mjr | 73:4e8ce0b18915 | 569 | diagLEDState = r | (g << 1) | (b << 2); |
mjr | 73:4e8ce0b18915 | 570 | |
mjr | 73:4e8ce0b18915 | 571 | // if turning everything off, use the power timer state instead, |
mjr | 73:4e8ce0b18915 | 572 | // applying it to the blue LED |
mjr | 73:4e8ce0b18915 | 573 | if (diagLEDState == 0) |
mjr | 77:0b96f6867312 | 574 | { |
mjr | 77:0b96f6867312 | 575 | b = (powerTimerDiagState == 2 || powerTimerDiagState == 3); |
mjr | 77:0b96f6867312 | 576 | r = (powerTimerDiagState == 4); |
mjr | 77:0b96f6867312 | 577 | } |
mjr | 73:4e8ce0b18915 | 578 | |
mjr | 73:4e8ce0b18915 | 579 | // set the new state |
mjr | 38:091e511ce8a0 | 580 | if (ledR != 0 && r != -1) ledR->write(!r); |
mjr | 38:091e511ce8a0 | 581 | if (ledG != 0 && g != -1) ledG->write(!g); |
mjr | 38:091e511ce8a0 | 582 | if (ledB != 0 && b != -1) ledB->write(!b); |
mjr | 38:091e511ce8a0 | 583 | } |
mjr | 38:091e511ce8a0 | 584 | |
mjr | 73:4e8ce0b18915 | 585 | // update the LEDs with the current state |
mjr | 73:4e8ce0b18915 | 586 | void diagLED(void) |
mjr | 73:4e8ce0b18915 | 587 | { |
mjr | 73:4e8ce0b18915 | 588 | diagLED( |
mjr | 73:4e8ce0b18915 | 589 | diagLEDState & 0x01, |
mjr | 73:4e8ce0b18915 | 590 | (diagLEDState >> 1) & 0x01, |
mjr | 77:0b96f6867312 | 591 | (diagLEDState >> 2) & 0x01); |
mjr | 73:4e8ce0b18915 | 592 | } |
mjr | 73:4e8ce0b18915 | 593 | |
mjr | 38:091e511ce8a0 | 594 | // check an output port assignment to see if it conflicts with |
mjr | 38:091e511ce8a0 | 595 | // an on-board LED segment |
mjr | 38:091e511ce8a0 | 596 | struct LedSeg |
mjr | 38:091e511ce8a0 | 597 | { |
mjr | 38:091e511ce8a0 | 598 | bool r, g, b; |
mjr | 38:091e511ce8a0 | 599 | LedSeg() { r = g = b = false; } |
mjr | 38:091e511ce8a0 | 600 | |
mjr | 38:091e511ce8a0 | 601 | void check(LedWizPortCfg &pc) |
mjr | 38:091e511ce8a0 | 602 | { |
mjr | 38:091e511ce8a0 | 603 | // if it's a GPIO, check to see if it's assigned to one of |
mjr | 38:091e511ce8a0 | 604 | // our on-board LED segments |
mjr | 38:091e511ce8a0 | 605 | int t = pc.typ; |
mjr | 38:091e511ce8a0 | 606 | if (t == PortTypeGPIOPWM || t == PortTypeGPIODig) |
mjr | 38:091e511ce8a0 | 607 | { |
mjr | 38:091e511ce8a0 | 608 | // it's a GPIO port - check for a matching pin assignment |
mjr | 38:091e511ce8a0 | 609 | PinName pin = wirePinName(pc.pin); |
mjr | 38:091e511ce8a0 | 610 | if (pin == LED1) |
mjr | 38:091e511ce8a0 | 611 | r = true; |
mjr | 38:091e511ce8a0 | 612 | else if (pin == LED2) |
mjr | 38:091e511ce8a0 | 613 | g = true; |
mjr | 38:091e511ce8a0 | 614 | else if (pin == LED3) |
mjr | 38:091e511ce8a0 | 615 | b = true; |
mjr | 38:091e511ce8a0 | 616 | } |
mjr | 38:091e511ce8a0 | 617 | } |
mjr | 38:091e511ce8a0 | 618 | }; |
mjr | 38:091e511ce8a0 | 619 | |
mjr | 38:091e511ce8a0 | 620 | // Initialize the diagnostic LEDs. By default, we use the on-board |
mjr | 38:091e511ce8a0 | 621 | // RGB LED to display the microcontroller status. However, we allow |
mjr | 38:091e511ce8a0 | 622 | // the user to commandeer the on-board LED as an LedWiz output device, |
mjr | 38:091e511ce8a0 | 623 | // which can be useful for testing a new installation. So we'll check |
mjr | 38:091e511ce8a0 | 624 | // for LedWiz outputs assigned to the on-board LED segments, and turn |
mjr | 38:091e511ce8a0 | 625 | // off the diagnostic use for any so assigned. |
mjr | 38:091e511ce8a0 | 626 | void initDiagLEDs(Config &cfg) |
mjr | 38:091e511ce8a0 | 627 | { |
mjr | 38:091e511ce8a0 | 628 | // run through the configuration list and cross off any of the |
mjr | 38:091e511ce8a0 | 629 | // LED segments assigned to LedWiz ports |
mjr | 38:091e511ce8a0 | 630 | LedSeg l; |
mjr | 38:091e511ce8a0 | 631 | for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i) |
mjr | 38:091e511ce8a0 | 632 | l.check(cfg.outPort[i]); |
mjr | 38:091e511ce8a0 | 633 | |
mjr | 38:091e511ce8a0 | 634 | // We now know which segments are taken for LedWiz use and which |
mjr | 38:091e511ce8a0 | 635 | // are free. Create diagnostic ports for the ones not claimed for |
mjr | 38:091e511ce8a0 | 636 | // LedWiz use. |
mjr | 38:091e511ce8a0 | 637 | if (!l.r) ledR = new DigitalOut(LED1, 1); |
mjr | 38:091e511ce8a0 | 638 | if (!l.g) ledG = new DigitalOut(LED2, 1); |
mjr | 38:091e511ce8a0 | 639 | if (!l.b) ledB = new DigitalOut(LED3, 1); |
mjr | 38:091e511ce8a0 | 640 | } |
mjr | 38:091e511ce8a0 | 641 | |
mjr | 38:091e511ce8a0 | 642 | |
mjr | 38:091e511ce8a0 | 643 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 644 | // |
mjr | 76:7f5912b6340e | 645 | // LedWiz emulation |
mjr | 76:7f5912b6340e | 646 | // |
mjr | 76:7f5912b6340e | 647 | |
mjr | 76:7f5912b6340e | 648 | // LedWiz output states. |
mjr | 76:7f5912b6340e | 649 | // |
mjr | 76:7f5912b6340e | 650 | // The LedWiz protocol has two separate control axes for each output. |
mjr | 76:7f5912b6340e | 651 | // One axis is its on/off state; the other is its "profile" state, which |
mjr | 76:7f5912b6340e | 652 | // is either a fixed brightness or a blinking pattern for the light. |
mjr | 76:7f5912b6340e | 653 | // The two axes are independent. |
mjr | 76:7f5912b6340e | 654 | // |
mjr | 76:7f5912b6340e | 655 | // Even though the original LedWiz protocol can only access 32 ports, we |
mjr | 76:7f5912b6340e | 656 | // maintain LedWiz state for every port, even if we have more than 32. Our |
mjr | 76:7f5912b6340e | 657 | // extended protocol allows the client to send LedWiz-style messages that |
mjr | 76:7f5912b6340e | 658 | // control any set of ports. A replacement LEDWIZ.DLL can make a single |
mjr | 76:7f5912b6340e | 659 | // Pinscape unit look like multiple virtual LedWiz units to legacy clients, |
mjr | 76:7f5912b6340e | 660 | // allowing them to control all of our ports. The clients will still be |
mjr | 76:7f5912b6340e | 661 | // using LedWiz-style states to control the ports, so we need to support |
mjr | 76:7f5912b6340e | 662 | // the LedWiz scheme with separate on/off and brightness control per port. |
mjr | 76:7f5912b6340e | 663 | |
mjr | 76:7f5912b6340e | 664 | // On/off state for each LedWiz output |
mjr | 76:7f5912b6340e | 665 | static uint8_t *wizOn; |
mjr | 76:7f5912b6340e | 666 | |
mjr | 76:7f5912b6340e | 667 | // LedWiz "Profile State" (the LedWiz brightness level or blink mode) |
mjr | 76:7f5912b6340e | 668 | // for each LedWiz output. If the output was last updated through an |
mjr | 76:7f5912b6340e | 669 | // LedWiz protocol message, it will have one of these values: |
mjr | 76:7f5912b6340e | 670 | // |
mjr | 76:7f5912b6340e | 671 | // 0-48 = fixed brightness 0% to 100% |
mjr | 76:7f5912b6340e | 672 | // 49 = fixed brightness 100% (equivalent to 48) |
mjr | 76:7f5912b6340e | 673 | // 129 = ramp up / ramp down |
mjr | 76:7f5912b6340e | 674 | // 130 = flash on / off |
mjr | 76:7f5912b6340e | 675 | // 131 = on / ramp down |
mjr | 76:7f5912b6340e | 676 | // 132 = ramp up / on |
mjr | 5:a70c0bce770d | 677 | // |
mjr | 76:7f5912b6340e | 678 | // (Note that value 49 isn't documented in the LedWiz spec, but real |
mjr | 76:7f5912b6340e | 679 | // LedWiz units treat it as equivalent to 48, and some PC software uses |
mjr | 76:7f5912b6340e | 680 | // it, so we need to accept it for compatibility.) |
mjr | 76:7f5912b6340e | 681 | static uint8_t *wizVal; |
mjr | 76:7f5912b6340e | 682 | |
mjr | 76:7f5912b6340e | 683 | // Current actual brightness for each output. This is a simple linear |
mjr | 76:7f5912b6340e | 684 | // value on a 0..255 scale. This is EITHER the linear brightness computed |
mjr | 76:7f5912b6340e | 685 | // from the LedWiz setting for the port, OR the 0..255 value set explicitly |
mjr | 76:7f5912b6340e | 686 | // by the extended protocol: |
mjr | 76:7f5912b6340e | 687 | // |
mjr | 76:7f5912b6340e | 688 | // - If the last command that updated the port was an extended protocol |
mjr | 76:7f5912b6340e | 689 | // SET BRIGHTNESS command, this is the value set by that command. In |
mjr | 76:7f5912b6340e | 690 | // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise; |
mjr | 76:7f5912b6340e | 691 | // and wizVal[port] is set to the brightness rescaled to the 0..48 range |
mjr | 76:7f5912b6340e | 692 | // if the brightness is non-zero. |
mjr | 76:7f5912b6340e | 693 | // |
mjr | 76:7f5912b6340e | 694 | // - If the last command that updated the port was an LedWiz command |
mjr | 76:7f5912b6340e | 695 | // (SBA/PBA/SBX/PBX), this contains the brightness value computed from |
mjr | 76:7f5912b6340e | 696 | // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is |
mjr | 76:7f5912b6340e | 697 | // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the |
mjr | 76:7f5912b6340e | 698 | // 0..255 range. |
mjr | 26:cb71c4af2912 | 699 | // |
mjr | 76:7f5912b6340e | 700 | // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is |
mjr | 76:7f5912b6340e | 701 | // also updated continuously to reflect the current flashing brightness |
mjr | 76:7f5912b6340e | 702 | // level. |
mjr | 26:cb71c4af2912 | 703 | // |
mjr | 76:7f5912b6340e | 704 | static uint8_t *outLevel; |
mjr | 76:7f5912b6340e | 705 | |
mjr | 76:7f5912b6340e | 706 | |
mjr | 76:7f5912b6340e | 707 | // LedWiz flash speed. This is a value from 1 to 7 giving the pulse |
mjr | 76:7f5912b6340e | 708 | // rate for lights in blinking states. The LedWiz API doesn't document |
mjr | 76:7f5912b6340e | 709 | // what the numbers mean in real time units, but by observation, the |
mjr | 76:7f5912b6340e | 710 | // "speed" setting represents the period of the flash cycle in 0.25s |
mjr | 76:7f5912b6340e | 711 | // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz. |
mjr | 76:7f5912b6340e | 712 | // The period is the full cycle time of the flash waveform. |
mjr | 76:7f5912b6340e | 713 | // |
mjr | 76:7f5912b6340e | 714 | // Each bank of 32 lights has its independent own pulse rate, so we need |
mjr | 76:7f5912b6340e | 715 | // one entry per bank. Each bank has 32 outputs, so we need a total of |
mjr | 76:7f5912b6340e | 716 | // ceil(number_of_physical_outputs/32) entries. Note that we could allocate |
mjr | 76:7f5912b6340e | 717 | // this dynamically once we know the number of actual outputs, but the |
mjr | 76:7f5912b6340e | 718 | // upper limit is low enough that it's more efficient to use a fixed array |
mjr | 76:7f5912b6340e | 719 | // at the maximum size. |
mjr | 76:7f5912b6340e | 720 | static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32; |
mjr | 76:7f5912b6340e | 721 | static uint8_t wizSpeed[MAX_LW_BANKS]; |
mjr | 29:582472d0bc57 | 722 | |
mjr | 26:cb71c4af2912 | 723 | // Current starting output index for "PBA" messages from the PC (using |
mjr | 26:cb71c4af2912 | 724 | // the LedWiz USB protocol). Each PBA message implicitly uses the |
mjr | 26:cb71c4af2912 | 725 | // current index as the starting point for the ports referenced in |
mjr | 26:cb71c4af2912 | 726 | // the message, and increases it (by 8) for the next call. |
mjr | 0:5acbbe3f4cf4 | 727 | static int pbaIdx = 0; |
mjr | 0:5acbbe3f4cf4 | 728 | |
mjr | 76:7f5912b6340e | 729 | |
mjr | 76:7f5912b6340e | 730 | // --------------------------------------------------------------------------- |
mjr | 76:7f5912b6340e | 731 | // |
mjr | 76:7f5912b6340e | 732 | // Output Ports |
mjr | 76:7f5912b6340e | 733 | // |
mjr | 76:7f5912b6340e | 734 | // There are two way to connect outputs. First, you can use the on-board |
mjr | 76:7f5912b6340e | 735 | // GPIO ports to implement device outputs: each LedWiz software port is |
mjr | 76:7f5912b6340e | 736 | // connected to a physical GPIO pin on the KL25Z. This has some pretty |
mjr | 76:7f5912b6340e | 737 | // strict limits, though. The KL25Z only has 10 PWM channels, so only 10 |
mjr | 76:7f5912b6340e | 738 | // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off. |
mjr | 76:7f5912b6340e | 739 | // The KL25Z also simply doesn't have enough exposed GPIO ports overall to |
mjr | 76:7f5912b6340e | 740 | // support all of the features the software supports. The software allows |
mjr | 76:7f5912b6340e | 741 | // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5 |
mjr | 76:7f5912b6340e | 742 | // GPIO pins), and various other external devices. The KL25Z only exposes |
mjr | 76:7f5912b6340e | 743 | // about 50 GPIO pins. So if you want to do everything with GPIO ports, |
mjr | 76:7f5912b6340e | 744 | // you have to ration pins among features. |
mjr | 76:7f5912b6340e | 745 | // |
mjr | 76:7f5912b6340e | 746 | // To overcome some of these limitations, we also provide two types of |
mjr | 76:7f5912b6340e | 747 | // peripheral controllers that allow adding many more outputs, using only |
mjr | 76:7f5912b6340e | 748 | // a small number of GPIO pins to interface with the peripherals. First, |
mjr | 76:7f5912b6340e | 749 | // we support TLC5940 PWM controller chips. Each TLC5940 provides 16 ports |
mjr | 76:7f5912b6340e | 750 | // with full PWM, and multiple TLC5940 chips can be daisy-chained. The |
mjr | 76:7f5912b6340e | 751 | // chip only requires 5 GPIO pins for the interface, no matter how many |
mjr | 76:7f5912b6340e | 752 | // chips are in the chain, so it effectively converts 5 GPIO pins into |
mjr | 76:7f5912b6340e | 753 | // almost any number of PWM outputs. Second, we support 74HC595 chips. |
mjr | 76:7f5912b6340e | 754 | // These provide only digital outputs, but like the TLC5940 they can be |
mjr | 76:7f5912b6340e | 755 | // daisy-chained to provide almost unlimited outputs with a few GPIO pins |
mjr | 76:7f5912b6340e | 756 | // to control the whole chain. |
mjr | 76:7f5912b6340e | 757 | // |
mjr | 76:7f5912b6340e | 758 | // Direct GPIO output ports and peripheral controllers can be mixed and |
mjr | 76:7f5912b6340e | 759 | // matched in one system. The assignment of pins to ports and the |
mjr | 76:7f5912b6340e | 760 | // configuration of peripheral controllers is all handled in the software |
mjr | 76:7f5912b6340e | 761 | // setup, so a physical system can be expanded and updated at any time. |
mjr | 76:7f5912b6340e | 762 | // |
mjr | 76:7f5912b6340e | 763 | // To handle the diversity of output port types, we start with an abstract |
mjr | 76:7f5912b6340e | 764 | // base class for outputs. Each type of physical output interface has a |
mjr | 76:7f5912b6340e | 765 | // concrete subclass. During initialization, we create the appropriate |
mjr | 76:7f5912b6340e | 766 | // subclass for each software port, mapping it to the assigned GPIO pin |
mjr | 76:7f5912b6340e | 767 | // or peripheral port. Most of the rest of the software only cares about |
mjr | 76:7f5912b6340e | 768 | // the abstract interface, so once the subclassed port objects are set up, |
mjr | 76:7f5912b6340e | 769 | // the rest of the system can control the ports without knowing which types |
mjr | 76:7f5912b6340e | 770 | // of physical devices they're connected to. |
mjr | 76:7f5912b6340e | 771 | |
mjr | 76:7f5912b6340e | 772 | |
mjr | 26:cb71c4af2912 | 773 | // Generic LedWiz output port interface. We create a cover class to |
mjr | 26:cb71c4af2912 | 774 | // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external |
mjr | 26:cb71c4af2912 | 775 | // TLC5940 outputs, and give them all a common interface. |
mjr | 6:cc35eb643e8f | 776 | class LwOut |
mjr | 6:cc35eb643e8f | 777 | { |
mjr | 6:cc35eb643e8f | 778 | public: |
mjr | 40:cc0d9814522b | 779 | // Set the output intensity. 'val' is 0 for fully off, 255 for |
mjr | 40:cc0d9814522b | 780 | // fully on, with values in between signifying lower intensity. |
mjr | 40:cc0d9814522b | 781 | virtual void set(uint8_t val) = 0; |
mjr | 6:cc35eb643e8f | 782 | }; |
mjr | 26:cb71c4af2912 | 783 | |
mjr | 35:e959ffba78fd | 784 | // LwOut class for virtual ports. This type of port is visible to |
mjr | 35:e959ffba78fd | 785 | // the host software, but isn't connected to any physical output. |
mjr | 35:e959ffba78fd | 786 | // This can be used for special software-only ports like the ZB |
mjr | 35:e959ffba78fd | 787 | // Launch Ball output, or simply for placeholders in the LedWiz port |
mjr | 35:e959ffba78fd | 788 | // numbering. |
mjr | 35:e959ffba78fd | 789 | class LwVirtualOut: public LwOut |
mjr | 33:d832bcab089e | 790 | { |
mjr | 33:d832bcab089e | 791 | public: |
mjr | 35:e959ffba78fd | 792 | LwVirtualOut() { } |
mjr | 40:cc0d9814522b | 793 | virtual void set(uint8_t ) { } |
mjr | 33:d832bcab089e | 794 | }; |
mjr | 26:cb71c4af2912 | 795 | |
mjr | 34:6b981a2afab7 | 796 | // Active Low out. For any output marked as active low, we layer this |
mjr | 34:6b981a2afab7 | 797 | // on top of the physical pin interface. This simply inverts the value of |
mjr | 40:cc0d9814522b | 798 | // the output value, so that 255 means fully off and 0 means fully on. |
mjr | 34:6b981a2afab7 | 799 | class LwInvertedOut: public LwOut |
mjr | 34:6b981a2afab7 | 800 | { |
mjr | 34:6b981a2afab7 | 801 | public: |
mjr | 34:6b981a2afab7 | 802 | LwInvertedOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 803 | virtual void set(uint8_t val) { out->set(255 - val); } |
mjr | 34:6b981a2afab7 | 804 | |
mjr | 34:6b981a2afab7 | 805 | private: |
mjr | 53:9b2611964afc | 806 | // underlying physical output |
mjr | 34:6b981a2afab7 | 807 | LwOut *out; |
mjr | 34:6b981a2afab7 | 808 | }; |
mjr | 34:6b981a2afab7 | 809 | |
mjr | 53:9b2611964afc | 810 | // Global ZB Launch Ball state |
mjr | 53:9b2611964afc | 811 | bool zbLaunchOn = false; |
mjr | 53:9b2611964afc | 812 | |
mjr | 53:9b2611964afc | 813 | // ZB Launch Ball output. This is layered on a port (physical or virtual) |
mjr | 53:9b2611964afc | 814 | // to track the ZB Launch Ball signal. |
mjr | 53:9b2611964afc | 815 | class LwZbLaunchOut: public LwOut |
mjr | 53:9b2611964afc | 816 | { |
mjr | 53:9b2611964afc | 817 | public: |
mjr | 53:9b2611964afc | 818 | LwZbLaunchOut(LwOut *o) : out(o) { } |
mjr | 53:9b2611964afc | 819 | virtual void set(uint8_t val) |
mjr | 53:9b2611964afc | 820 | { |
mjr | 53:9b2611964afc | 821 | // update the global ZB Launch Ball state |
mjr | 53:9b2611964afc | 822 | zbLaunchOn = (val != 0); |
mjr | 53:9b2611964afc | 823 | |
mjr | 53:9b2611964afc | 824 | // pass it along to the underlying port, in case it's a physical output |
mjr | 53:9b2611964afc | 825 | out->set(val); |
mjr | 53:9b2611964afc | 826 | } |
mjr | 53:9b2611964afc | 827 | |
mjr | 53:9b2611964afc | 828 | private: |
mjr | 53:9b2611964afc | 829 | // underlying physical or virtual output |
mjr | 53:9b2611964afc | 830 | LwOut *out; |
mjr | 53:9b2611964afc | 831 | }; |
mjr | 53:9b2611964afc | 832 | |
mjr | 53:9b2611964afc | 833 | |
mjr | 40:cc0d9814522b | 834 | // Gamma correction table for 8-bit input values |
mjr | 40:cc0d9814522b | 835 | static const uint8_t gamma[] = { |
mjr | 40:cc0d9814522b | 836 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
mjr | 40:cc0d9814522b | 837 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 838 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, |
mjr | 40:cc0d9814522b | 839 | 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, |
mjr | 40:cc0d9814522b | 840 | 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, |
mjr | 40:cc0d9814522b | 841 | 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, |
mjr | 40:cc0d9814522b | 842 | 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, |
mjr | 40:cc0d9814522b | 843 | 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, |
mjr | 40:cc0d9814522b | 844 | 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, |
mjr | 40:cc0d9814522b | 845 | 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, |
mjr | 40:cc0d9814522b | 846 | 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, |
mjr | 40:cc0d9814522b | 847 | 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114, |
mjr | 40:cc0d9814522b | 848 | 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142, |
mjr | 40:cc0d9814522b | 849 | 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175, |
mjr | 40:cc0d9814522b | 850 | 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, |
mjr | 40:cc0d9814522b | 851 | 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255 |
mjr | 40:cc0d9814522b | 852 | }; |
mjr | 40:cc0d9814522b | 853 | |
mjr | 40:cc0d9814522b | 854 | // Gamma-corrected out. This is a filter object that we layer on top |
mjr | 40:cc0d9814522b | 855 | // of a physical pin interface. This applies gamma correction to the |
mjr | 40:cc0d9814522b | 856 | // input value and then passes it along to the underlying pin object. |
mjr | 40:cc0d9814522b | 857 | class LwGammaOut: public LwOut |
mjr | 40:cc0d9814522b | 858 | { |
mjr | 40:cc0d9814522b | 859 | public: |
mjr | 40:cc0d9814522b | 860 | LwGammaOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 861 | virtual void set(uint8_t val) { out->set(gamma[val]); } |
mjr | 40:cc0d9814522b | 862 | |
mjr | 40:cc0d9814522b | 863 | private: |
mjr | 40:cc0d9814522b | 864 | LwOut *out; |
mjr | 40:cc0d9814522b | 865 | }; |
mjr | 40:cc0d9814522b | 866 | |
mjr | 77:0b96f6867312 | 867 | // Global night mode flag. To minimize overhead when reporting |
mjr | 77:0b96f6867312 | 868 | // the status, we set this to the status report flag bit for |
mjr | 77:0b96f6867312 | 869 | // night mode, 0x02, when engaged. |
mjr | 77:0b96f6867312 | 870 | static uint8_t nightMode = 0x00; |
mjr | 53:9b2611964afc | 871 | |
mjr | 40:cc0d9814522b | 872 | // Noisy output. This is a filter object that we layer on top of |
mjr | 40:cc0d9814522b | 873 | // a physical pin output. This filter disables the port when night |
mjr | 40:cc0d9814522b | 874 | // mode is engaged. |
mjr | 40:cc0d9814522b | 875 | class LwNoisyOut: public LwOut |
mjr | 40:cc0d9814522b | 876 | { |
mjr | 40:cc0d9814522b | 877 | public: |
mjr | 40:cc0d9814522b | 878 | LwNoisyOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 879 | virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); } |
mjr | 40:cc0d9814522b | 880 | |
mjr | 53:9b2611964afc | 881 | private: |
mjr | 53:9b2611964afc | 882 | LwOut *out; |
mjr | 53:9b2611964afc | 883 | }; |
mjr | 53:9b2611964afc | 884 | |
mjr | 53:9b2611964afc | 885 | // Night Mode indicator output. This is a filter object that we |
mjr | 53:9b2611964afc | 886 | // layer on top of a physical pin output. This filter ignores the |
mjr | 53:9b2611964afc | 887 | // host value and simply shows the night mode status. |
mjr | 53:9b2611964afc | 888 | class LwNightModeIndicatorOut: public LwOut |
mjr | 53:9b2611964afc | 889 | { |
mjr | 53:9b2611964afc | 890 | public: |
mjr | 53:9b2611964afc | 891 | LwNightModeIndicatorOut(LwOut *o) : out(o) { } |
mjr | 53:9b2611964afc | 892 | virtual void set(uint8_t) |
mjr | 53:9b2611964afc | 893 | { |
mjr | 53:9b2611964afc | 894 | // ignore the host value and simply show the current |
mjr | 53:9b2611964afc | 895 | // night mode setting |
mjr | 53:9b2611964afc | 896 | out->set(nightMode ? 255 : 0); |
mjr | 53:9b2611964afc | 897 | } |
mjr | 40:cc0d9814522b | 898 | |
mjr | 40:cc0d9814522b | 899 | private: |
mjr | 40:cc0d9814522b | 900 | LwOut *out; |
mjr | 40:cc0d9814522b | 901 | }; |
mjr | 40:cc0d9814522b | 902 | |
mjr | 26:cb71c4af2912 | 903 | |
mjr | 35:e959ffba78fd | 904 | // |
mjr | 35:e959ffba78fd | 905 | // The TLC5940 interface object. We'll set this up with the port |
mjr | 35:e959ffba78fd | 906 | // assignments set in config.h. |
mjr | 33:d832bcab089e | 907 | // |
mjr | 35:e959ffba78fd | 908 | TLC5940 *tlc5940 = 0; |
mjr | 35:e959ffba78fd | 909 | void init_tlc5940(Config &cfg) |
mjr | 35:e959ffba78fd | 910 | { |
mjr | 35:e959ffba78fd | 911 | if (cfg.tlc5940.nchips != 0) |
mjr | 35:e959ffba78fd | 912 | { |
mjr | 53:9b2611964afc | 913 | tlc5940 = new TLC5940( |
mjr | 53:9b2611964afc | 914 | wirePinName(cfg.tlc5940.sclk), |
mjr | 53:9b2611964afc | 915 | wirePinName(cfg.tlc5940.sin), |
mjr | 53:9b2611964afc | 916 | wirePinName(cfg.tlc5940.gsclk), |
mjr | 53:9b2611964afc | 917 | wirePinName(cfg.tlc5940.blank), |
mjr | 53:9b2611964afc | 918 | wirePinName(cfg.tlc5940.xlat), |
mjr | 53:9b2611964afc | 919 | cfg.tlc5940.nchips); |
mjr | 35:e959ffba78fd | 920 | } |
mjr | 35:e959ffba78fd | 921 | } |
mjr | 26:cb71c4af2912 | 922 | |
mjr | 40:cc0d9814522b | 923 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level |
mjr | 40:cc0d9814522b | 924 | static const uint16_t dof_to_tlc[] = { |
mjr | 40:cc0d9814522b | 925 | 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241, |
mjr | 40:cc0d9814522b | 926 | 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498, |
mjr | 40:cc0d9814522b | 927 | 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755, |
mjr | 40:cc0d9814522b | 928 | 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012, |
mjr | 40:cc0d9814522b | 929 | 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269, |
mjr | 40:cc0d9814522b | 930 | 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526, |
mjr | 40:cc0d9814522b | 931 | 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783, |
mjr | 40:cc0d9814522b | 932 | 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039, |
mjr | 40:cc0d9814522b | 933 | 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296, |
mjr | 40:cc0d9814522b | 934 | 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553, |
mjr | 40:cc0d9814522b | 935 | 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810, |
mjr | 40:cc0d9814522b | 936 | 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067, |
mjr | 40:cc0d9814522b | 937 | 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324, |
mjr | 40:cc0d9814522b | 938 | 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581, |
mjr | 40:cc0d9814522b | 939 | 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838, |
mjr | 40:cc0d9814522b | 940 | 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095 |
mjr | 40:cc0d9814522b | 941 | }; |
mjr | 40:cc0d9814522b | 942 | |
mjr | 40:cc0d9814522b | 943 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with |
mjr | 40:cc0d9814522b | 944 | // gamma correction. Note that the output layering scheme can handle |
mjr | 40:cc0d9814522b | 945 | // this without a separate table, by first applying gamma to the DOF |
mjr | 40:cc0d9814522b | 946 | // level to produce an 8-bit gamma-corrected value, then convert that |
mjr | 40:cc0d9814522b | 947 | // to the 12-bit TLC5940 value. But we get better precision by doing |
mjr | 40:cc0d9814522b | 948 | // the gamma correction in the 12-bit TLC5940 domain. We can only |
mjr | 40:cc0d9814522b | 949 | // get the 12-bit domain by combining both steps into one layering |
mjr | 40:cc0d9814522b | 950 | // object, though, since the intermediate values in the layering system |
mjr | 40:cc0d9814522b | 951 | // are always 8 bits. |
mjr | 40:cc0d9814522b | 952 | static const uint16_t dof_to_gamma_tlc[] = { |
mjr | 40:cc0d9814522b | 953 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 954 | 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11, |
mjr | 40:cc0d9814522b | 955 | 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36, |
mjr | 40:cc0d9814522b | 956 | 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82, |
mjr | 40:cc0d9814522b | 957 | 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154, |
mjr | 40:cc0d9814522b | 958 | 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258, |
mjr | 40:cc0d9814522b | 959 | 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399, |
mjr | 40:cc0d9814522b | 960 | 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582, |
mjr | 40:cc0d9814522b | 961 | 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811, |
mjr | 40:cc0d9814522b | 962 | 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091, |
mjr | 40:cc0d9814522b | 963 | 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427, |
mjr | 40:cc0d9814522b | 964 | 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823, |
mjr | 40:cc0d9814522b | 965 | 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284, |
mjr | 40:cc0d9814522b | 966 | 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813, |
mjr | 40:cc0d9814522b | 967 | 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416, |
mjr | 40:cc0d9814522b | 968 | 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095 |
mjr | 40:cc0d9814522b | 969 | }; |
mjr | 40:cc0d9814522b | 970 | |
mjr | 26:cb71c4af2912 | 971 | // LwOut class for TLC5940 outputs. These are fully PWM capable. |
mjr | 26:cb71c4af2912 | 972 | // The 'idx' value in the constructor is the output index in the |
mjr | 26:cb71c4af2912 | 973 | // daisy-chained TLC5940 array. 0 is output #0 on the first chip, |
mjr | 26:cb71c4af2912 | 974 | // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is |
mjr | 26:cb71c4af2912 | 975 | // #0 on the second chip, 32 is #0 on the third chip, etc. |
mjr | 26:cb71c4af2912 | 976 | class Lw5940Out: public LwOut |
mjr | 26:cb71c4af2912 | 977 | { |
mjr | 26:cb71c4af2912 | 978 | public: |
mjr | 60:f38da020aa13 | 979 | Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 980 | virtual void set(uint8_t val) |
mjr | 26:cb71c4af2912 | 981 | { |
mjr | 26:cb71c4af2912 | 982 | if (val != prv) |
mjr | 40:cc0d9814522b | 983 | tlc5940->set(idx, dof_to_tlc[prv = val]); |
mjr | 26:cb71c4af2912 | 984 | } |
mjr | 60:f38da020aa13 | 985 | uint8_t idx; |
mjr | 40:cc0d9814522b | 986 | uint8_t prv; |
mjr | 26:cb71c4af2912 | 987 | }; |
mjr | 26:cb71c4af2912 | 988 | |
mjr | 40:cc0d9814522b | 989 | // LwOut class for TLC5940 gamma-corrected outputs. |
mjr | 40:cc0d9814522b | 990 | class Lw5940GammaOut: public LwOut |
mjr | 40:cc0d9814522b | 991 | { |
mjr | 40:cc0d9814522b | 992 | public: |
mjr | 60:f38da020aa13 | 993 | Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 994 | virtual void set(uint8_t val) |
mjr | 40:cc0d9814522b | 995 | { |
mjr | 40:cc0d9814522b | 996 | if (val != prv) |
mjr | 40:cc0d9814522b | 997 | tlc5940->set(idx, dof_to_gamma_tlc[prv = val]); |
mjr | 40:cc0d9814522b | 998 | } |
mjr | 60:f38da020aa13 | 999 | uint8_t idx; |
mjr | 40:cc0d9814522b | 1000 | uint8_t prv; |
mjr | 40:cc0d9814522b | 1001 | }; |
mjr | 40:cc0d9814522b | 1002 | |
mjr | 40:cc0d9814522b | 1003 | |
mjr | 33:d832bcab089e | 1004 | |
mjr | 34:6b981a2afab7 | 1005 | // 74HC595 interface object. Set this up with the port assignments in |
mjr | 34:6b981a2afab7 | 1006 | // config.h. |
mjr | 35:e959ffba78fd | 1007 | HC595 *hc595 = 0; |
mjr | 35:e959ffba78fd | 1008 | |
mjr | 35:e959ffba78fd | 1009 | // initialize the 74HC595 interface |
mjr | 35:e959ffba78fd | 1010 | void init_hc595(Config &cfg) |
mjr | 35:e959ffba78fd | 1011 | { |
mjr | 35:e959ffba78fd | 1012 | if (cfg.hc595.nchips != 0) |
mjr | 35:e959ffba78fd | 1013 | { |
mjr | 53:9b2611964afc | 1014 | hc595 = new HC595( |
mjr | 53:9b2611964afc | 1015 | wirePinName(cfg.hc595.nchips), |
mjr | 53:9b2611964afc | 1016 | wirePinName(cfg.hc595.sin), |
mjr | 53:9b2611964afc | 1017 | wirePinName(cfg.hc595.sclk), |
mjr | 53:9b2611964afc | 1018 | wirePinName(cfg.hc595.latch), |
mjr | 53:9b2611964afc | 1019 | wirePinName(cfg.hc595.ena)); |
mjr | 35:e959ffba78fd | 1020 | hc595->init(); |
mjr | 35:e959ffba78fd | 1021 | hc595->update(); |
mjr | 35:e959ffba78fd | 1022 | } |
mjr | 35:e959ffba78fd | 1023 | } |
mjr | 34:6b981a2afab7 | 1024 | |
mjr | 34:6b981a2afab7 | 1025 | // LwOut class for 74HC595 outputs. These are simple digial outs. |
mjr | 34:6b981a2afab7 | 1026 | // The 'idx' value in the constructor is the output index in the |
mjr | 34:6b981a2afab7 | 1027 | // daisy-chained 74HC595 array. 0 is output #0 on the first chip, |
mjr | 34:6b981a2afab7 | 1028 | // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is |
mjr | 34:6b981a2afab7 | 1029 | // #0 on the second chip, etc. |
mjr | 34:6b981a2afab7 | 1030 | class Lw595Out: public LwOut |
mjr | 33:d832bcab089e | 1031 | { |
mjr | 33:d832bcab089e | 1032 | public: |
mjr | 60:f38da020aa13 | 1033 | Lw595Out(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 1034 | virtual void set(uint8_t val) |
mjr | 34:6b981a2afab7 | 1035 | { |
mjr | 34:6b981a2afab7 | 1036 | if (val != prv) |
mjr | 40:cc0d9814522b | 1037 | hc595->set(idx, (prv = val) == 0 ? 0 : 1); |
mjr | 34:6b981a2afab7 | 1038 | } |
mjr | 60:f38da020aa13 | 1039 | uint8_t idx; |
mjr | 40:cc0d9814522b | 1040 | uint8_t prv; |
mjr | 33:d832bcab089e | 1041 | }; |
mjr | 33:d832bcab089e | 1042 | |
mjr | 26:cb71c4af2912 | 1043 | |
mjr | 40:cc0d9814522b | 1044 | |
mjr | 64:ef7ca92dff36 | 1045 | // Conversion table - 8-bit DOF output level to PWM duty cycle, |
mjr | 64:ef7ca92dff36 | 1046 | // normalized to 0.0 to 1.0 scale. |
mjr | 74:822a92bc11d2 | 1047 | static const float dof_to_pwm[] = { |
mjr | 64:ef7ca92dff36 | 1048 | 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f, |
mjr | 64:ef7ca92dff36 | 1049 | 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f, |
mjr | 64:ef7ca92dff36 | 1050 | 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f, |
mjr | 64:ef7ca92dff36 | 1051 | 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f, |
mjr | 64:ef7ca92dff36 | 1052 | 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f, |
mjr | 64:ef7ca92dff36 | 1053 | 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f, |
mjr | 64:ef7ca92dff36 | 1054 | 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f, |
mjr | 64:ef7ca92dff36 | 1055 | 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f, |
mjr | 64:ef7ca92dff36 | 1056 | 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f, |
mjr | 64:ef7ca92dff36 | 1057 | 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f, |
mjr | 64:ef7ca92dff36 | 1058 | 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f, |
mjr | 64:ef7ca92dff36 | 1059 | 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f, |
mjr | 64:ef7ca92dff36 | 1060 | 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f, |
mjr | 64:ef7ca92dff36 | 1061 | 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f, |
mjr | 64:ef7ca92dff36 | 1062 | 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f, |
mjr | 64:ef7ca92dff36 | 1063 | 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f, |
mjr | 64:ef7ca92dff36 | 1064 | 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f, |
mjr | 64:ef7ca92dff36 | 1065 | 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f, |
mjr | 64:ef7ca92dff36 | 1066 | 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f, |
mjr | 64:ef7ca92dff36 | 1067 | 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f, |
mjr | 64:ef7ca92dff36 | 1068 | 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f, |
mjr | 64:ef7ca92dff36 | 1069 | 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f, |
mjr | 64:ef7ca92dff36 | 1070 | 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f, |
mjr | 64:ef7ca92dff36 | 1071 | 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f, |
mjr | 64:ef7ca92dff36 | 1072 | 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f, |
mjr | 64:ef7ca92dff36 | 1073 | 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f, |
mjr | 64:ef7ca92dff36 | 1074 | 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f, |
mjr | 64:ef7ca92dff36 | 1075 | 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f, |
mjr | 64:ef7ca92dff36 | 1076 | 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f, |
mjr | 64:ef7ca92dff36 | 1077 | 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f, |
mjr | 64:ef7ca92dff36 | 1078 | 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f, |
mjr | 64:ef7ca92dff36 | 1079 | 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f |
mjr | 40:cc0d9814522b | 1080 | }; |
mjr | 26:cb71c4af2912 | 1081 | |
mjr | 64:ef7ca92dff36 | 1082 | |
mjr | 64:ef7ca92dff36 | 1083 | // Conversion table for 8-bit DOF level to pulse width in microseconds, |
mjr | 64:ef7ca92dff36 | 1084 | // with gamma correction. We could use the layered gamma output on top |
mjr | 64:ef7ca92dff36 | 1085 | // of the regular LwPwmOut class for this, but we get better precision |
mjr | 64:ef7ca92dff36 | 1086 | // with a dedicated table, because we apply gamma correction to the |
mjr | 64:ef7ca92dff36 | 1087 | // 32-bit microsecond values rather than the 8-bit DOF levels. |
mjr | 64:ef7ca92dff36 | 1088 | static const float dof_to_gamma_pwm[] = { |
mjr | 64:ef7ca92dff36 | 1089 | 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f, |
mjr | 64:ef7ca92dff36 | 1090 | 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f, |
mjr | 64:ef7ca92dff36 | 1091 | 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f, |
mjr | 64:ef7ca92dff36 | 1092 | 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f, |
mjr | 64:ef7ca92dff36 | 1093 | 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f, |
mjr | 64:ef7ca92dff36 | 1094 | 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f, |
mjr | 64:ef7ca92dff36 | 1095 | 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f, |
mjr | 64:ef7ca92dff36 | 1096 | 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f, |
mjr | 64:ef7ca92dff36 | 1097 | 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f, |
mjr | 64:ef7ca92dff36 | 1098 | 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f, |
mjr | 64:ef7ca92dff36 | 1099 | 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f, |
mjr | 64:ef7ca92dff36 | 1100 | 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f, |
mjr | 64:ef7ca92dff36 | 1101 | 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f, |
mjr | 64:ef7ca92dff36 | 1102 | 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f, |
mjr | 64:ef7ca92dff36 | 1103 | 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f, |
mjr | 64:ef7ca92dff36 | 1104 | 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f, |
mjr | 64:ef7ca92dff36 | 1105 | 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f, |
mjr | 64:ef7ca92dff36 | 1106 | 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f, |
mjr | 64:ef7ca92dff36 | 1107 | 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f, |
mjr | 64:ef7ca92dff36 | 1108 | 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f, |
mjr | 64:ef7ca92dff36 | 1109 | 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f, |
mjr | 64:ef7ca92dff36 | 1110 | 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f, |
mjr | 64:ef7ca92dff36 | 1111 | 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f, |
mjr | 64:ef7ca92dff36 | 1112 | 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f, |
mjr | 64:ef7ca92dff36 | 1113 | 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f, |
mjr | 64:ef7ca92dff36 | 1114 | 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f, |
mjr | 64:ef7ca92dff36 | 1115 | 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f, |
mjr | 64:ef7ca92dff36 | 1116 | 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f, |
mjr | 64:ef7ca92dff36 | 1117 | 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f, |
mjr | 64:ef7ca92dff36 | 1118 | 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f, |
mjr | 64:ef7ca92dff36 | 1119 | 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f, |
mjr | 64:ef7ca92dff36 | 1120 | 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f |
mjr | 64:ef7ca92dff36 | 1121 | }; |
mjr | 64:ef7ca92dff36 | 1122 | |
mjr | 77:0b96f6867312 | 1123 | // Polled-update PWM output list |
mjr | 74:822a92bc11d2 | 1124 | // |
mjr | 77:0b96f6867312 | 1125 | // This is a workaround for a KL25Z hardware bug/limitation. The bug (more |
mjr | 77:0b96f6867312 | 1126 | // about this below) is that we can't write to a PWM output "value" register |
mjr | 77:0b96f6867312 | 1127 | // more than once per PWM cycle; if we do, outputs after the first are lost. |
mjr | 77:0b96f6867312 | 1128 | // The value register controls the duty cycle, so it's what you have to write |
mjr | 77:0b96f6867312 | 1129 | // if you want to update the brightness of an output. |
mjr | 74:822a92bc11d2 | 1130 | // |
mjr | 77:0b96f6867312 | 1131 | // Our solution is to simply repeat all PWM updates periodically. If a write |
mjr | 77:0b96f6867312 | 1132 | // is lost on one cycle, it'll eventually be applied on a subseuqent periodic |
mjr | 77:0b96f6867312 | 1133 | // update. For low overhead, we do these repeat updates periodically during |
mjr | 77:0b96f6867312 | 1134 | // the main loop. |
mjr | 74:822a92bc11d2 | 1135 | // |
mjr | 77:0b96f6867312 | 1136 | // The mbed library has its own solution to this bug, but it creates a |
mjr | 77:0b96f6867312 | 1137 | // separate problem of its own. The mbed solution is to write the value |
mjr | 77:0b96f6867312 | 1138 | // register immediately, and then also reset the "count" register in the |
mjr | 77:0b96f6867312 | 1139 | // TPM unit containing the output. The count reset truncates the current |
mjr | 77:0b96f6867312 | 1140 | // PWM cycle, which avoids the hardware problem with more than one write per |
mjr | 77:0b96f6867312 | 1141 | // cycle. The problem is that the truncated cycle causes visible flicker if |
mjr | 77:0b96f6867312 | 1142 | // the output is connected to an LED. This is particularly noticeable during |
mjr | 77:0b96f6867312 | 1143 | // fades, when we're updating the value register repeatedly and rapidly: an |
mjr | 77:0b96f6867312 | 1144 | // attempt to fade from fully on to fully off causes rapid fluttering and |
mjr | 77:0b96f6867312 | 1145 | // flashing rather than a smooth brightness fade. |
mjr | 74:822a92bc11d2 | 1146 | // |
mjr | 77:0b96f6867312 | 1147 | // The hardware bug is a case of good intentions gone bad. The hardware is |
mjr | 77:0b96f6867312 | 1148 | // *supposed* to make it easy for software to avoid glitching during PWM |
mjr | 77:0b96f6867312 | 1149 | // updates, by providing a staging register in front of the real value |
mjr | 77:0b96f6867312 | 1150 | // register. The software actually writes to the staging register, which |
mjr | 77:0b96f6867312 | 1151 | // holds updates until the end of the cycle, at which point the hardware |
mjr | 77:0b96f6867312 | 1152 | // automatically moves the value from the staging register into the real |
mjr | 77:0b96f6867312 | 1153 | // register. This ensures that the real register is always updated exactly |
mjr | 77:0b96f6867312 | 1154 | // at a cycle boundary, which in turn ensures that there's no flicker when |
mjr | 77:0b96f6867312 | 1155 | // values are updated. A great design - except that it doesn't quite work. |
mjr | 77:0b96f6867312 | 1156 | // The problem is that the staging register actually seems to be implemented |
mjr | 77:0b96f6867312 | 1157 | // as a one-element FIFO in "stop when full" mode. That is, when you write |
mjr | 77:0b96f6867312 | 1158 | // the FIFO, it becomes full. When the cycle ends and the hardware reads it |
mjr | 77:0b96f6867312 | 1159 | // to move the staged value into the real register, the FIFO becomes empty. |
mjr | 77:0b96f6867312 | 1160 | // But if you try to write the FIFO twice before the hardware reads it and |
mjr | 77:0b96f6867312 | 1161 | // empties it, the second write fails, leaving the first value in the queue. |
mjr | 77:0b96f6867312 | 1162 | // There doesn't seem to be any way to clear the FIFO from software, so you |
mjr | 77:0b96f6867312 | 1163 | // just have to wait for the cycle to end before writing another update. |
mjr | 77:0b96f6867312 | 1164 | // That more or less defeats the purpose of the staging register, whose whole |
mjr | 77:0b96f6867312 | 1165 | // point is to free software from worrying about timing considerations with |
mjr | 77:0b96f6867312 | 1166 | // updates. It frees us of the need to align our timing on cycle boundaries, |
mjr | 77:0b96f6867312 | 1167 | // but it leaves us with the need to limit writes to once per cycle. |
mjr | 74:822a92bc11d2 | 1168 | // |
mjr | 77:0b96f6867312 | 1169 | // So here we have our list of PWM outputs that need to be polled for updates. |
mjr | 77:0b96f6867312 | 1170 | // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set |
mjr | 77:0b96f6867312 | 1171 | // of polled items. |
mjr | 74:822a92bc11d2 | 1172 | static int numPolledPwm; |
mjr | 74:822a92bc11d2 | 1173 | static class LwPwmOut *polledPwm[10]; |
mjr | 74:822a92bc11d2 | 1174 | |
mjr | 74:822a92bc11d2 | 1175 | // LwOut class for a PWM-capable GPIO port. |
mjr | 6:cc35eb643e8f | 1176 | class LwPwmOut: public LwOut |
mjr | 6:cc35eb643e8f | 1177 | { |
mjr | 6:cc35eb643e8f | 1178 | public: |
mjr | 43:7a6364d82a41 | 1179 | LwPwmOut(PinName pin, uint8_t initVal) : p(pin) |
mjr | 43:7a6364d82a41 | 1180 | { |
mjr | 77:0b96f6867312 | 1181 | // add myself to the list of polled outputs for periodic updates |
mjr | 77:0b96f6867312 | 1182 | if (numPolledPwm < countof(polledPwm)) |
mjr | 74:822a92bc11d2 | 1183 | polledPwm[numPolledPwm++] = this; |
mjr | 77:0b96f6867312 | 1184 | |
mjr | 77:0b96f6867312 | 1185 | // set the initial value |
mjr | 77:0b96f6867312 | 1186 | set(initVal); |
mjr | 43:7a6364d82a41 | 1187 | } |
mjr | 74:822a92bc11d2 | 1188 | |
mjr | 40:cc0d9814522b | 1189 | virtual void set(uint8_t val) |
mjr | 74:822a92bc11d2 | 1190 | { |
mjr | 77:0b96f6867312 | 1191 | // save the new value |
mjr | 74:822a92bc11d2 | 1192 | this->val = val; |
mjr | 77:0b96f6867312 | 1193 | |
mjr | 77:0b96f6867312 | 1194 | // commit it to the hardware |
mjr | 77:0b96f6867312 | 1195 | commit(); |
mjr | 13:72dda449c3c0 | 1196 | } |
mjr | 74:822a92bc11d2 | 1197 | |
mjr | 74:822a92bc11d2 | 1198 | // handle periodic update polling |
mjr | 74:822a92bc11d2 | 1199 | void poll() |
mjr | 74:822a92bc11d2 | 1200 | { |
mjr | 77:0b96f6867312 | 1201 | commit(); |
mjr | 74:822a92bc11d2 | 1202 | } |
mjr | 74:822a92bc11d2 | 1203 | |
mjr | 74:822a92bc11d2 | 1204 | protected: |
mjr | 77:0b96f6867312 | 1205 | virtual void commit() |
mjr | 74:822a92bc11d2 | 1206 | { |
mjr | 74:822a92bc11d2 | 1207 | // write the current value to the PWM controller if it's changed |
mjr | 77:0b96f6867312 | 1208 | p.glitchFreeWrite(dof_to_pwm[val]); |
mjr | 74:822a92bc11d2 | 1209 | } |
mjr | 74:822a92bc11d2 | 1210 | |
mjr | 77:0b96f6867312 | 1211 | NewPwmOut p; |
mjr | 77:0b96f6867312 | 1212 | uint8_t val; |
mjr | 6:cc35eb643e8f | 1213 | }; |
mjr | 26:cb71c4af2912 | 1214 | |
mjr | 74:822a92bc11d2 | 1215 | // Gamma corrected PWM GPIO output. This works exactly like the regular |
mjr | 74:822a92bc11d2 | 1216 | // PWM output, but translates DOF values through the gamma-corrected |
mjr | 74:822a92bc11d2 | 1217 | // table instead of the regular linear table. |
mjr | 64:ef7ca92dff36 | 1218 | class LwPwmGammaOut: public LwPwmOut |
mjr | 64:ef7ca92dff36 | 1219 | { |
mjr | 64:ef7ca92dff36 | 1220 | public: |
mjr | 64:ef7ca92dff36 | 1221 | LwPwmGammaOut(PinName pin, uint8_t initVal) |
mjr | 64:ef7ca92dff36 | 1222 | : LwPwmOut(pin, initVal) |
mjr | 64:ef7ca92dff36 | 1223 | { |
mjr | 64:ef7ca92dff36 | 1224 | } |
mjr | 74:822a92bc11d2 | 1225 | |
mjr | 74:822a92bc11d2 | 1226 | protected: |
mjr | 77:0b96f6867312 | 1227 | virtual void commit() |
mjr | 64:ef7ca92dff36 | 1228 | { |
mjr | 74:822a92bc11d2 | 1229 | // write the current value to the PWM controller if it's changed |
mjr | 77:0b96f6867312 | 1230 | p.glitchFreeWrite(dof_to_gamma_pwm[val]); |
mjr | 64:ef7ca92dff36 | 1231 | } |
mjr | 64:ef7ca92dff36 | 1232 | }; |
mjr | 64:ef7ca92dff36 | 1233 | |
mjr | 74:822a92bc11d2 | 1234 | // poll the PWM outputs |
mjr | 74:822a92bc11d2 | 1235 | Timer polledPwmTimer; |
mjr | 76:7f5912b6340e | 1236 | uint64_t polledPwmTotalTime, polledPwmRunCount; |
mjr | 74:822a92bc11d2 | 1237 | void pollPwmUpdates() |
mjr | 74:822a92bc11d2 | 1238 | { |
mjr | 74:822a92bc11d2 | 1239 | // if it's been at least 25ms since the last update, do another update |
mjr | 74:822a92bc11d2 | 1240 | if (polledPwmTimer.read_us() >= 25000) |
mjr | 74:822a92bc11d2 | 1241 | { |
mjr | 74:822a92bc11d2 | 1242 | // time the run for statistics collection |
mjr | 74:822a92bc11d2 | 1243 | IF_DIAG( |
mjr | 74:822a92bc11d2 | 1244 | Timer t; |
mjr | 74:822a92bc11d2 | 1245 | t.start(); |
mjr | 74:822a92bc11d2 | 1246 | ) |
mjr | 74:822a92bc11d2 | 1247 | |
mjr | 74:822a92bc11d2 | 1248 | // poll each output |
mjr | 74:822a92bc11d2 | 1249 | for (int i = numPolledPwm ; i > 0 ; ) |
mjr | 74:822a92bc11d2 | 1250 | polledPwm[--i]->poll(); |
mjr | 74:822a92bc11d2 | 1251 | |
mjr | 74:822a92bc11d2 | 1252 | // reset the timer for the next cycle |
mjr | 74:822a92bc11d2 | 1253 | polledPwmTimer.reset(); |
mjr | 74:822a92bc11d2 | 1254 | |
mjr | 74:822a92bc11d2 | 1255 | // collect statistics |
mjr | 74:822a92bc11d2 | 1256 | IF_DIAG( |
mjr | 76:7f5912b6340e | 1257 | polledPwmTotalTime += t.read_us(); |
mjr | 74:822a92bc11d2 | 1258 | polledPwmRunCount += 1; |
mjr | 74:822a92bc11d2 | 1259 | ) |
mjr | 74:822a92bc11d2 | 1260 | } |
mjr | 74:822a92bc11d2 | 1261 | } |
mjr | 64:ef7ca92dff36 | 1262 | |
mjr | 26:cb71c4af2912 | 1263 | // LwOut class for a Digital-Only (Non-PWM) GPIO port |
mjr | 6:cc35eb643e8f | 1264 | class LwDigOut: public LwOut |
mjr | 6:cc35eb643e8f | 1265 | { |
mjr | 6:cc35eb643e8f | 1266 | public: |
mjr | 43:7a6364d82a41 | 1267 | LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; } |
mjr | 40:cc0d9814522b | 1268 | virtual void set(uint8_t val) |
mjr | 13:72dda449c3c0 | 1269 | { |
mjr | 13:72dda449c3c0 | 1270 | if (val != prv) |
mjr | 40:cc0d9814522b | 1271 | p.write((prv = val) == 0 ? 0 : 1); |
mjr | 13:72dda449c3c0 | 1272 | } |
mjr | 6:cc35eb643e8f | 1273 | DigitalOut p; |
mjr | 40:cc0d9814522b | 1274 | uint8_t prv; |
mjr | 6:cc35eb643e8f | 1275 | }; |
mjr | 26:cb71c4af2912 | 1276 | |
mjr | 29:582472d0bc57 | 1277 | // Array of output physical pin assignments. This array is indexed |
mjr | 29:582472d0bc57 | 1278 | // by LedWiz logical port number - lwPin[n] is the maping for LedWiz |
mjr | 35:e959ffba78fd | 1279 | // port n (0-based). |
mjr | 35:e959ffba78fd | 1280 | // |
mjr | 35:e959ffba78fd | 1281 | // Each pin is handled by an interface object for the physical output |
mjr | 35:e959ffba78fd | 1282 | // type for the port, as set in the configuration. The interface |
mjr | 35:e959ffba78fd | 1283 | // objects handle the specifics of addressing the different hardware |
mjr | 35:e959ffba78fd | 1284 | // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and |
mjr | 35:e959ffba78fd | 1285 | // 74HC595 ports). |
mjr | 33:d832bcab089e | 1286 | static int numOutputs; |
mjr | 33:d832bcab089e | 1287 | static LwOut **lwPin; |
mjr | 33:d832bcab089e | 1288 | |
mjr | 38:091e511ce8a0 | 1289 | // create a single output pin |
mjr | 53:9b2611964afc | 1290 | LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg) |
mjr | 38:091e511ce8a0 | 1291 | { |
mjr | 38:091e511ce8a0 | 1292 | // get this item's values |
mjr | 38:091e511ce8a0 | 1293 | int typ = pc.typ; |
mjr | 38:091e511ce8a0 | 1294 | int pin = pc.pin; |
mjr | 38:091e511ce8a0 | 1295 | int flags = pc.flags; |
mjr | 40:cc0d9814522b | 1296 | int noisy = flags & PortFlagNoisemaker; |
mjr | 38:091e511ce8a0 | 1297 | int activeLow = flags & PortFlagActiveLow; |
mjr | 40:cc0d9814522b | 1298 | int gamma = flags & PortFlagGamma; |
mjr | 38:091e511ce8a0 | 1299 | |
mjr | 38:091e511ce8a0 | 1300 | // create the pin interface object according to the port type |
mjr | 38:091e511ce8a0 | 1301 | LwOut *lwp; |
mjr | 38:091e511ce8a0 | 1302 | switch (typ) |
mjr | 38:091e511ce8a0 | 1303 | { |
mjr | 38:091e511ce8a0 | 1304 | case PortTypeGPIOPWM: |
mjr | 48:058ace2aed1d | 1305 | // PWM GPIO port - assign if we have a valid pin |
mjr | 48:058ace2aed1d | 1306 | if (pin != 0) |
mjr | 64:ef7ca92dff36 | 1307 | { |
mjr | 64:ef7ca92dff36 | 1308 | // If gamma correction is to be used, and we're not inverting the output, |
mjr | 64:ef7ca92dff36 | 1309 | // use the combined Pwmout + Gamma output class; otherwise use the plain |
mjr | 64:ef7ca92dff36 | 1310 | // PwmOut class. We can't use the combined class for inverted outputs |
mjr | 64:ef7ca92dff36 | 1311 | // because we have to apply gamma correction before the inversion. |
mjr | 64:ef7ca92dff36 | 1312 | if (gamma && !activeLow) |
mjr | 64:ef7ca92dff36 | 1313 | { |
mjr | 64:ef7ca92dff36 | 1314 | // use the gamma-corrected PwmOut type |
mjr | 64:ef7ca92dff36 | 1315 | lwp = new LwPwmGammaOut(wirePinName(pin), 0); |
mjr | 64:ef7ca92dff36 | 1316 | |
mjr | 64:ef7ca92dff36 | 1317 | // don't apply further gamma correction to this output |
mjr | 64:ef7ca92dff36 | 1318 | gamma = false; |
mjr | 64:ef7ca92dff36 | 1319 | } |
mjr | 64:ef7ca92dff36 | 1320 | else |
mjr | 64:ef7ca92dff36 | 1321 | { |
mjr | 64:ef7ca92dff36 | 1322 | // no gamma correction - use the standard PwmOut class |
mjr | 64:ef7ca92dff36 | 1323 | lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 64:ef7ca92dff36 | 1324 | } |
mjr | 64:ef7ca92dff36 | 1325 | } |
mjr | 48:058ace2aed1d | 1326 | else |
mjr | 48:058ace2aed1d | 1327 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1328 | break; |
mjr | 38:091e511ce8a0 | 1329 | |
mjr | 38:091e511ce8a0 | 1330 | case PortTypeGPIODig: |
mjr | 38:091e511ce8a0 | 1331 | // Digital GPIO port |
mjr | 48:058ace2aed1d | 1332 | if (pin != 0) |
mjr | 48:058ace2aed1d | 1333 | lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 48:058ace2aed1d | 1334 | else |
mjr | 48:058ace2aed1d | 1335 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1336 | break; |
mjr | 38:091e511ce8a0 | 1337 | |
mjr | 38:091e511ce8a0 | 1338 | case PortTypeTLC5940: |
mjr | 38:091e511ce8a0 | 1339 | // TLC5940 port (if we don't have a TLC controller object, or it's not a valid |
mjr | 38:091e511ce8a0 | 1340 | // output port number on the chips we have, create a virtual port) |
mjr | 38:091e511ce8a0 | 1341 | if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16) |
mjr | 40:cc0d9814522b | 1342 | { |
mjr | 40:cc0d9814522b | 1343 | // If gamma correction is to be used, and we're not inverting the output, |
mjr | 40:cc0d9814522b | 1344 | // use the combined TLC4950 + Gamma output class. Otherwise use the plain |
mjr | 40:cc0d9814522b | 1345 | // TLC5940 output. We skip the combined class if the output is inverted |
mjr | 40:cc0d9814522b | 1346 | // because we need to apply gamma BEFORE the inversion to get the right |
mjr | 40:cc0d9814522b | 1347 | // results, but the combined class would apply it after because of the |
mjr | 40:cc0d9814522b | 1348 | // layering scheme - the combined class is a physical device output class, |
mjr | 40:cc0d9814522b | 1349 | // and a physical device output class is necessarily at the bottom of |
mjr | 40:cc0d9814522b | 1350 | // the stack. We don't have a combined inverted+gamma+TLC class, because |
mjr | 40:cc0d9814522b | 1351 | // inversion isn't recommended for TLC5940 chips in the first place, so |
mjr | 40:cc0d9814522b | 1352 | // it's not worth the extra memory footprint to have a dedicated table |
mjr | 40:cc0d9814522b | 1353 | // for this unlikely case. |
mjr | 40:cc0d9814522b | 1354 | if (gamma && !activeLow) |
mjr | 40:cc0d9814522b | 1355 | { |
mjr | 40:cc0d9814522b | 1356 | // use the gamma-corrected 5940 output mapper |
mjr | 40:cc0d9814522b | 1357 | lwp = new Lw5940GammaOut(pin); |
mjr | 40:cc0d9814522b | 1358 | |
mjr | 40:cc0d9814522b | 1359 | // DON'T apply further gamma correction to this output |
mjr | 40:cc0d9814522b | 1360 | gamma = false; |
mjr | 40:cc0d9814522b | 1361 | } |
mjr | 40:cc0d9814522b | 1362 | else |
mjr | 40:cc0d9814522b | 1363 | { |
mjr | 40:cc0d9814522b | 1364 | // no gamma - use the plain (linear) 5940 output class |
mjr | 40:cc0d9814522b | 1365 | lwp = new Lw5940Out(pin); |
mjr | 40:cc0d9814522b | 1366 | } |
mjr | 40:cc0d9814522b | 1367 | } |
mjr | 38:091e511ce8a0 | 1368 | else |
mjr | 40:cc0d9814522b | 1369 | { |
mjr | 40:cc0d9814522b | 1370 | // no TLC5940 chips, or invalid port number - use a virtual out |
mjr | 38:091e511ce8a0 | 1371 | lwp = new LwVirtualOut(); |
mjr | 40:cc0d9814522b | 1372 | } |
mjr | 38:091e511ce8a0 | 1373 | break; |
mjr | 38:091e511ce8a0 | 1374 | |
mjr | 38:091e511ce8a0 | 1375 | case PortType74HC595: |
mjr | 38:091e511ce8a0 | 1376 | // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid |
mjr | 38:091e511ce8a0 | 1377 | // output number, create a virtual port) |
mjr | 38:091e511ce8a0 | 1378 | if (hc595 != 0 && pin < cfg.hc595.nchips*8) |
mjr | 38:091e511ce8a0 | 1379 | lwp = new Lw595Out(pin); |
mjr | 38:091e511ce8a0 | 1380 | else |
mjr | 38:091e511ce8a0 | 1381 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1382 | break; |
mjr | 38:091e511ce8a0 | 1383 | |
mjr | 38:091e511ce8a0 | 1384 | case PortTypeVirtual: |
mjr | 43:7a6364d82a41 | 1385 | case PortTypeDisabled: |
mjr | 38:091e511ce8a0 | 1386 | default: |
mjr | 38:091e511ce8a0 | 1387 | // virtual or unknown |
mjr | 38:091e511ce8a0 | 1388 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1389 | break; |
mjr | 38:091e511ce8a0 | 1390 | } |
mjr | 38:091e511ce8a0 | 1391 | |
mjr | 40:cc0d9814522b | 1392 | // If it's Active Low, layer on an inverter. Note that an inverter |
mjr | 40:cc0d9814522b | 1393 | // needs to be the bottom-most layer, since all of the other filters |
mjr | 40:cc0d9814522b | 1394 | // assume that they're working with normal (non-inverted) values. |
mjr | 38:091e511ce8a0 | 1395 | if (activeLow) |
mjr | 38:091e511ce8a0 | 1396 | lwp = new LwInvertedOut(lwp); |
mjr | 40:cc0d9814522b | 1397 | |
mjr | 40:cc0d9814522b | 1398 | // If it's a noisemaker, layer on a night mode switch. Note that this |
mjr | 40:cc0d9814522b | 1399 | // needs to be |
mjr | 40:cc0d9814522b | 1400 | if (noisy) |
mjr | 40:cc0d9814522b | 1401 | lwp = new LwNoisyOut(lwp); |
mjr | 40:cc0d9814522b | 1402 | |
mjr | 40:cc0d9814522b | 1403 | // If it's gamma-corrected, layer on a gamma corrector |
mjr | 40:cc0d9814522b | 1404 | if (gamma) |
mjr | 40:cc0d9814522b | 1405 | lwp = new LwGammaOut(lwp); |
mjr | 53:9b2611964afc | 1406 | |
mjr | 53:9b2611964afc | 1407 | // If this is the ZB Launch Ball port, layer a monitor object. Note |
mjr | 64:ef7ca92dff36 | 1408 | // that the nominal port numbering in the config starts at 1, but we're |
mjr | 53:9b2611964afc | 1409 | // using an array index, so test against portno+1. |
mjr | 53:9b2611964afc | 1410 | if (portno + 1 == cfg.plunger.zbLaunchBall.port) |
mjr | 53:9b2611964afc | 1411 | lwp = new LwZbLaunchOut(lwp); |
mjr | 53:9b2611964afc | 1412 | |
mjr | 53:9b2611964afc | 1413 | // If this is the Night Mode indicator port, layer a night mode object. |
mjr | 53:9b2611964afc | 1414 | if (portno + 1 == cfg.nightMode.port) |
mjr | 53:9b2611964afc | 1415 | lwp = new LwNightModeIndicatorOut(lwp); |
mjr | 38:091e511ce8a0 | 1416 | |
mjr | 38:091e511ce8a0 | 1417 | // turn it off initially |
mjr | 38:091e511ce8a0 | 1418 | lwp->set(0); |
mjr | 38:091e511ce8a0 | 1419 | |
mjr | 38:091e511ce8a0 | 1420 | // return the pin |
mjr | 38:091e511ce8a0 | 1421 | return lwp; |
mjr | 38:091e511ce8a0 | 1422 | } |
mjr | 38:091e511ce8a0 | 1423 | |
mjr | 6:cc35eb643e8f | 1424 | // initialize the output pin array |
mjr | 35:e959ffba78fd | 1425 | void initLwOut(Config &cfg) |
mjr | 6:cc35eb643e8f | 1426 | { |
mjr | 35:e959ffba78fd | 1427 | // Count the outputs. The first disabled output determines the |
mjr | 35:e959ffba78fd | 1428 | // total number of ports. |
mjr | 35:e959ffba78fd | 1429 | numOutputs = MAX_OUT_PORTS; |
mjr | 33:d832bcab089e | 1430 | int i; |
mjr | 35:e959ffba78fd | 1431 | for (i = 0 ; i < MAX_OUT_PORTS ; ++i) |
mjr | 6:cc35eb643e8f | 1432 | { |
mjr | 35:e959ffba78fd | 1433 | if (cfg.outPort[i].typ == PortTypeDisabled) |
mjr | 34:6b981a2afab7 | 1434 | { |
mjr | 35:e959ffba78fd | 1435 | numOutputs = i; |
mjr | 34:6b981a2afab7 | 1436 | break; |
mjr | 34:6b981a2afab7 | 1437 | } |
mjr | 33:d832bcab089e | 1438 | } |
mjr | 33:d832bcab089e | 1439 | |
mjr | 73:4e8ce0b18915 | 1440 | // allocate the pin array |
mjr | 73:4e8ce0b18915 | 1441 | lwPin = new LwOut*[numOutputs]; |
mjr | 35:e959ffba78fd | 1442 | |
mjr | 73:4e8ce0b18915 | 1443 | // Allocate the current brightness array |
mjr | 73:4e8ce0b18915 | 1444 | outLevel = new uint8_t[numOutputs]; |
mjr | 33:d832bcab089e | 1445 | |
mjr | 73:4e8ce0b18915 | 1446 | // allocate the LedWiz output state arrays |
mjr | 73:4e8ce0b18915 | 1447 | wizOn = new uint8_t[numOutputs]; |
mjr | 73:4e8ce0b18915 | 1448 | wizVal = new uint8_t[numOutputs]; |
mjr | 73:4e8ce0b18915 | 1449 | |
mjr | 73:4e8ce0b18915 | 1450 | // initialize all LedWiz outputs to off and brightness 48 |
mjr | 73:4e8ce0b18915 | 1451 | memset(wizOn, 0, numOutputs); |
mjr | 73:4e8ce0b18915 | 1452 | memset(wizVal, 48, numOutputs); |
mjr | 73:4e8ce0b18915 | 1453 | |
mjr | 73:4e8ce0b18915 | 1454 | // set all LedWiz virtual unit flash speeds to 2 |
mjr | 73:4e8ce0b18915 | 1455 | for (i = 0 ; i < countof(wizSpeed) ; ++i) |
mjr | 73:4e8ce0b18915 | 1456 | wizSpeed[i] = 2; |
mjr | 33:d832bcab089e | 1457 | |
mjr | 35:e959ffba78fd | 1458 | // create the pin interface object for each port |
mjr | 35:e959ffba78fd | 1459 | for (i = 0 ; i < numOutputs ; ++i) |
mjr | 53:9b2611964afc | 1460 | lwPin[i] = createLwPin(i, cfg.outPort[i], cfg); |
mjr | 6:cc35eb643e8f | 1461 | } |
mjr | 6:cc35eb643e8f | 1462 | |
mjr | 76:7f5912b6340e | 1463 | // Translate an LedWiz brightness level (0..49) to a DOF brightness |
mjr | 76:7f5912b6340e | 1464 | // level (0..255). Note that brightness level 49 isn't actually valid, |
mjr | 76:7f5912b6340e | 1465 | // according to the LedWiz API documentation, but many clients use it |
mjr | 76:7f5912b6340e | 1466 | // anyway, and the real LedWiz accepts it and seems to treat it as |
mjr | 76:7f5912b6340e | 1467 | // equivalent to 48. |
mjr | 40:cc0d9814522b | 1468 | static const uint8_t lw_to_dof[] = { |
mjr | 40:cc0d9814522b | 1469 | 0, 5, 11, 16, 21, 27, 32, 37, |
mjr | 40:cc0d9814522b | 1470 | 43, 48, 53, 58, 64, 69, 74, 80, |
mjr | 40:cc0d9814522b | 1471 | 85, 90, 96, 101, 106, 112, 117, 122, |
mjr | 40:cc0d9814522b | 1472 | 128, 133, 138, 143, 149, 154, 159, 165, |
mjr | 40:cc0d9814522b | 1473 | 170, 175, 181, 186, 191, 197, 202, 207, |
mjr | 40:cc0d9814522b | 1474 | 213, 218, 223, 228, 234, 239, 244, 250, |
mjr | 40:cc0d9814522b | 1475 | 255, 255 |
mjr | 40:cc0d9814522b | 1476 | }; |
mjr | 40:cc0d9814522b | 1477 | |
mjr | 76:7f5912b6340e | 1478 | // Translate a DOF brightness level (0..255) to an LedWiz brightness |
mjr | 76:7f5912b6340e | 1479 | // level (1..48) |
mjr | 76:7f5912b6340e | 1480 | static const uint8_t dof_to_lw[] = { |
mjr | 76:7f5912b6340e | 1481 | 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, |
mjr | 76:7f5912b6340e | 1482 | 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, |
mjr | 76:7f5912b6340e | 1483 | 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, |
mjr | 76:7f5912b6340e | 1484 | 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, |
mjr | 76:7f5912b6340e | 1485 | 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, |
mjr | 76:7f5912b6340e | 1486 | 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, |
mjr | 76:7f5912b6340e | 1487 | 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, |
mjr | 76:7f5912b6340e | 1488 | 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, |
mjr | 76:7f5912b6340e | 1489 | 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27, |
mjr | 76:7f5912b6340e | 1490 | 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30, |
mjr | 76:7f5912b6340e | 1491 | 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33, |
mjr | 76:7f5912b6340e | 1492 | 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36, |
mjr | 76:7f5912b6340e | 1493 | 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39, |
mjr | 76:7f5912b6340e | 1494 | 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42, |
mjr | 76:7f5912b6340e | 1495 | 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45, |
mjr | 76:7f5912b6340e | 1496 | 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48 |
mjr | 76:7f5912b6340e | 1497 | }; |
mjr | 76:7f5912b6340e | 1498 | |
mjr | 74:822a92bc11d2 | 1499 | // LedWiz flash cycle tables. For efficiency, we use a lookup table |
mjr | 74:822a92bc11d2 | 1500 | // rather than calculating these on the fly. The flash cycles are |
mjr | 74:822a92bc11d2 | 1501 | // generated by the following formulas, where 'c' is the current |
mjr | 74:822a92bc11d2 | 1502 | // cycle counter, from 0 to 255: |
mjr | 74:822a92bc11d2 | 1503 | // |
mjr | 74:822a92bc11d2 | 1504 | // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2) |
mjr | 74:822a92bc11d2 | 1505 | // mode 130 = flash on/off = (c < 128 ? 255 : 0) |
mjr | 74:822a92bc11d2 | 1506 | // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2) |
mjr | 74:822a92bc11d2 | 1507 | // mode 132 = ramp up/on = (c < 128 ? c*2 : 255) |
mjr | 74:822a92bc11d2 | 1508 | // |
mjr | 74:822a92bc11d2 | 1509 | // To look up the current output value for a given mode and a given |
mjr | 74:822a92bc11d2 | 1510 | // cycle counter 'c', index the table with ((mode-129)*256)+c. |
mjr | 74:822a92bc11d2 | 1511 | static const uint8_t wizFlashLookup[] = { |
mjr | 74:822a92bc11d2 | 1512 | // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2) |
mjr | 74:822a92bc11d2 | 1513 | 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f, |
mjr | 74:822a92bc11d2 | 1514 | 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f, |
mjr | 74:822a92bc11d2 | 1515 | 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f, |
mjr | 74:822a92bc11d2 | 1516 | 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f, |
mjr | 74:822a92bc11d2 | 1517 | 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f, |
mjr | 74:822a92bc11d2 | 1518 | 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf, |
mjr | 74:822a92bc11d2 | 1519 | 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf, |
mjr | 74:822a92bc11d2 | 1520 | 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff, |
mjr | 74:822a92bc11d2 | 1521 | 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0, |
mjr | 74:822a92bc11d2 | 1522 | 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0, |
mjr | 74:822a92bc11d2 | 1523 | 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0, |
mjr | 74:822a92bc11d2 | 1524 | 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80, |
mjr | 74:822a92bc11d2 | 1525 | 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60, |
mjr | 74:822a92bc11d2 | 1526 | 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40, |
mjr | 74:822a92bc11d2 | 1527 | 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20, |
mjr | 74:822a92bc11d2 | 1528 | 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00, |
mjr | 74:822a92bc11d2 | 1529 | |
mjr | 74:822a92bc11d2 | 1530 | // mode 130 = flash on/off = (c < 128 ? 255 : 0) |
mjr | 74:822a92bc11d2 | 1531 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1532 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1533 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1534 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1535 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1536 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1537 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1538 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1539 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1540 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1541 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1542 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1543 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1544 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1545 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1546 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1547 | |
mjr | 74:822a92bc11d2 | 1548 | // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2 |
mjr | 74:822a92bc11d2 | 1549 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1550 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1551 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1552 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1553 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1554 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1555 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1556 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1557 | 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0, |
mjr | 74:822a92bc11d2 | 1558 | 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0, |
mjr | 74:822a92bc11d2 | 1559 | 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0, |
mjr | 74:822a92bc11d2 | 1560 | 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80, |
mjr | 74:822a92bc11d2 | 1561 | 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60, |
mjr | 74:822a92bc11d2 | 1562 | 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40, |
mjr | 74:822a92bc11d2 | 1563 | 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20, |
mjr | 74:822a92bc11d2 | 1564 | 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00, |
mjr | 74:822a92bc11d2 | 1565 | |
mjr | 74:822a92bc11d2 | 1566 | // mode 132 = ramp up/on = c < 128 ? c*2 : 255 |
mjr | 74:822a92bc11d2 | 1567 | 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e, |
mjr | 74:822a92bc11d2 | 1568 | 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e, |
mjr | 74:822a92bc11d2 | 1569 | 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e, |
mjr | 74:822a92bc11d2 | 1570 | 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e, |
mjr | 74:822a92bc11d2 | 1571 | 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e, |
mjr | 74:822a92bc11d2 | 1572 | 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe, |
mjr | 74:822a92bc11d2 | 1573 | 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde, |
mjr | 74:822a92bc11d2 | 1574 | 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe, |
mjr | 74:822a92bc11d2 | 1575 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1576 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1577 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1578 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1579 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1580 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1581 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1582 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff |
mjr | 74:822a92bc11d2 | 1583 | }; |
mjr | 74:822a92bc11d2 | 1584 | |
mjr | 74:822a92bc11d2 | 1585 | // LedWiz flash cycle timer. This runs continuously. On each update, |
mjr | 74:822a92bc11d2 | 1586 | // we use this to figure out where we are on the cycle for each bank. |
mjr | 74:822a92bc11d2 | 1587 | Timer wizCycleTimer; |
mjr | 74:822a92bc11d2 | 1588 | |
mjr | 76:7f5912b6340e | 1589 | // timing statistics for wizPulse() |
mjr | 76:7f5912b6340e | 1590 | uint64_t wizPulseTotalTime, wizPulseRunCount; |
mjr | 76:7f5912b6340e | 1591 | |
mjr | 76:7f5912b6340e | 1592 | // LedWiz flash timer pulse. The main loop calls this on each cycle |
mjr | 76:7f5912b6340e | 1593 | // to update outputs using LedWiz flash modes. We do one bank of 32 |
mjr | 76:7f5912b6340e | 1594 | // outputs on each cycle. |
mjr | 29:582472d0bc57 | 1595 | static void wizPulse() |
mjr | 29:582472d0bc57 | 1596 | { |
mjr | 76:7f5912b6340e | 1597 | // current bank |
mjr | 76:7f5912b6340e | 1598 | static int wizPulseBank = 0; |
mjr | 76:7f5912b6340e | 1599 | |
mjr | 76:7f5912b6340e | 1600 | // start a timer for statistics collection |
mjr | 76:7f5912b6340e | 1601 | IF_DIAG( |
mjr | 76:7f5912b6340e | 1602 | Timer t; |
mjr | 76:7f5912b6340e | 1603 | t.start(); |
mjr | 76:7f5912b6340e | 1604 | ) |
mjr | 76:7f5912b6340e | 1605 | |
mjr | 76:7f5912b6340e | 1606 | // Update the current bank's cycle counter: figure the current |
mjr | 76:7f5912b6340e | 1607 | // phase of the LedWiz pulse cycle for this bank. |
mjr | 76:7f5912b6340e | 1608 | // |
mjr | 76:7f5912b6340e | 1609 | // The LedWiz speed setting gives the flash period in 0.25s units |
mjr | 76:7f5912b6340e | 1610 | // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s). |
mjr | 76:7f5912b6340e | 1611 | // |
mjr | 76:7f5912b6340e | 1612 | // What we're after here is the "phase", which is to say the point |
mjr | 76:7f5912b6340e | 1613 | // in the current cycle. If we assume that the cycle has been running |
mjr | 76:7f5912b6340e | 1614 | // continuously since some arbitrary time zero in the past, we can |
mjr | 76:7f5912b6340e | 1615 | // figure where we are in the current cycle by dividing the time since |
mjr | 76:7f5912b6340e | 1616 | // that zero by the cycle period and taking the remainder. E.g., if |
mjr | 76:7f5912b6340e | 1617 | // the cycle time is 5 seconds, and the time since t-zero is 17 seconds, |
mjr | 76:7f5912b6340e | 1618 | // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds |
mjr | 76:7f5912b6340e | 1619 | // into the current 5-second cycle, or 2/5 of the way through the |
mjr | 76:7f5912b6340e | 1620 | // current cycle. |
mjr | 76:7f5912b6340e | 1621 | // |
mjr | 76:7f5912b6340e | 1622 | // We do this calculation on every iteration of the main loop, so we |
mjr | 76:7f5912b6340e | 1623 | // want it to be very fast. To streamline it, we'll use some tricky |
mjr | 76:7f5912b6340e | 1624 | // integer arithmetic. The result will be the same as the straightforward |
mjr | 76:7f5912b6340e | 1625 | // remainder and fraction calculation we just explained, but we'll get |
mjr | 76:7f5912b6340e | 1626 | // there by less-than-obvious means. |
mjr | 76:7f5912b6340e | 1627 | // |
mjr | 76:7f5912b6340e | 1628 | // Rather than finding the phase as a continuous quantity or floating |
mjr | 76:7f5912b6340e | 1629 | // point number, we'll quantize it. We'll divide each cycle into 256 |
mjr | 76:7f5912b6340e | 1630 | // time units, or quanta. Each quantum is 1/256 of the cycle length, |
mjr | 76:7f5912b6340e | 1631 | // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of |
mjr | 76:7f5912b6340e | 1632 | // a second, or about 3.9ms. If we express the time since t-zero in |
mjr | 76:7f5912b6340e | 1633 | // these units, the time period of one cycle is exactly 256 units, so |
mjr | 76:7f5912b6340e | 1634 | // we can calculate our point in the cycle by taking the remainder of |
mjr | 76:7f5912b6340e | 1635 | // the time (in our funny units) divided by 256. The special thing |
mjr | 76:7f5912b6340e | 1636 | // about making the cycle time equal to 256 units is that "x % 256" |
mjr | 76:7f5912b6340e | 1637 | // is exactly the same as "x & 255", which is a much faster operation |
mjr | 76:7f5912b6340e | 1638 | // than division on ARM M0+: this CPU has no hardware DIVIDE operation, |
mjr | 76:7f5912b6340e | 1639 | // so an integer division takes about 5us. The bit mask operation, in |
mjr | 76:7f5912b6340e | 1640 | // contrast, takes only about 60ns - about 100x faster. 5us doesn't |
mjr | 76:7f5912b6340e | 1641 | // sound like much, but we do this on every main loop, so every little |
mjr | 76:7f5912b6340e | 1642 | // bit counts. |
mjr | 76:7f5912b6340e | 1643 | // |
mjr | 76:7f5912b6340e | 1644 | // The snag is that our system timer gives us the elapsed time in |
mjr | 76:7f5912b6340e | 1645 | // microseconds. We still need to convert this to our special quanta |
mjr | 76:7f5912b6340e | 1646 | // of 256 units per cycle. The straightforward way to do that is by |
mjr | 76:7f5912b6340e | 1647 | // dividing by (microseconds per quantum). E.g., for LedWiz speed 4, |
mjr | 76:7f5912b6340e | 1648 | // we decided that our quantum was 1/256 of a second, or 3906us, so |
mjr | 76:7f5912b6340e | 1649 | // dividing the current system time in microseconds by 3906 will give |
mjr | 76:7f5912b6340e | 1650 | // us the time in our quantum units. But now we've just substituted |
mjr | 76:7f5912b6340e | 1651 | // one division for another! |
mjr | 76:7f5912b6340e | 1652 | // |
mjr | 76:7f5912b6340e | 1653 | // This is where our really tricky integer math comes in. Dividing |
mjr | 76:7f5912b6340e | 1654 | // by X is the same as multiplying by 1/X. In integer math, 1/3906 |
mjr | 76:7f5912b6340e | 1655 | // is zero, so that won't work. But we can get around that by doing |
mjr | 76:7f5912b6340e | 1656 | // the integer math as "fixed point" arithmetic instead. It's still |
mjr | 76:7f5912b6340e | 1657 | // actually carried out as integer operations, but we'll scale our |
mjr | 76:7f5912b6340e | 1658 | // integers by a scaling factor, then take out the scaling factor |
mjr | 76:7f5912b6340e | 1659 | // later to get the final result. The scaling factor we'll use is |
mjr | 76:7f5912b6340e | 1660 | // 2^24. So we're going to calculate (time * 2^24/3906), then divide |
mjr | 76:7f5912b6340e | 1661 | // the result by 2^24 to get the final answer. I know it seems like |
mjr | 76:7f5912b6340e | 1662 | // we're substituting one division for another yet again, but this |
mjr | 76:7f5912b6340e | 1663 | // time's the charm, because dividing by 2^24 is a bit shift operation, |
mjr | 76:7f5912b6340e | 1664 | // which is another single-cycle operation on M0+. You might also |
mjr | 76:7f5912b6340e | 1665 | // wonder how all these tricks don't cause overflows or underflows |
mjr | 76:7f5912b6340e | 1666 | // or what not. Well, the multiply by 2^24/3906 will cause an |
mjr | 76:7f5912b6340e | 1667 | // overflow, but we don't care, because the overflow will all be in |
mjr | 76:7f5912b6340e | 1668 | // the high-order bits that we're going to discard in the final |
mjr | 76:7f5912b6340e | 1669 | // remainder calculation anyway. |
mjr | 76:7f5912b6340e | 1670 | // |
mjr | 76:7f5912b6340e | 1671 | // Each entry in the array below represents 2^24/N for the corresponding |
mjr | 76:7f5912b6340e | 1672 | // LedWiz speed, where N is the number of time quanta per cycle at that |
mjr | 76:7f5912b6340e | 1673 | // speed. The time quanta are chosen such that 256 quanta add up to |
mjr | 76:7f5912b6340e | 1674 | // approximately (LedWiz speed setting * 0.25s). |
mjr | 76:7f5912b6340e | 1675 | // |
mjr | 76:7f5912b6340e | 1676 | // Note that the calculation has an implicit bit mask (result & 0xFF) |
mjr | 76:7f5912b6340e | 1677 | // to get the final result mod 256. But we don't have to actually |
mjr | 76:7f5912b6340e | 1678 | // do that work because we're using 32-bit ints and a 2^24 fixed |
mjr | 76:7f5912b6340e | 1679 | // point base (X in the narrative above). The final shift right by |
mjr | 76:7f5912b6340e | 1680 | // 24 bits to divide out the base will leave us with only 8 bits in |
mjr | 76:7f5912b6340e | 1681 | // the result, since we started with 32. |
mjr | 76:7f5912b6340e | 1682 | static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed |
mjr | 76:7f5912b6340e | 1683 | 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454 |
mjr | 76:7f5912b6340e | 1684 | }; |
mjr | 76:7f5912b6340e | 1685 | int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24); |
mjr | 76:7f5912b6340e | 1686 | |
mjr | 76:7f5912b6340e | 1687 | // get the range of 32 output sin this bank |
mjr | 76:7f5912b6340e | 1688 | int fromPort = wizPulseBank*32; |
mjr | 76:7f5912b6340e | 1689 | int toPort = fromPort+32; |
mjr | 76:7f5912b6340e | 1690 | if (toPort > numOutputs) |
mjr | 76:7f5912b6340e | 1691 | toPort = numOutputs; |
mjr | 76:7f5912b6340e | 1692 | |
mjr | 76:7f5912b6340e | 1693 | // update all outputs set to flashing values |
mjr | 76:7f5912b6340e | 1694 | for (int i = fromPort ; i < toPort ; ++i) |
mjr | 73:4e8ce0b18915 | 1695 | { |
mjr | 76:7f5912b6340e | 1696 | // Update the port only if the LedWiz SBA switch for the port is on |
mjr | 76:7f5912b6340e | 1697 | // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132. |
mjr | 76:7f5912b6340e | 1698 | // These modes and only these modes have the high bit (0x80) set, so |
mjr | 76:7f5912b6340e | 1699 | // we can test for them simply by testing the high bit. |
mjr | 76:7f5912b6340e | 1700 | if (wizOn[i]) |
mjr | 29:582472d0bc57 | 1701 | { |
mjr | 76:7f5912b6340e | 1702 | uint8_t val = wizVal[i]; |
mjr | 76:7f5912b6340e | 1703 | if ((val & 0x80) != 0) |
mjr | 29:582472d0bc57 | 1704 | { |
mjr | 76:7f5912b6340e | 1705 | // ook up the value for the mode at the cycle time |
mjr | 76:7f5912b6340e | 1706 | lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]); |
mjr | 29:582472d0bc57 | 1707 | } |
mjr | 29:582472d0bc57 | 1708 | } |
mjr | 76:7f5912b6340e | 1709 | } |
mjr | 76:7f5912b6340e | 1710 | |
mjr | 34:6b981a2afab7 | 1711 | // flush changes to 74HC595 chips, if attached |
mjr | 35:e959ffba78fd | 1712 | if (hc595 != 0) |
mjr | 35:e959ffba78fd | 1713 | hc595->update(); |
mjr | 76:7f5912b6340e | 1714 | |
mjr | 76:7f5912b6340e | 1715 | // switch to the next bank |
mjr | 76:7f5912b6340e | 1716 | if (++wizPulseBank >= MAX_LW_BANKS) |
mjr | 76:7f5912b6340e | 1717 | wizPulseBank = 0; |
mjr | 76:7f5912b6340e | 1718 | |
mjr | 76:7f5912b6340e | 1719 | // collect timing statistics |
mjr | 76:7f5912b6340e | 1720 | IF_DIAG( |
mjr | 76:7f5912b6340e | 1721 | wizPulseTotalTime += t.read_us(); |
mjr | 76:7f5912b6340e | 1722 | wizPulseRunCount += 1; |
mjr | 76:7f5912b6340e | 1723 | ) |
mjr | 1:d913e0afb2ac | 1724 | } |
mjr | 38:091e511ce8a0 | 1725 | |
mjr | 76:7f5912b6340e | 1726 | // Update a port to reflect its new LedWiz SBA+PBA setting. |
mjr | 76:7f5912b6340e | 1727 | static void updateLwPort(int port) |
mjr | 38:091e511ce8a0 | 1728 | { |
mjr | 76:7f5912b6340e | 1729 | // check if the SBA switch is on or off |
mjr | 76:7f5912b6340e | 1730 | if (wizOn[port]) |
mjr | 76:7f5912b6340e | 1731 | { |
mjr | 76:7f5912b6340e | 1732 | // It's on. If the port is a valid static brightness level, |
mjr | 76:7f5912b6340e | 1733 | // set the output port to match. Otherwise leave it as is: |
mjr | 76:7f5912b6340e | 1734 | // if it's a flashing mode, the flash mode pulse will update |
mjr | 76:7f5912b6340e | 1735 | // it on the next cycle. |
mjr | 76:7f5912b6340e | 1736 | int val = wizVal[port]; |
mjr | 76:7f5912b6340e | 1737 | if (val <= 49) |
mjr | 76:7f5912b6340e | 1738 | lwPin[port]->set(outLevel[port] = lw_to_dof[val]); |
mjr | 76:7f5912b6340e | 1739 | } |
mjr | 76:7f5912b6340e | 1740 | else |
mjr | 76:7f5912b6340e | 1741 | { |
mjr | 76:7f5912b6340e | 1742 | // the port is off - set absolute brightness zero |
mjr | 76:7f5912b6340e | 1743 | lwPin[port]->set(outLevel[port] = 0); |
mjr | 76:7f5912b6340e | 1744 | } |
mjr | 73:4e8ce0b18915 | 1745 | } |
mjr | 73:4e8ce0b18915 | 1746 | |
mjr | 73:4e8ce0b18915 | 1747 | // Turn off all outputs and restore everything to the default LedWiz |
mjr | 73:4e8ce0b18915 | 1748 | // state. This sets outputs #1-32 to LedWiz profile value 48 (full |
mjr | 73:4e8ce0b18915 | 1749 | // brightness) and switch state Off, sets all extended outputs (#33 |
mjr | 73:4e8ce0b18915 | 1750 | // and above) to zero brightness, and sets the LedWiz flash rate to 2. |
mjr | 73:4e8ce0b18915 | 1751 | // This effectively restores the power-on conditions. |
mjr | 73:4e8ce0b18915 | 1752 | // |
mjr | 73:4e8ce0b18915 | 1753 | void allOutputsOff() |
mjr | 73:4e8ce0b18915 | 1754 | { |
mjr | 73:4e8ce0b18915 | 1755 | // reset all LedWiz outputs to OFF/48 |
mjr | 73:4e8ce0b18915 | 1756 | for (int i = 0 ; i < numOutputs ; ++i) |
mjr | 73:4e8ce0b18915 | 1757 | { |
mjr | 73:4e8ce0b18915 | 1758 | outLevel[i] = 0; |
mjr | 73:4e8ce0b18915 | 1759 | wizOn[i] = 0; |
mjr | 73:4e8ce0b18915 | 1760 | wizVal[i] = 48; |
mjr | 73:4e8ce0b18915 | 1761 | lwPin[i]->set(0); |
mjr | 73:4e8ce0b18915 | 1762 | } |
mjr | 73:4e8ce0b18915 | 1763 | |
mjr | 73:4e8ce0b18915 | 1764 | // restore default LedWiz flash rate |
mjr | 73:4e8ce0b18915 | 1765 | for (int i = 0 ; i < countof(wizSpeed) ; ++i) |
mjr | 73:4e8ce0b18915 | 1766 | wizSpeed[i] = 2; |
mjr | 38:091e511ce8a0 | 1767 | |
mjr | 73:4e8ce0b18915 | 1768 | // flush changes to hc595, if applicable |
mjr | 38:091e511ce8a0 | 1769 | if (hc595 != 0) |
mjr | 38:091e511ce8a0 | 1770 | hc595->update(); |
mjr | 38:091e511ce8a0 | 1771 | } |
mjr | 38:091e511ce8a0 | 1772 | |
mjr | 74:822a92bc11d2 | 1773 | // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32, |
mjr | 74:822a92bc11d2 | 1774 | // 1 for ports 33-64, etc. Original protocol SBA messages always |
mjr | 74:822a92bc11d2 | 1775 | // address port group 0; our private SBX extension messages can |
mjr | 74:822a92bc11d2 | 1776 | // address any port group. |
mjr | 74:822a92bc11d2 | 1777 | void sba_sbx(int portGroup, const uint8_t *data) |
mjr | 74:822a92bc11d2 | 1778 | { |
mjr | 76:7f5912b6340e | 1779 | // update all on/off states in the group |
mjr | 74:822a92bc11d2 | 1780 | for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ; |
mjr | 74:822a92bc11d2 | 1781 | i < 32 && port < numOutputs ; |
mjr | 74:822a92bc11d2 | 1782 | ++i, bit <<= 1, ++port) |
mjr | 74:822a92bc11d2 | 1783 | { |
mjr | 74:822a92bc11d2 | 1784 | // figure the on/off state bit for this output |
mjr | 74:822a92bc11d2 | 1785 | if (bit == 0x100) { |
mjr | 74:822a92bc11d2 | 1786 | bit = 1; |
mjr | 74:822a92bc11d2 | 1787 | ++imsg; |
mjr | 74:822a92bc11d2 | 1788 | } |
mjr | 74:822a92bc11d2 | 1789 | |
mjr | 74:822a92bc11d2 | 1790 | // set the on/off state |
mjr | 76:7f5912b6340e | 1791 | bool on = wizOn[port] = ((data[imsg] & bit) != 0); |
mjr | 76:7f5912b6340e | 1792 | |
mjr | 76:7f5912b6340e | 1793 | // set the output port brightness to match the new setting |
mjr | 76:7f5912b6340e | 1794 | updateLwPort(port); |
mjr | 74:822a92bc11d2 | 1795 | } |
mjr | 74:822a92bc11d2 | 1796 | |
mjr | 74:822a92bc11d2 | 1797 | // set the flash speed for the port group |
mjr | 74:822a92bc11d2 | 1798 | if (portGroup < countof(wizSpeed)) |
mjr | 74:822a92bc11d2 | 1799 | wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]); |
mjr | 74:822a92bc11d2 | 1800 | |
mjr | 76:7f5912b6340e | 1801 | // update 74HC959 outputs |
mjr | 76:7f5912b6340e | 1802 | if (hc595 != 0) |
mjr | 76:7f5912b6340e | 1803 | hc595->update(); |
mjr | 74:822a92bc11d2 | 1804 | } |
mjr | 74:822a92bc11d2 | 1805 | |
mjr | 74:822a92bc11d2 | 1806 | // Carry out a PBA or PBX message. |
mjr | 74:822a92bc11d2 | 1807 | void pba_pbx(int basePort, const uint8_t *data) |
mjr | 74:822a92bc11d2 | 1808 | { |
mjr | 74:822a92bc11d2 | 1809 | // update each wizVal entry from the brightness data |
mjr | 76:7f5912b6340e | 1810 | for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port) |
mjr | 74:822a92bc11d2 | 1811 | { |
mjr | 74:822a92bc11d2 | 1812 | // get the value |
mjr | 74:822a92bc11d2 | 1813 | uint8_t v = data[i]; |
mjr | 74:822a92bc11d2 | 1814 | |
mjr | 74:822a92bc11d2 | 1815 | // Validate it. The legal values are 0..49 for brightness |
mjr | 74:822a92bc11d2 | 1816 | // levels, and 128..132 for flash modes. Set anything invalid |
mjr | 74:822a92bc11d2 | 1817 | // to full brightness (48) instead. Note that 49 isn't actually |
mjr | 74:822a92bc11d2 | 1818 | // a valid documented value, but in practice some clients send |
mjr | 74:822a92bc11d2 | 1819 | // this to mean 100% brightness, and the real LedWiz treats it |
mjr | 74:822a92bc11d2 | 1820 | // as such. |
mjr | 74:822a92bc11d2 | 1821 | if ((v > 49 && v < 129) || v > 132) |
mjr | 74:822a92bc11d2 | 1822 | v = 48; |
mjr | 74:822a92bc11d2 | 1823 | |
mjr | 74:822a92bc11d2 | 1824 | // store it |
mjr | 76:7f5912b6340e | 1825 | wizVal[port] = v; |
mjr | 76:7f5912b6340e | 1826 | |
mjr | 76:7f5912b6340e | 1827 | // update the port |
mjr | 76:7f5912b6340e | 1828 | updateLwPort(port); |
mjr | 74:822a92bc11d2 | 1829 | } |
mjr | 74:822a92bc11d2 | 1830 | |
mjr | 76:7f5912b6340e | 1831 | // update 74HC595 outputs |
mjr | 76:7f5912b6340e | 1832 | if (hc595 != 0) |
mjr | 76:7f5912b6340e | 1833 | hc595->update(); |
mjr | 74:822a92bc11d2 | 1834 | } |
mjr | 74:822a92bc11d2 | 1835 | |
mjr | 77:0b96f6867312 | 1836 | // --------------------------------------------------------------------------- |
mjr | 77:0b96f6867312 | 1837 | // |
mjr | 77:0b96f6867312 | 1838 | // IR Remote Control transmitter & receiver |
mjr | 77:0b96f6867312 | 1839 | // |
mjr | 77:0b96f6867312 | 1840 | |
mjr | 77:0b96f6867312 | 1841 | // receiver |
mjr | 77:0b96f6867312 | 1842 | IRReceiver *ir_rx; |
mjr | 77:0b96f6867312 | 1843 | |
mjr | 77:0b96f6867312 | 1844 | // transmitter |
mjr | 77:0b96f6867312 | 1845 | IRTransmitter *ir_tx; |
mjr | 77:0b96f6867312 | 1846 | |
mjr | 77:0b96f6867312 | 1847 | // Mapping from IR commands slots in the configuration to "virtual button" |
mjr | 77:0b96f6867312 | 1848 | // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage, |
mjr | 77:0b96f6867312 | 1849 | // we only create virtual buttons on the transmitter object for code slots |
mjr | 77:0b96f6867312 | 1850 | // that are configured for transmission, which includes slots used for TV |
mjr | 77:0b96f6867312 | 1851 | // ON commands and slots that can be triggered by button presses. This |
mjr | 77:0b96f6867312 | 1852 | // means that virtual button numbers won't necessarily match the config |
mjr | 77:0b96f6867312 | 1853 | // slot numbers. This table provides the mapping: |
mjr | 77:0b96f6867312 | 1854 | // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for |
mjr | 77:0b96f6867312 | 1855 | // configuration slot n |
mjr | 77:0b96f6867312 | 1856 | uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES]; |
mjr | 78:1e00b3fa11af | 1857 | |
mjr | 78:1e00b3fa11af | 1858 | // IR transmitter virtual button number for ad hoc IR command. We allocate |
mjr | 78:1e00b3fa11af | 1859 | // one virtual button for sending ad hoc IR codes, such as through the USB |
mjr | 78:1e00b3fa11af | 1860 | // protocol. |
mjr | 78:1e00b3fa11af | 1861 | uint8_t IRAdHocBtn; |
mjr | 78:1e00b3fa11af | 1862 | |
mjr | 78:1e00b3fa11af | 1863 | // Staging area for ad hoc IR commands. It takes multiple messages |
mjr | 78:1e00b3fa11af | 1864 | // to fill out an IR command, so we store the partial command here |
mjr | 78:1e00b3fa11af | 1865 | // while waiting for the rest. |
mjr | 78:1e00b3fa11af | 1866 | static struct |
mjr | 78:1e00b3fa11af | 1867 | { |
mjr | 78:1e00b3fa11af | 1868 | uint8_t protocol; // protocol ID |
mjr | 78:1e00b3fa11af | 1869 | uint64_t code; // code |
mjr | 78:1e00b3fa11af | 1870 | uint8_t dittos : 1; // using dittos? |
mjr | 78:1e00b3fa11af | 1871 | uint8_t ready : 1; // do we have a code ready to transmit? |
mjr | 78:1e00b3fa11af | 1872 | } IRAdHocCmd; |
mjr | 78:1e00b3fa11af | 1873 | |
mjr | 77:0b96f6867312 | 1874 | |
mjr | 77:0b96f6867312 | 1875 | // IR mode timer. In normal mode, this is the time since the last |
mjr | 77:0b96f6867312 | 1876 | // command received; we use this to handle commands with timed effects, |
mjr | 77:0b96f6867312 | 1877 | // such as sending a key to the PC. In learning mode, this is the time |
mjr | 77:0b96f6867312 | 1878 | // since we activated learning mode, which we use to automatically end |
mjr | 77:0b96f6867312 | 1879 | // learning mode if a decodable command isn't received within a reasonable |
mjr | 77:0b96f6867312 | 1880 | // amount of time. |
mjr | 77:0b96f6867312 | 1881 | Timer IRTimer; |
mjr | 77:0b96f6867312 | 1882 | |
mjr | 77:0b96f6867312 | 1883 | // IR Learning Mode. The PC enters learning mode via special function 65 12. |
mjr | 77:0b96f6867312 | 1884 | // The states are: |
mjr | 77:0b96f6867312 | 1885 | // |
mjr | 77:0b96f6867312 | 1886 | // 0 -> normal operation (not in learning mode) |
mjr | 77:0b96f6867312 | 1887 | // 1 -> learning mode; reading raw codes, no command read yet |
mjr | 77:0b96f6867312 | 1888 | // 2 -> learning mode; command received, awaiting auto-repeat |
mjr | 77:0b96f6867312 | 1889 | // 3 -> learning mode; done, command and repeat mode decoded |
mjr | 77:0b96f6867312 | 1890 | // |
mjr | 77:0b96f6867312 | 1891 | // When we enter learning mode, we reset IRTimer to keep track of how long |
mjr | 77:0b96f6867312 | 1892 | // we've been in the mode. This allows the mode to time out if no code is |
mjr | 77:0b96f6867312 | 1893 | // received within a reasonable time. |
mjr | 77:0b96f6867312 | 1894 | uint8_t IRLearningMode = 0; |
mjr | 77:0b96f6867312 | 1895 | |
mjr | 77:0b96f6867312 | 1896 | // Learning mode command received. This stores the first decoded command |
mjr | 77:0b96f6867312 | 1897 | // when in learning mode. For some protocols, we can't just report the |
mjr | 77:0b96f6867312 | 1898 | // first command we receive, because we need to wait for an auto-repeat to |
mjr | 77:0b96f6867312 | 1899 | // determine what format the remote uses for repeats. This stores the first |
mjr | 77:0b96f6867312 | 1900 | // command while we await a repeat. This is necessary for protocols that |
mjr | 77:0b96f6867312 | 1901 | // have "dittos", since some remotes for such protocols use the dittos and |
mjr | 77:0b96f6867312 | 1902 | // some don't; the only way to find out is to read a repeat code and see if |
mjr | 77:0b96f6867312 | 1903 | // it's a ditto or just a repeat of the full code. |
mjr | 77:0b96f6867312 | 1904 | IRCommand learnedIRCode; |
mjr | 77:0b96f6867312 | 1905 | |
mjr | 78:1e00b3fa11af | 1906 | // IR command received, as a config slot index, 1..MAX_IR_CODES. |
mjr | 77:0b96f6867312 | 1907 | // When we receive a command that matches one of our programmed commands, |
mjr | 77:0b96f6867312 | 1908 | // we note the slot here. We also reset the IR timer so that we know how |
mjr | 77:0b96f6867312 | 1909 | // long it's been since the command came in. This lets us handle commands |
mjr | 77:0b96f6867312 | 1910 | // with timed effects, such as PC key input. Note that this is a 1-based |
mjr | 77:0b96f6867312 | 1911 | // index; 0 represents no command. |
mjr | 77:0b96f6867312 | 1912 | uint8_t IRCommandIn = 0; |
mjr | 77:0b96f6867312 | 1913 | |
mjr | 77:0b96f6867312 | 1914 | // "Toggle bit" of last command. Some IR protocols have a toggle bit |
mjr | 77:0b96f6867312 | 1915 | // that distinguishes an auto-repeating key from a key being pressed |
mjr | 77:0b96f6867312 | 1916 | // several times in a row. This records the toggle bit of the last |
mjr | 77:0b96f6867312 | 1917 | // command we received. |
mjr | 77:0b96f6867312 | 1918 | uint8_t lastIRToggle = 0; |
mjr | 77:0b96f6867312 | 1919 | |
mjr | 77:0b96f6867312 | 1920 | // Are we in a gap between successive key presses? When we detect that a |
mjr | 77:0b96f6867312 | 1921 | // key is being pressed multiple times rather than auto-repeated (which we |
mjr | 77:0b96f6867312 | 1922 | // can detect via a toggle bit in some protocols), we'll briefly stop sending |
mjr | 77:0b96f6867312 | 1923 | // the associated key to the PC, so that the PC likewise recognizes the |
mjr | 77:0b96f6867312 | 1924 | // distinct key press. |
mjr | 77:0b96f6867312 | 1925 | uint8_t IRKeyGap = false; |
mjr | 77:0b96f6867312 | 1926 | |
mjr | 78:1e00b3fa11af | 1927 | |
mjr | 77:0b96f6867312 | 1928 | // initialize |
mjr | 77:0b96f6867312 | 1929 | void init_IR(Config &cfg, bool &kbKeys) |
mjr | 77:0b96f6867312 | 1930 | { |
mjr | 77:0b96f6867312 | 1931 | PinName pin; |
mjr | 77:0b96f6867312 | 1932 | |
mjr | 77:0b96f6867312 | 1933 | // start the IR timer |
mjr | 77:0b96f6867312 | 1934 | IRTimer.start(); |
mjr | 77:0b96f6867312 | 1935 | |
mjr | 77:0b96f6867312 | 1936 | // if there's a transmitter, set it up |
mjr | 77:0b96f6867312 | 1937 | if ((pin = wirePinName(cfg.IR.emitter)) != NC) |
mjr | 77:0b96f6867312 | 1938 | { |
mjr | 77:0b96f6867312 | 1939 | // no virtual buttons yet |
mjr | 77:0b96f6867312 | 1940 | int nVirtualButtons = 0; |
mjr | 77:0b96f6867312 | 1941 | memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton)); |
mjr | 77:0b96f6867312 | 1942 | |
mjr | 77:0b96f6867312 | 1943 | // assign virtual buttons slots for TV ON codes |
mjr | 77:0b96f6867312 | 1944 | for (int i = 0 ; i < MAX_IR_CODES ; ++i) |
mjr | 77:0b96f6867312 | 1945 | { |
mjr | 77:0b96f6867312 | 1946 | if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0) |
mjr | 77:0b96f6867312 | 1947 | IRConfigSlotToVirtualButton[i] = nVirtualButtons++; |
mjr | 77:0b96f6867312 | 1948 | } |
mjr | 77:0b96f6867312 | 1949 | |
mjr | 77:0b96f6867312 | 1950 | // assign virtual buttons for codes that can be triggered by |
mjr | 77:0b96f6867312 | 1951 | // real button inputs |
mjr | 77:0b96f6867312 | 1952 | for (int i = 0 ; i < MAX_BUTTONS ; ++i) |
mjr | 77:0b96f6867312 | 1953 | { |
mjr | 77:0b96f6867312 | 1954 | // get the button |
mjr | 77:0b96f6867312 | 1955 | ButtonCfg &b = cfg.button[i]; |
mjr | 77:0b96f6867312 | 1956 | |
mjr | 77:0b96f6867312 | 1957 | // check the unshifted button |
mjr | 77:0b96f6867312 | 1958 | int c = b.IRCommand - 1; |
mjr | 77:0b96f6867312 | 1959 | if (c >= 0 && c < MAX_IR_CODES |
mjr | 77:0b96f6867312 | 1960 | && IRConfigSlotToVirtualButton[c] == 0xFF) |
mjr | 77:0b96f6867312 | 1961 | IRConfigSlotToVirtualButton[c] = nVirtualButtons++; |
mjr | 77:0b96f6867312 | 1962 | |
mjr | 77:0b96f6867312 | 1963 | // check the shifted button |
mjr | 77:0b96f6867312 | 1964 | c = b.IRCommand2 - 1; |
mjr | 77:0b96f6867312 | 1965 | if (c >= 0 && c < MAX_IR_CODES |
mjr | 77:0b96f6867312 | 1966 | && IRConfigSlotToVirtualButton[c] == 0xFF) |
mjr | 77:0b96f6867312 | 1967 | IRConfigSlotToVirtualButton[c] = nVirtualButtons++; |
mjr | 77:0b96f6867312 | 1968 | } |
mjr | 77:0b96f6867312 | 1969 | |
mjr | 77:0b96f6867312 | 1970 | // allocate an additional virtual button for transmitting ad hoc |
mjr | 77:0b96f6867312 | 1971 | // codes, such as for the "send code" USB API function |
mjr | 78:1e00b3fa11af | 1972 | IRAdHocBtn = nVirtualButtons++; |
mjr | 77:0b96f6867312 | 1973 | |
mjr | 77:0b96f6867312 | 1974 | // create the transmitter |
mjr | 77:0b96f6867312 | 1975 | ir_tx = new IRTransmitter(pin, nVirtualButtons); |
mjr | 77:0b96f6867312 | 1976 | |
mjr | 77:0b96f6867312 | 1977 | // program the commands into the virtual button slots |
mjr | 77:0b96f6867312 | 1978 | for (int i = 0 ; i < MAX_IR_CODES ; ++i) |
mjr | 77:0b96f6867312 | 1979 | { |
mjr | 77:0b96f6867312 | 1980 | // if this slot is assigned to a virtual button, program it |
mjr | 77:0b96f6867312 | 1981 | int vb = IRConfigSlotToVirtualButton[i]; |
mjr | 77:0b96f6867312 | 1982 | if (vb != 0xFF) |
mjr | 77:0b96f6867312 | 1983 | { |
mjr | 77:0b96f6867312 | 1984 | IRCommandCfg &cb = cfg.IRCommand[i]; |
mjr | 77:0b96f6867312 | 1985 | uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32); |
mjr | 77:0b96f6867312 | 1986 | bool dittos = (cb.flags & IRFlagDittos) != 0; |
mjr | 77:0b96f6867312 | 1987 | ir_tx->programButton(vb, cb.protocol, dittos, code); |
mjr | 77:0b96f6867312 | 1988 | } |
mjr | 77:0b96f6867312 | 1989 | } |
mjr | 77:0b96f6867312 | 1990 | } |
mjr | 77:0b96f6867312 | 1991 | |
mjr | 77:0b96f6867312 | 1992 | // if there's a receiver, set it up |
mjr | 77:0b96f6867312 | 1993 | if ((pin = wirePinName(cfg.IR.sensor)) != NC) |
mjr | 77:0b96f6867312 | 1994 | { |
mjr | 77:0b96f6867312 | 1995 | // create the receiver |
mjr | 77:0b96f6867312 | 1996 | ir_rx = new IRReceiver(pin, 32); |
mjr | 77:0b96f6867312 | 1997 | |
mjr | 77:0b96f6867312 | 1998 | // connect the transmitter (if any) to the receiver, so that |
mjr | 77:0b96f6867312 | 1999 | // the receiver can suppress reception of our own transmissions |
mjr | 77:0b96f6867312 | 2000 | ir_rx->setTransmitter(ir_tx); |
mjr | 77:0b96f6867312 | 2001 | |
mjr | 77:0b96f6867312 | 2002 | // enable it |
mjr | 77:0b96f6867312 | 2003 | ir_rx->enable(); |
mjr | 77:0b96f6867312 | 2004 | |
mjr | 77:0b96f6867312 | 2005 | // Check the IR command slots to see if any slots are configured |
mjr | 77:0b96f6867312 | 2006 | // to send a keyboard key on receiving an IR command. If any are, |
mjr | 77:0b96f6867312 | 2007 | // tell the caller that we need a USB keyboard interface. |
mjr | 77:0b96f6867312 | 2008 | for (int i = 0 ; i < MAX_IR_CODES ; ++i) |
mjr | 77:0b96f6867312 | 2009 | { |
mjr | 77:0b96f6867312 | 2010 | IRCommandCfg &cb = cfg.IRCommand[i]; |
mjr | 77:0b96f6867312 | 2011 | if (cb.protocol != 0 |
mjr | 77:0b96f6867312 | 2012 | && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia)) |
mjr | 77:0b96f6867312 | 2013 | { |
mjr | 77:0b96f6867312 | 2014 | kbKeys = true; |
mjr | 77:0b96f6867312 | 2015 | break; |
mjr | 77:0b96f6867312 | 2016 | } |
mjr | 77:0b96f6867312 | 2017 | } |
mjr | 77:0b96f6867312 | 2018 | } |
mjr | 77:0b96f6867312 | 2019 | } |
mjr | 77:0b96f6867312 | 2020 | |
mjr | 77:0b96f6867312 | 2021 | // Press or release a button with an assigned IR function. 'cmd' |
mjr | 77:0b96f6867312 | 2022 | // is the command slot number (1..MAX_IR_CODES) assigned to the button. |
mjr | 77:0b96f6867312 | 2023 | void IR_buttonChange(uint8_t cmd, bool pressed) |
mjr | 77:0b96f6867312 | 2024 | { |
mjr | 77:0b96f6867312 | 2025 | // only proceed if there's an IR transmitter attached |
mjr | 77:0b96f6867312 | 2026 | if (ir_tx != 0) |
mjr | 77:0b96f6867312 | 2027 | { |
mjr | 77:0b96f6867312 | 2028 | // adjust the command slot to a zero-based index |
mjr | 77:0b96f6867312 | 2029 | int slot = cmd - 1; |
mjr | 77:0b96f6867312 | 2030 | |
mjr | 77:0b96f6867312 | 2031 | // press or release the virtual button |
mjr | 77:0b96f6867312 | 2032 | ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed); |
mjr | 77:0b96f6867312 | 2033 | } |
mjr | 77:0b96f6867312 | 2034 | } |
mjr | 77:0b96f6867312 | 2035 | |
mjr | 78:1e00b3fa11af | 2036 | // Process IR input and output |
mjr | 77:0b96f6867312 | 2037 | void process_IR(Config &cfg, USBJoystick &js) |
mjr | 77:0b96f6867312 | 2038 | { |
mjr | 78:1e00b3fa11af | 2039 | // check for transmitter tasks, if there's a transmitter |
mjr | 78:1e00b3fa11af | 2040 | if (ir_tx != 0) |
mjr | 77:0b96f6867312 | 2041 | { |
mjr | 78:1e00b3fa11af | 2042 | // If we're not currently sending, and an ad hoc IR command |
mjr | 78:1e00b3fa11af | 2043 | // is ready to send, send it. |
mjr | 78:1e00b3fa11af | 2044 | if (!ir_tx->isSending() && IRAdHocCmd.ready) |
mjr | 78:1e00b3fa11af | 2045 | { |
mjr | 78:1e00b3fa11af | 2046 | // program the command into the transmitter virtual button |
mjr | 78:1e00b3fa11af | 2047 | // that we reserved for ad hoc commands |
mjr | 78:1e00b3fa11af | 2048 | ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol, |
mjr | 78:1e00b3fa11af | 2049 | IRAdHocCmd.dittos, IRAdHocCmd.code); |
mjr | 78:1e00b3fa11af | 2050 | |
mjr | 78:1e00b3fa11af | 2051 | // send the command - just pulse the button to send it once |
mjr | 78:1e00b3fa11af | 2052 | ir_tx->pushButton(IRAdHocBtn, true); |
mjr | 78:1e00b3fa11af | 2053 | ir_tx->pushButton(IRAdHocBtn, false); |
mjr | 78:1e00b3fa11af | 2054 | |
mjr | 78:1e00b3fa11af | 2055 | // we've sent the command, so clear the 'ready' flag |
mjr | 78:1e00b3fa11af | 2056 | IRAdHocCmd.ready = false; |
mjr | 78:1e00b3fa11af | 2057 | } |
mjr | 77:0b96f6867312 | 2058 | } |
mjr | 78:1e00b3fa11af | 2059 | |
mjr | 78:1e00b3fa11af | 2060 | // check for receiver tasks, if there's a receiver |
mjr | 78:1e00b3fa11af | 2061 | if (ir_rx != 0) |
mjr | 77:0b96f6867312 | 2062 | { |
mjr | 78:1e00b3fa11af | 2063 | // Time out any received command |
mjr | 78:1e00b3fa11af | 2064 | if (IRCommandIn != 0) |
mjr | 78:1e00b3fa11af | 2065 | { |
mjr | 78:1e00b3fa11af | 2066 | // Time out inter-key gap mode after 30ms; time out all |
mjr | 78:1e00b3fa11af | 2067 | // commands after 100ms. |
mjr | 78:1e00b3fa11af | 2068 | uint32_t t = IRTimer.read_us(); |
mjr | 78:1e00b3fa11af | 2069 | if (t > 100000) |
mjr | 78:1e00b3fa11af | 2070 | IRCommandIn = 0; |
mjr | 78:1e00b3fa11af | 2071 | else if (t > 30000) |
mjr | 78:1e00b3fa11af | 2072 | IRKeyGap = false; |
mjr | 78:1e00b3fa11af | 2073 | } |
mjr | 78:1e00b3fa11af | 2074 | |
mjr | 78:1e00b3fa11af | 2075 | // Check if we're in learning mode |
mjr | 78:1e00b3fa11af | 2076 | if (IRLearningMode != 0) |
mjr | 78:1e00b3fa11af | 2077 | { |
mjr | 78:1e00b3fa11af | 2078 | // Learning mode. Read raw inputs from the IR sensor and |
mjr | 78:1e00b3fa11af | 2079 | // forward them to the PC via USB reports, up to the report |
mjr | 78:1e00b3fa11af | 2080 | // limit. |
mjr | 78:1e00b3fa11af | 2081 | const int nmax = USBJoystick::maxRawIR; |
mjr | 78:1e00b3fa11af | 2082 | uint16_t raw[nmax]; |
mjr | 78:1e00b3fa11af | 2083 | int n; |
mjr | 78:1e00b3fa11af | 2084 | for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ; |
mjr | 77:0b96f6867312 | 2085 | |
mjr | 78:1e00b3fa11af | 2086 | // if we read any raw samples, report them |
mjr | 78:1e00b3fa11af | 2087 | if (n != 0) |
mjr | 78:1e00b3fa11af | 2088 | js.reportRawIR(n, raw); |
mjr | 77:0b96f6867312 | 2089 | |
mjr | 78:1e00b3fa11af | 2090 | // check for a command |
mjr | 78:1e00b3fa11af | 2091 | IRCommand c; |
mjr | 78:1e00b3fa11af | 2092 | if (ir_rx->readCommand(c)) |
mjr | 78:1e00b3fa11af | 2093 | { |
mjr | 78:1e00b3fa11af | 2094 | // check the current learning state |
mjr | 78:1e00b3fa11af | 2095 | switch (IRLearningMode) |
mjr | 78:1e00b3fa11af | 2096 | { |
mjr | 78:1e00b3fa11af | 2097 | case 1: |
mjr | 78:1e00b3fa11af | 2098 | // Initial state, waiting for the first decoded command. |
mjr | 78:1e00b3fa11af | 2099 | // This is it. |
mjr | 78:1e00b3fa11af | 2100 | learnedIRCode = c; |
mjr | 78:1e00b3fa11af | 2101 | |
mjr | 78:1e00b3fa11af | 2102 | // Check if we need additional information. If the |
mjr | 78:1e00b3fa11af | 2103 | // protocol supports dittos, we have to wait for a repeat |
mjr | 78:1e00b3fa11af | 2104 | // to see if the remote actually uses the dittos, since |
mjr | 78:1e00b3fa11af | 2105 | // some implementations of such protocols use the dittos |
mjr | 78:1e00b3fa11af | 2106 | // while others just send repeated full codes. Otherwise, |
mjr | 78:1e00b3fa11af | 2107 | // all we need is the initial code, so we're done. |
mjr | 78:1e00b3fa11af | 2108 | IRLearningMode = (c.hasDittos ? 2 : 3); |
mjr | 78:1e00b3fa11af | 2109 | break; |
mjr | 78:1e00b3fa11af | 2110 | |
mjr | 78:1e00b3fa11af | 2111 | case 2: |
mjr | 78:1e00b3fa11af | 2112 | // Code received, awaiting auto-repeat information. If |
mjr | 78:1e00b3fa11af | 2113 | // the protocol has dittos, check to see if we got a ditto: |
mjr | 78:1e00b3fa11af | 2114 | // |
mjr | 78:1e00b3fa11af | 2115 | // - If we received a ditto in the same protocol as the |
mjr | 78:1e00b3fa11af | 2116 | // prior command, the remote uses dittos. |
mjr | 78:1e00b3fa11af | 2117 | // |
mjr | 78:1e00b3fa11af | 2118 | // - If we received a repeat of the prior command (not a |
mjr | 78:1e00b3fa11af | 2119 | // ditto, but a repeat of the full code), the remote |
mjr | 78:1e00b3fa11af | 2120 | // doesn't use dittos even though the protocol supports |
mjr | 78:1e00b3fa11af | 2121 | // them. |
mjr | 78:1e00b3fa11af | 2122 | // |
mjr | 78:1e00b3fa11af | 2123 | // - Otherwise, it's not an auto-repeat at all, so we |
mjr | 78:1e00b3fa11af | 2124 | // can't decide one way or the other on dittos: start |
mjr | 78:1e00b3fa11af | 2125 | // over. |
mjr | 78:1e00b3fa11af | 2126 | if (c.proId == learnedIRCode.proId |
mjr | 78:1e00b3fa11af | 2127 | && c.hasDittos |
mjr | 78:1e00b3fa11af | 2128 | && c.ditto) |
mjr | 78:1e00b3fa11af | 2129 | { |
mjr | 78:1e00b3fa11af | 2130 | // success - the remote uses dittos |
mjr | 78:1e00b3fa11af | 2131 | IRLearningMode = 3; |
mjr | 78:1e00b3fa11af | 2132 | } |
mjr | 78:1e00b3fa11af | 2133 | else if (c.proId == learnedIRCode.proId |
mjr | 78:1e00b3fa11af | 2134 | && c.hasDittos |
mjr | 78:1e00b3fa11af | 2135 | && !c.ditto |
mjr | 78:1e00b3fa11af | 2136 | && c.code == learnedIRCode.code) |
mjr | 78:1e00b3fa11af | 2137 | { |
mjr | 78:1e00b3fa11af | 2138 | // success - it's a repeat of the last code, so |
mjr | 78:1e00b3fa11af | 2139 | // the remote doesn't use dittos even though the |
mjr | 78:1e00b3fa11af | 2140 | // protocol supports them |
mjr | 78:1e00b3fa11af | 2141 | learnedIRCode.hasDittos = false; |
mjr | 78:1e00b3fa11af | 2142 | IRLearningMode = 3; |
mjr | 78:1e00b3fa11af | 2143 | } |
mjr | 78:1e00b3fa11af | 2144 | else |
mjr | 78:1e00b3fa11af | 2145 | { |
mjr | 78:1e00b3fa11af | 2146 | // It's not a ditto and not a full repeat of the |
mjr | 78:1e00b3fa11af | 2147 | // last code, so it's either a new key, or some kind |
mjr | 78:1e00b3fa11af | 2148 | // of multi-code key encoding that we don't recognize. |
mjr | 78:1e00b3fa11af | 2149 | // We can't use this code, so start over. |
mjr | 78:1e00b3fa11af | 2150 | IRLearningMode = 1; |
mjr | 78:1e00b3fa11af | 2151 | } |
mjr | 78:1e00b3fa11af | 2152 | break; |
mjr | 78:1e00b3fa11af | 2153 | } |
mjr | 77:0b96f6867312 | 2154 | |
mjr | 78:1e00b3fa11af | 2155 | // If we ended in state 3, we've successfully decoded |
mjr | 78:1e00b3fa11af | 2156 | // the transmission. Report the decoded data and terminate |
mjr | 78:1e00b3fa11af | 2157 | // learning mode. |
mjr | 78:1e00b3fa11af | 2158 | if (IRLearningMode == 3) |
mjr | 77:0b96f6867312 | 2159 | { |
mjr | 78:1e00b3fa11af | 2160 | // figure the flags: |
mjr | 78:1e00b3fa11af | 2161 | // 0x02 -> dittos |
mjr | 78:1e00b3fa11af | 2162 | uint8_t flags = 0; |
mjr | 78:1e00b3fa11af | 2163 | if (learnedIRCode.hasDittos) |
mjr | 78:1e00b3fa11af | 2164 | flags |= 0x02; |
mjr | 78:1e00b3fa11af | 2165 | |
mjr | 78:1e00b3fa11af | 2166 | // report the code |
mjr | 78:1e00b3fa11af | 2167 | js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code); |
mjr | 78:1e00b3fa11af | 2168 | |
mjr | 78:1e00b3fa11af | 2169 | // exit learning mode |
mjr | 78:1e00b3fa11af | 2170 | IRLearningMode = 0; |
mjr | 77:0b96f6867312 | 2171 | } |
mjr | 77:0b96f6867312 | 2172 | } |
mjr | 77:0b96f6867312 | 2173 | |
mjr | 78:1e00b3fa11af | 2174 | // time out of IR learning mode if it's been too long |
mjr | 78:1e00b3fa11af | 2175 | if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L) |
mjr | 77:0b96f6867312 | 2176 | { |
mjr | 78:1e00b3fa11af | 2177 | // report the termination by sending a raw IR report with |
mjr | 78:1e00b3fa11af | 2178 | // zero data elements |
mjr | 78:1e00b3fa11af | 2179 | js.reportRawIR(0, 0); |
mjr | 78:1e00b3fa11af | 2180 | |
mjr | 78:1e00b3fa11af | 2181 | |
mjr | 78:1e00b3fa11af | 2182 | // cancel learning mode |
mjr | 77:0b96f6867312 | 2183 | IRLearningMode = 0; |
mjr | 77:0b96f6867312 | 2184 | } |
mjr | 77:0b96f6867312 | 2185 | } |
mjr | 78:1e00b3fa11af | 2186 | else |
mjr | 77:0b96f6867312 | 2187 | { |
mjr | 78:1e00b3fa11af | 2188 | // Not in learning mode. We don't care about the raw signals; |
mjr | 78:1e00b3fa11af | 2189 | // just run them through the protocol decoders. |
mjr | 78:1e00b3fa11af | 2190 | ir_rx->process(); |
mjr | 78:1e00b3fa11af | 2191 | |
mjr | 78:1e00b3fa11af | 2192 | // Check for decoded commands. Keep going until all commands |
mjr | 78:1e00b3fa11af | 2193 | // have been read. |
mjr | 78:1e00b3fa11af | 2194 | IRCommand c; |
mjr | 78:1e00b3fa11af | 2195 | while (ir_rx->readCommand(c)) |
mjr | 77:0b96f6867312 | 2196 | { |
mjr | 78:1e00b3fa11af | 2197 | // We received a decoded command. Determine if it's a repeat, |
mjr | 78:1e00b3fa11af | 2198 | // and if so, try to determine whether it's an auto-repeat (due |
mjr | 78:1e00b3fa11af | 2199 | // to the remote key being held down) or a distinct new press |
mjr | 78:1e00b3fa11af | 2200 | // on the same key as last time. The distinction is significant |
mjr | 78:1e00b3fa11af | 2201 | // because it affects the auto-repeat behavior of the PC key |
mjr | 78:1e00b3fa11af | 2202 | // input. An auto-repeat represents a key being held down on |
mjr | 78:1e00b3fa11af | 2203 | // the remote, which we want to translate to a (virtual) key |
mjr | 78:1e00b3fa11af | 2204 | // being held down on the PC keyboard; a distinct key press on |
mjr | 78:1e00b3fa11af | 2205 | // the remote translates to a distinct key press on the PC. |
mjr | 78:1e00b3fa11af | 2206 | // |
mjr | 78:1e00b3fa11af | 2207 | // It can only be a repeat if there's a prior command that |
mjr | 78:1e00b3fa11af | 2208 | // hasn't timed out yet, so start by checking for a previous |
mjr | 78:1e00b3fa11af | 2209 | // command. |
mjr | 78:1e00b3fa11af | 2210 | bool repeat = false, autoRepeat = false; |
mjr | 78:1e00b3fa11af | 2211 | if (IRCommandIn != 0) |
mjr | 77:0b96f6867312 | 2212 | { |
mjr | 78:1e00b3fa11af | 2213 | // We have a command in progress. Check to see if the |
mjr | 78:1e00b3fa11af | 2214 | // new command is a repeat of the previous command. Check |
mjr | 78:1e00b3fa11af | 2215 | // first to see if it's a "ditto", which explicitly represents |
mjr | 78:1e00b3fa11af | 2216 | // an auto-repeat of the last command. |
mjr | 78:1e00b3fa11af | 2217 | IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1]; |
mjr | 78:1e00b3fa11af | 2218 | if (c.ditto) |
mjr | 78:1e00b3fa11af | 2219 | { |
mjr | 78:1e00b3fa11af | 2220 | // We received a ditto. Dittos are always auto- |
mjr | 78:1e00b3fa11af | 2221 | // repeats, so it's an auto-repeat as long as the |
mjr | 78:1e00b3fa11af | 2222 | // ditto is in the same protocol as the last command. |
mjr | 78:1e00b3fa11af | 2223 | // If the ditto is in a new protocol, the ditto can't |
mjr | 78:1e00b3fa11af | 2224 | // be for the last command we saw, because a ditto |
mjr | 78:1e00b3fa11af | 2225 | // never changes protocols from its antecedent. In |
mjr | 78:1e00b3fa11af | 2226 | // such a case, we must have missed the antecedent |
mjr | 78:1e00b3fa11af | 2227 | // command and thus don't know what's being repeated. |
mjr | 78:1e00b3fa11af | 2228 | repeat = autoRepeat = (c.proId == cmdcfg.protocol); |
mjr | 78:1e00b3fa11af | 2229 | } |
mjr | 78:1e00b3fa11af | 2230 | else |
mjr | 78:1e00b3fa11af | 2231 | { |
mjr | 78:1e00b3fa11af | 2232 | // It's not a ditto. The new command is a repeat if |
mjr | 78:1e00b3fa11af | 2233 | // it matches the protocol and command code of the |
mjr | 78:1e00b3fa11af | 2234 | // prior command. |
mjr | 78:1e00b3fa11af | 2235 | repeat = (c.proId == cmdcfg.protocol |
mjr | 78:1e00b3fa11af | 2236 | && uint32_t(c.code) == cmdcfg.code.lo |
mjr | 78:1e00b3fa11af | 2237 | && uint32_t(c.code >> 32) == cmdcfg.code.hi); |
mjr | 78:1e00b3fa11af | 2238 | |
mjr | 78:1e00b3fa11af | 2239 | // If the command is a repeat, try to determine whether |
mjr | 78:1e00b3fa11af | 2240 | // it's an auto-repeat or a new press on the same key. |
mjr | 78:1e00b3fa11af | 2241 | // If the protocol uses dittos, it's definitely a new |
mjr | 78:1e00b3fa11af | 2242 | // key press, because an auto-repeat would have used a |
mjr | 78:1e00b3fa11af | 2243 | // ditto. For a protocol that doesn't use dittos, both |
mjr | 78:1e00b3fa11af | 2244 | // an auto-repeat and a new key press just send the key |
mjr | 78:1e00b3fa11af | 2245 | // code again, so we can't tell the difference based on |
mjr | 78:1e00b3fa11af | 2246 | // that alone. But if the protocol has a toggle bit, we |
mjr | 78:1e00b3fa11af | 2247 | // can tell by the toggle bit value: a new key press has |
mjr | 78:1e00b3fa11af | 2248 | // the opposite toggle value as the last key press, while |
mjr | 78:1e00b3fa11af | 2249 | // an auto-repeat has the same toggle. Note that if the |
mjr | 78:1e00b3fa11af | 2250 | // protocol doesn't use toggle bits, the toggle value |
mjr | 78:1e00b3fa11af | 2251 | // will always be the same, so we'll simply always treat |
mjr | 78:1e00b3fa11af | 2252 | // any repeat as an auto-repeat. Many protocols simply |
mjr | 78:1e00b3fa11af | 2253 | // provide no way to distinguish the two, so in such |
mjr | 78:1e00b3fa11af | 2254 | // cases it's consistent with the native implementations |
mjr | 78:1e00b3fa11af | 2255 | // to treat any repeat as an auto-repeat. |
mjr | 78:1e00b3fa11af | 2256 | autoRepeat = |
mjr | 78:1e00b3fa11af | 2257 | repeat |
mjr | 78:1e00b3fa11af | 2258 | && !(cmdcfg.flags & IRFlagDittos) |
mjr | 78:1e00b3fa11af | 2259 | && c.toggle == lastIRToggle; |
mjr | 78:1e00b3fa11af | 2260 | } |
mjr | 78:1e00b3fa11af | 2261 | } |
mjr | 78:1e00b3fa11af | 2262 | |
mjr | 78:1e00b3fa11af | 2263 | // Check to see if it's a repeat of any kind |
mjr | 78:1e00b3fa11af | 2264 | if (repeat) |
mjr | 78:1e00b3fa11af | 2265 | { |
mjr | 78:1e00b3fa11af | 2266 | // It's a repeat. If it's not an auto-repeat, it's a |
mjr | 78:1e00b3fa11af | 2267 | // new distinct key press, so we need to send the PC a |
mjr | 78:1e00b3fa11af | 2268 | // momentary gap where we're not sending the same key, |
mjr | 78:1e00b3fa11af | 2269 | // so that the PC also recognizes this as a distinct |
mjr | 78:1e00b3fa11af | 2270 | // key press event. |
mjr | 78:1e00b3fa11af | 2271 | if (!autoRepeat) |
mjr | 78:1e00b3fa11af | 2272 | IRKeyGap = true; |
mjr | 78:1e00b3fa11af | 2273 | |
mjr | 78:1e00b3fa11af | 2274 | // restart the key-up timer |
mjr | 78:1e00b3fa11af | 2275 | IRTimer.reset(); |
mjr | 78:1e00b3fa11af | 2276 | } |
mjr | 78:1e00b3fa11af | 2277 | else if (c.ditto) |
mjr | 78:1e00b3fa11af | 2278 | { |
mjr | 78:1e00b3fa11af | 2279 | // It's a ditto, but not a repeat of the last command. |
mjr | 78:1e00b3fa11af | 2280 | // But a ditto doesn't contain any information of its own |
mjr | 78:1e00b3fa11af | 2281 | // on the command being repeated, so given that it's not |
mjr | 78:1e00b3fa11af | 2282 | // our last command, we can't infer what command the ditto |
mjr | 78:1e00b3fa11af | 2283 | // is for and thus can't make sense of it. We have to |
mjr | 78:1e00b3fa11af | 2284 | // simply ignore it and wait for the sender to start with |
mjr | 78:1e00b3fa11af | 2285 | // a full command for a new key press. |
mjr | 78:1e00b3fa11af | 2286 | IRCommandIn = 0; |
mjr | 77:0b96f6867312 | 2287 | } |
mjr | 77:0b96f6867312 | 2288 | else |
mjr | 77:0b96f6867312 | 2289 | { |
mjr | 78:1e00b3fa11af | 2290 | // It's not a repeat, so the last command is no longer |
mjr | 78:1e00b3fa11af | 2291 | // in effect (regardless of whether we find a match for |
mjr | 78:1e00b3fa11af | 2292 | // the new command). |
mjr | 78:1e00b3fa11af | 2293 | IRCommandIn = 0; |
mjr | 77:0b96f6867312 | 2294 | |
mjr | 78:1e00b3fa11af | 2295 | // Check to see if we recognize the new command, by |
mjr | 78:1e00b3fa11af | 2296 | // searching for a match in our learned code list. |
mjr | 78:1e00b3fa11af | 2297 | for (int i = 0 ; i < MAX_IR_CODES ; ++i) |
mjr | 77:0b96f6867312 | 2298 | { |
mjr | 78:1e00b3fa11af | 2299 | // if the protocol and command code from the code |
mjr | 78:1e00b3fa11af | 2300 | // list both match the input, it's a match |
mjr | 78:1e00b3fa11af | 2301 | IRCommandCfg &cmdcfg = cfg.IRCommand[i]; |
mjr | 78:1e00b3fa11af | 2302 | if (cmdcfg.protocol == c.proId |
mjr | 78:1e00b3fa11af | 2303 | && cmdcfg.code.lo == uint32_t(c.code) |
mjr | 78:1e00b3fa11af | 2304 | && cmdcfg.code.hi == uint32_t(c.code >> 32)) |
mjr | 78:1e00b3fa11af | 2305 | { |
mjr | 78:1e00b3fa11af | 2306 | // Found it! Make this the last command, and |
mjr | 78:1e00b3fa11af | 2307 | // remember the starting time. |
mjr | 78:1e00b3fa11af | 2308 | IRCommandIn = i + 1; |
mjr | 78:1e00b3fa11af | 2309 | lastIRToggle = c.toggle; |
mjr | 78:1e00b3fa11af | 2310 | IRTimer.reset(); |
mjr | 78:1e00b3fa11af | 2311 | |
mjr | 78:1e00b3fa11af | 2312 | // no need to keep searching |
mjr | 78:1e00b3fa11af | 2313 | break; |
mjr | 78:1e00b3fa11af | 2314 | } |
mjr | 77:0b96f6867312 | 2315 | } |
mjr | 77:0b96f6867312 | 2316 | } |
mjr | 77:0b96f6867312 | 2317 | } |
mjr | 77:0b96f6867312 | 2318 | } |
mjr | 77:0b96f6867312 | 2319 | } |
mjr | 77:0b96f6867312 | 2320 | } |
mjr | 77:0b96f6867312 | 2321 | |
mjr | 74:822a92bc11d2 | 2322 | |
mjr | 11:bd9da7088e6e | 2323 | // --------------------------------------------------------------------------- |
mjr | 11:bd9da7088e6e | 2324 | // |
mjr | 11:bd9da7088e6e | 2325 | // Button input |
mjr | 11:bd9da7088e6e | 2326 | // |
mjr | 11:bd9da7088e6e | 2327 | |
mjr | 18:5e890ebd0023 | 2328 | // button state |
mjr | 18:5e890ebd0023 | 2329 | struct ButtonState |
mjr | 18:5e890ebd0023 | 2330 | { |
mjr | 38:091e511ce8a0 | 2331 | ButtonState() |
mjr | 38:091e511ce8a0 | 2332 | { |
mjr | 53:9b2611964afc | 2333 | physState = logState = prevLogState = 0; |
mjr | 53:9b2611964afc | 2334 | virtState = 0; |
mjr | 53:9b2611964afc | 2335 | dbState = 0; |
mjr | 38:091e511ce8a0 | 2336 | pulseState = 0; |
mjr | 53:9b2611964afc | 2337 | pulseTime = 0; |
mjr | 38:091e511ce8a0 | 2338 | } |
mjr | 35:e959ffba78fd | 2339 | |
mjr | 53:9b2611964afc | 2340 | // "Virtually" press or un-press the button. This can be used to |
mjr | 53:9b2611964afc | 2341 | // control the button state via a software (virtual) source, such as |
mjr | 53:9b2611964afc | 2342 | // the ZB Launch Ball feature. |
mjr | 53:9b2611964afc | 2343 | // |
mjr | 53:9b2611964afc | 2344 | // To allow sharing of one button by multiple virtual sources, each |
mjr | 53:9b2611964afc | 2345 | // virtual source must keep track of its own state internally, and |
mjr | 53:9b2611964afc | 2346 | // only call this routine to CHANGE the state. This is because calls |
mjr | 53:9b2611964afc | 2347 | // to this routine are additive: turning the button ON twice will |
mjr | 53:9b2611964afc | 2348 | // require turning it OFF twice before it actually turns off. |
mjr | 53:9b2611964afc | 2349 | void virtPress(bool on) |
mjr | 53:9b2611964afc | 2350 | { |
mjr | 53:9b2611964afc | 2351 | // Increment or decrement the current state |
mjr | 53:9b2611964afc | 2352 | virtState += on ? 1 : -1; |
mjr | 53:9b2611964afc | 2353 | } |
mjr | 53:9b2611964afc | 2354 | |
mjr | 53:9b2611964afc | 2355 | // DigitalIn for the button, if connected to a physical input |
mjr | 73:4e8ce0b18915 | 2356 | TinyDigitalIn di; |
mjr | 38:091e511ce8a0 | 2357 | |
mjr | 65:739875521aae | 2358 | // Time of last pulse state transition. |
mjr | 65:739875521aae | 2359 | // |
mjr | 65:739875521aae | 2360 | // Each state change sticks for a minimum period; when the timer expires, |
mjr | 65:739875521aae | 2361 | // if the underlying physical switch is in a different state, we switch |
mjr | 65:739875521aae | 2362 | // to the next state and restart the timer. pulseTime is the time remaining |
mjr | 65:739875521aae | 2363 | // remaining before we can make another state transition, in microseconds. |
mjr | 65:739875521aae | 2364 | // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...; |
mjr | 65:739875521aae | 2365 | // this guarantees that the parity of the pulse count always matches the |
mjr | 65:739875521aae | 2366 | // current physical switch state when the latter is stable, which makes |
mjr | 65:739875521aae | 2367 | // it impossible to "trick" the host by rapidly toggling the switch state. |
mjr | 65:739875521aae | 2368 | // (On my original Pinscape cabinet, I had a hardware pulse generator |
mjr | 65:739875521aae | 2369 | // for coin door, and that *was* possible to trick by rapid toggling. |
mjr | 65:739875521aae | 2370 | // This software system can't be fooled that way.) |
mjr | 65:739875521aae | 2371 | uint32_t pulseTime; |
mjr | 18:5e890ebd0023 | 2372 | |
mjr | 65:739875521aae | 2373 | // Config key index. This points to the ButtonCfg structure in the |
mjr | 65:739875521aae | 2374 | // configuration that contains the PC key mapping for the button. |
mjr | 65:739875521aae | 2375 | uint8_t cfgIndex; |
mjr | 53:9b2611964afc | 2376 | |
mjr | 53:9b2611964afc | 2377 | // Virtual press state. This is used to simulate pressing the button via |
mjr | 53:9b2611964afc | 2378 | // software inputs rather than physical inputs. To allow one button to be |
mjr | 53:9b2611964afc | 2379 | // controlled by mulitple software sources, each source should keep track |
mjr | 53:9b2611964afc | 2380 | // of its own virtual state for the button independently, and then INCREMENT |
mjr | 53:9b2611964afc | 2381 | // this variable when the source's state transitions from off to on, and |
mjr | 53:9b2611964afc | 2382 | // DECREMENT it when the source's state transitions from on to off. That |
mjr | 53:9b2611964afc | 2383 | // will make the button's pressed state the logical OR of all of the virtual |
mjr | 53:9b2611964afc | 2384 | // and physical source states. |
mjr | 53:9b2611964afc | 2385 | uint8_t virtState; |
mjr | 38:091e511ce8a0 | 2386 | |
mjr | 38:091e511ce8a0 | 2387 | // Debounce history. On each scan, we shift in a 1 bit to the lsb if |
mjr | 38:091e511ce8a0 | 2388 | // the physical key is reporting ON, and shift in a 0 bit if the physical |
mjr | 38:091e511ce8a0 | 2389 | // key is reporting OFF. We consider the key to have a new stable state |
mjr | 38:091e511ce8a0 | 2390 | // if we have N consecutive 0's or 1's in the low N bits (where N is |
mjr | 38:091e511ce8a0 | 2391 | // a parameter that determines how long we wait for transients to settle). |
mjr | 53:9b2611964afc | 2392 | uint8_t dbState; |
mjr | 38:091e511ce8a0 | 2393 | |
mjr | 65:739875521aae | 2394 | // current PHYSICAL on/off state, after debouncing |
mjr | 65:739875521aae | 2395 | uint8_t physState : 1; |
mjr | 65:739875521aae | 2396 | |
mjr | 65:739875521aae | 2397 | // current LOGICAL on/off state as reported to the host. |
mjr | 65:739875521aae | 2398 | uint8_t logState : 1; |
mjr | 65:739875521aae | 2399 | |
mjr | 65:739875521aae | 2400 | // previous logical on/off state, when keys were last processed for USB |
mjr | 65:739875521aae | 2401 | // reports and local effects |
mjr | 65:739875521aae | 2402 | uint8_t prevLogState : 1; |
mjr | 65:739875521aae | 2403 | |
mjr | 65:739875521aae | 2404 | // Pulse state |
mjr | 65:739875521aae | 2405 | // |
mjr | 65:739875521aae | 2406 | // A button in pulse mode (selected via the config flags for the button) |
mjr | 65:739875521aae | 2407 | // transmits a brief logical button press and release each time the attached |
mjr | 65:739875521aae | 2408 | // physical switch changes state. This is useful for cases where the host |
mjr | 65:739875521aae | 2409 | // expects a key press for each change in the state of the physical switch. |
mjr | 65:739875521aae | 2410 | // The canonical example is the Coin Door switch in VPinMAME, which requires |
mjr | 65:739875521aae | 2411 | // pressing the END key to toggle the open/closed state. This software design |
mjr | 65:739875521aae | 2412 | // isn't easily implemented in a physical coin door, though; the simplest |
mjr | 65:739875521aae | 2413 | // physical sensor for the coin door state is a switch that's on when the |
mjr | 65:739875521aae | 2414 | // door is open and off when the door is closed (or vice versa, but in either |
mjr | 65:739875521aae | 2415 | // case, the switch state corresponds to the current state of the door at any |
mjr | 65:739875521aae | 2416 | // given time, rather than pulsing on state changes). The "pulse mode" |
mjr | 65:739875521aae | 2417 | // option brdiges this gap by generating a toggle key event each time |
mjr | 65:739875521aae | 2418 | // there's a change to the physical switch's state. |
mjr | 38:091e511ce8a0 | 2419 | // |
mjr | 38:091e511ce8a0 | 2420 | // Pulse state: |
mjr | 38:091e511ce8a0 | 2421 | // 0 -> not a pulse switch - logical key state equals physical switch state |
mjr | 38:091e511ce8a0 | 2422 | // 1 -> off |
mjr | 38:091e511ce8a0 | 2423 | // 2 -> transitioning off-on |
mjr | 38:091e511ce8a0 | 2424 | // 3 -> on |
mjr | 38:091e511ce8a0 | 2425 | // 4 -> transitioning on-off |
mjr | 65:739875521aae | 2426 | uint8_t pulseState : 3; // 5 states -> we need 3 bits |
mjr | 65:739875521aae | 2427 | |
mjr | 65:739875521aae | 2428 | } __attribute__((packed)); |
mjr | 65:739875521aae | 2429 | |
mjr | 65:739875521aae | 2430 | ButtonState *buttonState; // live button slots, allocated on startup |
mjr | 65:739875521aae | 2431 | int8_t nButtons; // number of live button slots allocated |
mjr | 65:739875521aae | 2432 | int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused |
mjr | 18:5e890ebd0023 | 2433 | |
mjr | 66:2e3583fbd2f4 | 2434 | // Shift button state |
mjr | 66:2e3583fbd2f4 | 2435 | struct |
mjr | 66:2e3583fbd2f4 | 2436 | { |
mjr | 66:2e3583fbd2f4 | 2437 | int8_t index; // buttonState[] index of shift button; -1 if none |
mjr | 78:1e00b3fa11af | 2438 | uint8_t state; // current state, for "Key OR Shift" mode: |
mjr | 66:2e3583fbd2f4 | 2439 | // 0 = not shifted |
mjr | 66:2e3583fbd2f4 | 2440 | // 1 = shift button down, no key pressed yet |
mjr | 66:2e3583fbd2f4 | 2441 | // 2 = shift button down, key pressed |
mjr | 78:1e00b3fa11af | 2442 | // 3 = released, sending pulsed keystroke |
mjr | 78:1e00b3fa11af | 2443 | uint32_t pulseTime; // time remaining in pulsed keystroke (state 3) |
mjr | 66:2e3583fbd2f4 | 2444 | } |
mjr | 66:2e3583fbd2f4 | 2445 | __attribute__((packed)) shiftButton; |
mjr | 38:091e511ce8a0 | 2446 | |
mjr | 38:091e511ce8a0 | 2447 | // Button data |
mjr | 38:091e511ce8a0 | 2448 | uint32_t jsButtons = 0; |
mjr | 38:091e511ce8a0 | 2449 | |
mjr | 38:091e511ce8a0 | 2450 | // Keyboard report state. This tracks the USB keyboard state. We can |
mjr | 38:091e511ce8a0 | 2451 | // report at most 6 simultaneous non-modifier keys here, plus the 8 |
mjr | 38:091e511ce8a0 | 2452 | // modifier keys. |
mjr | 38:091e511ce8a0 | 2453 | struct |
mjr | 38:091e511ce8a0 | 2454 | { |
mjr | 38:091e511ce8a0 | 2455 | bool changed; // flag: changed since last report sent |
mjr | 48:058ace2aed1d | 2456 | uint8_t nkeys; // number of active keys in the list |
mjr | 38:091e511ce8a0 | 2457 | uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask, |
mjr | 38:091e511ce8a0 | 2458 | // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes |
mjr | 38:091e511ce8a0 | 2459 | } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } }; |
mjr | 38:091e511ce8a0 | 2460 | |
mjr | 38:091e511ce8a0 | 2461 | // Media key state |
mjr | 38:091e511ce8a0 | 2462 | struct |
mjr | 38:091e511ce8a0 | 2463 | { |
mjr | 38:091e511ce8a0 | 2464 | bool changed; // flag: changed since last report sent |
mjr | 38:091e511ce8a0 | 2465 | uint8_t data; // key state byte for USB reports |
mjr | 38:091e511ce8a0 | 2466 | } mediaState = { false, 0 }; |
mjr | 38:091e511ce8a0 | 2467 | |
mjr | 38:091e511ce8a0 | 2468 | // button scan interrupt ticker |
mjr | 38:091e511ce8a0 | 2469 | Ticker buttonTicker; |
mjr | 38:091e511ce8a0 | 2470 | |
mjr | 38:091e511ce8a0 | 2471 | // Button scan interrupt handler. We call this periodically via |
mjr | 38:091e511ce8a0 | 2472 | // a timer interrupt to scan the physical button states. |
mjr | 38:091e511ce8a0 | 2473 | void scanButtons() |
mjr | 38:091e511ce8a0 | 2474 | { |
mjr | 38:091e511ce8a0 | 2475 | // scan all button input pins |
mjr | 73:4e8ce0b18915 | 2476 | ButtonState *bs = buttonState, *last = bs + nButtons; |
mjr | 73:4e8ce0b18915 | 2477 | for ( ; bs < last ; ++bs) |
mjr | 38:091e511ce8a0 | 2478 | { |
mjr | 73:4e8ce0b18915 | 2479 | // Shift the new state into the debounce history |
mjr | 73:4e8ce0b18915 | 2480 | uint8_t db = (bs->dbState << 1) | bs->di.read(); |
mjr | 73:4e8ce0b18915 | 2481 | bs->dbState = db; |
mjr | 73:4e8ce0b18915 | 2482 | |
mjr | 73:4e8ce0b18915 | 2483 | // If we have all 0's or 1's in the history for the required |
mjr | 73:4e8ce0b18915 | 2484 | // debounce period, the key state is stable, so apply the new |
mjr | 73:4e8ce0b18915 | 2485 | // physical state. Note that the pins are active low, so the |
mjr | 73:4e8ce0b18915 | 2486 | // new button on/off state is the inverse of the GPIO state. |
mjr | 73:4e8ce0b18915 | 2487 | const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings |
mjr | 73:4e8ce0b18915 | 2488 | db &= stable; |
mjr | 73:4e8ce0b18915 | 2489 | if (db == 0 || db == stable) |
mjr | 73:4e8ce0b18915 | 2490 | bs->physState = !db; |
mjr | 38:091e511ce8a0 | 2491 | } |
mjr | 38:091e511ce8a0 | 2492 | } |
mjr | 38:091e511ce8a0 | 2493 | |
mjr | 38:091e511ce8a0 | 2494 | // Button state transition timer. This is used for pulse buttons, to |
mjr | 38:091e511ce8a0 | 2495 | // control the timing of the logical key presses generated by transitions |
mjr | 38:091e511ce8a0 | 2496 | // in the physical button state. |
mjr | 38:091e511ce8a0 | 2497 | Timer buttonTimer; |
mjr | 12:669df364a565 | 2498 | |
mjr | 65:739875521aae | 2499 | // Count a button during the initial setup scan |
mjr | 72:884207c0aab0 | 2500 | void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys) |
mjr | 65:739875521aae | 2501 | { |
mjr | 65:739875521aae | 2502 | // count it |
mjr | 65:739875521aae | 2503 | ++nButtons; |
mjr | 65:739875521aae | 2504 | |
mjr | 67:c39e66c4e000 | 2505 | // if it's a keyboard key or media key, note that we need a USB |
mjr | 67:c39e66c4e000 | 2506 | // keyboard interface |
mjr | 72:884207c0aab0 | 2507 | if (typ == BtnTypeKey || typ == BtnTypeMedia |
mjr | 72:884207c0aab0 | 2508 | || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia) |
mjr | 65:739875521aae | 2509 | kbKeys = true; |
mjr | 65:739875521aae | 2510 | } |
mjr | 65:739875521aae | 2511 | |
mjr | 11:bd9da7088e6e | 2512 | // initialize the button inputs |
mjr | 35:e959ffba78fd | 2513 | void initButtons(Config &cfg, bool &kbKeys) |
mjr | 11:bd9da7088e6e | 2514 | { |
mjr | 66:2e3583fbd2f4 | 2515 | // presume no shift key |
mjr | 66:2e3583fbd2f4 | 2516 | shiftButton.index = -1; |
mjr | 66:2e3583fbd2f4 | 2517 | |
mjr | 65:739875521aae | 2518 | // Count up how many button slots we'll need to allocate. Start |
mjr | 65:739875521aae | 2519 | // with assigned buttons from the configuration, noting that we |
mjr | 65:739875521aae | 2520 | // only need to create slots for buttons that are actually wired. |
mjr | 65:739875521aae | 2521 | nButtons = 0; |
mjr | 65:739875521aae | 2522 | for (int i = 0 ; i < MAX_BUTTONS ; ++i) |
mjr | 65:739875521aae | 2523 | { |
mjr | 65:739875521aae | 2524 | // it's valid if it's wired to a real input pin |
mjr | 65:739875521aae | 2525 | if (wirePinName(cfg.button[i].pin) != NC) |
mjr | 72:884207c0aab0 | 2526 | countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys); |
mjr | 65:739875521aae | 2527 | } |
mjr | 65:739875521aae | 2528 | |
mjr | 65:739875521aae | 2529 | // Count virtual buttons |
mjr | 65:739875521aae | 2530 | |
mjr | 65:739875521aae | 2531 | // ZB Launch |
mjr | 65:739875521aae | 2532 | if (cfg.plunger.zbLaunchBall.port != 0) |
mjr | 65:739875521aae | 2533 | { |
mjr | 65:739875521aae | 2534 | // valid - remember the live button index |
mjr | 65:739875521aae | 2535 | zblButtonIndex = nButtons; |
mjr | 65:739875521aae | 2536 | |
mjr | 65:739875521aae | 2537 | // count it |
mjr | 72:884207c0aab0 | 2538 | countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys); |
mjr | 65:739875521aae | 2539 | } |
mjr | 65:739875521aae | 2540 | |
mjr | 65:739875521aae | 2541 | // Allocate the live button slots |
mjr | 65:739875521aae | 2542 | ButtonState *bs = buttonState = new ButtonState[nButtons]; |
mjr | 65:739875521aae | 2543 | |
mjr | 65:739875521aae | 2544 | // Configure the physical inputs |
mjr | 65:739875521aae | 2545 | for (int i = 0 ; i < MAX_BUTTONS ; ++i) |
mjr | 65:739875521aae | 2546 | { |
mjr | 65:739875521aae | 2547 | PinName pin = wirePinName(cfg.button[i].pin); |
mjr | 65:739875521aae | 2548 | if (pin != NC) |
mjr | 65:739875521aae | 2549 | { |
mjr | 65:739875521aae | 2550 | // point back to the config slot for the keyboard data |
mjr | 65:739875521aae | 2551 | bs->cfgIndex = i; |
mjr | 65:739875521aae | 2552 | |
mjr | 65:739875521aae | 2553 | // set up the GPIO input pin for this button |
mjr | 73:4e8ce0b18915 | 2554 | bs->di.assignPin(pin); |
mjr | 65:739875521aae | 2555 | |
mjr | 65:739875521aae | 2556 | // if it's a pulse mode button, set the initial pulse state to Off |
mjr | 65:739875521aae | 2557 | if (cfg.button[i].flags & BtnFlagPulse) |
mjr | 65:739875521aae | 2558 | bs->pulseState = 1; |
mjr | 65:739875521aae | 2559 | |
mjr | 66:2e3583fbd2f4 | 2560 | // If this is the shift button, note its buttonState[] index. |
mjr | 66:2e3583fbd2f4 | 2561 | // We have to figure the buttonState[] index separately from |
mjr | 66:2e3583fbd2f4 | 2562 | // the config index, because the indices can differ if some |
mjr | 66:2e3583fbd2f4 | 2563 | // config slots are left unused. |
mjr | 78:1e00b3fa11af | 2564 | if (cfg.shiftButton.idx == i+1) |
mjr | 66:2e3583fbd2f4 | 2565 | shiftButton.index = bs - buttonState; |
mjr | 66:2e3583fbd2f4 | 2566 | |
mjr | 65:739875521aae | 2567 | // advance to the next button |
mjr | 65:739875521aae | 2568 | ++bs; |
mjr | 65:739875521aae | 2569 | } |
mjr | 65:739875521aae | 2570 | } |
mjr | 65:739875521aae | 2571 | |
mjr | 53:9b2611964afc | 2572 | // Configure the virtual buttons. These are buttons controlled via |
mjr | 53:9b2611964afc | 2573 | // software triggers rather than physical GPIO inputs. The virtual |
mjr | 53:9b2611964afc | 2574 | // buttons have the same control structures as regular buttons, but |
mjr | 53:9b2611964afc | 2575 | // they get their configuration data from other config variables. |
mjr | 53:9b2611964afc | 2576 | |
mjr | 53:9b2611964afc | 2577 | // ZB Launch Ball button |
mjr | 65:739875521aae | 2578 | if (cfg.plunger.zbLaunchBall.port != 0) |
mjr | 11:bd9da7088e6e | 2579 | { |
mjr | 65:739875521aae | 2580 | // Point back to the config slot for the keyboard data. |
mjr | 66:2e3583fbd2f4 | 2581 | // We use a special extra slot for virtual buttons, |
mjr | 66:2e3583fbd2f4 | 2582 | // so we also need to set up the slot data by copying |
mjr | 66:2e3583fbd2f4 | 2583 | // the ZBL config data to our virtual button slot. |
mjr | 65:739875521aae | 2584 | bs->cfgIndex = ZBL_BUTTON_CFG; |
mjr | 65:739875521aae | 2585 | cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC); |
mjr | 65:739875521aae | 2586 | cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype; |
mjr | 65:739875521aae | 2587 | cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode; |
mjr | 65:739875521aae | 2588 | |
mjr | 66:2e3583fbd2f4 | 2589 | // advance to the next button |
mjr | 65:739875521aae | 2590 | ++bs; |
mjr | 11:bd9da7088e6e | 2591 | } |
mjr | 12:669df364a565 | 2592 | |
mjr | 38:091e511ce8a0 | 2593 | // start the button scan thread |
mjr | 38:091e511ce8a0 | 2594 | buttonTicker.attach_us(scanButtons, 1000); |
mjr | 38:091e511ce8a0 | 2595 | |
mjr | 38:091e511ce8a0 | 2596 | // start the button state transition timer |
mjr | 12:669df364a565 | 2597 | buttonTimer.start(); |
mjr | 11:bd9da7088e6e | 2598 | } |
mjr | 11:bd9da7088e6e | 2599 | |
mjr | 67:c39e66c4e000 | 2600 | // Media key mapping. This maps from an 8-bit USB media key |
mjr | 67:c39e66c4e000 | 2601 | // code to the corresponding bit in our USB report descriptor. |
mjr | 67:c39e66c4e000 | 2602 | // The USB key code is the index, and the value at the index |
mjr | 67:c39e66c4e000 | 2603 | // is the report descriptor bit. See joystick.cpp for the |
mjr | 67:c39e66c4e000 | 2604 | // media descriptor details. Our currently mapped keys are: |
mjr | 67:c39e66c4e000 | 2605 | // |
mjr | 67:c39e66c4e000 | 2606 | // 0xE2 -> Mute -> 0x01 |
mjr | 67:c39e66c4e000 | 2607 | // 0xE9 -> Volume Up -> 0x02 |
mjr | 67:c39e66c4e000 | 2608 | // 0xEA -> Volume Down -> 0x04 |
mjr | 67:c39e66c4e000 | 2609 | // 0xB5 -> Next Track -> 0x08 |
mjr | 67:c39e66c4e000 | 2610 | // 0xB6 -> Previous Track -> 0x10 |
mjr | 67:c39e66c4e000 | 2611 | // 0xB7 -> Stop -> 0x20 |
mjr | 67:c39e66c4e000 | 2612 | // 0xCD -> Play / Pause -> 0x40 |
mjr | 67:c39e66c4e000 | 2613 | // |
mjr | 67:c39e66c4e000 | 2614 | static const uint8_t mediaKeyMap[] = { |
mjr | 67:c39e66c4e000 | 2615 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F |
mjr | 67:c39e66c4e000 | 2616 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F |
mjr | 67:c39e66c4e000 | 2617 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F |
mjr | 67:c39e66c4e000 | 2618 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F |
mjr | 67:c39e66c4e000 | 2619 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F |
mjr | 67:c39e66c4e000 | 2620 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F |
mjr | 67:c39e66c4e000 | 2621 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F |
mjr | 67:c39e66c4e000 | 2622 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F |
mjr | 67:c39e66c4e000 | 2623 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F |
mjr | 67:c39e66c4e000 | 2624 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F |
mjr | 67:c39e66c4e000 | 2625 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF |
mjr | 67:c39e66c4e000 | 2626 | 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF |
mjr | 67:c39e66c4e000 | 2627 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF |
mjr | 67:c39e66c4e000 | 2628 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF |
mjr | 67:c39e66c4e000 | 2629 | 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF |
mjr | 67:c39e66c4e000 | 2630 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF |
mjr | 77:0b96f6867312 | 2631 | }; |
mjr | 77:0b96f6867312 | 2632 | |
mjr | 77:0b96f6867312 | 2633 | // Keyboard key/joystick button state. processButtons() uses this to |
mjr | 77:0b96f6867312 | 2634 | // build the set of key presses to report to the PC based on the logical |
mjr | 77:0b96f6867312 | 2635 | // states of the button iputs. |
mjr | 77:0b96f6867312 | 2636 | struct KeyState |
mjr | 77:0b96f6867312 | 2637 | { |
mjr | 77:0b96f6867312 | 2638 | KeyState() |
mjr | 77:0b96f6867312 | 2639 | { |
mjr | 77:0b96f6867312 | 2640 | // zero all members |
mjr | 77:0b96f6867312 | 2641 | memset(this, 0, sizeof(*this)); |
mjr | 77:0b96f6867312 | 2642 | } |
mjr | 77:0b96f6867312 | 2643 | |
mjr | 77:0b96f6867312 | 2644 | // Keyboard media keys currently pressed. This is a bit vector in |
mjr | 77:0b96f6867312 | 2645 | // the format used in our USB keyboard reports (see USBJoystick.cpp). |
mjr | 77:0b96f6867312 | 2646 | uint8_t mediakeys; |
mjr | 77:0b96f6867312 | 2647 | |
mjr | 77:0b96f6867312 | 2648 | // Keyboard modifier (shift) keys currently pressed. This is a bit |
mjr | 77:0b96f6867312 | 2649 | // vector in the format used in our USB keyboard reports (see |
mjr | 77:0b96f6867312 | 2650 | // USBJoystick.cpp). |
mjr | 77:0b96f6867312 | 2651 | uint8_t modkeys; |
mjr | 77:0b96f6867312 | 2652 | |
mjr | 77:0b96f6867312 | 2653 | // Regular keyboard keys currently pressed. Each element is a USB |
mjr | 77:0b96f6867312 | 2654 | // key code, or 0 for empty slots. Note that the USB report format |
mjr | 77:0b96f6867312 | 2655 | // theoretically allows a flexible size limit, but the Windows KB |
mjr | 77:0b96f6867312 | 2656 | // drivers have a fixed limit of 6 simultaneous keys (and won't |
mjr | 77:0b96f6867312 | 2657 | // accept reports with more), so there's no point in making this |
mjr | 77:0b96f6867312 | 2658 | // flexible; we'll just use the fixed size dictated by Windows. |
mjr | 77:0b96f6867312 | 2659 | uint8_t keys[7]; |
mjr | 77:0b96f6867312 | 2660 | |
mjr | 77:0b96f6867312 | 2661 | // number of valid entries in keys[] array |
mjr | 77:0b96f6867312 | 2662 | int nkeys; |
mjr | 77:0b96f6867312 | 2663 | |
mjr | 77:0b96f6867312 | 2664 | // Joystick buttons pressed, as a bit vector. Bit n (1 << n) |
mjr | 77:0b96f6867312 | 2665 | // represents joystick button n, n in 0..31, with 0 meaning |
mjr | 77:0b96f6867312 | 2666 | // unpressed and 1 meaning pressed. |
mjr | 77:0b96f6867312 | 2667 | uint32_t js; |
mjr | 77:0b96f6867312 | 2668 | |
mjr | 77:0b96f6867312 | 2669 | |
mjr | 77:0b96f6867312 | 2670 | // Add a key press. 'typ' is the button type code (ButtonTypeXxx), |
mjr | 77:0b96f6867312 | 2671 | // and 'val' is the value (the meaning of which varies by type code). |
mjr | 77:0b96f6867312 | 2672 | void addKey(uint8_t typ, uint8_t val) |
mjr | 77:0b96f6867312 | 2673 | { |
mjr | 77:0b96f6867312 | 2674 | // add the key according to the type |
mjr | 77:0b96f6867312 | 2675 | switch (typ) |
mjr | 77:0b96f6867312 | 2676 | { |
mjr | 77:0b96f6867312 | 2677 | case BtnTypeJoystick: |
mjr | 77:0b96f6867312 | 2678 | // joystick button |
mjr | 77:0b96f6867312 | 2679 | js |= (1 << (val - 1)); |
mjr | 77:0b96f6867312 | 2680 | break; |
mjr | 77:0b96f6867312 | 2681 | |
mjr | 77:0b96f6867312 | 2682 | case BtnTypeKey: |
mjr | 77:0b96f6867312 | 2683 | // Keyboard key. The USB keyboard report encodes regular |
mjr | 77:0b96f6867312 | 2684 | // keys and modifier keys separately, so we need to check |
mjr | 77:0b96f6867312 | 2685 | // which type we have. Note that past versions mapped the |
mjr | 77:0b96f6867312 | 2686 | // Keyboard Volume Up, Keyboard Volume Down, and Keyboard |
mjr | 77:0b96f6867312 | 2687 | // Mute keys to the corresponding Media keys. We no longer |
mjr | 77:0b96f6867312 | 2688 | // do this; instead, we have the separate BtnTypeMedia for |
mjr | 77:0b96f6867312 | 2689 | // explicitly using media keys if desired. |
mjr | 77:0b96f6867312 | 2690 | if (val >= 0xE0 && val <= 0xE7) |
mjr | 77:0b96f6867312 | 2691 | { |
mjr | 77:0b96f6867312 | 2692 | // It's a modifier key. These are represented in the USB |
mjr | 77:0b96f6867312 | 2693 | // reports with a bit mask. We arrange the mask bits in |
mjr | 77:0b96f6867312 | 2694 | // the same order as the scan codes, so we can figure the |
mjr | 77:0b96f6867312 | 2695 | // appropriate bit with a simple shift. |
mjr | 77:0b96f6867312 | 2696 | modkeys |= (1 << (val - 0xE0)); |
mjr | 77:0b96f6867312 | 2697 | } |
mjr | 77:0b96f6867312 | 2698 | else |
mjr | 77:0b96f6867312 | 2699 | { |
mjr | 77:0b96f6867312 | 2700 | // It's a regular key. Make sure it's not already in the |
mjr | 77:0b96f6867312 | 2701 | // list, and that the list isn't full. If neither of these |
mjr | 77:0b96f6867312 | 2702 | // apply, add the key to the key array. |
mjr | 77:0b96f6867312 | 2703 | if (nkeys < 7) |
mjr | 77:0b96f6867312 | 2704 | { |
mjr | 77:0b96f6867312 | 2705 | bool found = false; |
mjr | 77:0b96f6867312 | 2706 | for (int i = 0 ; i < nkeys ; ++i) |
mjr | 77:0b96f6867312 | 2707 | { |
mjr | 77:0b96f6867312 | 2708 | if (keys[i] == val) |
mjr | 77:0b96f6867312 | 2709 | { |
mjr | 77:0b96f6867312 | 2710 | found = true; |
mjr | 77:0b96f6867312 | 2711 | break; |
mjr | 77:0b96f6867312 | 2712 | } |
mjr | 77:0b96f6867312 | 2713 | } |
mjr | 77:0b96f6867312 | 2714 | if (!found) |
mjr | 77:0b96f6867312 | 2715 | keys[nkeys++] = val; |
mjr | 77:0b96f6867312 | 2716 | } |
mjr | 77:0b96f6867312 | 2717 | } |
mjr | 77:0b96f6867312 | 2718 | break; |
mjr | 77:0b96f6867312 | 2719 | |
mjr | 77:0b96f6867312 | 2720 | case BtnTypeMedia: |
mjr | 77:0b96f6867312 | 2721 | // Media control key. The media keys are mapped in the USB |
mjr | 77:0b96f6867312 | 2722 | // report to bits, whereas the key codes are specified in the |
mjr | 77:0b96f6867312 | 2723 | // config with their USB usage numbers. E.g., the config val |
mjr | 77:0b96f6867312 | 2724 | // for Media Next Track is 0xB5, but we encode this in the USB |
mjr | 77:0b96f6867312 | 2725 | // report as bit 0x08. The mediaKeyMap[] table translates |
mjr | 77:0b96f6867312 | 2726 | // from the USB usage number to the mask bit. If the key isn't |
mjr | 77:0b96f6867312 | 2727 | // among the subset we support, the mapped bit will be zero, so |
mjr | 77:0b96f6867312 | 2728 | // the "|=" will have no effect and the key will be ignored. |
mjr | 77:0b96f6867312 | 2729 | mediakeys |= mediaKeyMap[val]; |
mjr | 77:0b96f6867312 | 2730 | break; |
mjr | 77:0b96f6867312 | 2731 | } |
mjr | 77:0b96f6867312 | 2732 | } |
mjr | 77:0b96f6867312 | 2733 | }; |
mjr | 67:c39e66c4e000 | 2734 | |
mjr | 67:c39e66c4e000 | 2735 | |
mjr | 38:091e511ce8a0 | 2736 | // Process the button state. This sets up the joystick, keyboard, and |
mjr | 38:091e511ce8a0 | 2737 | // media control descriptors with the current state of keys mapped to |
mjr | 38:091e511ce8a0 | 2738 | // those HID interfaces, and executes the local effects for any keys |
mjr | 38:091e511ce8a0 | 2739 | // mapped to special device functions (e.g., Night Mode). |
mjr | 53:9b2611964afc | 2740 | void processButtons(Config &cfg) |
mjr | 35:e959ffba78fd | 2741 | { |
mjr | 77:0b96f6867312 | 2742 | // key state |
mjr | 77:0b96f6867312 | 2743 | KeyState ks; |
mjr | 38:091e511ce8a0 | 2744 | |
mjr | 38:091e511ce8a0 | 2745 | // calculate the time since the last run |
mjr | 53:9b2611964afc | 2746 | uint32_t dt = buttonTimer.read_us(); |
mjr | 18:5e890ebd0023 | 2747 | buttonTimer.reset(); |
mjr | 66:2e3583fbd2f4 | 2748 | |
mjr | 66:2e3583fbd2f4 | 2749 | // check the shift button state |
mjr | 66:2e3583fbd2f4 | 2750 | if (shiftButton.index != -1) |
mjr | 66:2e3583fbd2f4 | 2751 | { |
mjr | 78:1e00b3fa11af | 2752 | // get the shift button's physical state object |
mjr | 66:2e3583fbd2f4 | 2753 | ButtonState *sbs = &buttonState[shiftButton.index]; |
mjr | 78:1e00b3fa11af | 2754 | |
mjr | 78:1e00b3fa11af | 2755 | // figure what to do based on the shift button mode in the config |
mjr | 78:1e00b3fa11af | 2756 | switch (cfg.shiftButton.mode) |
mjr | 66:2e3583fbd2f4 | 2757 | { |
mjr | 66:2e3583fbd2f4 | 2758 | case 0: |
mjr | 78:1e00b3fa11af | 2759 | default: |
mjr | 78:1e00b3fa11af | 2760 | // "Shift OR Key" mode. The shift button doesn't send its key |
mjr | 78:1e00b3fa11af | 2761 | // immediately when pressed. Instead, we wait to see what |
mjr | 78:1e00b3fa11af | 2762 | // happens while it's down. Check the current cycle state. |
mjr | 78:1e00b3fa11af | 2763 | switch (shiftButton.state) |
mjr | 78:1e00b3fa11af | 2764 | { |
mjr | 78:1e00b3fa11af | 2765 | case 0: |
mjr | 78:1e00b3fa11af | 2766 | // Not shifted. Check if the button is now down: if so, |
mjr | 78:1e00b3fa11af | 2767 | // switch to state 1 (shift button down, no key pressed yet). |
mjr | 78:1e00b3fa11af | 2768 | if (sbs->physState) |
mjr | 78:1e00b3fa11af | 2769 | shiftButton.state = 1; |
mjr | 78:1e00b3fa11af | 2770 | break; |
mjr | 78:1e00b3fa11af | 2771 | |
mjr | 78:1e00b3fa11af | 2772 | case 1: |
mjr | 78:1e00b3fa11af | 2773 | // Shift button down, no key pressed yet. If the button is |
mjr | 78:1e00b3fa11af | 2774 | // now up, it counts as an ordinary button press instead of |
mjr | 78:1e00b3fa11af | 2775 | // a shift button press, since the shift function was never |
mjr | 78:1e00b3fa11af | 2776 | // used. Return to unshifted state and start a timed key |
mjr | 78:1e00b3fa11af | 2777 | // pulse event. |
mjr | 78:1e00b3fa11af | 2778 | if (!sbs->physState) |
mjr | 78:1e00b3fa11af | 2779 | { |
mjr | 78:1e00b3fa11af | 2780 | shiftButton.state = 3; |
mjr | 78:1e00b3fa11af | 2781 | shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse |
mjr | 78:1e00b3fa11af | 2782 | } |
mjr | 78:1e00b3fa11af | 2783 | break; |
mjr | 78:1e00b3fa11af | 2784 | |
mjr | 78:1e00b3fa11af | 2785 | case 2: |
mjr | 78:1e00b3fa11af | 2786 | // Shift button down, other key was pressed. If the button is |
mjr | 78:1e00b3fa11af | 2787 | // now up, simply clear the shift state without sending a key |
mjr | 78:1e00b3fa11af | 2788 | // press for the shift button itself to the PC. The shift |
mjr | 78:1e00b3fa11af | 2789 | // function was used, so its ordinary key press function is |
mjr | 78:1e00b3fa11af | 2790 | // suppressed. |
mjr | 78:1e00b3fa11af | 2791 | if (!sbs->physState) |
mjr | 78:1e00b3fa11af | 2792 | shiftButton.state = 0; |
mjr | 78:1e00b3fa11af | 2793 | break; |
mjr | 78:1e00b3fa11af | 2794 | |
mjr | 78:1e00b3fa11af | 2795 | case 3: |
mjr | 78:1e00b3fa11af | 2796 | // Sending pulsed keystroke. Deduct the current time interval |
mjr | 78:1e00b3fa11af | 2797 | // from the remaining pulse timer. End the pulse if the time |
mjr | 78:1e00b3fa11af | 2798 | // has expired. |
mjr | 78:1e00b3fa11af | 2799 | if (shiftButton.pulseTime > dt) |
mjr | 78:1e00b3fa11af | 2800 | shiftButton.pulseTime -= dt; |
mjr | 78:1e00b3fa11af | 2801 | else |
mjr | 78:1e00b3fa11af | 2802 | shiftButton.state = 0; |
mjr | 78:1e00b3fa11af | 2803 | break; |
mjr | 78:1e00b3fa11af | 2804 | } |
mjr | 66:2e3583fbd2f4 | 2805 | break; |
mjr | 66:2e3583fbd2f4 | 2806 | |
mjr | 66:2e3583fbd2f4 | 2807 | case 1: |
mjr | 78:1e00b3fa11af | 2808 | // "Shift AND Key" mode. In this mode, the shift button acts |
mjr | 78:1e00b3fa11af | 2809 | // like any other button and sends its mapped key immediately. |
mjr | 78:1e00b3fa11af | 2810 | // The state cycle in this case simply matches the physical |
mjr | 78:1e00b3fa11af | 2811 | // state: ON -> cycle state 1, OFF -> cycle state 0. |
mjr | 78:1e00b3fa11af | 2812 | shiftButton.state = (sbs->physState ? 1 : 0); |
mjr | 66:2e3583fbd2f4 | 2813 | break; |
mjr | 66:2e3583fbd2f4 | 2814 | } |
mjr | 66:2e3583fbd2f4 | 2815 | } |
mjr | 38:091e511ce8a0 | 2816 | |
mjr | 11:bd9da7088e6e | 2817 | // scan the button list |
mjr | 18:5e890ebd0023 | 2818 | ButtonState *bs = buttonState; |
mjr | 65:739875521aae | 2819 | for (int i = 0 ; i < nButtons ; ++i, ++bs) |
mjr | 11:bd9da7088e6e | 2820 | { |
mjr | 77:0b96f6867312 | 2821 | // get the config entry for the button |
mjr | 77:0b96f6867312 | 2822 | ButtonCfg *bc = &cfg.button[bs->cfgIndex]; |
mjr | 77:0b96f6867312 | 2823 | |
mjr | 66:2e3583fbd2f4 | 2824 | // Check the button type: |
mjr | 66:2e3583fbd2f4 | 2825 | // - shift button |
mjr | 66:2e3583fbd2f4 | 2826 | // - pulsed button |
mjr | 66:2e3583fbd2f4 | 2827 | // - regular button |
mjr | 66:2e3583fbd2f4 | 2828 | if (shiftButton.index == i) |
mjr | 66:2e3583fbd2f4 | 2829 | { |
mjr | 78:1e00b3fa11af | 2830 | // This is the shift button. The logical state handling |
mjr | 78:1e00b3fa11af | 2831 | // depends on the mode. |
mjr | 78:1e00b3fa11af | 2832 | switch (cfg.shiftButton.mode) |
mjr | 66:2e3583fbd2f4 | 2833 | { |
mjr | 78:1e00b3fa11af | 2834 | case 0: |
mjr | 78:1e00b3fa11af | 2835 | default: |
mjr | 78:1e00b3fa11af | 2836 | // "Shift OR Key" mode. The logical state is ON only |
mjr | 78:1e00b3fa11af | 2837 | // during the timed pulse when the key is released, which |
mjr | 78:1e00b3fa11af | 2838 | // is signified by shift button state 3. |
mjr | 78:1e00b3fa11af | 2839 | bs->logState = (shiftButton.state == 3); |
mjr | 78:1e00b3fa11af | 2840 | break; |
mjr | 78:1e00b3fa11af | 2841 | |
mjr | 78:1e00b3fa11af | 2842 | case 1: |
mjr | 78:1e00b3fa11af | 2843 | // "Shif AND Key" mode. The shift button acts like any |
mjr | 78:1e00b3fa11af | 2844 | // other button, so it's logically on when physically on. |
mjr | 78:1e00b3fa11af | 2845 | bs->logState = bs->physState; |
mjr | 78:1e00b3fa11af | 2846 | break; |
mjr | 66:2e3583fbd2f4 | 2847 | } |
mjr | 66:2e3583fbd2f4 | 2848 | } |
mjr | 66:2e3583fbd2f4 | 2849 | else if (bs->pulseState != 0) |
mjr | 18:5e890ebd0023 | 2850 | { |
mjr | 38:091e511ce8a0 | 2851 | // if the timer has expired, check for state changes |
mjr | 53:9b2611964afc | 2852 | if (bs->pulseTime > dt) |
mjr | 18:5e890ebd0023 | 2853 | { |
mjr | 53:9b2611964afc | 2854 | // not expired yet - deduct the last interval |
mjr | 53:9b2611964afc | 2855 | bs->pulseTime -= dt; |
mjr | 53:9b2611964afc | 2856 | } |
mjr | 53:9b2611964afc | 2857 | else |
mjr | 53:9b2611964afc | 2858 | { |
mjr | 53:9b2611964afc | 2859 | // pulse time expired - check for a state change |
mjr | 53:9b2611964afc | 2860 | const uint32_t pulseLength = 200000UL; // 200 milliseconds |
mjr | 38:091e511ce8a0 | 2861 | switch (bs->pulseState) |
mjr | 18:5e890ebd0023 | 2862 | { |
mjr | 38:091e511ce8a0 | 2863 | case 1: |
mjr | 38:091e511ce8a0 | 2864 | // off - if the physical switch is now on, start a button pulse |
mjr | 53:9b2611964afc | 2865 | if (bs->physState) |
mjr | 53:9b2611964afc | 2866 | { |
mjr | 38:091e511ce8a0 | 2867 | bs->pulseTime = pulseLength; |
mjr | 38:091e511ce8a0 | 2868 | bs->pulseState = 2; |
mjr | 53:9b2611964afc | 2869 | bs->logState = 1; |
mjr | 38:091e511ce8a0 | 2870 | } |
mjr | 38:091e511ce8a0 | 2871 | break; |
mjr | 18:5e890ebd0023 | 2872 | |
mjr | 38:091e511ce8a0 | 2873 | case 2: |
mjr | 38:091e511ce8a0 | 2874 | // transitioning off to on - end the pulse, and start a gap |
mjr | 38:091e511ce8a0 | 2875 | // equal to the pulse time so that the host can observe the |
mjr | 38:091e511ce8a0 | 2876 | // change in state in the logical button |
mjr | 38:091e511ce8a0 | 2877 | bs->pulseState = 3; |
mjr | 38:091e511ce8a0 | 2878 | bs->pulseTime = pulseLength; |
mjr | 53:9b2611964afc | 2879 | bs->logState = 0; |
mjr | 38:091e511ce8a0 | 2880 | break; |
mjr | 38:091e511ce8a0 | 2881 | |
mjr | 38:091e511ce8a0 | 2882 | case 3: |
mjr | 38:091e511ce8a0 | 2883 | // on - if the physical switch is now off, start a button pulse |
mjr | 53:9b2611964afc | 2884 | if (!bs->physState) |
mjr | 53:9b2611964afc | 2885 | { |
mjr | 38:091e511ce8a0 | 2886 | bs->pulseTime = pulseLength; |
mjr | 38:091e511ce8a0 | 2887 | bs->pulseState = 4; |
mjr | 53:9b2611964afc | 2888 | bs->logState = 1; |
mjr | 38:091e511ce8a0 | 2889 | } |
mjr | 38:091e511ce8a0 | 2890 | break; |
mjr | 38:091e511ce8a0 | 2891 | |
mjr | 38:091e511ce8a0 | 2892 | case 4: |
mjr | 38:091e511ce8a0 | 2893 | // transitioning on to off - end the pulse, and start a gap |
mjr | 38:091e511ce8a0 | 2894 | bs->pulseState = 1; |
mjr | 38:091e511ce8a0 | 2895 | bs->pulseTime = pulseLength; |
mjr | 53:9b2611964afc | 2896 | bs->logState = 0; |
mjr | 38:091e511ce8a0 | 2897 | break; |
mjr | 18:5e890ebd0023 | 2898 | } |
mjr | 18:5e890ebd0023 | 2899 | } |
mjr | 38:091e511ce8a0 | 2900 | } |
mjr | 38:091e511ce8a0 | 2901 | else |
mjr | 38:091e511ce8a0 | 2902 | { |
mjr | 38:091e511ce8a0 | 2903 | // not a pulse switch - the logical state is the same as the physical state |
mjr | 53:9b2611964afc | 2904 | bs->logState = bs->physState; |
mjr | 38:091e511ce8a0 | 2905 | } |
mjr | 77:0b96f6867312 | 2906 | |
mjr | 77:0b96f6867312 | 2907 | // Determine if we're going to use the shifted version of the |
mjr | 78:1e00b3fa11af | 2908 | // button. We're using the shifted version if... |
mjr | 78:1e00b3fa11af | 2909 | // |
mjr | 78:1e00b3fa11af | 2910 | // - the shift button is down, AND |
mjr | 78:1e00b3fa11af | 2911 | // - this button isn't itself the shift button, AND |
mjr | 78:1e00b3fa11af | 2912 | // - this button has some kind of shifted meaning |
mjr | 77:0b96f6867312 | 2913 | // |
mjr | 78:1e00b3fa11af | 2914 | // A "shifted meaning" means that we have any of the following |
mjr | 78:1e00b3fa11af | 2915 | // assigned to the shifted version of the button: a key assignment, |
mjr | 78:1e00b3fa11af | 2916 | // (in typ2,key2), an IR command (in IRCommand2), or Night mode. |
mjr | 78:1e00b3fa11af | 2917 | // |
mjr | 78:1e00b3fa11af | 2918 | // The test for Night Mode is a bit tricky. The shifted version of |
mjr | 78:1e00b3fa11af | 2919 | // the button is the Night Mode toggle if the button matches the |
mjr | 78:1e00b3fa11af | 2920 | // Night Mode button index, AND its flags are set with "toggle mode |
mjr | 78:1e00b3fa11af | 2921 | // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off). |
mjr | 78:1e00b3fa11af | 2922 | // So (button flags) & 0x03 must equal 0x02. |
mjr | 77:0b96f6867312 | 2923 | bool useShift = |
mjr | 77:0b96f6867312 | 2924 | (shiftButton.state != 0 |
mjr | 78:1e00b3fa11af | 2925 | && shiftButton.index != i |
mjr | 77:0b96f6867312 | 2926 | && (bc->typ2 != BtnTypeNone |
mjr | 77:0b96f6867312 | 2927 | || bc->IRCommand2 != 0 |
mjr | 77:0b96f6867312 | 2928 | || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02))); |
mjr | 77:0b96f6867312 | 2929 | |
mjr | 77:0b96f6867312 | 2930 | // If we're using the shift function, and no other button has used |
mjr | 77:0b96f6867312 | 2931 | // the shift function yet (shift state 1: "shift button is down but |
mjr | 77:0b96f6867312 | 2932 | // no one has used the shift function yet"), then we've "consumed" |
mjr | 77:0b96f6867312 | 2933 | // the shift button press (so go to shift state 2: "shift button has |
mjr | 77:0b96f6867312 | 2934 | // been used by some other button press that has a shifted meaning"). |
mjr | 78:1e00b3fa11af | 2935 | if (useShift && shiftButton.state == 1 && bs->logState) |
mjr | 77:0b96f6867312 | 2936 | shiftButton.state = 2; |
mjr | 35:e959ffba78fd | 2937 | |
mjr | 38:091e511ce8a0 | 2938 | // carry out any edge effects from buttons changing states |
mjr | 53:9b2611964afc | 2939 | if (bs->logState != bs->prevLogState) |
mjr | 38:091e511ce8a0 | 2940 | { |
mjr | 77:0b96f6867312 | 2941 | // check to see if this is the Night Mode button |
mjr | 53:9b2611964afc | 2942 | if (cfg.nightMode.btn == i + 1) |
mjr | 35:e959ffba78fd | 2943 | { |
mjr | 77:0b96f6867312 | 2944 | // Check the switch type in the config flags. If flag 0x01 is |
mjr | 77:0b96f6867312 | 2945 | // set, it's a persistent on/off switch, so the night mode |
mjr | 77:0b96f6867312 | 2946 | // state simply tracks the current state of the switch. |
mjr | 77:0b96f6867312 | 2947 | // Otherwise, it's a momentary button, so each button push |
mjr | 77:0b96f6867312 | 2948 | // (i.e., each transition from logical state OFF to ON) toggles |
mjr | 77:0b96f6867312 | 2949 | // the night mode state. |
mjr | 77:0b96f6867312 | 2950 | // |
mjr | 77:0b96f6867312 | 2951 | // Note that the "shift" flag (0x02) has no effect in switch |
mjr | 77:0b96f6867312 | 2952 | // mode. Shifting only works for toggle mode. |
mjr | 53:9b2611964afc | 2953 | if (cfg.nightMode.flags & 0x01) |
mjr | 53:9b2611964afc | 2954 | { |
mjr | 77:0b96f6867312 | 2955 | // It's an on/off switch. Night mode simply tracks the |
mjr | 77:0b96f6867312 | 2956 | // current switch state. |
mjr | 53:9b2611964afc | 2957 | setNightMode(bs->logState); |
mjr | 53:9b2611964afc | 2958 | } |
mjr | 53:9b2611964afc | 2959 | else |
mjr | 53:9b2611964afc | 2960 | { |
mjr | 77:0b96f6867312 | 2961 | // It's a momentary toggle switch. Toggle the night mode |
mjr | 77:0b96f6867312 | 2962 | // state on each distinct press of the button: that is, |
mjr | 77:0b96f6867312 | 2963 | // whenever the button's logical state transitions from |
mjr | 77:0b96f6867312 | 2964 | // OFF to ON. |
mjr | 66:2e3583fbd2f4 | 2965 | // |
mjr | 77:0b96f6867312 | 2966 | // The "shift" flag (0x02) tells us whether night mode is |
mjr | 77:0b96f6867312 | 2967 | // assigned to the shifted or unshifted version of the |
mjr | 77:0b96f6867312 | 2968 | // button. |
mjr | 77:0b96f6867312 | 2969 | bool pressed; |
mjr | 66:2e3583fbd2f4 | 2970 | if ((cfg.nightMode.flags & 0x02) != 0) |
mjr | 66:2e3583fbd2f4 | 2971 | { |
mjr | 77:0b96f6867312 | 2972 | // Shift bit is set - night mode is assigned to the |
mjr | 77:0b96f6867312 | 2973 | // shifted version of the button. This is a Night |
mjr | 77:0b96f6867312 | 2974 | // Mode toggle only if the Shift button is pressed. |
mjr | 77:0b96f6867312 | 2975 | pressed = (shiftButton.state != 0); |
mjr | 77:0b96f6867312 | 2976 | } |
mjr | 77:0b96f6867312 | 2977 | else |
mjr | 77:0b96f6867312 | 2978 | { |
mjr | 77:0b96f6867312 | 2979 | // No shift bit - night mode is assigned to the |
mjr | 77:0b96f6867312 | 2980 | // regular unshifted button. The button press only |
mjr | 77:0b96f6867312 | 2981 | // applies if the Shift button is NOT pressed. |
mjr | 77:0b96f6867312 | 2982 | pressed = (shiftButton.state == 0); |
mjr | 66:2e3583fbd2f4 | 2983 | } |
mjr | 66:2e3583fbd2f4 | 2984 | |
mjr | 66:2e3583fbd2f4 | 2985 | // if it's pressed (even after considering the shift mode), |
mjr | 66:2e3583fbd2f4 | 2986 | // toggle night mode |
mjr | 66:2e3583fbd2f4 | 2987 | if (pressed) |
mjr | 53:9b2611964afc | 2988 | toggleNightMode(); |
mjr | 53:9b2611964afc | 2989 | } |
mjr | 35:e959ffba78fd | 2990 | } |
mjr | 38:091e511ce8a0 | 2991 | |
mjr | 77:0b96f6867312 | 2992 | // press or release IR virtual keys on key state changes |
mjr | 77:0b96f6867312 | 2993 | uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand; |
mjr | 77:0b96f6867312 | 2994 | if (irc != 0) |
mjr | 77:0b96f6867312 | 2995 | IR_buttonChange(irc, bs->logState); |
mjr | 77:0b96f6867312 | 2996 | |
mjr | 38:091e511ce8a0 | 2997 | // remember the new state for comparison on the next run |
mjr | 53:9b2611964afc | 2998 | bs->prevLogState = bs->logState; |
mjr | 38:091e511ce8a0 | 2999 | } |
mjr | 38:091e511ce8a0 | 3000 | |
mjr | 53:9b2611964afc | 3001 | // if it's pressed, physically or virtually, add it to the appropriate |
mjr | 53:9b2611964afc | 3002 | // key state list |
mjr | 53:9b2611964afc | 3003 | if (bs->logState || bs->virtState) |
mjr | 38:091e511ce8a0 | 3004 | { |
mjr | 70:9f58735a1732 | 3005 | // Get the key type and code. Start by assuming that we're |
mjr | 70:9f58735a1732 | 3006 | // going to use the normal unshifted meaning. |
mjr | 77:0b96f6867312 | 3007 | uint8_t typ, val; |
mjr | 77:0b96f6867312 | 3008 | if (useShift) |
mjr | 66:2e3583fbd2f4 | 3009 | { |
mjr | 77:0b96f6867312 | 3010 | typ = bc->typ2; |
mjr | 77:0b96f6867312 | 3011 | val = bc->val2; |
mjr | 66:2e3583fbd2f4 | 3012 | } |
mjr | 77:0b96f6867312 | 3013 | else |
mjr | 77:0b96f6867312 | 3014 | { |
mjr | 77:0b96f6867312 | 3015 | typ = bc->typ; |
mjr | 77:0b96f6867312 | 3016 | val = bc->val; |
mjr | 77:0b96f6867312 | 3017 | } |
mjr | 77:0b96f6867312 | 3018 | |
mjr | 70:9f58735a1732 | 3019 | // We've decided on the meaning of the button, so process |
mjr | 70:9f58735a1732 | 3020 | // the keyboard or joystick event. |
mjr | 77:0b96f6867312 | 3021 | ks.addKey(typ, val); |
mjr | 18:5e890ebd0023 | 3022 | } |
mjr | 11:bd9da7088e6e | 3023 | } |
mjr | 77:0b96f6867312 | 3024 | |
mjr | 77:0b96f6867312 | 3025 | // If an IR input command is in effect, add the IR command's |
mjr | 77:0b96f6867312 | 3026 | // assigned key, if any. If we're in an IR key gap, don't include |
mjr | 77:0b96f6867312 | 3027 | // the IR key. |
mjr | 77:0b96f6867312 | 3028 | if (IRCommandIn != 0 && !IRKeyGap) |
mjr | 77:0b96f6867312 | 3029 | { |
mjr | 77:0b96f6867312 | 3030 | IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1]; |
mjr | 77:0b96f6867312 | 3031 | ks.addKey(irc.keytype, irc.keycode); |
mjr | 77:0b96f6867312 | 3032 | } |
mjr | 77:0b96f6867312 | 3033 | |
mjr | 77:0b96f6867312 | 3034 | // We're finished building the new key state. Update the global |
mjr | 77:0b96f6867312 | 3035 | // key state variables to reflect the new state. |
mjr | 77:0b96f6867312 | 3036 | |
mjr | 77:0b96f6867312 | 3037 | // set the new joystick buttons (no need to check for changes, as we |
mjr | 77:0b96f6867312 | 3038 | // report these on every joystick report whether they changed or not) |
mjr | 77:0b96f6867312 | 3039 | jsButtons = ks.js; |
mjr | 77:0b96f6867312 | 3040 | |
mjr | 77:0b96f6867312 | 3041 | // check for keyboard key changes (we only send keyboard reports when |
mjr | 77:0b96f6867312 | 3042 | // something changes) |
mjr | 77:0b96f6867312 | 3043 | if (kbState.data[0] != ks.modkeys |
mjr | 77:0b96f6867312 | 3044 | || kbState.nkeys != ks.nkeys |
mjr | 77:0b96f6867312 | 3045 | || memcmp(ks.keys, &kbState.data[2], 6) != 0) |
mjr | 35:e959ffba78fd | 3046 | { |
mjr | 35:e959ffba78fd | 3047 | // we have changes - set the change flag and store the new key data |
mjr | 35:e959ffba78fd | 3048 | kbState.changed = true; |
mjr | 77:0b96f6867312 | 3049 | kbState.data[0] = ks.modkeys; |
mjr | 77:0b96f6867312 | 3050 | if (ks.nkeys <= 6) { |
mjr | 35:e959ffba78fd | 3051 | // 6 or fewer simultaneous keys - report the key codes |
mjr | 77:0b96f6867312 | 3052 | kbState.nkeys = ks.nkeys; |
mjr | 77:0b96f6867312 | 3053 | memcpy(&kbState.data[2], ks.keys, 6); |
mjr | 35:e959ffba78fd | 3054 | } |
mjr | 35:e959ffba78fd | 3055 | else { |
mjr | 35:e959ffba78fd | 3056 | // more than 6 simultaneous keys - report rollover (all '1' key codes) |
mjr | 35:e959ffba78fd | 3057 | kbState.nkeys = 6; |
mjr | 35:e959ffba78fd | 3058 | memset(&kbState.data[2], 1, 6); |
mjr | 35:e959ffba78fd | 3059 | } |
mjr | 35:e959ffba78fd | 3060 | } |
mjr | 35:e959ffba78fd | 3061 | |
mjr | 77:0b96f6867312 | 3062 | // check for media key changes (we only send media key reports when |
mjr | 77:0b96f6867312 | 3063 | // something changes) |
mjr | 77:0b96f6867312 | 3064 | if (mediaState.data != ks.mediakeys) |
mjr | 35:e959ffba78fd | 3065 | { |
mjr | 77:0b96f6867312 | 3066 | // we have changes - set the change flag and store the new key data |
mjr | 35:e959ffba78fd | 3067 | mediaState.changed = true; |
mjr | 77:0b96f6867312 | 3068 | mediaState.data = ks.mediakeys; |
mjr | 35:e959ffba78fd | 3069 | } |
mjr | 11:bd9da7088e6e | 3070 | } |
mjr | 11:bd9da7088e6e | 3071 | |
mjr | 73:4e8ce0b18915 | 3072 | // Send a button status report |
mjr | 73:4e8ce0b18915 | 3073 | void reportButtonStatus(USBJoystick &js) |
mjr | 73:4e8ce0b18915 | 3074 | { |
mjr | 73:4e8ce0b18915 | 3075 | // start with all buttons off |
mjr | 73:4e8ce0b18915 | 3076 | uint8_t state[(MAX_BUTTONS+7)/8]; |
mjr | 73:4e8ce0b18915 | 3077 | memset(state, 0, sizeof(state)); |
mjr | 73:4e8ce0b18915 | 3078 | |
mjr | 73:4e8ce0b18915 | 3079 | // pack the button states into bytes, one bit per button |
mjr | 73:4e8ce0b18915 | 3080 | ButtonState *bs = buttonState; |
mjr | 73:4e8ce0b18915 | 3081 | for (int i = 0 ; i < nButtons ; ++i, ++bs) |
mjr | 73:4e8ce0b18915 | 3082 | { |
mjr | 73:4e8ce0b18915 | 3083 | // get the physical state |
mjr | 73:4e8ce0b18915 | 3084 | int b = bs->physState; |
mjr | 73:4e8ce0b18915 | 3085 | |
mjr | 73:4e8ce0b18915 | 3086 | // pack it into the appropriate bit |
mjr | 73:4e8ce0b18915 | 3087 | int idx = bs->cfgIndex; |
mjr | 73:4e8ce0b18915 | 3088 | int si = idx / 8; |
mjr | 73:4e8ce0b18915 | 3089 | int shift = idx & 0x07; |
mjr | 73:4e8ce0b18915 | 3090 | state[si] |= b << shift; |
mjr | 73:4e8ce0b18915 | 3091 | } |
mjr | 73:4e8ce0b18915 | 3092 | |
mjr | 73:4e8ce0b18915 | 3093 | // send the report |
mjr | 73:4e8ce0b18915 | 3094 | js.reportButtonStatus(MAX_BUTTONS, state); |
mjr | 73:4e8ce0b18915 | 3095 | } |
mjr | 73:4e8ce0b18915 | 3096 | |
mjr | 5:a70c0bce770d | 3097 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 3098 | // |
mjr | 5:a70c0bce770d | 3099 | // Customization joystick subbclass |
mjr | 5:a70c0bce770d | 3100 | // |
mjr | 5:a70c0bce770d | 3101 | |
mjr | 5:a70c0bce770d | 3102 | class MyUSBJoystick: public USBJoystick |
mjr | 5:a70c0bce770d | 3103 | { |
mjr | 5:a70c0bce770d | 3104 | public: |
mjr | 35:e959ffba78fd | 3105 | MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release, |
mjr | 35:e959ffba78fd | 3106 | bool waitForConnect, bool enableJoystick, bool useKB) |
mjr | 35:e959ffba78fd | 3107 | : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB) |
mjr | 5:a70c0bce770d | 3108 | { |
mjr | 54:fd77a6b2f76c | 3109 | sleeping_ = false; |
mjr | 54:fd77a6b2f76c | 3110 | reconnectPending_ = false; |
mjr | 54:fd77a6b2f76c | 3111 | timer_.start(); |
mjr | 54:fd77a6b2f76c | 3112 | } |
mjr | 54:fd77a6b2f76c | 3113 | |
mjr | 54:fd77a6b2f76c | 3114 | // show diagnostic LED feedback for connect state |
mjr | 54:fd77a6b2f76c | 3115 | void diagFlash() |
mjr | 54:fd77a6b2f76c | 3116 | { |
mjr | 54:fd77a6b2f76c | 3117 | if (!configured() || sleeping_) |
mjr | 54:fd77a6b2f76c | 3118 | { |
mjr | 54:fd77a6b2f76c | 3119 | // flash once if sleeping or twice if disconnected |
mjr | 54:fd77a6b2f76c | 3120 | for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j) |
mjr | 54:fd77a6b2f76c | 3121 | { |
mjr | 54:fd77a6b2f76c | 3122 | // short red flash |
mjr | 54:fd77a6b2f76c | 3123 | diagLED(1, 0, 0); |
mjr | 54:fd77a6b2f76c | 3124 | wait_us(50000); |
mjr | 54:fd77a6b2f76c | 3125 | diagLED(0, 0, 0); |
mjr | 54:fd77a6b2f76c | 3126 | wait_us(50000); |
mjr | 54:fd77a6b2f76c | 3127 | } |
mjr | 54:fd77a6b2f76c | 3128 | } |
mjr | 5:a70c0bce770d | 3129 | } |
mjr | 5:a70c0bce770d | 3130 | |
mjr | 5:a70c0bce770d | 3131 | // are we connected? |
mjr | 5:a70c0bce770d | 3132 | int isConnected() { return configured(); } |
mjr | 5:a70c0bce770d | 3133 | |
mjr | 54:fd77a6b2f76c | 3134 | // Are we in sleep mode? If true, this means that the hardware has |
mjr | 54:fd77a6b2f76c | 3135 | // detected no activity on the bus for 3ms. This happens when the |
mjr | 54:fd77a6b2f76c | 3136 | // cable is physically disconnected, the computer is turned off, or |
mjr | 54:fd77a6b2f76c | 3137 | // the connection is otherwise disabled. |
mjr | 54:fd77a6b2f76c | 3138 | bool isSleeping() const { return sleeping_; } |
mjr | 54:fd77a6b2f76c | 3139 | |
mjr | 54:fd77a6b2f76c | 3140 | // If necessary, attempt to recover from a broken connection. |
mjr | 54:fd77a6b2f76c | 3141 | // |
mjr | 54:fd77a6b2f76c | 3142 | // This is a hack, to work around an apparent timing bug in the |
mjr | 54:fd77a6b2f76c | 3143 | // KL25Z USB implementation that I haven't been able to solve any |
mjr | 54:fd77a6b2f76c | 3144 | // other way. |
mjr | 54:fd77a6b2f76c | 3145 | // |
mjr | 54:fd77a6b2f76c | 3146 | // The issue: when we have an established connection, and the |
mjr | 54:fd77a6b2f76c | 3147 | // connection is broken by physically unplugging the cable or by |
mjr | 54:fd77a6b2f76c | 3148 | // rebooting the PC, the KL25Z sometimes fails to reconnect when |
mjr | 54:fd77a6b2f76c | 3149 | // the physical connection is re-established. The failure is |
mjr | 54:fd77a6b2f76c | 3150 | // sporadic; I'd guess it happens about 25% of the time, but I |
mjr | 54:fd77a6b2f76c | 3151 | // haven't collected any real statistics on it. |
mjr | 54:fd77a6b2f76c | 3152 | // |
mjr | 54:fd77a6b2f76c | 3153 | // The proximate cause of the failure is a deadlock in the SETUP |
mjr | 54:fd77a6b2f76c | 3154 | // protocol between the host and device that happens around the |
mjr | 54:fd77a6b2f76c | 3155 | // point where the PC is requesting the configuration descriptor. |
mjr | 54:fd77a6b2f76c | 3156 | // The exact point in the protocol where this occurs varies slightly; |
mjr | 54:fd77a6b2f76c | 3157 | // it can occur a message or two before or after the Get Config |
mjr | 54:fd77a6b2f76c | 3158 | // Descriptor packet. No matter where it happens, the nature of |
mjr | 54:fd77a6b2f76c | 3159 | // the deadlock is the same: the PC thinks it sees a STALL on EP0 |
mjr | 54:fd77a6b2f76c | 3160 | // from the device, so it terminates the connection attempt, which |
mjr | 54:fd77a6b2f76c | 3161 | // stops further traffic on the cable. The KL25Z USB hardware sees |
mjr | 54:fd77a6b2f76c | 3162 | // the lack of traffic and triggers a SLEEP interrupt (a misnomer |
mjr | 54:fd77a6b2f76c | 3163 | // for what should have been called a BROKEN CONNECTION interrupt). |
mjr | 54:fd77a6b2f76c | 3164 | // Both sides simply stop talking at this point, so the connection |
mjr | 54:fd77a6b2f76c | 3165 | // is effectively dead. |
mjr | 54:fd77a6b2f76c | 3166 | // |
mjr | 54:fd77a6b2f76c | 3167 | // The strange thing is that, as far as I can tell, the KL25Z isn't |
mjr | 54:fd77a6b2f76c | 3168 | // doing anything to trigger the STALL on its end. Both the PC |
mjr | 54:fd77a6b2f76c | 3169 | // and the KL25Z are happy up until the very point of the failure |
mjr | 54:fd77a6b2f76c | 3170 | // and show no signs of anything wrong in the protocol exchange. |
mjr | 54:fd77a6b2f76c | 3171 | // In fact, every detail of the protocol exchange up to this point |
mjr | 54:fd77a6b2f76c | 3172 | // is identical to every successful exchange that does finish the |
mjr | 54:fd77a6b2f76c | 3173 | // whole setup process successfully, on both the KL25Z and Windows |
mjr | 54:fd77a6b2f76c | 3174 | // sides of the connection. I can't find any point of difference |
mjr | 54:fd77a6b2f76c | 3175 | // between successful and unsuccessful sequences that suggests why |
mjr | 54:fd77a6b2f76c | 3176 | // the fateful message fails. This makes me suspect that whatever |
mjr | 54:fd77a6b2f76c | 3177 | // is going wrong is inside the KL25Z USB hardware module, which |
mjr | 54:fd77a6b2f76c | 3178 | // is a pretty substantial black box - it has a lot of internal |
mjr | 54:fd77a6b2f76c | 3179 | // state that's inaccessible to the software. Further bolstering |
mjr | 54:fd77a6b2f76c | 3180 | // this theory is a little experiment where I found that I could |
mjr | 54:fd77a6b2f76c | 3181 | // reproduce the exact sequence of events of a failed reconnect |
mjr | 54:fd77a6b2f76c | 3182 | // attempt in an *initial* connection, which is otherwise 100% |
mjr | 54:fd77a6b2f76c | 3183 | // reliable, by inserting a little bit of artifical time padding |
mjr | 54:fd77a6b2f76c | 3184 | // (200us per event) into the SETUP interrupt handler. My |
mjr | 54:fd77a6b2f76c | 3185 | // hypothesis is that the STALL event happens because the KL25Z |
mjr | 54:fd77a6b2f76c | 3186 | // USB hardware is too slow to respond to a message. I'm not |
mjr | 54:fd77a6b2f76c | 3187 | // sure why this would only happen after a disconnect and not |
mjr | 54:fd77a6b2f76c | 3188 | // during the initial connection; maybe there's some reset work |
mjr | 54:fd77a6b2f76c | 3189 | // in the hardware that takes a substantial amount of time after |
mjr | 54:fd77a6b2f76c | 3190 | // a disconnect. |
mjr | 54:fd77a6b2f76c | 3191 | // |
mjr | 54:fd77a6b2f76c | 3192 | // The solution: the problem happens during the SETUP exchange, |
mjr | 54:fd77a6b2f76c | 3193 | // after we've been assigned a bus address. It only happens on |
mjr | 54:fd77a6b2f76c | 3194 | // some percentage of connection requests, so if we can simply |
mjr | 54:fd77a6b2f76c | 3195 | // start over when the failure occurs, we'll eventually succeed |
mjr | 54:fd77a6b2f76c | 3196 | // simply because not every attempt fails. The ideal would be |
mjr | 54:fd77a6b2f76c | 3197 | // to get the success rate up to 100%, but I can't figure out how |
mjr | 54:fd77a6b2f76c | 3198 | // to fix the underlying problem, so this is the next best thing. |
mjr | 54:fd77a6b2f76c | 3199 | // |
mjr | 54:fd77a6b2f76c | 3200 | // We can detect when the failure occurs by noticing when a SLEEP |
mjr | 54:fd77a6b2f76c | 3201 | // interrupt happens while we have an assigned bus address. |
mjr | 54:fd77a6b2f76c | 3202 | // |
mjr | 54:fd77a6b2f76c | 3203 | // To start a new connection attempt, we have to make the *host* |
mjr | 54:fd77a6b2f76c | 3204 | // try again. The logical connection is initiated solely by the |
mjr | 54:fd77a6b2f76c | 3205 | // host. Fortunately, it's easy to get the host to initiate the |
mjr | 54:fd77a6b2f76c | 3206 | // process: if we disconnect on the device side, it effectively |
mjr | 54:fd77a6b2f76c | 3207 | // makes the device look to the PC like it's electrically unplugged. |
mjr | 54:fd77a6b2f76c | 3208 | // When we reconnect on the device side, the PC thinks a new device |
mjr | 54:fd77a6b2f76c | 3209 | // has been plugged in and initiates the logical connection setup. |
mjr | 74:822a92bc11d2 | 3210 | // We have to remain disconnected for some minimum interval before |
mjr | 74:822a92bc11d2 | 3211 | // the host notices; the exact minimum is unclear, but 5ms seems |
mjr | 74:822a92bc11d2 | 3212 | // reliable in practice. |
mjr | 54:fd77a6b2f76c | 3213 | // |
mjr | 54:fd77a6b2f76c | 3214 | // Here's the full algorithm: |
mjr | 54:fd77a6b2f76c | 3215 | // |
mjr | 54:fd77a6b2f76c | 3216 | // 1. In the SLEEP interrupt handler, if we have a bus address, |
mjr | 54:fd77a6b2f76c | 3217 | // we disconnect the device. This happens in ISR context, so we |
mjr | 54:fd77a6b2f76c | 3218 | // can't wait around for 5ms. Instead, we simply set a flag noting |
mjr | 54:fd77a6b2f76c | 3219 | // that the connection has been broken, and we note the time and |
mjr | 54:fd77a6b2f76c | 3220 | // return. |
mjr | 54:fd77a6b2f76c | 3221 | // |
mjr | 54:fd77a6b2f76c | 3222 | // 2. In our main loop, whenever we find that we're disconnected, |
mjr | 54:fd77a6b2f76c | 3223 | // we call recoverConnection(). The main loop's job is basically a |
mjr | 54:fd77a6b2f76c | 3224 | // bunch of device polling. We're just one more device to poll, so |
mjr | 54:fd77a6b2f76c | 3225 | // recoverConnection() will be called soon after a disconnect, and |
mjr | 54:fd77a6b2f76c | 3226 | // then will be called in a loop for as long as we're disconnected. |
mjr | 54:fd77a6b2f76c | 3227 | // |
mjr | 54:fd77a6b2f76c | 3228 | // 3. In recoverConnection(), we check the flag we set in the SLEEP |
mjr | 54:fd77a6b2f76c | 3229 | // handler. If set, we wait until 5ms has elapsed from the SLEEP |
mjr | 54:fd77a6b2f76c | 3230 | // event time that we noted, then we'll reconnect and clear the flag. |
mjr | 54:fd77a6b2f76c | 3231 | // This gives us the required 5ms (or longer) delay between the |
mjr | 54:fd77a6b2f76c | 3232 | // disconnect and reconnect, ensuring that the PC will notice and |
mjr | 54:fd77a6b2f76c | 3233 | // will start over with the connection protocol. |
mjr | 54:fd77a6b2f76c | 3234 | // |
mjr | 54:fd77a6b2f76c | 3235 | // 4. The main loop keeps calling recoverConnection() in a loop for |
mjr | 54:fd77a6b2f76c | 3236 | // as long as we're disconnected, so if the new connection attempt |
mjr | 54:fd77a6b2f76c | 3237 | // triggered in step 3 fails, the SLEEP interrupt will happen again, |
mjr | 54:fd77a6b2f76c | 3238 | // we'll disconnect again, the flag will get set again, and |
mjr | 54:fd77a6b2f76c | 3239 | // recoverConnection() will reconnect again after another suitable |
mjr | 54:fd77a6b2f76c | 3240 | // delay. This will repeat until the connection succeeds or hell |
mjr | 54:fd77a6b2f76c | 3241 | // freezes over. |
mjr | 54:fd77a6b2f76c | 3242 | // |
mjr | 54:fd77a6b2f76c | 3243 | // Each disconnect happens immediately when a reconnect attempt |
mjr | 54:fd77a6b2f76c | 3244 | // fails, and an entire successful connection only takes about 25ms, |
mjr | 54:fd77a6b2f76c | 3245 | // so our loop can retry at more than 30 attempts per second. |
mjr | 54:fd77a6b2f76c | 3246 | // In my testing, lost connections almost always reconnect in |
mjr | 54:fd77a6b2f76c | 3247 | // less than second with this code in place. |
mjr | 54:fd77a6b2f76c | 3248 | void recoverConnection() |
mjr | 54:fd77a6b2f76c | 3249 | { |
mjr | 54:fd77a6b2f76c | 3250 | // if a reconnect is pending, reconnect |
mjr | 54:fd77a6b2f76c | 3251 | if (reconnectPending_) |
mjr | 54:fd77a6b2f76c | 3252 | { |
mjr | 54:fd77a6b2f76c | 3253 | // Loop until we reach 5ms after the last sleep event. |
mjr | 54:fd77a6b2f76c | 3254 | for (bool done = false ; !done ; ) |
mjr | 54:fd77a6b2f76c | 3255 | { |
mjr | 54:fd77a6b2f76c | 3256 | // If we've reached the target time, reconnect. Do the |
mjr | 54:fd77a6b2f76c | 3257 | // time check and flag reset atomically, so that we can't |
mjr | 54:fd77a6b2f76c | 3258 | // have another sleep event sneak in after we've verified |
mjr | 54:fd77a6b2f76c | 3259 | // the time. If another event occurs, it has to happen |
mjr | 54:fd77a6b2f76c | 3260 | // before we check, in which case it'll update the time |
mjr | 54:fd77a6b2f76c | 3261 | // before we check it, or after we clear the flag, in |
mjr | 54:fd77a6b2f76c | 3262 | // which case it will reset the flag and we'll do another |
mjr | 54:fd77a6b2f76c | 3263 | // round the next time we call this routine. |
mjr | 54:fd77a6b2f76c | 3264 | __disable_irq(); |
mjr | 54:fd77a6b2f76c | 3265 | if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000) |
mjr | 54:fd77a6b2f76c | 3266 | { |
mjr | 54:fd77a6b2f76c | 3267 | connect(false); |
mjr | 54:fd77a6b2f76c | 3268 | reconnectPending_ = false; |
mjr | 54:fd77a6b2f76c | 3269 | done = true; |
mjr | 54:fd77a6b2f76c | 3270 | } |
mjr | 54:fd77a6b2f76c | 3271 | __enable_irq(); |
mjr | 54:fd77a6b2f76c | 3272 | } |
mjr | 54:fd77a6b2f76c | 3273 | } |
mjr | 54:fd77a6b2f76c | 3274 | } |
mjr | 5:a70c0bce770d | 3275 | |
mjr | 5:a70c0bce770d | 3276 | protected: |
mjr | 54:fd77a6b2f76c | 3277 | // Handle a USB SLEEP interrupt. This interrupt signifies that the |
mjr | 54:fd77a6b2f76c | 3278 | // USB hardware module hasn't seen any token traffic for 3ms, which |
mjr | 54:fd77a6b2f76c | 3279 | // means that we're either physically or logically disconnected. |
mjr | 54:fd77a6b2f76c | 3280 | // |
mjr | 54:fd77a6b2f76c | 3281 | // Important: this runs in ISR context. |
mjr | 54:fd77a6b2f76c | 3282 | // |
mjr | 54:fd77a6b2f76c | 3283 | // Note that this is a specialized sense of "sleep" that's unrelated |
mjr | 54:fd77a6b2f76c | 3284 | // to the similarly named power modes on the PC. This has nothing |
mjr | 54:fd77a6b2f76c | 3285 | // to do with suspend/sleep mode on the PC, and it's not a low-power |
mjr | 54:fd77a6b2f76c | 3286 | // mode on the KL25Z. They really should have called this interrupt |
mjr | 54:fd77a6b2f76c | 3287 | // DISCONNECT or BROKEN CONNECTION.) |
mjr | 54:fd77a6b2f76c | 3288 | virtual void sleepStateChanged(unsigned int sleeping) |
mjr | 54:fd77a6b2f76c | 3289 | { |
mjr | 54:fd77a6b2f76c | 3290 | // note the new state |
mjr | 54:fd77a6b2f76c | 3291 | sleeping_ = sleeping; |
mjr | 54:fd77a6b2f76c | 3292 | |
mjr | 54:fd77a6b2f76c | 3293 | // If we have a non-zero bus address, we have at least a partial |
mjr | 54:fd77a6b2f76c | 3294 | // connection to the host (we've made it at least as far as the |
mjr | 54:fd77a6b2f76c | 3295 | // SETUP stage). Explicitly disconnect, and the pending reconnect |
mjr | 54:fd77a6b2f76c | 3296 | // flag, and remember the time of the sleep event. |
mjr | 54:fd77a6b2f76c | 3297 | if (USB0->ADDR != 0x00) |
mjr | 54:fd77a6b2f76c | 3298 | { |
mjr | 54:fd77a6b2f76c | 3299 | disconnect(); |
mjr | 54:fd77a6b2f76c | 3300 | lastSleepTime_ = timer_.read_us(); |
mjr | 54:fd77a6b2f76c | 3301 | reconnectPending_ = true; |
mjr | 54:fd77a6b2f76c | 3302 | } |
mjr | 54:fd77a6b2f76c | 3303 | } |
mjr | 54:fd77a6b2f76c | 3304 | |
mjr | 54:fd77a6b2f76c | 3305 | // is the USB connection asleep? |
mjr | 54:fd77a6b2f76c | 3306 | volatile bool sleeping_; |
mjr | 54:fd77a6b2f76c | 3307 | |
mjr | 54:fd77a6b2f76c | 3308 | // flag: reconnect pending after sleep event |
mjr | 54:fd77a6b2f76c | 3309 | volatile bool reconnectPending_; |
mjr | 54:fd77a6b2f76c | 3310 | |
mjr | 54:fd77a6b2f76c | 3311 | // time of last sleep event while connected |
mjr | 54:fd77a6b2f76c | 3312 | volatile uint32_t lastSleepTime_; |
mjr | 54:fd77a6b2f76c | 3313 | |
mjr | 54:fd77a6b2f76c | 3314 | // timer to keep track of interval since last sleep event |
mjr | 54:fd77a6b2f76c | 3315 | Timer timer_; |
mjr | 5:a70c0bce770d | 3316 | }; |
mjr | 5:a70c0bce770d | 3317 | |
mjr | 5:a70c0bce770d | 3318 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 3319 | // |
mjr | 5:a70c0bce770d | 3320 | // Accelerometer (MMA8451Q) |
mjr | 5:a70c0bce770d | 3321 | // |
mjr | 5:a70c0bce770d | 3322 | |
mjr | 5:a70c0bce770d | 3323 | // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer. |
mjr | 5:a70c0bce770d | 3324 | // |
mjr | 5:a70c0bce770d | 3325 | // This is a custom wrapper for the library code to interface to the |
mjr | 6:cc35eb643e8f | 3326 | // MMA8451Q. This class encapsulates an interrupt handler and |
mjr | 6:cc35eb643e8f | 3327 | // automatic calibration. |
mjr | 5:a70c0bce770d | 3328 | // |
mjr | 77:0b96f6867312 | 3329 | // We collect data at the device's maximum rate of 800kHz (one sample |
mjr | 77:0b96f6867312 | 3330 | // every 1.25ms). To keep up with the high data rate, we use the |
mjr | 77:0b96f6867312 | 3331 | // device's internal FIFO, and drain the FIFO by polling on each |
mjr | 77:0b96f6867312 | 3332 | // iteration of our main application loop. In the past, we used an |
mjr | 77:0b96f6867312 | 3333 | // interrupt handler to read the device immediately on the arrival of |
mjr | 77:0b96f6867312 | 3334 | // each sample, but this created too much latency for the IR remote |
mjr | 77:0b96f6867312 | 3335 | // receiver, due to the relatively long time it takes to transfer the |
mjr | 77:0b96f6867312 | 3336 | // accelerometer readings via I2C. The device's on-board FIFO can |
mjr | 77:0b96f6867312 | 3337 | // store up to 32 samples, which gives us up to about 40ms between |
mjr | 77:0b96f6867312 | 3338 | // polling iterations before the buffer overflows. Our main loop runs |
mjr | 77:0b96f6867312 | 3339 | // in under 2ms, so we can easily keep the FIFO far from overflowing. |
mjr | 77:0b96f6867312 | 3340 | // |
mjr | 77:0b96f6867312 | 3341 | // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC |
mjr | 77:0b96f6867312 | 3342 | // sample is the same bit width (14 bits) in all modes, so the higher |
mjr | 77:0b96f6867312 | 3343 | // dynamic range modes trade physical precision for range. For our |
mjr | 77:0b96f6867312 | 3344 | // purposes, precision is more important than range, so we use the |
mjr | 77:0b96f6867312 | 3345 | // +/-2G mode. Further, our joystick range is calibrated for only |
mjr | 77:0b96f6867312 | 3346 | // +/-1G. This was unintentional on my part; I didn't look at the |
mjr | 77:0b96f6867312 | 3347 | // MMA8451Q library closely enough to realize it was normalizing to |
mjr | 77:0b96f6867312 | 3348 | // actual "G" units, and assumed that it was normalizing to a -1..+1 |
mjr | 77:0b96f6867312 | 3349 | // scale. In practice, a +/-1G scale seems perfectly adequate for |
mjr | 77:0b96f6867312 | 3350 | // virtual pinball use, so I'm sticking with that range for now. But |
mjr | 77:0b96f6867312 | 3351 | // there might be some benefit in renormalizing to a +/-2G range, in |
mjr | 77:0b96f6867312 | 3352 | // that it would allow for higher dynamic range for very hard nudges. |
mjr | 77:0b96f6867312 | 3353 | // Everyone would have to tweak their nudge sensitivity in VP if I |
mjr | 77:0b96f6867312 | 3354 | // made that change, though, so I'm keeping it as is for now; it would |
mjr | 77:0b96f6867312 | 3355 | // be best to make it a config option ("accelerometer high dynamic range") |
mjr | 77:0b96f6867312 | 3356 | // rather than change it across the board. |
mjr | 5:a70c0bce770d | 3357 | // |
mjr | 6:cc35eb643e8f | 3358 | // We automatically calibrate the accelerometer so that it's not |
mjr | 6:cc35eb643e8f | 3359 | // necessary to get it exactly level when installing it, and so |
mjr | 6:cc35eb643e8f | 3360 | // that it's also not necessary to calibrate it manually. There's |
mjr | 6:cc35eb643e8f | 3361 | // lots of experience that tells us that manual calibration is a |
mjr | 6:cc35eb643e8f | 3362 | // terrible solution, mostly because cabinets tend to shift slightly |
mjr | 6:cc35eb643e8f | 3363 | // during use, requiring frequent recalibration. Instead, we |
mjr | 6:cc35eb643e8f | 3364 | // calibrate automatically. We continuously monitor the acceleration |
mjr | 6:cc35eb643e8f | 3365 | // data, watching for periods of constant (or nearly constant) values. |
mjr | 6:cc35eb643e8f | 3366 | // Any time it appears that the machine has been at rest for a while |
mjr | 6:cc35eb643e8f | 3367 | // (about 5 seconds), we'll average the readings during that rest |
mjr | 6:cc35eb643e8f | 3368 | // period and use the result as the level rest position. This is |
mjr | 6:cc35eb643e8f | 3369 | // is ongoing, so we'll quickly find the center point again if the |
mjr | 6:cc35eb643e8f | 3370 | // machine is moved during play (by an especially aggressive bout |
mjr | 6:cc35eb643e8f | 3371 | // of nudging, say). |
mjr | 5:a70c0bce770d | 3372 | // |
mjr | 5:a70c0bce770d | 3373 | |
mjr | 17:ab3cec0c8bf4 | 3374 | // I2C address of the accelerometer (this is a constant of the KL25Z) |
mjr | 17:ab3cec0c8bf4 | 3375 | const int MMA8451_I2C_ADDRESS = (0x1d<<1); |
mjr | 17:ab3cec0c8bf4 | 3376 | |
mjr | 17:ab3cec0c8bf4 | 3377 | // SCL and SDA pins for the accelerometer (constant for the KL25Z) |
mjr | 17:ab3cec0c8bf4 | 3378 | #define MMA8451_SCL_PIN PTE25 |
mjr | 17:ab3cec0c8bf4 | 3379 | #define MMA8451_SDA_PIN PTE24 |
mjr | 17:ab3cec0c8bf4 | 3380 | |
mjr | 17:ab3cec0c8bf4 | 3381 | // Digital in pin to use for the accelerometer interrupt. For the KL25Z, |
mjr | 17:ab3cec0c8bf4 | 3382 | // this can be either PTA14 or PTA15, since those are the pins physically |
mjr | 17:ab3cec0c8bf4 | 3383 | // wired on this board to the MMA8451 interrupt controller. |
mjr | 17:ab3cec0c8bf4 | 3384 | #define MMA8451_INT_PIN PTA15 |
mjr | 17:ab3cec0c8bf4 | 3385 | |
mjr | 17:ab3cec0c8bf4 | 3386 | |
mjr | 6:cc35eb643e8f | 3387 | // accelerometer input history item, for gathering calibration data |
mjr | 6:cc35eb643e8f | 3388 | struct AccHist |
mjr | 5:a70c0bce770d | 3389 | { |
mjr | 77:0b96f6867312 | 3390 | AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; } |
mjr | 77:0b96f6867312 | 3391 | void set(int x, int y, AccHist *prv) |
mjr | 6:cc35eb643e8f | 3392 | { |
mjr | 6:cc35eb643e8f | 3393 | // save the raw position |
mjr | 6:cc35eb643e8f | 3394 | this->x = x; |
mjr | 6:cc35eb643e8f | 3395 | this->y = y; |
mjr | 77:0b96f6867312 | 3396 | this->dsq = distanceSquared(prv); |
mjr | 6:cc35eb643e8f | 3397 | } |
mjr | 6:cc35eb643e8f | 3398 | |
mjr | 6:cc35eb643e8f | 3399 | // reading for this entry |
mjr | 77:0b96f6867312 | 3400 | int x, y; |
mjr | 77:0b96f6867312 | 3401 | |
mjr | 77:0b96f6867312 | 3402 | // (distance from previous entry) squared |
mjr | 77:0b96f6867312 | 3403 | int dsq; |
mjr | 5:a70c0bce770d | 3404 | |
mjr | 6:cc35eb643e8f | 3405 | // total and count of samples averaged over this period |
mjr | 77:0b96f6867312 | 3406 | int xtot, ytot; |
mjr | 6:cc35eb643e8f | 3407 | int cnt; |
mjr | 6:cc35eb643e8f | 3408 | |
mjr | 77:0b96f6867312 | 3409 | void clearAvg() { xtot = ytot = 0; cnt = 0; } |
mjr | 77:0b96f6867312 | 3410 | void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; } |
mjr | 77:0b96f6867312 | 3411 | int xAvg() const { return xtot/cnt; } |
mjr | 77:0b96f6867312 | 3412 | int yAvg() const { return ytot/cnt; } |
mjr | 77:0b96f6867312 | 3413 | |
mjr | 77:0b96f6867312 | 3414 | int distanceSquared(AccHist *p) |
mjr | 77:0b96f6867312 | 3415 | { return square(p->x - x) + square(p->y - y); } |
mjr | 5:a70c0bce770d | 3416 | }; |
mjr | 5:a70c0bce770d | 3417 | |
mjr | 5:a70c0bce770d | 3418 | // accelerometer wrapper class |
mjr | 3:3514575d4f86 | 3419 | class Accel |
mjr | 3:3514575d4f86 | 3420 | { |
mjr | 3:3514575d4f86 | 3421 | public: |
mjr | 78:1e00b3fa11af | 3422 | Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin, |
mjr | 78:1e00b3fa11af | 3423 | int range, int autoCenterMode) |
mjr | 77:0b96f6867312 | 3424 | : mma_(sda, scl, i2cAddr) |
mjr | 3:3514575d4f86 | 3425 | { |
mjr | 5:a70c0bce770d | 3426 | // remember the interrupt pin assignment |
mjr | 5:a70c0bce770d | 3427 | irqPin_ = irqPin; |
mjr | 77:0b96f6867312 | 3428 | |
mjr | 77:0b96f6867312 | 3429 | // remember the range |
mjr | 77:0b96f6867312 | 3430 | range_ = range; |
mjr | 78:1e00b3fa11af | 3431 | |
mjr | 78:1e00b3fa11af | 3432 | // set the auto-centering mode |
mjr | 78:1e00b3fa11af | 3433 | setAutoCenterMode(autoCenterMode); |
mjr | 78:1e00b3fa11af | 3434 | |
mjr | 78:1e00b3fa11af | 3435 | // no manual centering request has been received |
mjr | 78:1e00b3fa11af | 3436 | manualCenterRequest_ = false; |
mjr | 5:a70c0bce770d | 3437 | |
mjr | 5:a70c0bce770d | 3438 | // reset and initialize |
mjr | 5:a70c0bce770d | 3439 | reset(); |
mjr | 5:a70c0bce770d | 3440 | } |
mjr | 5:a70c0bce770d | 3441 | |
mjr | 78:1e00b3fa11af | 3442 | // Request manual centering. This applies the trailing average |
mjr | 78:1e00b3fa11af | 3443 | // of recent measurements and applies it as the new center point |
mjr | 78:1e00b3fa11af | 3444 | // as soon as we have enough data. |
mjr | 78:1e00b3fa11af | 3445 | void manualCenterRequest() { manualCenterRequest_ = true; } |
mjr | 78:1e00b3fa11af | 3446 | |
mjr | 78:1e00b3fa11af | 3447 | // set the auto-centering mode |
mjr | 78:1e00b3fa11af | 3448 | void setAutoCenterMode(int mode) |
mjr | 78:1e00b3fa11af | 3449 | { |
mjr | 78:1e00b3fa11af | 3450 | // remember the mode |
mjr | 78:1e00b3fa11af | 3451 | autoCenterMode_ = mode; |
mjr | 78:1e00b3fa11af | 3452 | |
mjr | 78:1e00b3fa11af | 3453 | // Set the time between checks. We check 5 times over the course |
mjr | 78:1e00b3fa11af | 3454 | // of the centering time, so the check interval is 1/5 of the total. |
mjr | 78:1e00b3fa11af | 3455 | if (mode == 0) |
mjr | 78:1e00b3fa11af | 3456 | { |
mjr | 78:1e00b3fa11af | 3457 | // mode 0 is the old default of 5 seconds, so check every 1s |
mjr | 78:1e00b3fa11af | 3458 | autoCenterCheckTime_ = 1000000; |
mjr | 78:1e00b3fa11af | 3459 | } |
mjr | 78:1e00b3fa11af | 3460 | else if (mode <= 60) |
mjr | 78:1e00b3fa11af | 3461 | { |
mjr | 78:1e00b3fa11af | 3462 | // mode 1-60 means reset after 'mode' seconds; the check |
mjr | 78:1e00b3fa11af | 3463 | // interval is 1/5 of this |
mjr | 78:1e00b3fa11af | 3464 | autoCenterCheckTime_ = mode*200000; |
mjr | 78:1e00b3fa11af | 3465 | } |
mjr | 78:1e00b3fa11af | 3466 | else |
mjr | 78:1e00b3fa11af | 3467 | { |
mjr | 78:1e00b3fa11af | 3468 | // Auto-centering is off, but still gather statistics to apply |
mjr | 78:1e00b3fa11af | 3469 | // when we get a manual centering request. The check interval |
mjr | 78:1e00b3fa11af | 3470 | // in this case is 1/5 of the total time for the trailing average |
mjr | 78:1e00b3fa11af | 3471 | // we apply for the manual centering. We want this to be long |
mjr | 78:1e00b3fa11af | 3472 | // enough to smooth out the data, but short enough that it only |
mjr | 78:1e00b3fa11af | 3473 | // includes recent data. |
mjr | 78:1e00b3fa11af | 3474 | autoCenterCheckTime_ = 500000; |
mjr | 78:1e00b3fa11af | 3475 | } |
mjr | 78:1e00b3fa11af | 3476 | } |
mjr | 78:1e00b3fa11af | 3477 | |
mjr | 5:a70c0bce770d | 3478 | void reset() |
mjr | 5:a70c0bce770d | 3479 | { |
mjr | 6:cc35eb643e8f | 3480 | // clear the center point |
mjr | 77:0b96f6867312 | 3481 | cx_ = cy_ = 0; |
mjr | 6:cc35eb643e8f | 3482 | |
mjr | 77:0b96f6867312 | 3483 | // start the auto-centering timer |
mjr | 5:a70c0bce770d | 3484 | tCenter_.start(); |
mjr | 5:a70c0bce770d | 3485 | iAccPrv_ = nAccPrv_ = 0; |
mjr | 6:cc35eb643e8f | 3486 | |
mjr | 5:a70c0bce770d | 3487 | // reset and initialize the MMA8451Q |
mjr | 5:a70c0bce770d | 3488 | mma_.init(); |
mjr | 77:0b96f6867312 | 3489 | |
mjr | 77:0b96f6867312 | 3490 | // set the range |
mjr | 77:0b96f6867312 | 3491 | mma_.setRange( |
mjr | 77:0b96f6867312 | 3492 | range_ == AccelRange4G ? 4 : |
mjr | 77:0b96f6867312 | 3493 | range_ == AccelRange8G ? 8 : |
mjr | 77:0b96f6867312 | 3494 | 2); |
mjr | 6:cc35eb643e8f | 3495 | |
mjr | 77:0b96f6867312 | 3496 | // set the average accumulators to zero |
mjr | 77:0b96f6867312 | 3497 | xSum_ = ySum_ = 0; |
mjr | 77:0b96f6867312 | 3498 | nSum_ = 0; |
mjr | 3:3514575d4f86 | 3499 | |
mjr | 3:3514575d4f86 | 3500 | // read the current registers to clear the data ready flag |
mjr | 6:cc35eb643e8f | 3501 | mma_.getAccXYZ(ax_, ay_, az_); |
mjr | 3:3514575d4f86 | 3502 | } |
mjr | 3:3514575d4f86 | 3503 | |
mjr | 77:0b96f6867312 | 3504 | void poll() |
mjr | 76:7f5912b6340e | 3505 | { |
mjr | 77:0b96f6867312 | 3506 | // read samples until we clear the FIFO |
mjr | 77:0b96f6867312 | 3507 | while (mma_.getFIFOCount() != 0) |
mjr | 77:0b96f6867312 | 3508 | { |
mjr | 77:0b96f6867312 | 3509 | int x, y, z; |
mjr | 77:0b96f6867312 | 3510 | mma_.getAccXYZ(x, y, z); |
mjr | 77:0b96f6867312 | 3511 | |
mjr | 77:0b96f6867312 | 3512 | // add the new reading to the running total for averaging |
mjr | 77:0b96f6867312 | 3513 | xSum_ += (x - cx_); |
mjr | 77:0b96f6867312 | 3514 | ySum_ += (y - cy_); |
mjr | 77:0b96f6867312 | 3515 | ++nSum_; |
mjr | 77:0b96f6867312 | 3516 | |
mjr | 77:0b96f6867312 | 3517 | // store the updates |
mjr | 77:0b96f6867312 | 3518 | ax_ = x; |
mjr | 77:0b96f6867312 | 3519 | ay_ = y; |
mjr | 77:0b96f6867312 | 3520 | az_ = z; |
mjr | 77:0b96f6867312 | 3521 | } |
mjr | 76:7f5912b6340e | 3522 | } |
mjr | 77:0b96f6867312 | 3523 | |
mjr | 9:fd65b0a94720 | 3524 | void get(int &x, int &y) |
mjr | 3:3514575d4f86 | 3525 | { |
mjr | 77:0b96f6867312 | 3526 | // read the shared data and store locally for calculations |
mjr | 77:0b96f6867312 | 3527 | int ax = ax_, ay = ay_; |
mjr | 77:0b96f6867312 | 3528 | int xSum = xSum_, ySum = ySum_; |
mjr | 77:0b96f6867312 | 3529 | int nSum = nSum_; |
mjr | 6:cc35eb643e8f | 3530 | |
mjr | 77:0b96f6867312 | 3531 | // reset the average accumulators for the next run |
mjr | 77:0b96f6867312 | 3532 | xSum_ = ySum_ = 0; |
mjr | 77:0b96f6867312 | 3533 | nSum_ = 0; |
mjr | 77:0b96f6867312 | 3534 | |
mjr | 77:0b96f6867312 | 3535 | // add this sample to the current calibration interval's running total |
mjr | 77:0b96f6867312 | 3536 | AccHist *p = accPrv_ + iAccPrv_; |
mjr | 77:0b96f6867312 | 3537 | p->addAvg(ax, ay); |
mjr | 77:0b96f6867312 | 3538 | |
mjr | 78:1e00b3fa11af | 3539 | // If we're in auto-centering mode, check for auto-centering |
mjr | 78:1e00b3fa11af | 3540 | // at intervals of 1/5 of the overall time. If we're not in |
mjr | 78:1e00b3fa11af | 3541 | // auto-centering mode, check anyway at one-second intervals |
mjr | 78:1e00b3fa11af | 3542 | // so that we gather averages for manual centering requests. |
mjr | 78:1e00b3fa11af | 3543 | if (tCenter_.read_us() > autoCenterCheckTime_) |
mjr | 77:0b96f6867312 | 3544 | { |
mjr | 77:0b96f6867312 | 3545 | // add the latest raw sample to the history list |
mjr | 77:0b96f6867312 | 3546 | AccHist *prv = p; |
mjr | 77:0b96f6867312 | 3547 | iAccPrv_ = (iAccPrv_ + 1); |
mjr | 77:0b96f6867312 | 3548 | if (iAccPrv_ >= maxAccPrv) |
mjr | 77:0b96f6867312 | 3549 | iAccPrv_ = 0; |
mjr | 77:0b96f6867312 | 3550 | p = accPrv_ + iAccPrv_; |
mjr | 77:0b96f6867312 | 3551 | p->set(ax, ay, prv); |
mjr | 77:0b96f6867312 | 3552 | |
mjr | 78:1e00b3fa11af | 3553 | // if we have a full complement, check for auto-centering |
mjr | 77:0b96f6867312 | 3554 | if (nAccPrv_ >= maxAccPrv) |
mjr | 77:0b96f6867312 | 3555 | { |
mjr | 78:1e00b3fa11af | 3556 | // Center if: |
mjr | 78:1e00b3fa11af | 3557 | // |
mjr | 78:1e00b3fa11af | 3558 | // - Auto-centering is on, and we've been stable over the |
mjr | 78:1e00b3fa11af | 3559 | // whole sample period at our spot-check points |
mjr | 78:1e00b3fa11af | 3560 | // |
mjr | 78:1e00b3fa11af | 3561 | // - A manual centering request is pending |
mjr | 78:1e00b3fa11af | 3562 | // |
mjr | 77:0b96f6867312 | 3563 | static const int accTol = 164*164; // 1% of range, squared |
mjr | 77:0b96f6867312 | 3564 | AccHist *p0 = accPrv_; |
mjr | 78:1e00b3fa11af | 3565 | if (manualCenterRequest_ |
mjr | 78:1e00b3fa11af | 3566 | || (autoCenterMode_ <= 60 |
mjr | 78:1e00b3fa11af | 3567 | && p0[0].dsq < accTol |
mjr | 78:1e00b3fa11af | 3568 | && p0[1].dsq < accTol |
mjr | 78:1e00b3fa11af | 3569 | && p0[2].dsq < accTol |
mjr | 78:1e00b3fa11af | 3570 | && p0[3].dsq < accTol |
mjr | 78:1e00b3fa11af | 3571 | && p0[4].dsq < accTol)) |
mjr | 77:0b96f6867312 | 3572 | { |
mjr | 77:0b96f6867312 | 3573 | // Figure the new calibration point as the average of |
mjr | 77:0b96f6867312 | 3574 | // the samples over the rest period |
mjr | 77:0b96f6867312 | 3575 | cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5; |
mjr | 77:0b96f6867312 | 3576 | cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5; |
mjr | 78:1e00b3fa11af | 3577 | |
mjr | 78:1e00b3fa11af | 3578 | // clear any pending manual centering request |
mjr | 78:1e00b3fa11af | 3579 | manualCenterRequest_ = false; |
mjr | 77:0b96f6867312 | 3580 | } |
mjr | 77:0b96f6867312 | 3581 | } |
mjr | 77:0b96f6867312 | 3582 | else |
mjr | 77:0b96f6867312 | 3583 | { |
mjr | 77:0b96f6867312 | 3584 | // not enough samples yet; just up the count |
mjr | 77:0b96f6867312 | 3585 | ++nAccPrv_; |
mjr | 77:0b96f6867312 | 3586 | } |
mjr | 6:cc35eb643e8f | 3587 | |
mjr | 77:0b96f6867312 | 3588 | // clear the new item's running totals |
mjr | 77:0b96f6867312 | 3589 | p->clearAvg(); |
mjr | 5:a70c0bce770d | 3590 | |
mjr | 77:0b96f6867312 | 3591 | // reset the timer |
mjr | 77:0b96f6867312 | 3592 | tCenter_.reset(); |
mjr | 77:0b96f6867312 | 3593 | } |
mjr | 5:a70c0bce770d | 3594 | |
mjr | 77:0b96f6867312 | 3595 | // report our integrated velocity reading in x,y |
mjr | 77:0b96f6867312 | 3596 | x = rawToReport(xSum/nSum); |
mjr | 77:0b96f6867312 | 3597 | y = rawToReport(ySum/nSum); |
mjr | 5:a70c0bce770d | 3598 | |
mjr | 6:cc35eb643e8f | 3599 | #ifdef DEBUG_PRINTF |
mjr | 77:0b96f6867312 | 3600 | if (x != 0 || y != 0) |
mjr | 77:0b96f6867312 | 3601 | printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt); |
mjr | 6:cc35eb643e8f | 3602 | #endif |
mjr | 77:0b96f6867312 | 3603 | } |
mjr | 29:582472d0bc57 | 3604 | |
mjr | 3:3514575d4f86 | 3605 | private: |
mjr | 6:cc35eb643e8f | 3606 | // adjust a raw acceleration figure to a usb report value |
mjr | 77:0b96f6867312 | 3607 | int rawToReport(int v) |
mjr | 5:a70c0bce770d | 3608 | { |
mjr | 77:0b96f6867312 | 3609 | // Scale to the joystick report range. The accelerometer |
mjr | 77:0b96f6867312 | 3610 | // readings use the native 14-bit signed integer representation, |
mjr | 77:0b96f6867312 | 3611 | // so their scale is 2^13. |
mjr | 77:0b96f6867312 | 3612 | // |
mjr | 77:0b96f6867312 | 3613 | // The 1G range is special: it uses the 2G native hardware range, |
mjr | 77:0b96f6867312 | 3614 | // but rescales the result to a 1G range for the joystick reports. |
mjr | 77:0b96f6867312 | 3615 | // So for that mode, we divide by 4096 rather than 8192. All of |
mjr | 77:0b96f6867312 | 3616 | // the other modes map use the hardware scaling directly. |
mjr | 77:0b96f6867312 | 3617 | int i = v*JOYMAX; |
mjr | 77:0b96f6867312 | 3618 | i = (range_ == AccelRange1G ? i/4096 : i/8192); |
mjr | 5:a70c0bce770d | 3619 | |
mjr | 6:cc35eb643e8f | 3620 | // if it's near the center, scale it roughly as 20*(i/20)^2, |
mjr | 6:cc35eb643e8f | 3621 | // to suppress noise near the rest position |
mjr | 6:cc35eb643e8f | 3622 | static const int filter[] = { |
mjr | 6:cc35eb643e8f | 3623 | -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0, |
mjr | 6:cc35eb643e8f | 3624 | 0, |
mjr | 6:cc35eb643e8f | 3625 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18 |
mjr | 6:cc35eb643e8f | 3626 | }; |
mjr | 6:cc35eb643e8f | 3627 | return (i > 20 || i < -20 ? i : filter[i+20]); |
mjr | 5:a70c0bce770d | 3628 | } |
mjr | 5:a70c0bce770d | 3629 | |
mjr | 3:3514575d4f86 | 3630 | // underlying accelerometer object |
mjr | 3:3514575d4f86 | 3631 | MMA8451Q mma_; |
mjr | 3:3514575d4f86 | 3632 | |
mjr | 77:0b96f6867312 | 3633 | // last raw acceleration readings, on the device's signed 14-bit |
mjr | 77:0b96f6867312 | 3634 | // scale -8192..+8191 |
mjr | 77:0b96f6867312 | 3635 | int ax_, ay_, az_; |
mjr | 77:0b96f6867312 | 3636 | |
mjr | 77:0b96f6867312 | 3637 | // running sum of readings since last get() |
mjr | 77:0b96f6867312 | 3638 | int xSum_, ySum_; |
mjr | 77:0b96f6867312 | 3639 | |
mjr | 77:0b96f6867312 | 3640 | // number of readings since last get() |
mjr | 77:0b96f6867312 | 3641 | int nSum_; |
mjr | 6:cc35eb643e8f | 3642 | |
mjr | 6:cc35eb643e8f | 3643 | // Calibration reference point for accelerometer. This is the |
mjr | 6:cc35eb643e8f | 3644 | // average reading on the accelerometer when in the neutral position |
mjr | 6:cc35eb643e8f | 3645 | // at rest. |
mjr | 77:0b96f6867312 | 3646 | int cx_, cy_; |
mjr | 77:0b96f6867312 | 3647 | |
mjr | 77:0b96f6867312 | 3648 | // range (AccelRangeXxx value, from config.h) |
mjr | 77:0b96f6867312 | 3649 | uint8_t range_; |
mjr | 78:1e00b3fa11af | 3650 | |
mjr | 78:1e00b3fa11af | 3651 | // auto-center mode: |
mjr | 78:1e00b3fa11af | 3652 | // 0 = default of 5-second auto-centering |
mjr | 78:1e00b3fa11af | 3653 | // 1-60 = auto-center after this many seconds |
mjr | 78:1e00b3fa11af | 3654 | // 255 = auto-centering off (manual centering only) |
mjr | 78:1e00b3fa11af | 3655 | uint8_t autoCenterMode_; |
mjr | 78:1e00b3fa11af | 3656 | |
mjr | 78:1e00b3fa11af | 3657 | // flag: a manual centering request is pending |
mjr | 78:1e00b3fa11af | 3658 | bool manualCenterRequest_; |
mjr | 78:1e00b3fa11af | 3659 | |
mjr | 78:1e00b3fa11af | 3660 | // time in us between auto-centering incremental checks |
mjr | 78:1e00b3fa11af | 3661 | uint32_t autoCenterCheckTime_; |
mjr | 78:1e00b3fa11af | 3662 | |
mjr | 77:0b96f6867312 | 3663 | // atuo-centering timer |
mjr | 5:a70c0bce770d | 3664 | Timer tCenter_; |
mjr | 6:cc35eb643e8f | 3665 | |
mjr | 6:cc35eb643e8f | 3666 | // Auto-centering history. This is a separate history list that |
mjr | 77:0b96f6867312 | 3667 | // records results spaced out sparsely over time, so that we can |
mjr | 6:cc35eb643e8f | 3668 | // watch for long-lasting periods of rest. When we observe nearly |
mjr | 6:cc35eb643e8f | 3669 | // no motion for an extended period (on the order of 5 seconds), we |
mjr | 6:cc35eb643e8f | 3670 | // take this to mean that the cabinet is at rest in its neutral |
mjr | 6:cc35eb643e8f | 3671 | // position, so we take this as the calibration zero point for the |
mjr | 6:cc35eb643e8f | 3672 | // accelerometer. We update this history continuously, which allows |
mjr | 6:cc35eb643e8f | 3673 | // us to continuously re-calibrate the accelerometer. This ensures |
mjr | 6:cc35eb643e8f | 3674 | // that we'll automatically adjust to any actual changes in the |
mjr | 6:cc35eb643e8f | 3675 | // cabinet's orientation (e.g., if it gets moved slightly by an |
mjr | 6:cc35eb643e8f | 3676 | // especially strong nudge) as well as any systematic drift in the |
mjr | 6:cc35eb643e8f | 3677 | // accelerometer measurement bias (e.g., from temperature changes). |
mjr | 78:1e00b3fa11af | 3678 | uint8_t iAccPrv_, nAccPrv_; |
mjr | 78:1e00b3fa11af | 3679 | static const uint8_t maxAccPrv = 5; |
mjr | 6:cc35eb643e8f | 3680 | AccHist accPrv_[maxAccPrv]; |
mjr | 6:cc35eb643e8f | 3681 | |
mjr | 5:a70c0bce770d | 3682 | // interurupt pin name |
mjr | 5:a70c0bce770d | 3683 | PinName irqPin_; |
mjr | 3:3514575d4f86 | 3684 | }; |
mjr | 3:3514575d4f86 | 3685 | |
mjr | 5:a70c0bce770d | 3686 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 3687 | // |
mjr | 14:df700b22ca08 | 3688 | // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time |
mjr | 5:a70c0bce770d | 3689 | // for reasons that aren't clear to me. Doing a hard power cycle has the same |
mjr | 5:a70c0bce770d | 3690 | // effect, but when we do a soft reset, the hardware sometimes seems to leave |
mjr | 5:a70c0bce770d | 3691 | // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through |
mjr | 14:df700b22ca08 | 3692 | // the SCL line is supposed to clear this condition. I'm not convinced this |
mjr | 14:df700b22ca08 | 3693 | // actually works with the way this component is wired on the KL25Z, but it |
mjr | 14:df700b22ca08 | 3694 | // seems harmless, so we'll do it on reset in case it does some good. What |
mjr | 14:df700b22ca08 | 3695 | // we really seem to need is a way to power cycle the MMA8451Q if it ever |
mjr | 14:df700b22ca08 | 3696 | // gets stuck, but this is simply not possible in software on the KL25Z. |
mjr | 14:df700b22ca08 | 3697 | // |
mjr | 14:df700b22ca08 | 3698 | // If the accelerometer does get stuck, and a software reboot doesn't reset |
mjr | 14:df700b22ca08 | 3699 | // it, the only workaround is to manually power cycle the whole KL25Z by |
mjr | 14:df700b22ca08 | 3700 | // unplugging both of its USB connections. |
mjr | 5:a70c0bce770d | 3701 | // |
mjr | 5:a70c0bce770d | 3702 | void clear_i2c() |
mjr | 5:a70c0bce770d | 3703 | { |
mjr | 38:091e511ce8a0 | 3704 | // set up general-purpose output pins to the I2C lines |
mjr | 5:a70c0bce770d | 3705 | DigitalOut scl(MMA8451_SCL_PIN); |
mjr | 5:a70c0bce770d | 3706 | DigitalIn sda(MMA8451_SDA_PIN); |
mjr | 5:a70c0bce770d | 3707 | |
mjr | 5:a70c0bce770d | 3708 | // clock the SCL 9 times |
mjr | 5:a70c0bce770d | 3709 | for (int i = 0 ; i < 9 ; ++i) |
mjr | 5:a70c0bce770d | 3710 | { |
mjr | 5:a70c0bce770d | 3711 | scl = 1; |
mjr | 5:a70c0bce770d | 3712 | wait_us(20); |
mjr | 5:a70c0bce770d | 3713 | scl = 0; |
mjr | 5:a70c0bce770d | 3714 | wait_us(20); |
mjr | 5:a70c0bce770d | 3715 | } |
mjr | 5:a70c0bce770d | 3716 | } |
mjr | 76:7f5912b6340e | 3717 | |
mjr | 76:7f5912b6340e | 3718 | |
mjr | 14:df700b22ca08 | 3719 | // --------------------------------------------------------------------------- |
mjr | 14:df700b22ca08 | 3720 | // |
mjr | 33:d832bcab089e | 3721 | // Simple binary (on/off) input debouncer. Requires an input to be stable |
mjr | 33:d832bcab089e | 3722 | // for a given interval before allowing an update. |
mjr | 33:d832bcab089e | 3723 | // |
mjr | 33:d832bcab089e | 3724 | class Debouncer |
mjr | 33:d832bcab089e | 3725 | { |
mjr | 33:d832bcab089e | 3726 | public: |
mjr | 33:d832bcab089e | 3727 | Debouncer(bool initVal, float tmin) |
mjr | 33:d832bcab089e | 3728 | { |
mjr | 33:d832bcab089e | 3729 | t.start(); |
mjr | 33:d832bcab089e | 3730 | this->stable = this->prv = initVal; |
mjr | 33:d832bcab089e | 3731 | this->tmin = tmin; |
mjr | 33:d832bcab089e | 3732 | } |
mjr | 33:d832bcab089e | 3733 | |
mjr | 33:d832bcab089e | 3734 | // Get the current stable value |
mjr | 33:d832bcab089e | 3735 | bool val() const { return stable; } |
mjr | 33:d832bcab089e | 3736 | |
mjr | 33:d832bcab089e | 3737 | // Apply a new sample. This tells us the new raw reading from the |
mjr | 33:d832bcab089e | 3738 | // input device. |
mjr | 33:d832bcab089e | 3739 | void sampleIn(bool val) |
mjr | 33:d832bcab089e | 3740 | { |
mjr | 33:d832bcab089e | 3741 | // If the new raw reading is different from the previous |
mjr | 33:d832bcab089e | 3742 | // raw reading, we've detected an edge - start the clock |
mjr | 33:d832bcab089e | 3743 | // on the sample reader. |
mjr | 33:d832bcab089e | 3744 | if (val != prv) |
mjr | 33:d832bcab089e | 3745 | { |
mjr | 33:d832bcab089e | 3746 | // we have an edge - reset the sample clock |
mjr | 33:d832bcab089e | 3747 | t.reset(); |
mjr | 33:d832bcab089e | 3748 | |
mjr | 33:d832bcab089e | 3749 | // this is now the previous raw sample for nxt time |
mjr | 33:d832bcab089e | 3750 | prv = val; |
mjr | 33:d832bcab089e | 3751 | } |
mjr | 33:d832bcab089e | 3752 | else if (val != stable) |
mjr | 33:d832bcab089e | 3753 | { |
mjr | 33:d832bcab089e | 3754 | // The new raw sample is the same as the last raw sample, |
mjr | 33:d832bcab089e | 3755 | // and different from the stable value. This means that |
mjr | 33:d832bcab089e | 3756 | // the sample value has been the same for the time currently |
mjr | 33:d832bcab089e | 3757 | // indicated by our timer. If enough time has elapsed to |
mjr | 33:d832bcab089e | 3758 | // consider the value stable, apply the new value. |
mjr | 33:d832bcab089e | 3759 | if (t.read() > tmin) |
mjr | 33:d832bcab089e | 3760 | stable = val; |
mjr | 33:d832bcab089e | 3761 | } |
mjr | 33:d832bcab089e | 3762 | } |
mjr | 33:d832bcab089e | 3763 | |
mjr | 33:d832bcab089e | 3764 | private: |
mjr | 33:d832bcab089e | 3765 | // current stable value |
mjr | 33:d832bcab089e | 3766 | bool stable; |
mjr | 33:d832bcab089e | 3767 | |
mjr | 33:d832bcab089e | 3768 | // last raw sample value |
mjr | 33:d832bcab089e | 3769 | bool prv; |
mjr | 33:d832bcab089e | 3770 | |
mjr | 33:d832bcab089e | 3771 | // elapsed time since last raw input change |
mjr | 33:d832bcab089e | 3772 | Timer t; |
mjr | 33:d832bcab089e | 3773 | |
mjr | 33:d832bcab089e | 3774 | // Minimum time interval for stability, in seconds. Input readings |
mjr | 33:d832bcab089e | 3775 | // must be stable for this long before the stable value is updated. |
mjr | 33:d832bcab089e | 3776 | float tmin; |
mjr | 33:d832bcab089e | 3777 | }; |
mjr | 33:d832bcab089e | 3778 | |
mjr | 33:d832bcab089e | 3779 | |
mjr | 33:d832bcab089e | 3780 | // --------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 3781 | // |
mjr | 33:d832bcab089e | 3782 | // TV ON timer. If this feature is enabled, we toggle a TV power switch |
mjr | 33:d832bcab089e | 3783 | // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly |
mjr | 33:d832bcab089e | 3784 | // after the system is powered. This is useful for TVs that don't remember |
mjr | 33:d832bcab089e | 3785 | // their power state and don't turn back on automatically after being |
mjr | 33:d832bcab089e | 3786 | // unplugged and plugged in again. This feature requires external |
mjr | 33:d832bcab089e | 3787 | // circuitry, which is built in to the expansion board and can also be |
mjr | 33:d832bcab089e | 3788 | // built separately - see the Build Guide for the circuit plan. |
mjr | 33:d832bcab089e | 3789 | // |
mjr | 33:d832bcab089e | 3790 | // Theory of operation: to use this feature, the cabinet must have a |
mjr | 33:d832bcab089e | 3791 | // secondary PC-style power supply (PSU2) for the feedback devices, and |
mjr | 33:d832bcab089e | 3792 | // this secondary supply must be plugged in to the same power strip or |
mjr | 33:d832bcab089e | 3793 | // switched outlet that controls power to the TVs. This lets us use PSU2 |
mjr | 33:d832bcab089e | 3794 | // as a proxy for the TV power state - when PSU2 is on, the TV outlet is |
mjr | 33:d832bcab089e | 3795 | // powered, and when PSU2 is off, the TV outlet is off. We use a little |
mjr | 33:d832bcab089e | 3796 | // latch circuit powered by PSU2 to monitor the status. The latch has a |
mjr | 33:d832bcab089e | 3797 | // current state, ON or OFF, that we can read via a GPIO input pin, and |
mjr | 33:d832bcab089e | 3798 | // we can set the state to ON by pulsing a separate GPIO output pin. As |
mjr | 33:d832bcab089e | 3799 | // long as PSU2 is powered off, the latch stays in the OFF state, even if |
mjr | 33:d832bcab089e | 3800 | // we try to set it by pulsing the SET pin. When PSU2 is turned on after |
mjr | 33:d832bcab089e | 3801 | // being off, the latch starts receiving power but stays in the OFF state, |
mjr | 33:d832bcab089e | 3802 | // since this is the initial condition when the power first comes on. So |
mjr | 33:d832bcab089e | 3803 | // if our latch state pin is reading OFF, we know that PSU2 is either off |
mjr | 33:d832bcab089e | 3804 | // now or *was* off some time since we last checked. We use a timer to |
mjr | 33:d832bcab089e | 3805 | // check the state periodically. Each time we see the state is OFF, we |
mjr | 33:d832bcab089e | 3806 | // try pulsing the SET pin. If the state still reads as OFF, we know |
mjr | 33:d832bcab089e | 3807 | // that PSU2 is currently off; if the state changes to ON, though, we |
mjr | 33:d832bcab089e | 3808 | // know that PSU2 has gone from OFF to ON some time between now and the |
mjr | 33:d832bcab089e | 3809 | // previous check. When we see this condition, we start a countdown |
mjr | 33:d832bcab089e | 3810 | // timer, and pulse the TV switch relay when the countdown ends. |
mjr | 33:d832bcab089e | 3811 | // |
mjr | 40:cc0d9814522b | 3812 | // This scheme might seem a little convoluted, but it handles a number |
mjr | 40:cc0d9814522b | 3813 | // of tricky but likely scenarios: |
mjr | 33:d832bcab089e | 3814 | // |
mjr | 33:d832bcab089e | 3815 | // - Most cabinets systems are set up with "soft" PC power switches, |
mjr | 40:cc0d9814522b | 3816 | // so that the PC goes into "Soft Off" mode when the user turns off |
mjr | 40:cc0d9814522b | 3817 | // the cabinet by pushing the power button or using the Shut Down |
mjr | 40:cc0d9814522b | 3818 | // command from within Windows. In Windows parlance, this "soft off" |
mjr | 40:cc0d9814522b | 3819 | // condition is called ACPI State S5. In this state, the main CPU |
mjr | 40:cc0d9814522b | 3820 | // power is turned off, but the motherboard still provides power to |
mjr | 40:cc0d9814522b | 3821 | // USB devices. This means that the KL25Z keeps running. Without |
mjr | 40:cc0d9814522b | 3822 | // the external power sensing circuit, the only hint that we're in |
mjr | 40:cc0d9814522b | 3823 | // this state is that the USB connection to the host goes into Suspend |
mjr | 40:cc0d9814522b | 3824 | // mode, but that could mean other things as well. The latch circuit |
mjr | 40:cc0d9814522b | 3825 | // lets us tell for sure that we're in this state. |
mjr | 33:d832bcab089e | 3826 | // |
mjr | 33:d832bcab089e | 3827 | // - Some cabinet builders might prefer to use "hard" power switches, |
mjr | 33:d832bcab089e | 3828 | // cutting all power to the cabinet, including the PC motherboard (and |
mjr | 33:d832bcab089e | 3829 | // thus the KL25Z) every time the machine is turned off. This also |
mjr | 33:d832bcab089e | 3830 | // applies to the "soft" switch case above when the cabinet is unplugged, |
mjr | 33:d832bcab089e | 3831 | // a power outage occurs, etc. In these cases, the KL25Z will do a cold |
mjr | 33:d832bcab089e | 3832 | // boot when the PC is turned on. We don't know whether the KL25Z |
mjr | 33:d832bcab089e | 3833 | // will power up before or after PSU2, so it's not good enough to |
mjr | 40:cc0d9814522b | 3834 | // observe the current state of PSU2 when we first check. If PSU2 |
mjr | 40:cc0d9814522b | 3835 | // were to come on first, checking only the current state would fool |
mjr | 40:cc0d9814522b | 3836 | // us into thinking that no action is required, because we'd only see |
mjr | 40:cc0d9814522b | 3837 | // that PSU2 is turned on any time we check. The latch handles this |
mjr | 40:cc0d9814522b | 3838 | // case by letting us see that PSU2 was indeed off some time before our |
mjr | 40:cc0d9814522b | 3839 | // first check. |
mjr | 33:d832bcab089e | 3840 | // |
mjr | 33:d832bcab089e | 3841 | // - If the KL25Z is rebooted while the main system is running, or the |
mjr | 40:cc0d9814522b | 3842 | // KL25Z is unplugged and plugged back in, we'll correctly leave the |
mjr | 33:d832bcab089e | 3843 | // TVs as they are. The latch state is independent of the KL25Z's |
mjr | 33:d832bcab089e | 3844 | // power or software state, so it's won't affect the latch state when |
mjr | 33:d832bcab089e | 3845 | // the KL25Z is unplugged or rebooted; when we boot, we'll see that |
mjr | 33:d832bcab089e | 3846 | // the latch is already on and that we don't have to turn on the TVs. |
mjr | 33:d832bcab089e | 3847 | // This is important because TV ON buttons are usually on/off toggles, |
mjr | 33:d832bcab089e | 3848 | // so we don't want to push the button on a TV that's already on. |
mjr | 33:d832bcab089e | 3849 | // |
mjr | 33:d832bcab089e | 3850 | |
mjr | 77:0b96f6867312 | 3851 | // Current PSU2 power state: |
mjr | 33:d832bcab089e | 3852 | // 1 -> default: latch was on at last check, or we haven't checked yet |
mjr | 33:d832bcab089e | 3853 | // 2 -> latch was off at last check, SET pulsed high |
mjr | 33:d832bcab089e | 3854 | // 3 -> SET pulsed low, ready to check status |
mjr | 33:d832bcab089e | 3855 | // 4 -> TV timer countdown in progress |
mjr | 33:d832bcab089e | 3856 | // 5 -> TV relay on |
mjr | 77:0b96f6867312 | 3857 | // 6 -> sending IR signals designed as TV ON signals |
mjr | 73:4e8ce0b18915 | 3858 | uint8_t psu2_state = 1; |
mjr | 73:4e8ce0b18915 | 3859 | |
mjr | 73:4e8ce0b18915 | 3860 | // TV relay state. The TV relay can be controlled by the power-on |
mjr | 73:4e8ce0b18915 | 3861 | // timer and directly from the PC (via USB commands), so keep a |
mjr | 73:4e8ce0b18915 | 3862 | // separate state for each: |
mjr | 73:4e8ce0b18915 | 3863 | // 0x01 -> turned on by power-on timer |
mjr | 73:4e8ce0b18915 | 3864 | // 0x02 -> turned on by USB command |
mjr | 73:4e8ce0b18915 | 3865 | uint8_t tv_relay_state = 0x00; |
mjr | 73:4e8ce0b18915 | 3866 | const uint8_t TV_RELAY_POWERON = 0x01; |
mjr | 73:4e8ce0b18915 | 3867 | const uint8_t TV_RELAY_USB = 0x02; |
mjr | 73:4e8ce0b18915 | 3868 | |
mjr | 77:0b96f6867312 | 3869 | // TV ON IR command state. When the main PSU2 power state reaches |
mjr | 77:0b96f6867312 | 3870 | // the IR phase, we use this sub-state counter to send the TV ON |
mjr | 77:0b96f6867312 | 3871 | // IR signals. We initialize to state 0 when the main state counter |
mjr | 77:0b96f6867312 | 3872 | // reaches the IR step. In state 0, we start transmitting the first |
mjr | 77:0b96f6867312 | 3873 | // (lowest numbered) IR command slot marked as containing a TV ON |
mjr | 77:0b96f6867312 | 3874 | // code, and advance to state 1. In state 1, we check to see if |
mjr | 77:0b96f6867312 | 3875 | // the transmitter is still sending; if so, we do nothing, if so |
mjr | 77:0b96f6867312 | 3876 | // we start transmitting the second TV ON code and advance to state |
mjr | 77:0b96f6867312 | 3877 | // 2. Continue until we run out of TV ON IR codes, at which point |
mjr | 77:0b96f6867312 | 3878 | // we advance to the next main psu2_state step. |
mjr | 77:0b96f6867312 | 3879 | uint8_t tvon_ir_state = 0; |
mjr | 77:0b96f6867312 | 3880 | |
mjr | 77:0b96f6867312 | 3881 | // TV ON switch relay control output pin |
mjr | 73:4e8ce0b18915 | 3882 | DigitalOut *tv_relay; |
mjr | 35:e959ffba78fd | 3883 | |
mjr | 35:e959ffba78fd | 3884 | // PSU2 power sensing circuit connections |
mjr | 35:e959ffba78fd | 3885 | DigitalIn *psu2_status_sense; |
mjr | 35:e959ffba78fd | 3886 | DigitalOut *psu2_status_set; |
mjr | 35:e959ffba78fd | 3887 | |
mjr | 73:4e8ce0b18915 | 3888 | // Apply the current TV relay state |
mjr | 73:4e8ce0b18915 | 3889 | void tvRelayUpdate(uint8_t bit, bool state) |
mjr | 73:4e8ce0b18915 | 3890 | { |
mjr | 73:4e8ce0b18915 | 3891 | // update the state |
mjr | 73:4e8ce0b18915 | 3892 | if (state) |
mjr | 73:4e8ce0b18915 | 3893 | tv_relay_state |= bit; |
mjr | 73:4e8ce0b18915 | 3894 | else |
mjr | 73:4e8ce0b18915 | 3895 | tv_relay_state &= ~bit; |
mjr | 73:4e8ce0b18915 | 3896 | |
mjr | 73:4e8ce0b18915 | 3897 | // set the relay GPIO to the new state |
mjr | 73:4e8ce0b18915 | 3898 | if (tv_relay != 0) |
mjr | 73:4e8ce0b18915 | 3899 | tv_relay->write(tv_relay_state != 0); |
mjr | 73:4e8ce0b18915 | 3900 | } |
mjr | 35:e959ffba78fd | 3901 | |
mjr | 77:0b96f6867312 | 3902 | // PSU2 Status update routine. The main loop calls this from time |
mjr | 77:0b96f6867312 | 3903 | // to time to update the power sensing state and carry out TV ON |
mjr | 77:0b96f6867312 | 3904 | // functions. |
mjr | 77:0b96f6867312 | 3905 | Timer powerStatusTimer; |
mjr | 77:0b96f6867312 | 3906 | uint32_t tv_delay_time_us; |
mjr | 77:0b96f6867312 | 3907 | void powerStatusUpdate(Config &cfg) |
mjr | 33:d832bcab089e | 3908 | { |
mjr | 77:0b96f6867312 | 3909 | // Only update every 1/4 second or so. Note that if the PSU2 |
mjr | 77:0b96f6867312 | 3910 | // circuit isn't configured, the initialization routine won't |
mjr | 77:0b96f6867312 | 3911 | // start the timer, so it'll always read zero and we'll always |
mjr | 77:0b96f6867312 | 3912 | // skip this whole routine. |
mjr | 77:0b96f6867312 | 3913 | if (powerStatusTimer.read_us() < 250000) |
mjr | 77:0b96f6867312 | 3914 | return; |
mjr | 77:0b96f6867312 | 3915 | |
mjr | 77:0b96f6867312 | 3916 | // reset the update timer for next time |
mjr | 77:0b96f6867312 | 3917 | powerStatusTimer.reset(); |
mjr | 77:0b96f6867312 | 3918 | |
mjr | 77:0b96f6867312 | 3919 | // TV ON timer. We start this timer when we detect a change |
mjr | 77:0b96f6867312 | 3920 | // in the PSU2 status from OFF to ON. When the timer reaches |
mjr | 77:0b96f6867312 | 3921 | // the configured TV ON delay time, and the PSU2 power is still |
mjr | 77:0b96f6867312 | 3922 | // on, we'll trigger the TV ON relay and send the TV ON IR codes. |
mjr | 35:e959ffba78fd | 3923 | static Timer tv_timer; |
mjr | 35:e959ffba78fd | 3924 | |
mjr | 33:d832bcab089e | 3925 | // Check our internal state |
mjr | 33:d832bcab089e | 3926 | switch (psu2_state) |
mjr | 33:d832bcab089e | 3927 | { |
mjr | 33:d832bcab089e | 3928 | case 1: |
mjr | 33:d832bcab089e | 3929 | // Default state. This means that the latch was on last |
mjr | 33:d832bcab089e | 3930 | // time we checked or that this is the first check. In |
mjr | 33:d832bcab089e | 3931 | // either case, if the latch is off, switch to state 2 and |
mjr | 33:d832bcab089e | 3932 | // try pulsing the latch. Next time we check, if the latch |
mjr | 33:d832bcab089e | 3933 | // stuck, it means that PSU2 is now on after being off. |
mjr | 35:e959ffba78fd | 3934 | if (!psu2_status_sense->read()) |
mjr | 33:d832bcab089e | 3935 | { |
mjr | 33:d832bcab089e | 3936 | // switch to OFF state |
mjr | 33:d832bcab089e | 3937 | psu2_state = 2; |
mjr | 33:d832bcab089e | 3938 | |
mjr | 33:d832bcab089e | 3939 | // try setting the latch |
mjr | 35:e959ffba78fd | 3940 | psu2_status_set->write(1); |
mjr | 33:d832bcab089e | 3941 | } |
mjr | 77:0b96f6867312 | 3942 | powerTimerDiagState = 0; |
mjr | 33:d832bcab089e | 3943 | break; |
mjr | 33:d832bcab089e | 3944 | |
mjr | 33:d832bcab089e | 3945 | case 2: |
mjr | 33:d832bcab089e | 3946 | // PSU2 was off last time we checked, and we tried setting |
mjr | 33:d832bcab089e | 3947 | // the latch. Drop the SET signal and go to CHECK state. |
mjr | 35:e959ffba78fd | 3948 | psu2_status_set->write(0); |
mjr | 33:d832bcab089e | 3949 | psu2_state = 3; |
mjr | 77:0b96f6867312 | 3950 | powerTimerDiagState = 0; |
mjr | 33:d832bcab089e | 3951 | break; |
mjr | 33:d832bcab089e | 3952 | |
mjr | 33:d832bcab089e | 3953 | case 3: |
mjr | 33:d832bcab089e | 3954 | // CHECK state: we pulsed SET, and we're now ready to see |
mjr | 40:cc0d9814522b | 3955 | // if it stuck. If the latch is now on, PSU2 has transitioned |
mjr | 33:d832bcab089e | 3956 | // from OFF to ON, so start the TV countdown. If the latch is |
mjr | 33:d832bcab089e | 3957 | // off, our SET command didn't stick, so PSU2 is still off. |
mjr | 35:e959ffba78fd | 3958 | if (psu2_status_sense->read()) |
mjr | 33:d832bcab089e | 3959 | { |
mjr | 33:d832bcab089e | 3960 | // The latch stuck, so PSU2 has transitioned from OFF |
mjr | 33:d832bcab089e | 3961 | // to ON. Start the TV countdown timer. |
mjr | 33:d832bcab089e | 3962 | tv_timer.reset(); |
mjr | 33:d832bcab089e | 3963 | tv_timer.start(); |
mjr | 33:d832bcab089e | 3964 | psu2_state = 4; |
mjr | 73:4e8ce0b18915 | 3965 | |
mjr | 73:4e8ce0b18915 | 3966 | // start the power timer diagnostic flashes |
mjr | 73:4e8ce0b18915 | 3967 | powerTimerDiagState = 2; |
mjr | 33:d832bcab089e | 3968 | } |
mjr | 33:d832bcab089e | 3969 | else |
mjr | 33:d832bcab089e | 3970 | { |
mjr | 33:d832bcab089e | 3971 | // The latch didn't stick, so PSU2 was still off at |
mjr | 33:d832bcab089e | 3972 | // our last check. Try pulsing it again in case PSU2 |
mjr | 33:d832bcab089e | 3973 | // was turned on since the last check. |
mjr | 35:e959ffba78fd | 3974 | psu2_status_set->write(1); |
mjr | 33:d832bcab089e | 3975 | psu2_state = 2; |
mjr | 33:d832bcab089e | 3976 | } |
mjr | 33:d832bcab089e | 3977 | break; |
mjr | 33:d832bcab089e | 3978 | |
mjr | 33:d832bcab089e | 3979 | case 4: |
mjr | 77:0b96f6867312 | 3980 | // TV timer countdown in progress. The latch has to stay on during |
mjr | 77:0b96f6867312 | 3981 | // the countdown; if the latch turns off, PSU2 power must have gone |
mjr | 77:0b96f6867312 | 3982 | // off again before the countdown finished. |
mjr | 77:0b96f6867312 | 3983 | if (!psu2_status_sense->read()) |
mjr | 77:0b96f6867312 | 3984 | { |
mjr | 77:0b96f6867312 | 3985 | // power is off - start a new check cycle |
mjr | 77:0b96f6867312 | 3986 | psu2_status_set->write(1); |
mjr | 77:0b96f6867312 | 3987 | psu2_state = 2; |
mjr | 77:0b96f6867312 | 3988 | break; |
mjr | 77:0b96f6867312 | 3989 | } |
mjr | 77:0b96f6867312 | 3990 | |
mjr | 77:0b96f6867312 | 3991 | // Flash the power time diagnostic every two cycles |
mjr | 77:0b96f6867312 | 3992 | powerTimerDiagState = (powerTimerDiagState + 1) & 0x03; |
mjr | 77:0b96f6867312 | 3993 | |
mjr | 77:0b96f6867312 | 3994 | // if we've reached the delay time, pulse the relay |
mjr | 77:0b96f6867312 | 3995 | if (tv_timer.read_us() >= tv_delay_time_us) |
mjr | 33:d832bcab089e | 3996 | { |
mjr | 33:d832bcab089e | 3997 | // turn on the relay for one timer interval |
mjr | 73:4e8ce0b18915 | 3998 | tvRelayUpdate(TV_RELAY_POWERON, true); |
mjr | 33:d832bcab089e | 3999 | psu2_state = 5; |
mjr | 77:0b96f6867312 | 4000 | |
mjr | 77:0b96f6867312 | 4001 | // show solid blue on the diagnostic LED while the relay is on |
mjr | 77:0b96f6867312 | 4002 | powerTimerDiagState = 2; |
mjr | 33:d832bcab089e | 4003 | } |
mjr | 33:d832bcab089e | 4004 | break; |
mjr | 33:d832bcab089e | 4005 | |
mjr | 33:d832bcab089e | 4006 | case 5: |
mjr | 33:d832bcab089e | 4007 | // TV timer relay on. We pulse this for one interval, so |
mjr | 77:0b96f6867312 | 4008 | // it's now time to turn it off. |
mjr | 73:4e8ce0b18915 | 4009 | tvRelayUpdate(TV_RELAY_POWERON, false); |
mjr | 77:0b96f6867312 | 4010 | |
mjr | 77:0b96f6867312 | 4011 | // Proceed to sending any TV ON IR commands |
mjr | 77:0b96f6867312 | 4012 | psu2_state = 6; |
mjr | 77:0b96f6867312 | 4013 | tvon_ir_state = 0; |
mjr | 77:0b96f6867312 | 4014 | |
mjr | 77:0b96f6867312 | 4015 | // diagnostic LEDs off for now |
mjr | 77:0b96f6867312 | 4016 | powerTimerDiagState = 0; |
mjr | 77:0b96f6867312 | 4017 | break; |
mjr | 77:0b96f6867312 | 4018 | |
mjr | 77:0b96f6867312 | 4019 | case 6: |
mjr | 77:0b96f6867312 | 4020 | // Sending TV ON IR signals. Start with the assumption that |
mjr | 77:0b96f6867312 | 4021 | // we have no IR work to do, in which case we're done with the |
mjr | 77:0b96f6867312 | 4022 | // whole TV ON sequence. So by default return to state 1. |
mjr | 33:d832bcab089e | 4023 | psu2_state = 1; |
mjr | 77:0b96f6867312 | 4024 | powerTimerDiagState = 0; |
mjr | 73:4e8ce0b18915 | 4025 | |
mjr | 77:0b96f6867312 | 4026 | // If we have an IR emitter, check for TV ON IR commands |
mjr | 77:0b96f6867312 | 4027 | if (ir_tx != 0) |
mjr | 77:0b96f6867312 | 4028 | { |
mjr | 77:0b96f6867312 | 4029 | // check to see if the last transmission is still in progress |
mjr | 77:0b96f6867312 | 4030 | if (ir_tx->isSending()) |
mjr | 77:0b96f6867312 | 4031 | { |
mjr | 77:0b96f6867312 | 4032 | // We're still sending the last transmission. Stay in |
mjr | 77:0b96f6867312 | 4033 | // state 6. |
mjr | 77:0b96f6867312 | 4034 | psu2_state = 6; |
mjr | 77:0b96f6867312 | 4035 | powerTimerDiagState = 4; |
mjr | 77:0b96f6867312 | 4036 | break; |
mjr | 77:0b96f6867312 | 4037 | } |
mjr | 77:0b96f6867312 | 4038 | |
mjr | 77:0b96f6867312 | 4039 | // The last transmission is done, so check for a new one. |
mjr | 77:0b96f6867312 | 4040 | // Look for the Nth TV ON IR slot, where N is our state |
mjr | 77:0b96f6867312 | 4041 | // number. |
mjr | 77:0b96f6867312 | 4042 | for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i) |
mjr | 77:0b96f6867312 | 4043 | { |
mjr | 77:0b96f6867312 | 4044 | // is this a TV ON command? |
mjr | 77:0b96f6867312 | 4045 | if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0) |
mjr | 77:0b96f6867312 | 4046 | { |
mjr | 77:0b96f6867312 | 4047 | // It's a TV ON command - check if it's the one we're |
mjr | 77:0b96f6867312 | 4048 | // looking for. |
mjr | 77:0b96f6867312 | 4049 | if (n == tvon_ir_state) |
mjr | 77:0b96f6867312 | 4050 | { |
mjr | 77:0b96f6867312 | 4051 | // It's the one. Start transmitting it by |
mjr | 77:0b96f6867312 | 4052 | // pushing its virtual button. |
mjr | 77:0b96f6867312 | 4053 | int vb = IRConfigSlotToVirtualButton[i]; |
mjr | 77:0b96f6867312 | 4054 | ir_tx->pushButton(vb, true); |
mjr | 77:0b96f6867312 | 4055 | |
mjr | 77:0b96f6867312 | 4056 | // Pushing the button starts transmission, and once |
mjr | 77:0b96f6867312 | 4057 | // started, the transmission will run to completion |
mjr | 77:0b96f6867312 | 4058 | // even if the button is no longer pushed. So we |
mjr | 77:0b96f6867312 | 4059 | // can immediately un-push the button, since we only |
mjr | 77:0b96f6867312 | 4060 | // need to send the code once. |
mjr | 77:0b96f6867312 | 4061 | ir_tx->pushButton(vb, false); |
mjr | 77:0b96f6867312 | 4062 | |
mjr | 77:0b96f6867312 | 4063 | // Advance to the next TV ON IR state, where we'll |
mjr | 77:0b96f6867312 | 4064 | // await the end of this transmission and move on to |
mjr | 77:0b96f6867312 | 4065 | // the next one. |
mjr | 77:0b96f6867312 | 4066 | psu2_state = 6; |
mjr | 77:0b96f6867312 | 4067 | tvon_ir_state++; |
mjr | 77:0b96f6867312 | 4068 | break; |
mjr | 77:0b96f6867312 | 4069 | } |
mjr | 77:0b96f6867312 | 4070 | |
mjr | 77:0b96f6867312 | 4071 | // it's not ours - count it and keep looking |
mjr | 77:0b96f6867312 | 4072 | ++n; |
mjr | 77:0b96f6867312 | 4073 | } |
mjr | 77:0b96f6867312 | 4074 | } |
mjr | 77:0b96f6867312 | 4075 | } |
mjr | 33:d832bcab089e | 4076 | break; |
mjr | 33:d832bcab089e | 4077 | } |
mjr | 77:0b96f6867312 | 4078 | |
mjr | 77:0b96f6867312 | 4079 | // update the diagnostic LEDs |
mjr | 77:0b96f6867312 | 4080 | diagLED(); |
mjr | 33:d832bcab089e | 4081 | } |
mjr | 33:d832bcab089e | 4082 | |
mjr | 77:0b96f6867312 | 4083 | // Start the power status timer. If the status sense circuit is enabled |
mjr | 77:0b96f6867312 | 4084 | // in the configuration, we'll set up the pin connections and start the |
mjr | 77:0b96f6867312 | 4085 | // timer for our periodic status checks. Does nothing if any of the pins |
mjr | 77:0b96f6867312 | 4086 | // are configured as NC. |
mjr | 77:0b96f6867312 | 4087 | void startPowerStatusTimer(Config &cfg) |
mjr | 35:e959ffba78fd | 4088 | { |
mjr | 55:4db125cd11a0 | 4089 | // only start the timer if the pins are configured and the delay |
mjr | 55:4db125cd11a0 | 4090 | // time is nonzero |
mjr | 77:0b96f6867312 | 4091 | powerStatusTimer.reset(); |
mjr | 77:0b96f6867312 | 4092 | if (cfg.TVON.statusPin != 0xFF |
mjr | 77:0b96f6867312 | 4093 | && cfg.TVON.latchPin != 0xFF) |
mjr | 35:e959ffba78fd | 4094 | { |
mjr | 77:0b96f6867312 | 4095 | // set up the power sensing circuit connections |
mjr | 53:9b2611964afc | 4096 | psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin)); |
mjr | 53:9b2611964afc | 4097 | psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin)); |
mjr | 77:0b96f6867312 | 4098 | |
mjr | 77:0b96f6867312 | 4099 | // if there's a TV ON relay, set up its control pin |
mjr | 77:0b96f6867312 | 4100 | if (cfg.TVON.relayPin != 0xFF) |
mjr | 77:0b96f6867312 | 4101 | tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin)); |
mjr | 77:0b96f6867312 | 4102 | |
mjr | 77:0b96f6867312 | 4103 | // Set the TV ON delay time. We store the time internally in |
mjr | 77:0b96f6867312 | 4104 | // microseconds, but the configuration stores it in units of |
mjr | 77:0b96f6867312 | 4105 | // 1/100 second = 10ms = 10000us. |
mjr | 77:0b96f6867312 | 4106 | tv_delay_time_us = cfg.TVON.delayTime * 10000;; |
mjr | 77:0b96f6867312 | 4107 | |
mjr | 77:0b96f6867312 | 4108 | // Start the TV timer |
mjr | 77:0b96f6867312 | 4109 | powerStatusTimer.start(); |
mjr | 35:e959ffba78fd | 4110 | } |
mjr | 35:e959ffba78fd | 4111 | } |
mjr | 35:e959ffba78fd | 4112 | |
mjr | 73:4e8ce0b18915 | 4113 | // TV relay manual control timer. This lets us pulse the TV relay |
mjr | 73:4e8ce0b18915 | 4114 | // under manual control, separately from the TV ON timer. |
mjr | 73:4e8ce0b18915 | 4115 | Ticker tv_manualTicker; |
mjr | 73:4e8ce0b18915 | 4116 | void TVManualInt() |
mjr | 73:4e8ce0b18915 | 4117 | { |
mjr | 73:4e8ce0b18915 | 4118 | tv_manualTicker.detach(); |
mjr | 73:4e8ce0b18915 | 4119 | tvRelayUpdate(TV_RELAY_USB, false); |
mjr | 73:4e8ce0b18915 | 4120 | } |
mjr | 73:4e8ce0b18915 | 4121 | |
mjr | 73:4e8ce0b18915 | 4122 | // Operate the TV ON relay. This allows manual control of the relay |
mjr | 73:4e8ce0b18915 | 4123 | // from the PC. See protocol message 65 submessage 11. |
mjr | 73:4e8ce0b18915 | 4124 | // |
mjr | 73:4e8ce0b18915 | 4125 | // Mode: |
mjr | 73:4e8ce0b18915 | 4126 | // 0 = turn relay off |
mjr | 73:4e8ce0b18915 | 4127 | // 1 = turn relay on |
mjr | 73:4e8ce0b18915 | 4128 | // 2 = pulse relay |
mjr | 73:4e8ce0b18915 | 4129 | void TVRelay(int mode) |
mjr | 73:4e8ce0b18915 | 4130 | { |
mjr | 73:4e8ce0b18915 | 4131 | // if there's no TV relay control pin, ignore this |
mjr | 73:4e8ce0b18915 | 4132 | if (tv_relay == 0) |
mjr | 73:4e8ce0b18915 | 4133 | return; |
mjr | 73:4e8ce0b18915 | 4134 | |
mjr | 73:4e8ce0b18915 | 4135 | switch (mode) |
mjr | 73:4e8ce0b18915 | 4136 | { |
mjr | 73:4e8ce0b18915 | 4137 | case 0: |
mjr | 73:4e8ce0b18915 | 4138 | // relay off |
mjr | 73:4e8ce0b18915 | 4139 | tvRelayUpdate(TV_RELAY_USB, false); |
mjr | 73:4e8ce0b18915 | 4140 | break; |
mjr | 73:4e8ce0b18915 | 4141 | |
mjr | 73:4e8ce0b18915 | 4142 | case 1: |
mjr | 73:4e8ce0b18915 | 4143 | // relay on |
mjr | 73:4e8ce0b18915 | 4144 | tvRelayUpdate(TV_RELAY_USB, true); |
mjr | 73:4e8ce0b18915 | 4145 | break; |
mjr | 73:4e8ce0b18915 | 4146 | |
mjr | 73:4e8ce0b18915 | 4147 | case 2: |
mjr | 73:4e8ce0b18915 | 4148 | // Pulse the relay. Turn it on, then set our timer for 250ms. |
mjr | 73:4e8ce0b18915 | 4149 | tvRelayUpdate(TV_RELAY_USB, true); |
mjr | 73:4e8ce0b18915 | 4150 | tv_manualTicker.attach(&TVManualInt, 0.25); |
mjr | 73:4e8ce0b18915 | 4151 | break; |
mjr | 73:4e8ce0b18915 | 4152 | } |
mjr | 73:4e8ce0b18915 | 4153 | } |
mjr | 73:4e8ce0b18915 | 4154 | |
mjr | 73:4e8ce0b18915 | 4155 | |
mjr | 35:e959ffba78fd | 4156 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 4157 | // |
mjr | 35:e959ffba78fd | 4158 | // In-memory configuration data structure. This is the live version in RAM |
mjr | 35:e959ffba78fd | 4159 | // that we use to determine how things are set up. |
mjr | 35:e959ffba78fd | 4160 | // |
mjr | 35:e959ffba78fd | 4161 | // When we save the configuration settings, we copy this structure to |
mjr | 35:e959ffba78fd | 4162 | // non-volatile flash memory. At startup, we check the flash location where |
mjr | 35:e959ffba78fd | 4163 | // we might have saved settings on a previous run, and it's valid, we copy |
mjr | 35:e959ffba78fd | 4164 | // the flash data to this structure. Firmware updates wipe the flash |
mjr | 35:e959ffba78fd | 4165 | // memory area, so you have to use the PC config tool to send the settings |
mjr | 35:e959ffba78fd | 4166 | // again each time the firmware is updated. |
mjr | 35:e959ffba78fd | 4167 | // |
mjr | 35:e959ffba78fd | 4168 | NVM nvm; |
mjr | 35:e959ffba78fd | 4169 | |
mjr | 77:0b96f6867312 | 4170 | // Flag: configuration save requested. The USB command message handler |
mjr | 77:0b96f6867312 | 4171 | // sets this flag when a command is sent requesting the save. We don't |
mjr | 77:0b96f6867312 | 4172 | // do the save inline in the command handler, but handle it on the next |
mjr | 77:0b96f6867312 | 4173 | // main loop iteration. |
mjr | 77:0b96f6867312 | 4174 | const uint8_t SAVE_CONFIG_ONLY = 1; |
mjr | 77:0b96f6867312 | 4175 | const uint8_t SAVE_CONFIG_AND_REBOOT = 2; |
mjr | 77:0b96f6867312 | 4176 | uint8_t saveConfigPending = 0; |
mjr | 77:0b96f6867312 | 4177 | |
mjr | 77:0b96f6867312 | 4178 | // If saveConfigPending == SAVE_CONFIG_AND_REBOOT, this specifies the |
mjr | 77:0b96f6867312 | 4179 | // delay time in seconds before rebooting. |
mjr | 77:0b96f6867312 | 4180 | uint8_t saveConfigRebootTime; |
mjr | 77:0b96f6867312 | 4181 | |
mjr | 35:e959ffba78fd | 4182 | // For convenience, a macro for the Config part of the NVM structure |
mjr | 35:e959ffba78fd | 4183 | #define cfg (nvm.d.c) |
mjr | 35:e959ffba78fd | 4184 | |
mjr | 35:e959ffba78fd | 4185 | // flash memory controller interface |
mjr | 35:e959ffba78fd | 4186 | FreescaleIAP iap; |
mjr | 35:e959ffba78fd | 4187 | |
mjr | 76:7f5912b6340e | 4188 | // NVM structure in memory. This has to be aliend on a sector boundary, |
mjr | 76:7f5912b6340e | 4189 | // since we have to be able to erase its page(s) in order to write it. |
mjr | 76:7f5912b6340e | 4190 | // Further, we have to ensure that nothing else occupies any space within |
mjr | 76:7f5912b6340e | 4191 | // the same pages, since we'll erase that entire space whenever we write. |
mjr | 76:7f5912b6340e | 4192 | static const union |
mjr | 76:7f5912b6340e | 4193 | { |
mjr | 76:7f5912b6340e | 4194 | NVM nvm; // the NVM structure |
mjr | 76:7f5912b6340e | 4195 | char guard[((sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE)*SECTOR_SIZE]; |
mjr | 76:7f5912b6340e | 4196 | } |
mjr | 76:7f5912b6340e | 4197 | flash_nvm_memory __attribute__ ((aligned(SECTOR_SIZE))) = { }; |
mjr | 76:7f5912b6340e | 4198 | |
mjr | 35:e959ffba78fd | 4199 | // figure the flash address as a pointer |
mjr | 35:e959ffba78fd | 4200 | NVM *configFlashAddr() |
mjr | 35:e959ffba78fd | 4201 | { |
mjr | 77:0b96f6867312 | 4202 | return (NVM *)&flash_nvm_memory; |
mjr | 35:e959ffba78fd | 4203 | } |
mjr | 35:e959ffba78fd | 4204 | |
mjr | 76:7f5912b6340e | 4205 | // Load the config from flash. Returns true if a valid non-default |
mjr | 76:7f5912b6340e | 4206 | // configuration was loaded, false if we not. If we return false, |
mjr | 76:7f5912b6340e | 4207 | // we load the factory defaults, so the configuration object is valid |
mjr | 76:7f5912b6340e | 4208 | // in either case. |
mjr | 76:7f5912b6340e | 4209 | bool loadConfigFromFlash() |
mjr | 35:e959ffba78fd | 4210 | { |
mjr | 35:e959ffba78fd | 4211 | // We want to use the KL25Z's on-board flash to store our configuration |
mjr | 35:e959ffba78fd | 4212 | // data persistently, so that we can restore it across power cycles. |
mjr | 35:e959ffba78fd | 4213 | // Unfortunatly, the mbed platform doesn't explicitly support this. |
mjr | 35:e959ffba78fd | 4214 | // mbed treats the on-board flash as a raw storage device for linker |
mjr | 35:e959ffba78fd | 4215 | // output, and assumes that the linker output is the only thing |
mjr | 35:e959ffba78fd | 4216 | // stored there. There's no file system and no allowance for shared |
mjr | 35:e959ffba78fd | 4217 | // use for other purposes. Fortunately, the linker ues the space in |
mjr | 35:e959ffba78fd | 4218 | // the obvious way, storing the entire linked program in a contiguous |
mjr | 35:e959ffba78fd | 4219 | // block starting at the lowest flash address. This means that the |
mjr | 35:e959ffba78fd | 4220 | // rest of flash - from the end of the linked program to the highest |
mjr | 35:e959ffba78fd | 4221 | // flash address - is all unused free space. Writing our data there |
mjr | 35:e959ffba78fd | 4222 | // won't conflict with anything else. Since the linker doesn't give |
mjr | 35:e959ffba78fd | 4223 | // us any programmatic access to the total linker output size, it's |
mjr | 35:e959ffba78fd | 4224 | // safest to just store our config data at the very end of the flash |
mjr | 35:e959ffba78fd | 4225 | // region (i.e., the highest address). As long as it's smaller than |
mjr | 35:e959ffba78fd | 4226 | // the free space, it won't collide with the linker area. |
mjr | 35:e959ffba78fd | 4227 | |
mjr | 35:e959ffba78fd | 4228 | // Figure how many sectors we need for our structure |
mjr | 35:e959ffba78fd | 4229 | NVM *flash = configFlashAddr(); |
mjr | 35:e959ffba78fd | 4230 | |
mjr | 35:e959ffba78fd | 4231 | // if the flash is valid, load it; otherwise initialize to defaults |
mjr | 76:7f5912b6340e | 4232 | bool nvm_valid = flash->valid(); |
mjr | 76:7f5912b6340e | 4233 | if (nvm_valid) |
mjr | 35:e959ffba78fd | 4234 | { |
mjr | 35:e959ffba78fd | 4235 | // flash is valid - load it into the RAM copy of the structure |
mjr | 35:e959ffba78fd | 4236 | memcpy(&nvm, flash, sizeof(NVM)); |
mjr | 35:e959ffba78fd | 4237 | } |
mjr | 35:e959ffba78fd | 4238 | else |
mjr | 35:e959ffba78fd | 4239 | { |
mjr | 76:7f5912b6340e | 4240 | // flash is invalid - load factory settings into RAM structure |
mjr | 35:e959ffba78fd | 4241 | cfg.setFactoryDefaults(); |
mjr | 35:e959ffba78fd | 4242 | } |
mjr | 76:7f5912b6340e | 4243 | |
mjr | 76:7f5912b6340e | 4244 | // tell the caller what happened |
mjr | 76:7f5912b6340e | 4245 | return nvm_valid; |
mjr | 35:e959ffba78fd | 4246 | } |
mjr | 35:e959ffba78fd | 4247 | |
mjr | 35:e959ffba78fd | 4248 | void saveConfigToFlash() |
mjr | 33:d832bcab089e | 4249 | { |
mjr | 76:7f5912b6340e | 4250 | // make sure the plunger sensor isn't busy |
mjr | 76:7f5912b6340e | 4251 | waitPlungerIdle(); |
mjr | 76:7f5912b6340e | 4252 | |
mjr | 76:7f5912b6340e | 4253 | // get the config block location in the flash memory |
mjr | 77:0b96f6867312 | 4254 | uint32_t addr = uint32_t(configFlashAddr()); |
mjr | 76:7f5912b6340e | 4255 | |
mjr | 76:7f5912b6340e | 4256 | // loop until we save it successfully |
mjr | 76:7f5912b6340e | 4257 | for (int i = 0 ; i < 5 ; ++i) |
mjr | 76:7f5912b6340e | 4258 | { |
mjr | 76:7f5912b6340e | 4259 | // show cyan while writing |
mjr | 76:7f5912b6340e | 4260 | diagLED(0, 1, 1); |
mjr | 76:7f5912b6340e | 4261 | |
mjr | 76:7f5912b6340e | 4262 | // save the data |
mjr | 76:7f5912b6340e | 4263 | nvm.save(iap, addr); |
mjr | 76:7f5912b6340e | 4264 | |
mjr | 76:7f5912b6340e | 4265 | // diagnostic lights off |
mjr | 76:7f5912b6340e | 4266 | diagLED(0, 0, 0); |
mjr | 76:7f5912b6340e | 4267 | |
mjr | 76:7f5912b6340e | 4268 | // verify the data |
mjr | 76:7f5912b6340e | 4269 | if (nvm.verify(addr)) |
mjr | 76:7f5912b6340e | 4270 | { |
mjr | 77:0b96f6867312 | 4271 | // show a diagnostic success flash (rapid green) |
mjr | 77:0b96f6867312 | 4272 | for (int j = 0 ; j < 4 ; ++j) |
mjr | 76:7f5912b6340e | 4273 | { |
mjr | 77:0b96f6867312 | 4274 | diagLED(0, 1, 0); |
mjr | 76:7f5912b6340e | 4275 | wait_us(50000); |
mjr | 76:7f5912b6340e | 4276 | diagLED(0, 0, 0); |
mjr | 76:7f5912b6340e | 4277 | wait_us(50000); |
mjr | 76:7f5912b6340e | 4278 | } |
mjr | 76:7f5912b6340e | 4279 | |
mjr | 76:7f5912b6340e | 4280 | // success - no need to write again |
mjr | 76:7f5912b6340e | 4281 | break; |
mjr | 76:7f5912b6340e | 4282 | } |
mjr | 76:7f5912b6340e | 4283 | else |
mjr | 76:7f5912b6340e | 4284 | { |
mjr | 76:7f5912b6340e | 4285 | // Write failed. For diagnostic purposes, flash red a few times. |
mjr | 76:7f5912b6340e | 4286 | // Then go back through the loop to make another attempt at the |
mjr | 76:7f5912b6340e | 4287 | // write. |
mjr | 76:7f5912b6340e | 4288 | for (int j = 0 ; j < 5 ; ++j) |
mjr | 76:7f5912b6340e | 4289 | { |
mjr | 76:7f5912b6340e | 4290 | diagLED(1, 0, 0); |
mjr | 76:7f5912b6340e | 4291 | wait_us(50000); |
mjr | 76:7f5912b6340e | 4292 | diagLED(0, 0, 0); |
mjr | 76:7f5912b6340e | 4293 | wait_us(50000); |
mjr | 76:7f5912b6340e | 4294 | } |
mjr | 76:7f5912b6340e | 4295 | } |
mjr | 76:7f5912b6340e | 4296 | } |
mjr | 76:7f5912b6340e | 4297 | } |
mjr | 76:7f5912b6340e | 4298 | |
mjr | 76:7f5912b6340e | 4299 | // --------------------------------------------------------------------------- |
mjr | 76:7f5912b6340e | 4300 | // |
mjr | 76:7f5912b6340e | 4301 | // Host-loaded configuration. The Flash NVM block above is designed to be |
mjr | 76:7f5912b6340e | 4302 | // stored from within the firmware; in contrast, the host-loaded config is |
mjr | 76:7f5912b6340e | 4303 | // stored by the host, by patching the firwmare binary (.bin) file before |
mjr | 76:7f5912b6340e | 4304 | // downloading it to the device. |
mjr | 76:7f5912b6340e | 4305 | // |
mjr | 76:7f5912b6340e | 4306 | // Ideally, we'd use the host-loaded memory for all configuration updates, |
mjr | 76:7f5912b6340e | 4307 | // because the KL25Z doesn't seem to be 100% reliable writing flash itself. |
mjr | 76:7f5912b6340e | 4308 | // There seems to be a chance of memory bus contention while a write is in |
mjr | 76:7f5912b6340e | 4309 | // progress, which can either corrupt the write or cause the CPU to lock up |
mjr | 76:7f5912b6340e | 4310 | // before the write is completed. It seems more reliable to program the |
mjr | 76:7f5912b6340e | 4311 | // flash externally, via the OpenSDA connection. Unfortunately, none of |
mjr | 76:7f5912b6340e | 4312 | // the available OpenSDA versions are capable of programming specific flash |
mjr | 76:7f5912b6340e | 4313 | // sectors; they always erase the entire flash memory space. We *could* |
mjr | 76:7f5912b6340e | 4314 | // make the Windows config program simply re-download the entire firmware |
mjr | 76:7f5912b6340e | 4315 | // for every configuration update, but I'd rather not because of the extra |
mjr | 76:7f5912b6340e | 4316 | // wear this would put on the flash. So, as a compromise, we'll use the |
mjr | 76:7f5912b6340e | 4317 | // host-loaded config whenever the user explicitly updates the firmware, |
mjr | 76:7f5912b6340e | 4318 | // but we'll use the on-board writer when only making a config change. |
mjr | 76:7f5912b6340e | 4319 | // |
mjr | 76:7f5912b6340e | 4320 | // The memory here is stored using the same format as the USB "Set Config |
mjr | 76:7f5912b6340e | 4321 | // Variable" command. These messages are 8 bytes long and start with a |
mjr | 76:7f5912b6340e | 4322 | // byte value 66, followed by the variable ID, followed by the variable |
mjr | 76:7f5912b6340e | 4323 | // value data in a format defined separately for each variable. To load |
mjr | 76:7f5912b6340e | 4324 | // the data, we'll start at the first byte after the signature, and |
mjr | 76:7f5912b6340e | 4325 | // interpret each 8-byte block as a type 66 message. If the first byte |
mjr | 76:7f5912b6340e | 4326 | // of a block is not 66, we'll take it as the end of the data. |
mjr | 76:7f5912b6340e | 4327 | // |
mjr | 76:7f5912b6340e | 4328 | // We provide a block of storage here big enough for 1,024 variables. |
mjr | 76:7f5912b6340e | 4329 | // The header consists of a 30-byte signature followed by two bytes giving |
mjr | 76:7f5912b6340e | 4330 | // the available space in the area, in this case 8192 == 0x0200. The |
mjr | 76:7f5912b6340e | 4331 | // length is little-endian. Note that the linker will implicitly zero |
mjr | 76:7f5912b6340e | 4332 | // the rest of the block, so if the host doesn't populate it, we'll see |
mjr | 76:7f5912b6340e | 4333 | // that it's empty by virtue of not containing the required '66' byte |
mjr | 76:7f5912b6340e | 4334 | // prefix for the first 8-byte variable block. |
mjr | 76:7f5912b6340e | 4335 | static const uint8_t hostLoadedConfig[8192+32] |
mjr | 76:7f5912b6340e | 4336 | __attribute__ ((aligned(SECTOR_SIZE))) = |
mjr | 76:7f5912b6340e | 4337 | "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length |
mjr | 76:7f5912b6340e | 4338 | |
mjr | 76:7f5912b6340e | 4339 | // Get a pointer to the first byte of the configuration data |
mjr | 76:7f5912b6340e | 4340 | const uint8_t *getHostLoadedConfigData() |
mjr | 76:7f5912b6340e | 4341 | { |
mjr | 76:7f5912b6340e | 4342 | // the first configuration variable byte immediately follows the |
mjr | 76:7f5912b6340e | 4343 | // 32-byte signature header |
mjr | 76:7f5912b6340e | 4344 | return hostLoadedConfig + 32; |
mjr | 76:7f5912b6340e | 4345 | }; |
mjr | 76:7f5912b6340e | 4346 | |
mjr | 76:7f5912b6340e | 4347 | // forward reference to config var store function |
mjr | 76:7f5912b6340e | 4348 | void configVarSet(const uint8_t *); |
mjr | 76:7f5912b6340e | 4349 | |
mjr | 76:7f5912b6340e | 4350 | // Load the host-loaded configuration data into the active (RAM) |
mjr | 76:7f5912b6340e | 4351 | // configuration object. |
mjr | 76:7f5912b6340e | 4352 | void loadHostLoadedConfig() |
mjr | 76:7f5912b6340e | 4353 | { |
mjr | 76:7f5912b6340e | 4354 | // Start at the first configuration variable. Each variable |
mjr | 76:7f5912b6340e | 4355 | // block is in the format of a Set Config Variable command in |
mjr | 76:7f5912b6340e | 4356 | // the USB protocol, so each block starts with a byte value of |
mjr | 76:7f5912b6340e | 4357 | // 66 and is 8 bytes long. Continue as long as we find valid |
mjr | 76:7f5912b6340e | 4358 | // variable blocks, or reach end end of the block. |
mjr | 76:7f5912b6340e | 4359 | const uint8_t *start = getHostLoadedConfigData(); |
mjr | 76:7f5912b6340e | 4360 | const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig); |
mjr | 76:7f5912b6340e | 4361 | for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8) |
mjr | 76:7f5912b6340e | 4362 | { |
mjr | 76:7f5912b6340e | 4363 | // load this variable |
mjr | 76:7f5912b6340e | 4364 | configVarSet(p); |
mjr | 76:7f5912b6340e | 4365 | } |
mjr | 35:e959ffba78fd | 4366 | } |
mjr | 35:e959ffba78fd | 4367 | |
mjr | 35:e959ffba78fd | 4368 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 4369 | // |
mjr | 55:4db125cd11a0 | 4370 | // Pixel dump mode - the host requested a dump of image sensor pixels |
mjr | 55:4db125cd11a0 | 4371 | // (helpful for installing and setting up the sensor and light source) |
mjr | 55:4db125cd11a0 | 4372 | // |
mjr | 55:4db125cd11a0 | 4373 | bool reportPlungerStat = false; |
mjr | 55:4db125cd11a0 | 4374 | uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h) |
mjr | 55:4db125cd11a0 | 4375 | uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report |
mjr | 55:4db125cd11a0 | 4376 | |
mjr | 55:4db125cd11a0 | 4377 | |
mjr | 55:4db125cd11a0 | 4378 | |
mjr | 55:4db125cd11a0 | 4379 | // --------------------------------------------------------------------------- |
mjr | 55:4db125cd11a0 | 4380 | // |
mjr | 40:cc0d9814522b | 4381 | // Night mode setting updates |
mjr | 40:cc0d9814522b | 4382 | // |
mjr | 38:091e511ce8a0 | 4383 | |
mjr | 38:091e511ce8a0 | 4384 | // Turn night mode on or off |
mjr | 38:091e511ce8a0 | 4385 | static void setNightMode(bool on) |
mjr | 38:091e511ce8a0 | 4386 | { |
mjr | 77:0b96f6867312 | 4387 | // Set the new night mode flag in the noisy output class. Note |
mjr | 77:0b96f6867312 | 4388 | // that we use the status report bit flag value 0x02 when on, so |
mjr | 77:0b96f6867312 | 4389 | // that we can just '|' this into the overall status bits. |
mjr | 77:0b96f6867312 | 4390 | nightMode = on ? 0x02 : 0x00; |
mjr | 55:4db125cd11a0 | 4391 | |
mjr | 40:cc0d9814522b | 4392 | // update the special output pin that shows the night mode state |
mjr | 53:9b2611964afc | 4393 | int port = int(cfg.nightMode.port) - 1; |
mjr | 53:9b2611964afc | 4394 | if (port >= 0 && port < numOutputs) |
mjr | 53:9b2611964afc | 4395 | lwPin[port]->set(nightMode ? 255 : 0); |
mjr | 76:7f5912b6340e | 4396 | |
mjr | 76:7f5912b6340e | 4397 | // Reset all outputs at their current value, so that the underlying |
mjr | 76:7f5912b6340e | 4398 | // physical outputs get turned on or off as appropriate for the night |
mjr | 76:7f5912b6340e | 4399 | // mode change. |
mjr | 76:7f5912b6340e | 4400 | for (int i = 0 ; i < numOutputs ; ++i) |
mjr | 76:7f5912b6340e | 4401 | lwPin[i]->set(outLevel[i]); |
mjr | 76:7f5912b6340e | 4402 | |
mjr | 76:7f5912b6340e | 4403 | // update 74HC595 outputs |
mjr | 76:7f5912b6340e | 4404 | if (hc595 != 0) |
mjr | 76:7f5912b6340e | 4405 | hc595->update(); |
mjr | 38:091e511ce8a0 | 4406 | } |
mjr | 38:091e511ce8a0 | 4407 | |
mjr | 38:091e511ce8a0 | 4408 | // Toggle night mode |
mjr | 38:091e511ce8a0 | 4409 | static void toggleNightMode() |
mjr | 38:091e511ce8a0 | 4410 | { |
mjr | 53:9b2611964afc | 4411 | setNightMode(!nightMode); |
mjr | 38:091e511ce8a0 | 4412 | } |
mjr | 38:091e511ce8a0 | 4413 | |
mjr | 38:091e511ce8a0 | 4414 | |
mjr | 38:091e511ce8a0 | 4415 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 4416 | // |
mjr | 35:e959ffba78fd | 4417 | // Plunger Sensor |
mjr | 35:e959ffba78fd | 4418 | // |
mjr | 35:e959ffba78fd | 4419 | |
mjr | 35:e959ffba78fd | 4420 | // the plunger sensor interface object |
mjr | 35:e959ffba78fd | 4421 | PlungerSensor *plungerSensor = 0; |
mjr | 35:e959ffba78fd | 4422 | |
mjr | 76:7f5912b6340e | 4423 | // wait for the plunger sensor to complete any outstanding read |
mjr | 76:7f5912b6340e | 4424 | static void waitPlungerIdle(void) |
mjr | 76:7f5912b6340e | 4425 | { |
mjr | 76:7f5912b6340e | 4426 | while (!plungerSensor->ready()) { } |
mjr | 76:7f5912b6340e | 4427 | } |
mjr | 76:7f5912b6340e | 4428 | |
mjr | 35:e959ffba78fd | 4429 | // Create the plunger sensor based on the current configuration. If |
mjr | 35:e959ffba78fd | 4430 | // there's already a sensor object, we'll delete it. |
mjr | 35:e959ffba78fd | 4431 | void createPlunger() |
mjr | 35:e959ffba78fd | 4432 | { |
mjr | 35:e959ffba78fd | 4433 | // create the new sensor object according to the type |
mjr | 35:e959ffba78fd | 4434 | switch (cfg.plunger.sensorType) |
mjr | 35:e959ffba78fd | 4435 | { |
mjr | 35:e959ffba78fd | 4436 | case PlungerType_TSL1410RS: |
mjr | 69:cc5039284fac | 4437 | // TSL1410R, serial mode (all pixels read in one file) |
mjr | 35:e959ffba78fd | 4438 | // pins are: SI, CLOCK, AO |
mjr | 53:9b2611964afc | 4439 | plungerSensor = new PlungerSensorTSL1410R( |
mjr | 53:9b2611964afc | 4440 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 53:9b2611964afc | 4441 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 53:9b2611964afc | 4442 | wirePinName(cfg.plunger.sensorPin[2]), |
mjr | 53:9b2611964afc | 4443 | NC); |
mjr | 35:e959ffba78fd | 4444 | break; |
mjr | 35:e959ffba78fd | 4445 | |
mjr | 35:e959ffba78fd | 4446 | case PlungerType_TSL1410RP: |
mjr | 69:cc5039284fac | 4447 | // TSL1410R, parallel mode (each half-sensor's pixels read separately) |
mjr | 35:e959ffba78fd | 4448 | // pins are: SI, CLOCK, AO1, AO2 |
mjr | 53:9b2611964afc | 4449 | plungerSensor = new PlungerSensorTSL1410R( |
mjr | 53:9b2611964afc | 4450 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 53:9b2611964afc | 4451 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 53:9b2611964afc | 4452 | wirePinName(cfg.plunger.sensorPin[2]), |
mjr | 53:9b2611964afc | 4453 | wirePinName(cfg.plunger.sensorPin[3])); |
mjr | 35:e959ffba78fd | 4454 | break; |
mjr | 35:e959ffba78fd | 4455 | |
mjr | 69:cc5039284fac | 4456 | case PlungerType_TSL1412SS: |
mjr | 69:cc5039284fac | 4457 | // TSL1412S, serial mode |
mjr | 35:e959ffba78fd | 4458 | // pins are: SI, CLOCK, AO1, AO2 |
mjr | 53:9b2611964afc | 4459 | plungerSensor = new PlungerSensorTSL1412R( |
mjr | 53:9b2611964afc | 4460 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 53:9b2611964afc | 4461 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 53:9b2611964afc | 4462 | wirePinName(cfg.plunger.sensorPin[2]), |
mjr | 53:9b2611964afc | 4463 | NC); |
mjr | 35:e959ffba78fd | 4464 | break; |
mjr | 35:e959ffba78fd | 4465 | |
mjr | 69:cc5039284fac | 4466 | case PlungerType_TSL1412SP: |
mjr | 69:cc5039284fac | 4467 | // TSL1412S, parallel mode |
mjr | 35:e959ffba78fd | 4468 | // pins are: SI, CLOCK, AO1, AO2 |
mjr | 53:9b2611964afc | 4469 | plungerSensor = new PlungerSensorTSL1412R( |
mjr | 53:9b2611964afc | 4470 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 53:9b2611964afc | 4471 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 53:9b2611964afc | 4472 | wirePinName(cfg.plunger.sensorPin[2]), |
mjr | 53:9b2611964afc | 4473 | wirePinName(cfg.plunger.sensorPin[3])); |
mjr | 35:e959ffba78fd | 4474 | break; |
mjr | 35:e959ffba78fd | 4475 | |
mjr | 35:e959ffba78fd | 4476 | case PlungerType_Pot: |
mjr | 35:e959ffba78fd | 4477 | // pins are: AO |
mjr | 53:9b2611964afc | 4478 | plungerSensor = new PlungerSensorPot( |
mjr | 53:9b2611964afc | 4479 | wirePinName(cfg.plunger.sensorPin[0])); |
mjr | 35:e959ffba78fd | 4480 | break; |
mjr | 35:e959ffba78fd | 4481 | |
mjr | 35:e959ffba78fd | 4482 | case PlungerType_None: |
mjr | 35:e959ffba78fd | 4483 | default: |
mjr | 35:e959ffba78fd | 4484 | plungerSensor = new PlungerSensorNull(); |
mjr | 35:e959ffba78fd | 4485 | break; |
mjr | 35:e959ffba78fd | 4486 | } |
mjr | 33:d832bcab089e | 4487 | } |
mjr | 33:d832bcab089e | 4488 | |
mjr | 52:8298b2a73eb2 | 4489 | // Global plunger calibration mode flag |
mjr | 52:8298b2a73eb2 | 4490 | bool plungerCalMode; |
mjr | 52:8298b2a73eb2 | 4491 | |
mjr | 48:058ace2aed1d | 4492 | // Plunger reader |
mjr | 51:57eb311faafa | 4493 | // |
mjr | 51:57eb311faafa | 4494 | // This class encapsulates our plunger data processing. At the simplest |
mjr | 51:57eb311faafa | 4495 | // level, we read the position from the sensor, adjust it for the |
mjr | 51:57eb311faafa | 4496 | // calibration settings, and report the calibrated position to the host. |
mjr | 51:57eb311faafa | 4497 | // |
mjr | 51:57eb311faafa | 4498 | // In addition, we constantly monitor the data for "firing" motions. |
mjr | 51:57eb311faafa | 4499 | // A firing motion is when the user pulls back the plunger and releases |
mjr | 51:57eb311faafa | 4500 | // it, allowing it to shoot forward under the force of the main spring. |
mjr | 51:57eb311faafa | 4501 | // When we detect that this is happening, we briefly stop reporting the |
mjr | 51:57eb311faafa | 4502 | // real physical position that we're reading from the sensor, and instead |
mjr | 51:57eb311faafa | 4503 | // report a synthetic series of positions that depicts an idealized |
mjr | 51:57eb311faafa | 4504 | // firing motion. |
mjr | 51:57eb311faafa | 4505 | // |
mjr | 51:57eb311faafa | 4506 | // The point of the synthetic reports is to correct for distortions |
mjr | 51:57eb311faafa | 4507 | // created by the joystick interface conventions used by VP and other |
mjr | 51:57eb311faafa | 4508 | // PC pinball emulators. The convention they use is simply to have the |
mjr | 51:57eb311faafa | 4509 | // plunger device report the instantaneous position of the real plunger. |
mjr | 51:57eb311faafa | 4510 | // The PC software polls this reported position periodically, and moves |
mjr | 51:57eb311faafa | 4511 | // the on-screen virtual plunger in sync with the real plunger. This |
mjr | 51:57eb311faafa | 4512 | // works fine for human-scale motion when the user is manually moving |
mjr | 51:57eb311faafa | 4513 | // the plunger. But it doesn't work for the high speed motion of a |
mjr | 51:57eb311faafa | 4514 | // release. The plunger simply moves too fast. VP polls in about 10ms |
mjr | 51:57eb311faafa | 4515 | // intervals; the plunger takes about 50ms to travel from fully |
mjr | 51:57eb311faafa | 4516 | // retracted to the park position when released. The low sampling |
mjr | 51:57eb311faafa | 4517 | // rate relative to the rate of change of the sampled data creates |
mjr | 51:57eb311faafa | 4518 | // a classic digital aliasing effect. |
mjr | 51:57eb311faafa | 4519 | // |
mjr | 51:57eb311faafa | 4520 | // The synthetic reporting scheme compensates for the interface |
mjr | 51:57eb311faafa | 4521 | // distortions by essentially changing to a coarse enough timescale |
mjr | 51:57eb311faafa | 4522 | // that VP can reliably interpret the readings. Conceptually, there |
mjr | 51:57eb311faafa | 4523 | // are three steps involved in doing this. First, we analyze the |
mjr | 51:57eb311faafa | 4524 | // actual sensor data to detect and characterize the release motion. |
mjr | 51:57eb311faafa | 4525 | // Second, once we think we have a release in progress, we fit the |
mjr | 51:57eb311faafa | 4526 | // data to a mathematical model of the release. The model we use is |
mjr | 51:57eb311faafa | 4527 | // dead simple: we consider the release to have one parameter, namely |
mjr | 51:57eb311faafa | 4528 | // the retraction distance at the moment the user lets go. This is an |
mjr | 51:57eb311faafa | 4529 | // excellent proxy in the real physical system for the final speed |
mjr | 51:57eb311faafa | 4530 | // when the plunger hits the ball, and it also happens to match how |
mjr | 51:57eb311faafa | 4531 | // VP models it internally. Third, we construct synthetic reports |
mjr | 51:57eb311faafa | 4532 | // that will make VP's internal state match our model. This is also |
mjr | 51:57eb311faafa | 4533 | // pretty simple: we just need to send VP the maximum retraction |
mjr | 51:57eb311faafa | 4534 | // distance for long enough to be sure that it polls it at least |
mjr | 51:57eb311faafa | 4535 | // once, and then send it the park position for long enough to |
mjr | 51:57eb311faafa | 4536 | // ensure that VP will complete the same firing motion. The |
mjr | 51:57eb311faafa | 4537 | // immediate jump from the maximum point to the zero point will |
mjr | 51:57eb311faafa | 4538 | // cause VP to move its simulation model plunger forward from the |
mjr | 51:57eb311faafa | 4539 | // starting point at its natural spring acceleration rate, which |
mjr | 51:57eb311faafa | 4540 | // is exactly what the real plunger just did. |
mjr | 51:57eb311faafa | 4541 | // |
mjr | 48:058ace2aed1d | 4542 | class PlungerReader |
mjr | 48:058ace2aed1d | 4543 | { |
mjr | 48:058ace2aed1d | 4544 | public: |
mjr | 48:058ace2aed1d | 4545 | PlungerReader() |
mjr | 48:058ace2aed1d | 4546 | { |
mjr | 48:058ace2aed1d | 4547 | // not in a firing event yet |
mjr | 48:058ace2aed1d | 4548 | firing = 0; |
mjr | 48:058ace2aed1d | 4549 | |
mjr | 48:058ace2aed1d | 4550 | // no history yet |
mjr | 48:058ace2aed1d | 4551 | histIdx = 0; |
mjr | 55:4db125cd11a0 | 4552 | |
mjr | 55:4db125cd11a0 | 4553 | // initialize the filter |
mjr | 55:4db125cd11a0 | 4554 | initFilter(); |
mjr | 48:058ace2aed1d | 4555 | } |
mjr | 76:7f5912b6340e | 4556 | |
mjr | 48:058ace2aed1d | 4557 | // Collect a reading from the plunger sensor. The main loop calls |
mjr | 48:058ace2aed1d | 4558 | // this frequently to read the current raw position data from the |
mjr | 48:058ace2aed1d | 4559 | // sensor. We analyze the raw data to produce the calibrated |
mjr | 48:058ace2aed1d | 4560 | // position that we report to the PC via the joystick interface. |
mjr | 48:058ace2aed1d | 4561 | void read() |
mjr | 48:058ace2aed1d | 4562 | { |
mjr | 76:7f5912b6340e | 4563 | // if the sensor is busy, skip the reading on this round |
mjr | 76:7f5912b6340e | 4564 | if (!plungerSensor->ready()) |
mjr | 76:7f5912b6340e | 4565 | return; |
mjr | 76:7f5912b6340e | 4566 | |
mjr | 48:058ace2aed1d | 4567 | // Read a sample from the sensor |
mjr | 48:058ace2aed1d | 4568 | PlungerReading r; |
mjr | 48:058ace2aed1d | 4569 | if (plungerSensor->read(r)) |
mjr | 48:058ace2aed1d | 4570 | { |
mjr | 69:cc5039284fac | 4571 | // filter the raw sensor reading |
mjr | 69:cc5039284fac | 4572 | applyPreFilter(r); |
mjr | 69:cc5039284fac | 4573 | |
mjr | 51:57eb311faafa | 4574 | // Pull the previous reading from the history |
mjr | 50:40015764bbe6 | 4575 | const PlungerReading &prv = nthHist(0); |
mjr | 48:058ace2aed1d | 4576 | |
mjr | 69:cc5039284fac | 4577 | // If the new reading is within 1ms of the previous reading, |
mjr | 48:058ace2aed1d | 4578 | // ignore it. We require a minimum time between samples to |
mjr | 48:058ace2aed1d | 4579 | // ensure that we have a usable amount of precision in the |
mjr | 48:058ace2aed1d | 4580 | // denominator (the time interval) for calculating the plunger |
mjr | 69:cc5039284fac | 4581 | // velocity. The CCD sensor hardware takes about 2.5ms to |
mjr | 69:cc5039284fac | 4582 | // read, so it will never be affected by this, but other sensor |
mjr | 69:cc5039284fac | 4583 | // types don't all have the same hardware cycle time, so we need |
mjr | 69:cc5039284fac | 4584 | // to throttle them artificially. E.g., the potentiometer only |
mjr | 69:cc5039284fac | 4585 | // needs one ADC sample per reading, which only takes about 15us. |
mjr | 69:cc5039284fac | 4586 | // We don't need to check which sensor type we have here; we |
mjr | 69:cc5039284fac | 4587 | // just ignore readings until the minimum interval has passed, |
mjr | 69:cc5039284fac | 4588 | // so if the sensor is already slower than this, we'll end up |
mjr | 69:cc5039284fac | 4589 | // using all of its readings. |
mjr | 69:cc5039284fac | 4590 | if (uint32_t(r.t - prv.t) < 1000UL) |
mjr | 48:058ace2aed1d | 4591 | return; |
mjr | 53:9b2611964afc | 4592 | |
mjr | 53:9b2611964afc | 4593 | // check for calibration mode |
mjr | 53:9b2611964afc | 4594 | if (plungerCalMode) |
mjr | 53:9b2611964afc | 4595 | { |
mjr | 53:9b2611964afc | 4596 | // Calibration mode. Adjust the calibration bounds to fit |
mjr | 53:9b2611964afc | 4597 | // the value. If this value is beyond the current min or max, |
mjr | 53:9b2611964afc | 4598 | // expand the envelope to include this new value. |
mjr | 53:9b2611964afc | 4599 | if (r.pos > cfg.plunger.cal.max) |
mjr | 53:9b2611964afc | 4600 | cfg.plunger.cal.max = r.pos; |
mjr | 53:9b2611964afc | 4601 | if (r.pos < cfg.plunger.cal.min) |
mjr | 53:9b2611964afc | 4602 | cfg.plunger.cal.min = r.pos; |
mjr | 76:7f5912b6340e | 4603 | |
mjr | 76:7f5912b6340e | 4604 | // update our cached calibration data |
mjr | 76:7f5912b6340e | 4605 | onUpdateCal(); |
mjr | 50:40015764bbe6 | 4606 | |
mjr | 53:9b2611964afc | 4607 | // If we're in calibration state 0, we're waiting for the |
mjr | 53:9b2611964afc | 4608 | // plunger to come to rest at the park position so that we |
mjr | 53:9b2611964afc | 4609 | // can take a sample of the park position. Check to see if |
mjr | 53:9b2611964afc | 4610 | // we've been at rest for a minimum interval. |
mjr | 53:9b2611964afc | 4611 | if (calState == 0) |
mjr | 53:9b2611964afc | 4612 | { |
mjr | 53:9b2611964afc | 4613 | if (abs(r.pos - calZeroStart.pos) < 65535/3/50) |
mjr | 53:9b2611964afc | 4614 | { |
mjr | 53:9b2611964afc | 4615 | // we're close enough - make sure we've been here long enough |
mjr | 53:9b2611964afc | 4616 | if (uint32_t(r.t - calZeroStart.t) > 100000UL) |
mjr | 53:9b2611964afc | 4617 | { |
mjr | 53:9b2611964afc | 4618 | // we've been at rest long enough - count it |
mjr | 53:9b2611964afc | 4619 | calZeroPosSum += r.pos; |
mjr | 53:9b2611964afc | 4620 | calZeroPosN += 1; |
mjr | 53:9b2611964afc | 4621 | |
mjr | 53:9b2611964afc | 4622 | // update the zero position from the new average |
mjr | 53:9b2611964afc | 4623 | cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN); |
mjr | 76:7f5912b6340e | 4624 | onUpdateCal(); |
mjr | 53:9b2611964afc | 4625 | |
mjr | 53:9b2611964afc | 4626 | // switch to calibration state 1 - at rest |
mjr | 53:9b2611964afc | 4627 | calState = 1; |
mjr | 53:9b2611964afc | 4628 | } |
mjr | 53:9b2611964afc | 4629 | } |
mjr | 53:9b2611964afc | 4630 | else |
mjr | 53:9b2611964afc | 4631 | { |
mjr | 53:9b2611964afc | 4632 | // we're not close to the last position - start again here |
mjr | 53:9b2611964afc | 4633 | calZeroStart = r; |
mjr | 53:9b2611964afc | 4634 | } |
mjr | 53:9b2611964afc | 4635 | } |
mjr | 53:9b2611964afc | 4636 | |
mjr | 53:9b2611964afc | 4637 | // Rescale to the joystick range, and adjust for the current |
mjr | 53:9b2611964afc | 4638 | // park position, but don't calibrate. We don't know the maximum |
mjr | 53:9b2611964afc | 4639 | // point yet, so we can't calibrate the range. |
mjr | 53:9b2611964afc | 4640 | r.pos = int( |
mjr | 53:9b2611964afc | 4641 | (long(r.pos - cfg.plunger.cal.zero) * JOYMAX) |
mjr | 53:9b2611964afc | 4642 | / (65535 - cfg.plunger.cal.zero)); |
mjr | 53:9b2611964afc | 4643 | } |
mjr | 53:9b2611964afc | 4644 | else |
mjr | 53:9b2611964afc | 4645 | { |
mjr | 53:9b2611964afc | 4646 | // Not in calibration mode. Apply the existing calibration and |
mjr | 53:9b2611964afc | 4647 | // rescale to the joystick range. |
mjr | 76:7f5912b6340e | 4648 | r.pos = applyCal(r.pos); |
mjr | 53:9b2611964afc | 4649 | |
mjr | 53:9b2611964afc | 4650 | // limit the result to the valid joystick range |
mjr | 53:9b2611964afc | 4651 | if (r.pos > JOYMAX) |
mjr | 53:9b2611964afc | 4652 | r.pos = JOYMAX; |
mjr | 53:9b2611964afc | 4653 | else if (r.pos < -JOYMAX) |
mjr | 53:9b2611964afc | 4654 | r.pos = -JOYMAX; |
mjr | 53:9b2611964afc | 4655 | } |
mjr | 50:40015764bbe6 | 4656 | |
mjr | 50:40015764bbe6 | 4657 | // Calculate the velocity from the second-to-last reading |
mjr | 50:40015764bbe6 | 4658 | // to here, in joystick distance units per microsecond. |
mjr | 50:40015764bbe6 | 4659 | // Note that we use the second-to-last reading rather than |
mjr | 50:40015764bbe6 | 4660 | // the very last reading to give ourselves a little longer |
mjr | 50:40015764bbe6 | 4661 | // time base. The time base is so short between consecutive |
mjr | 50:40015764bbe6 | 4662 | // readings that the error bars in the position would be too |
mjr | 50:40015764bbe6 | 4663 | // large. |
mjr | 50:40015764bbe6 | 4664 | // |
mjr | 50:40015764bbe6 | 4665 | // For reference, the physical plunger velocity ranges up |
mjr | 50:40015764bbe6 | 4666 | // to about 100,000 joystick distance units/sec. This is |
mjr | 50:40015764bbe6 | 4667 | // based on empirical measurements. The typical time for |
mjr | 50:40015764bbe6 | 4668 | // a real plunger to travel the full distance when released |
mjr | 50:40015764bbe6 | 4669 | // from full retraction is about 85ms, so the average velocity |
mjr | 50:40015764bbe6 | 4670 | // covering this distance is about 56,000 units/sec. The |
mjr | 50:40015764bbe6 | 4671 | // peak is probably about twice that. In real-world units, |
mjr | 50:40015764bbe6 | 4672 | // this translates to an average speed of about .75 m/s and |
mjr | 50:40015764bbe6 | 4673 | // a peak of about 1.5 m/s. |
mjr | 50:40015764bbe6 | 4674 | // |
mjr | 50:40015764bbe6 | 4675 | // Note that we actually calculate the value here in units |
mjr | 50:40015764bbe6 | 4676 | // per *microsecond* - the discussion above is in terms of |
mjr | 50:40015764bbe6 | 4677 | // units/sec because that's more on a human scale. Our |
mjr | 50:40015764bbe6 | 4678 | // choice of internal units here really isn't important, |
mjr | 50:40015764bbe6 | 4679 | // since we only use the velocity for comparison purposes, |
mjr | 50:40015764bbe6 | 4680 | // to detect acceleration trends. We therefore save ourselves |
mjr | 50:40015764bbe6 | 4681 | // a little CPU time by using the natural units of our inputs. |
mjr | 76:7f5912b6340e | 4682 | // |
mjr | 76:7f5912b6340e | 4683 | // We don't care about the absolute velocity; this is a purely |
mjr | 76:7f5912b6340e | 4684 | // relative calculation. So to speed things up, calculate it |
mjr | 76:7f5912b6340e | 4685 | // in the integer domain, using a fixed-point representation |
mjr | 76:7f5912b6340e | 4686 | // with a 64K scale. In other words, with the stored values |
mjr | 76:7f5912b6340e | 4687 | // shifted left 16 bits from the actual values: the value 1 |
mjr | 76:7f5912b6340e | 4688 | // is stored as 1<<16. The position readings are in the range |
mjr | 76:7f5912b6340e | 4689 | // -JOYMAX..JOYMAX, which fits in 16 bits, and the time |
mjr | 76:7f5912b6340e | 4690 | // differences will generally be on the scale of a few |
mjr | 76:7f5912b6340e | 4691 | // milliseconds = thousands of microseconds. So the velocity |
mjr | 76:7f5912b6340e | 4692 | // figures will fit nicely into a 32-bit fixed point value with |
mjr | 76:7f5912b6340e | 4693 | // a 64K scale factor. |
mjr | 51:57eb311faafa | 4694 | const PlungerReading &prv2 = nthHist(1); |
mjr | 76:7f5912b6340e | 4695 | int v = ((r.pos - prv2.pos) << 16)/(r.t - prv2.t); |
mjr | 50:40015764bbe6 | 4696 | |
mjr | 50:40015764bbe6 | 4697 | // presume we'll report the latest instantaneous reading |
mjr | 50:40015764bbe6 | 4698 | z = r.pos; |
mjr | 48:058ace2aed1d | 4699 | |
mjr | 50:40015764bbe6 | 4700 | // Check firing events |
mjr | 50:40015764bbe6 | 4701 | switch (firing) |
mjr | 50:40015764bbe6 | 4702 | { |
mjr | 50:40015764bbe6 | 4703 | case 0: |
mjr | 50:40015764bbe6 | 4704 | // Default state - not in a firing event. |
mjr | 50:40015764bbe6 | 4705 | |
mjr | 50:40015764bbe6 | 4706 | // If we have forward motion from a position that's retracted |
mjr | 50:40015764bbe6 | 4707 | // beyond a threshold, enter phase 1. If we're not pulled back |
mjr | 50:40015764bbe6 | 4708 | // far enough, don't bother with this, as a release wouldn't |
mjr | 50:40015764bbe6 | 4709 | // be strong enough to require the synthetic firing treatment. |
mjr | 50:40015764bbe6 | 4710 | if (v < 0 && r.pos > JOYMAX/6) |
mjr | 50:40015764bbe6 | 4711 | { |
mjr | 53:9b2611964afc | 4712 | // enter firing phase 1 |
mjr | 50:40015764bbe6 | 4713 | firingMode(1); |
mjr | 50:40015764bbe6 | 4714 | |
mjr | 53:9b2611964afc | 4715 | // if in calibration state 1 (at rest), switch to state 2 (not |
mjr | 53:9b2611964afc | 4716 | // at rest) |
mjr | 53:9b2611964afc | 4717 | if (calState == 1) |
mjr | 53:9b2611964afc | 4718 | calState = 2; |
mjr | 53:9b2611964afc | 4719 | |
mjr | 50:40015764bbe6 | 4720 | // we don't have a freeze position yet, but note the start time |
mjr | 50:40015764bbe6 | 4721 | f1.pos = 0; |
mjr | 50:40015764bbe6 | 4722 | f1.t = r.t; |
mjr | 50:40015764bbe6 | 4723 | |
mjr | 50:40015764bbe6 | 4724 | // Figure the barrel spring "bounce" position in case we complete |
mjr | 50:40015764bbe6 | 4725 | // the firing event. This is the amount that the forward momentum |
mjr | 50:40015764bbe6 | 4726 | // of the plunger will compress the barrel spring at the peak of |
mjr | 50:40015764bbe6 | 4727 | // the forward travel during the release. Assume that this is |
mjr | 50:40015764bbe6 | 4728 | // linearly proportional to the starting retraction distance. |
mjr | 50:40015764bbe6 | 4729 | // The barrel spring is about 1/6 the length of the main spring, |
mjr | 50:40015764bbe6 | 4730 | // so figure it compresses by 1/6 the distance. (This is overly |
mjr | 53:9b2611964afc | 4731 | // simplistic and not very accurate, but it seems to give good |
mjr | 50:40015764bbe6 | 4732 | // visual results, and that's all it's for.) |
mjr | 50:40015764bbe6 | 4733 | f2.pos = -r.pos/6; |
mjr | 50:40015764bbe6 | 4734 | } |
mjr | 50:40015764bbe6 | 4735 | break; |
mjr | 50:40015764bbe6 | 4736 | |
mjr | 50:40015764bbe6 | 4737 | case 1: |
mjr | 50:40015764bbe6 | 4738 | // Phase 1 - acceleration. If we cross the zero point, trigger |
mjr | 50:40015764bbe6 | 4739 | // the firing event. Otherwise, continue monitoring as long as we |
mjr | 50:40015764bbe6 | 4740 | // see acceleration in the forward direction. |
mjr | 50:40015764bbe6 | 4741 | if (r.pos <= 0) |
mjr | 50:40015764bbe6 | 4742 | { |
mjr | 50:40015764bbe6 | 4743 | // switch to the synthetic firing mode |
mjr | 50:40015764bbe6 | 4744 | firingMode(2); |
mjr | 50:40015764bbe6 | 4745 | z = f2.pos; |
mjr | 50:40015764bbe6 | 4746 | |
mjr | 50:40015764bbe6 | 4747 | // note the start time for the firing phase |
mjr | 50:40015764bbe6 | 4748 | f2.t = r.t; |
mjr | 53:9b2611964afc | 4749 | |
mjr | 53:9b2611964afc | 4750 | // if in calibration mode, and we're in state 2 (moving), |
mjr | 53:9b2611964afc | 4751 | // collect firing statistics for calibration purposes |
mjr | 53:9b2611964afc | 4752 | if (plungerCalMode && calState == 2) |
mjr | 53:9b2611964afc | 4753 | { |
mjr | 53:9b2611964afc | 4754 | // collect a new zero point for the average when we |
mjr | 53:9b2611964afc | 4755 | // come to rest |
mjr | 53:9b2611964afc | 4756 | calState = 0; |
mjr | 53:9b2611964afc | 4757 | |
mjr | 53:9b2611964afc | 4758 | // collect average firing time statistics in millseconds, if |
mjr | 53:9b2611964afc | 4759 | // it's in range (20 to 255 ms) |
mjr | 53:9b2611964afc | 4760 | int dt = uint32_t(r.t - f1.t)/1000UL; |
mjr | 53:9b2611964afc | 4761 | if (dt >= 20 && dt <= 255) |
mjr | 53:9b2611964afc | 4762 | { |
mjr | 53:9b2611964afc | 4763 | calRlsTimeSum += dt; |
mjr | 53:9b2611964afc | 4764 | calRlsTimeN += 1; |
mjr | 53:9b2611964afc | 4765 | cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN); |
mjr | 53:9b2611964afc | 4766 | } |
mjr | 53:9b2611964afc | 4767 | } |
mjr | 50:40015764bbe6 | 4768 | } |
mjr | 50:40015764bbe6 | 4769 | else if (v < vprv2) |
mjr | 50:40015764bbe6 | 4770 | { |
mjr | 50:40015764bbe6 | 4771 | // We're still accelerating, and we haven't crossed the zero |
mjr | 50:40015764bbe6 | 4772 | // point yet - stay in phase 1. (Note that forward motion is |
mjr | 50:40015764bbe6 | 4773 | // negative velocity, so accelerating means that the new |
mjr | 50:40015764bbe6 | 4774 | // velocity is more negative than the previous one, which |
mjr | 50:40015764bbe6 | 4775 | // is to say numerically less than - that's why the test |
mjr | 50:40015764bbe6 | 4776 | // for acceleration is the seemingly backwards 'v < vprv'.) |
mjr | 50:40015764bbe6 | 4777 | |
mjr | 50:40015764bbe6 | 4778 | // If we've been accelerating for at least 20ms, we're probably |
mjr | 50:40015764bbe6 | 4779 | // really doing a release. Jump back to the recent local |
mjr | 50:40015764bbe6 | 4780 | // maximum where the release *really* started. This is always |
mjr | 50:40015764bbe6 | 4781 | // a bit before we started seeing sustained accleration, because |
mjr | 50:40015764bbe6 | 4782 | // the plunger motion for the first few milliseconds is too slow |
mjr | 50:40015764bbe6 | 4783 | // for our sensor precision to reliably detect acceleration. |
mjr | 50:40015764bbe6 | 4784 | if (f1.pos != 0) |
mjr | 50:40015764bbe6 | 4785 | { |
mjr | 50:40015764bbe6 | 4786 | // we have a reset point - freeze there |
mjr | 50:40015764bbe6 | 4787 | z = f1.pos; |
mjr | 50:40015764bbe6 | 4788 | } |
mjr | 50:40015764bbe6 | 4789 | else if (uint32_t(r.t - f1.t) >= 20000UL) |
mjr | 50:40015764bbe6 | 4790 | { |
mjr | 50:40015764bbe6 | 4791 | // it's been long enough - set a reset point. |
mjr | 50:40015764bbe6 | 4792 | f1.pos = z = histLocalMax(r.t, 50000UL); |
mjr | 50:40015764bbe6 | 4793 | } |
mjr | 50:40015764bbe6 | 4794 | } |
mjr | 50:40015764bbe6 | 4795 | else |
mjr | 50:40015764bbe6 | 4796 | { |
mjr | 50:40015764bbe6 | 4797 | // We're not accelerating. Cancel the firing event. |
mjr | 50:40015764bbe6 | 4798 | firingMode(0); |
mjr | 53:9b2611964afc | 4799 | calState = 1; |
mjr | 50:40015764bbe6 | 4800 | } |
mjr | 50:40015764bbe6 | 4801 | break; |
mjr | 50:40015764bbe6 | 4802 | |
mjr | 50:40015764bbe6 | 4803 | case 2: |
mjr | 50:40015764bbe6 | 4804 | // Phase 2 - start of synthetic firing event. Report the fake |
mjr | 50:40015764bbe6 | 4805 | // bounce for 25ms. VP polls the joystick about every 10ms, so |
mjr | 50:40015764bbe6 | 4806 | // this should be enough time to guarantee that VP sees this |
mjr | 50:40015764bbe6 | 4807 | // report at least once. |
mjr | 50:40015764bbe6 | 4808 | if (uint32_t(r.t - f2.t) < 25000UL) |
mjr | 50:40015764bbe6 | 4809 | { |
mjr | 50:40015764bbe6 | 4810 | // report the bounce position |
mjr | 50:40015764bbe6 | 4811 | z = f2.pos; |
mjr | 50:40015764bbe6 | 4812 | } |
mjr | 50:40015764bbe6 | 4813 | else |
mjr | 50:40015764bbe6 | 4814 | { |
mjr | 50:40015764bbe6 | 4815 | // it's been long enough - switch to phase 3, where we |
mjr | 50:40015764bbe6 | 4816 | // report the park position until the real plunger comes |
mjr | 50:40015764bbe6 | 4817 | // to rest |
mjr | 50:40015764bbe6 | 4818 | firingMode(3); |
mjr | 50:40015764bbe6 | 4819 | z = 0; |
mjr | 50:40015764bbe6 | 4820 | |
mjr | 50:40015764bbe6 | 4821 | // set the start of the "stability window" to the rest position |
mjr | 50:40015764bbe6 | 4822 | f3s.t = r.t; |
mjr | 50:40015764bbe6 | 4823 | f3s.pos = 0; |
mjr | 50:40015764bbe6 | 4824 | |
mjr | 50:40015764bbe6 | 4825 | // set the start of the "retraction window" to the actual position |
mjr | 50:40015764bbe6 | 4826 | f3r = r; |
mjr | 50:40015764bbe6 | 4827 | } |
mjr | 50:40015764bbe6 | 4828 | break; |
mjr | 50:40015764bbe6 | 4829 | |
mjr | 50:40015764bbe6 | 4830 | case 3: |
mjr | 50:40015764bbe6 | 4831 | // Phase 3 - in synthetic firing event. Report the park position |
mjr | 50:40015764bbe6 | 4832 | // until the plunger position stabilizes. Left to its own devices, |
mjr | 50:40015764bbe6 | 4833 | // the plunger will usualy bounce off the barrel spring several |
mjr | 50:40015764bbe6 | 4834 | // times before coming to rest, so we'll see oscillating motion |
mjr | 50:40015764bbe6 | 4835 | // for a second or two. In the simplest case, we can aimply wait |
mjr | 50:40015764bbe6 | 4836 | // for the plunger to stop moving for a short time. However, the |
mjr | 50:40015764bbe6 | 4837 | // player might intervene by pulling the plunger back again, so |
mjr | 50:40015764bbe6 | 4838 | // watch for that motion as well. If we're just bouncing freely, |
mjr | 50:40015764bbe6 | 4839 | // we'll see the direction change frequently. If the player is |
mjr | 50:40015764bbe6 | 4840 | // moving the plunger manually, the direction will be constant |
mjr | 50:40015764bbe6 | 4841 | // for longer. |
mjr | 50:40015764bbe6 | 4842 | if (v >= 0) |
mjr | 50:40015764bbe6 | 4843 | { |
mjr | 50:40015764bbe6 | 4844 | // We're moving back (or standing still). If this has been |
mjr | 50:40015764bbe6 | 4845 | // going on for a while, the user must have taken control. |
mjr | 50:40015764bbe6 | 4846 | if (uint32_t(r.t - f3r.t) > 65000UL) |
mjr | 50:40015764bbe6 | 4847 | { |
mjr | 50:40015764bbe6 | 4848 | // user has taken control - cancel firing mode |
mjr | 50:40015764bbe6 | 4849 | firingMode(0); |
mjr | 50:40015764bbe6 | 4850 | break; |
mjr | 50:40015764bbe6 | 4851 | } |
mjr | 50:40015764bbe6 | 4852 | } |
mjr | 50:40015764bbe6 | 4853 | else |
mjr | 50:40015764bbe6 | 4854 | { |
mjr | 50:40015764bbe6 | 4855 | // forward motion - reset retraction window |
mjr | 50:40015764bbe6 | 4856 | f3r.t = r.t; |
mjr | 50:40015764bbe6 | 4857 | } |
mjr | 50:40015764bbe6 | 4858 | |
mjr | 53:9b2611964afc | 4859 | // Check if we're close to the last starting point. The joystick |
mjr | 53:9b2611964afc | 4860 | // positive axis range (0..4096) covers the retraction distance of |
mjr | 53:9b2611964afc | 4861 | // about 2.5", so 1" is about 1638 joystick units, hence 1/16" is |
mjr | 53:9b2611964afc | 4862 | // about 100 units. |
mjr | 53:9b2611964afc | 4863 | if (abs(r.pos - f3s.pos) < 100) |
mjr | 50:40015764bbe6 | 4864 | { |
mjr | 53:9b2611964afc | 4865 | // It's at roughly the same position as the starting point. |
mjr | 53:9b2611964afc | 4866 | // Consider it stable if this has been true for 300ms. |
mjr | 50:40015764bbe6 | 4867 | if (uint32_t(r.t - f3s.t) > 30000UL) |
mjr | 50:40015764bbe6 | 4868 | { |
mjr | 50:40015764bbe6 | 4869 | // we're done with the firing event |
mjr | 50:40015764bbe6 | 4870 | firingMode(0); |
mjr | 50:40015764bbe6 | 4871 | } |
mjr | 50:40015764bbe6 | 4872 | else |
mjr | 50:40015764bbe6 | 4873 | { |
mjr | 50:40015764bbe6 | 4874 | // it's close to the last position but hasn't been |
mjr | 50:40015764bbe6 | 4875 | // here long enough; stay in firing mode and continue |
mjr | 50:40015764bbe6 | 4876 | // to report the park position |
mjr | 50:40015764bbe6 | 4877 | z = 0; |
mjr | 50:40015764bbe6 | 4878 | } |
mjr | 50:40015764bbe6 | 4879 | } |
mjr | 50:40015764bbe6 | 4880 | else |
mjr | 50:40015764bbe6 | 4881 | { |
mjr | 50:40015764bbe6 | 4882 | // It's not close enough to the last starting point, so use |
mjr | 50:40015764bbe6 | 4883 | // this as a new starting point, and stay in firing mode. |
mjr | 50:40015764bbe6 | 4884 | f3s = r; |
mjr | 50:40015764bbe6 | 4885 | z = 0; |
mjr | 50:40015764bbe6 | 4886 | } |
mjr | 50:40015764bbe6 | 4887 | break; |
mjr | 50:40015764bbe6 | 4888 | } |
mjr | 50:40015764bbe6 | 4889 | |
mjr | 50:40015764bbe6 | 4890 | // save the velocity reading for next time |
mjr | 50:40015764bbe6 | 4891 | vprv2 = vprv; |
mjr | 50:40015764bbe6 | 4892 | vprv = v; |
mjr | 50:40015764bbe6 | 4893 | |
mjr | 50:40015764bbe6 | 4894 | // add the new reading to the history |
mjr | 76:7f5912b6340e | 4895 | hist[histIdx] = r; |
mjr | 76:7f5912b6340e | 4896 | if (++histIdx > countof(hist)) |
mjr | 76:7f5912b6340e | 4897 | histIdx = 0; |
mjr | 58:523fdcffbe6d | 4898 | |
mjr | 69:cc5039284fac | 4899 | // apply the post-processing filter |
mjr | 69:cc5039284fac | 4900 | zf = applyPostFilter(); |
mjr | 48:058ace2aed1d | 4901 | } |
mjr | 48:058ace2aed1d | 4902 | } |
mjr | 48:058ace2aed1d | 4903 | |
mjr | 48:058ace2aed1d | 4904 | // Get the current value to report through the joystick interface |
mjr | 58:523fdcffbe6d | 4905 | int16_t getPosition() |
mjr | 58:523fdcffbe6d | 4906 | { |
mjr | 58:523fdcffbe6d | 4907 | // return the last filtered reading |
mjr | 58:523fdcffbe6d | 4908 | return zf; |
mjr | 55:4db125cd11a0 | 4909 | } |
mjr | 58:523fdcffbe6d | 4910 | |
mjr | 48:058ace2aed1d | 4911 | // get the timestamp of the current joystick report (microseconds) |
mjr | 50:40015764bbe6 | 4912 | uint32_t getTimestamp() const { return nthHist(0).t; } |
mjr | 48:058ace2aed1d | 4913 | |
mjr | 48:058ace2aed1d | 4914 | // Set calibration mode on or off |
mjr | 52:8298b2a73eb2 | 4915 | void setCalMode(bool f) |
mjr | 48:058ace2aed1d | 4916 | { |
mjr | 52:8298b2a73eb2 | 4917 | // check to see if we're entering calibration mode |
mjr | 52:8298b2a73eb2 | 4918 | if (f && !plungerCalMode) |
mjr | 52:8298b2a73eb2 | 4919 | { |
mjr | 52:8298b2a73eb2 | 4920 | // reset the calibration in the configuration |
mjr | 48:058ace2aed1d | 4921 | cfg.plunger.cal.begin(); |
mjr | 52:8298b2a73eb2 | 4922 | |
mjr | 52:8298b2a73eb2 | 4923 | // start in state 0 (waiting to settle) |
mjr | 52:8298b2a73eb2 | 4924 | calState = 0; |
mjr | 52:8298b2a73eb2 | 4925 | calZeroPosSum = 0; |
mjr | 52:8298b2a73eb2 | 4926 | calZeroPosN = 0; |
mjr | 52:8298b2a73eb2 | 4927 | calRlsTimeSum = 0; |
mjr | 52:8298b2a73eb2 | 4928 | calRlsTimeN = 0; |
mjr | 52:8298b2a73eb2 | 4929 | |
mjr | 52:8298b2a73eb2 | 4930 | // set the initial zero point to the current position |
mjr | 52:8298b2a73eb2 | 4931 | PlungerReading r; |
mjr | 52:8298b2a73eb2 | 4932 | if (plungerSensor->read(r)) |
mjr | 52:8298b2a73eb2 | 4933 | { |
mjr | 52:8298b2a73eb2 | 4934 | // got a reading - use it as the initial zero point |
mjr | 69:cc5039284fac | 4935 | applyPreFilter(r); |
mjr | 52:8298b2a73eb2 | 4936 | cfg.plunger.cal.zero = r.pos; |
mjr | 76:7f5912b6340e | 4937 | onUpdateCal(); |
mjr | 52:8298b2a73eb2 | 4938 | |
mjr | 52:8298b2a73eb2 | 4939 | // use it as the starting point for the settling watch |
mjr | 53:9b2611964afc | 4940 | calZeroStart = r; |
mjr | 52:8298b2a73eb2 | 4941 | } |
mjr | 52:8298b2a73eb2 | 4942 | else |
mjr | 52:8298b2a73eb2 | 4943 | { |
mjr | 52:8298b2a73eb2 | 4944 | // no reading available - use the default 1/6 position |
mjr | 52:8298b2a73eb2 | 4945 | cfg.plunger.cal.zero = 0xffff/6; |
mjr | 76:7f5912b6340e | 4946 | onUpdateCal(); |
mjr | 52:8298b2a73eb2 | 4947 | |
mjr | 52:8298b2a73eb2 | 4948 | // we don't have a starting point for the setting watch |
mjr | 53:9b2611964afc | 4949 | calZeroStart.pos = -65535; |
mjr | 53:9b2611964afc | 4950 | calZeroStart.t = 0; |
mjr | 53:9b2611964afc | 4951 | } |
mjr | 53:9b2611964afc | 4952 | } |
mjr | 53:9b2611964afc | 4953 | else if (!f && plungerCalMode) |
mjr | 53:9b2611964afc | 4954 | { |
mjr | 53:9b2611964afc | 4955 | // Leaving calibration mode. Make sure the max is past the |
mjr | 53:9b2611964afc | 4956 | // zero point - if it's not, we'd have a zero or negative |
mjr | 53:9b2611964afc | 4957 | // denominator for the scaling calculation, which would be |
mjr | 53:9b2611964afc | 4958 | // physically meaningless. |
mjr | 53:9b2611964afc | 4959 | if (cfg.plunger.cal.max <= cfg.plunger.cal.zero) |
mjr | 53:9b2611964afc | 4960 | { |
mjr | 53:9b2611964afc | 4961 | // bad settings - reset to defaults |
mjr | 53:9b2611964afc | 4962 | cfg.plunger.cal.max = 0xffff; |
mjr | 53:9b2611964afc | 4963 | cfg.plunger.cal.zero = 0xffff/6; |
mjr | 76:7f5912b6340e | 4964 | onUpdateCal(); |
mjr | 52:8298b2a73eb2 | 4965 | } |
mjr | 52:8298b2a73eb2 | 4966 | } |
mjr | 52:8298b2a73eb2 | 4967 | |
mjr | 48:058ace2aed1d | 4968 | // remember the new mode |
mjr | 52:8298b2a73eb2 | 4969 | plungerCalMode = f; |
mjr | 48:058ace2aed1d | 4970 | } |
mjr | 48:058ace2aed1d | 4971 | |
mjr | 76:7f5912b6340e | 4972 | // Cached inverse of the calibration range. This is for calculating |
mjr | 76:7f5912b6340e | 4973 | // the calibrated plunger position given a raw sensor reading. The |
mjr | 76:7f5912b6340e | 4974 | // cached inverse is calculated as |
mjr | 76:7f5912b6340e | 4975 | // |
mjr | 76:7f5912b6340e | 4976 | // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero) |
mjr | 76:7f5912b6340e | 4977 | // |
mjr | 76:7f5912b6340e | 4978 | // To convert a raw sensor reading to a calibrated position, calculate |
mjr | 76:7f5912b6340e | 4979 | // |
mjr | 76:7f5912b6340e | 4980 | // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16 |
mjr | 76:7f5912b6340e | 4981 | // |
mjr | 76:7f5912b6340e | 4982 | // That yields the calibration result without performing a division. |
mjr | 76:7f5912b6340e | 4983 | int invCalRange; |
mjr | 76:7f5912b6340e | 4984 | |
mjr | 76:7f5912b6340e | 4985 | // apply the calibration range to a reading |
mjr | 76:7f5912b6340e | 4986 | inline int applyCal(int reading) |
mjr | 76:7f5912b6340e | 4987 | { |
mjr | 76:7f5912b6340e | 4988 | return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16; |
mjr | 76:7f5912b6340e | 4989 | } |
mjr | 76:7f5912b6340e | 4990 | |
mjr | 76:7f5912b6340e | 4991 | void onUpdateCal() |
mjr | 76:7f5912b6340e | 4992 | { |
mjr | 76:7f5912b6340e | 4993 | invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero); |
mjr | 76:7f5912b6340e | 4994 | } |
mjr | 76:7f5912b6340e | 4995 | |
mjr | 48:058ace2aed1d | 4996 | // is a firing event in progress? |
mjr | 53:9b2611964afc | 4997 | bool isFiring() { return firing == 3; } |
mjr | 76:7f5912b6340e | 4998 | |
mjr | 48:058ace2aed1d | 4999 | private: |
mjr | 52:8298b2a73eb2 | 5000 | |
mjr | 74:822a92bc11d2 | 5001 | // Plunger data filtering mode: optionally apply filtering to the raw |
mjr | 74:822a92bc11d2 | 5002 | // plunger sensor readings to try to reduce noise in the signal. This |
mjr | 74:822a92bc11d2 | 5003 | // is designed for the TSL1410/12 optical sensors, where essentially all |
mjr | 74:822a92bc11d2 | 5004 | // of the noise in the signal comes from lack of sharpness in the shadow |
mjr | 74:822a92bc11d2 | 5005 | // edge. When the shadow is blurry, the edge detector has to pick a pixel, |
mjr | 74:822a92bc11d2 | 5006 | // even though the edge is actually a gradient spanning several pixels. |
mjr | 74:822a92bc11d2 | 5007 | // The edge detection algorithm decides on the exact pixel, but whatever |
mjr | 74:822a92bc11d2 | 5008 | // the algorithm, the choice is going to be somewhat arbitrary given that |
mjr | 74:822a92bc11d2 | 5009 | // there's really no one pixel that's "the edge" when the edge actually |
mjr | 74:822a92bc11d2 | 5010 | // covers multiple pixels. This can make the choice of pixel sensitive to |
mjr | 74:822a92bc11d2 | 5011 | // small changes in exposure and pixel respose from frame to frame, which |
mjr | 74:822a92bc11d2 | 5012 | // means that the reported edge position can move by a pixel or two from |
mjr | 74:822a92bc11d2 | 5013 | // one frame to the next even when the physical plunger is perfectly still. |
mjr | 74:822a92bc11d2 | 5014 | // That's the noise we're talking about. |
mjr | 74:822a92bc11d2 | 5015 | // |
mjr | 74:822a92bc11d2 | 5016 | // We previously applied a mild hysteresis filter to the signal to try to |
mjr | 74:822a92bc11d2 | 5017 | // eliminate this noise. The filter tracked the average over the last |
mjr | 74:822a92bc11d2 | 5018 | // several samples, and rejected readings that wandered within a few |
mjr | 74:822a92bc11d2 | 5019 | // pixels of the average. If a certain number of readings moved away from |
mjr | 74:822a92bc11d2 | 5020 | // the average in the same direction, even by small amounts, the filter |
mjr | 74:822a92bc11d2 | 5021 | // accepted the changes, on the assumption that they represented actual |
mjr | 74:822a92bc11d2 | 5022 | // slow movement of the plunger. This filter was applied after the firing |
mjr | 74:822a92bc11d2 | 5023 | // detection. |
mjr | 74:822a92bc11d2 | 5024 | // |
mjr | 74:822a92bc11d2 | 5025 | // I also tried a simpler filter that rejected changes that were too fast |
mjr | 74:822a92bc11d2 | 5026 | // to be physically possible, as well as changes that were very close to |
mjr | 74:822a92bc11d2 | 5027 | // the last reported position (i.e., simple hysteresis). The "too fast" |
mjr | 74:822a92bc11d2 | 5028 | // filter was there to reject spurious readings where the edge detector |
mjr | 74:822a92bc11d2 | 5029 | // mistook a bad pixel value as an edge. |
mjr | 74:822a92bc11d2 | 5030 | // |
mjr | 74:822a92bc11d2 | 5031 | // The new "mode 2" edge detector (see ccdSensor.h) seems to do a better |
mjr | 74:822a92bc11d2 | 5032 | // job of rejecting pixel-level noise by itself than the older "mode 0" |
mjr | 74:822a92bc11d2 | 5033 | // algorithm did, so I removed the filtering entirely. Any filtering has |
mjr | 74:822a92bc11d2 | 5034 | // some downsides, so it's better to reduce noise in the underlying signal |
mjr | 74:822a92bc11d2 | 5035 | // as much as possible first. It seems possible to get a very stable signal |
mjr | 74:822a92bc11d2 | 5036 | // now with a combination of the mode 2 edge detector and optimizing the |
mjr | 74:822a92bc11d2 | 5037 | // physical sensor arrangement, especially optimizing the light source to |
mjr | 74:822a92bc11d2 | 5038 | // cast as sharp as shadow as possible and adjusting the brightness to |
mjr | 74:822a92bc11d2 | 5039 | // maximize bright/dark contrast in the image. |
mjr | 74:822a92bc11d2 | 5040 | // |
mjr | 74:822a92bc11d2 | 5041 | // 0 = No filtering (current default) |
mjr | 74:822a92bc11d2 | 5042 | // 1 = Filter the data after firing detection using moving average |
mjr | 74:822a92bc11d2 | 5043 | // hysteresis filter (old version, used in most 2016 releases) |
mjr | 74:822a92bc11d2 | 5044 | // 2 = Filter the data before firing detection using simple hysteresis |
mjr | 74:822a92bc11d2 | 5045 | // plus spurious "too fast" motion rejection |
mjr | 74:822a92bc11d2 | 5046 | // |
mjr | 73:4e8ce0b18915 | 5047 | #define PLUNGER_FILTERING_MODE 0 |
mjr | 73:4e8ce0b18915 | 5048 | |
mjr | 73:4e8ce0b18915 | 5049 | #if PLUNGER_FILTERING_MODE == 0 |
mjr | 69:cc5039284fac | 5050 | // Disable all filtering |
mjr | 74:822a92bc11d2 | 5051 | inline void applyPreFilter(PlungerReading &r) { } |
mjr | 74:822a92bc11d2 | 5052 | inline int applyPostFilter() { return z; } |
mjr | 73:4e8ce0b18915 | 5053 | #elif PLUNGER_FILTERING_MODE == 1 |
mjr | 73:4e8ce0b18915 | 5054 | // Apply pre-processing filter. This filter is applied to the raw |
mjr | 73:4e8ce0b18915 | 5055 | // value coming off the sensor, before calibration or fire-event |
mjr | 73:4e8ce0b18915 | 5056 | // processing. |
mjr | 73:4e8ce0b18915 | 5057 | void applyPreFilter(PlungerReading &r) |
mjr | 73:4e8ce0b18915 | 5058 | { |
mjr | 73:4e8ce0b18915 | 5059 | } |
mjr | 73:4e8ce0b18915 | 5060 | |
mjr | 73:4e8ce0b18915 | 5061 | // Figure the next post-processing filtered value. This applies a |
mjr | 73:4e8ce0b18915 | 5062 | // hysteresis filter to the last raw z value and returns the |
mjr | 73:4e8ce0b18915 | 5063 | // filtered result. |
mjr | 73:4e8ce0b18915 | 5064 | int applyPostFilter() |
mjr | 73:4e8ce0b18915 | 5065 | { |
mjr | 73:4e8ce0b18915 | 5066 | if (firing <= 1) |
mjr | 73:4e8ce0b18915 | 5067 | { |
mjr | 73:4e8ce0b18915 | 5068 | // Filter limit - 5 samples. Once we've been moving |
mjr | 73:4e8ce0b18915 | 5069 | // in the same direction for this many samples, we'll |
mjr | 73:4e8ce0b18915 | 5070 | // clear the history and start over. |
mjr | 73:4e8ce0b18915 | 5071 | const int filterMask = 0x1f; |
mjr | 73:4e8ce0b18915 | 5072 | |
mjr | 73:4e8ce0b18915 | 5073 | // figure the last average |
mjr | 73:4e8ce0b18915 | 5074 | int lastAvg = int(filterSum / filterN); |
mjr | 73:4e8ce0b18915 | 5075 | |
mjr | 73:4e8ce0b18915 | 5076 | // figure the direction of this sample relative to the average, |
mjr | 73:4e8ce0b18915 | 5077 | // and shift it in to our bit mask of recent direction data |
mjr | 73:4e8ce0b18915 | 5078 | if (z != lastAvg) |
mjr | 73:4e8ce0b18915 | 5079 | { |
mjr | 73:4e8ce0b18915 | 5080 | // shift the new direction bit into the vector |
mjr | 73:4e8ce0b18915 | 5081 | filterDir <<= 1; |
mjr | 73:4e8ce0b18915 | 5082 | if (z > lastAvg) filterDir |= 1; |
mjr | 73:4e8ce0b18915 | 5083 | } |
mjr | 73:4e8ce0b18915 | 5084 | |
mjr | 73:4e8ce0b18915 | 5085 | // keep only the last N readings, up to the filter limit |
mjr | 73:4e8ce0b18915 | 5086 | filterDir &= filterMask; |
mjr | 73:4e8ce0b18915 | 5087 | |
mjr | 73:4e8ce0b18915 | 5088 | // if we've been moving consistently in one direction (all 1's |
mjr | 73:4e8ce0b18915 | 5089 | // or all 0's in the direction history vector), reset the average |
mjr | 73:4e8ce0b18915 | 5090 | if (filterDir == 0x00 || filterDir == filterMask) |
mjr | 73:4e8ce0b18915 | 5091 | { |
mjr | 73:4e8ce0b18915 | 5092 | // motion away from the average - reset the average |
mjr | 73:4e8ce0b18915 | 5093 | filterDir = 0x5555; |
mjr | 73:4e8ce0b18915 | 5094 | filterN = 1; |
mjr | 73:4e8ce0b18915 | 5095 | filterSum = (lastAvg + z)/2; |
mjr | 73:4e8ce0b18915 | 5096 | return int16_t(filterSum); |
mjr | 73:4e8ce0b18915 | 5097 | } |
mjr | 73:4e8ce0b18915 | 5098 | else |
mjr | 73:4e8ce0b18915 | 5099 | { |
mjr | 73:4e8ce0b18915 | 5100 | // we're directionless - return the new average, with the |
mjr | 73:4e8ce0b18915 | 5101 | // new sample included |
mjr | 73:4e8ce0b18915 | 5102 | filterSum += z; |
mjr | 73:4e8ce0b18915 | 5103 | ++filterN; |
mjr | 73:4e8ce0b18915 | 5104 | return int16_t(filterSum / filterN); |
mjr | 73:4e8ce0b18915 | 5105 | } |
mjr | 73:4e8ce0b18915 | 5106 | } |
mjr | 73:4e8ce0b18915 | 5107 | else |
mjr | 73:4e8ce0b18915 | 5108 | { |
mjr | 73:4e8ce0b18915 | 5109 | // firing mode - skip the filter |
mjr | 73:4e8ce0b18915 | 5110 | filterN = 1; |
mjr | 73:4e8ce0b18915 | 5111 | filterSum = z; |
mjr | 73:4e8ce0b18915 | 5112 | filterDir = 0x5555; |
mjr | 73:4e8ce0b18915 | 5113 | return z; |
mjr | 73:4e8ce0b18915 | 5114 | } |
mjr | 73:4e8ce0b18915 | 5115 | } |
mjr | 73:4e8ce0b18915 | 5116 | #elif PLUNGER_FILTERING_MODE == 2 |
mjr | 69:cc5039284fac | 5117 | // Apply pre-processing filter. This filter is applied to the raw |
mjr | 69:cc5039284fac | 5118 | // value coming off the sensor, before calibration or fire-event |
mjr | 69:cc5039284fac | 5119 | // processing. |
mjr | 69:cc5039284fac | 5120 | void applyPreFilter(PlungerReading &r) |
mjr | 69:cc5039284fac | 5121 | { |
mjr | 69:cc5039284fac | 5122 | // get the previous raw reading |
mjr | 69:cc5039284fac | 5123 | PlungerReading prv = pre.raw; |
mjr | 69:cc5039284fac | 5124 | |
mjr | 69:cc5039284fac | 5125 | // the new reading is the previous raw reading next time, no |
mjr | 69:cc5039284fac | 5126 | // matter how we end up filtering it |
mjr | 69:cc5039284fac | 5127 | pre.raw = r; |
mjr | 69:cc5039284fac | 5128 | |
mjr | 69:cc5039284fac | 5129 | // If it's too big an excursion from the previous raw reading, |
mjr | 69:cc5039284fac | 5130 | // ignore it and repeat the previous reported reading. This |
mjr | 69:cc5039284fac | 5131 | // filters out anomalous spikes where we suddenly jump to a |
mjr | 69:cc5039284fac | 5132 | // level that's too far away to be possible. Real plungers |
mjr | 69:cc5039284fac | 5133 | // take about 60ms to travel the full distance when released, |
mjr | 69:cc5039284fac | 5134 | // so assuming constant acceleration, the maximum realistic |
mjr | 69:cc5039284fac | 5135 | // speed is about 2.200 distance units (on our 0..0xffff scale) |
mjr | 69:cc5039284fac | 5136 | // per microsecond. |
mjr | 69:cc5039284fac | 5137 | // |
mjr | 69:cc5039284fac | 5138 | // On the other hand, if the new reading is too *close* to the |
mjr | 69:cc5039284fac | 5139 | // previous reading, use the previous reported reading. This |
mjr | 69:cc5039284fac | 5140 | // filters out jitter around a stationary position. |
mjr | 69:cc5039284fac | 5141 | const float maxDist = 2.184f*uint32_t(r.t - prv.t); |
mjr | 69:cc5039284fac | 5142 | const int minDist = 256; |
mjr | 69:cc5039284fac | 5143 | const int delta = abs(r.pos - prv.pos); |
mjr | 69:cc5039284fac | 5144 | if (maxDist > minDist && delta > maxDist) |
mjr | 69:cc5039284fac | 5145 | { |
mjr | 69:cc5039284fac | 5146 | // too big an excursion - discard this reading by reporting |
mjr | 69:cc5039284fac | 5147 | // the last reported reading instead |
mjr | 69:cc5039284fac | 5148 | r.pos = pre.reported; |
mjr | 69:cc5039284fac | 5149 | } |
mjr | 69:cc5039284fac | 5150 | else if (delta < minDist) |
mjr | 69:cc5039284fac | 5151 | { |
mjr | 69:cc5039284fac | 5152 | // too close to the prior reading - apply hysteresis |
mjr | 69:cc5039284fac | 5153 | r.pos = pre.reported; |
mjr | 69:cc5039284fac | 5154 | } |
mjr | 69:cc5039284fac | 5155 | else |
mjr | 69:cc5039284fac | 5156 | { |
mjr | 69:cc5039284fac | 5157 | // the reading is in range - keep it, and remember it as |
mjr | 69:cc5039284fac | 5158 | // the last reported reading |
mjr | 69:cc5039284fac | 5159 | pre.reported = r.pos; |
mjr | 69:cc5039284fac | 5160 | } |
mjr | 69:cc5039284fac | 5161 | } |
mjr | 69:cc5039284fac | 5162 | |
mjr | 69:cc5039284fac | 5163 | // pre-filter data |
mjr | 69:cc5039284fac | 5164 | struct PreFilterData { |
mjr | 69:cc5039284fac | 5165 | PreFilterData() |
mjr | 69:cc5039284fac | 5166 | : reported(0) |
mjr | 69:cc5039284fac | 5167 | { |
mjr | 69:cc5039284fac | 5168 | raw.t = 0; |
mjr | 69:cc5039284fac | 5169 | raw.pos = 0; |
mjr | 69:cc5039284fac | 5170 | } |
mjr | 69:cc5039284fac | 5171 | PlungerReading raw; // previous raw sensor reading |
mjr | 69:cc5039284fac | 5172 | int reported; // previous reported reading |
mjr | 69:cc5039284fac | 5173 | } pre; |
mjr | 69:cc5039284fac | 5174 | |
mjr | 69:cc5039284fac | 5175 | |
mjr | 69:cc5039284fac | 5176 | // Apply the post-processing filter. This filter is applied after |
mjr | 69:cc5039284fac | 5177 | // the fire-event processing. In the past, this used hysteresis to |
mjr | 69:cc5039284fac | 5178 | // try to smooth out jittering readings for a stationary plunger. |
mjr | 69:cc5039284fac | 5179 | // We've switched to a different approach that massages the readings |
mjr | 69:cc5039284fac | 5180 | // coming off the sensor before |
mjr | 69:cc5039284fac | 5181 | int applyPostFilter() |
mjr | 69:cc5039284fac | 5182 | { |
mjr | 69:cc5039284fac | 5183 | return z; |
mjr | 69:cc5039284fac | 5184 | } |
mjr | 69:cc5039284fac | 5185 | #endif |
mjr | 58:523fdcffbe6d | 5186 | |
mjr | 58:523fdcffbe6d | 5187 | void initFilter() |
mjr | 58:523fdcffbe6d | 5188 | { |
mjr | 58:523fdcffbe6d | 5189 | filterSum = 0; |
mjr | 58:523fdcffbe6d | 5190 | filterN = 1; |
mjr | 58:523fdcffbe6d | 5191 | filterDir = 0x5555; |
mjr | 58:523fdcffbe6d | 5192 | } |
mjr | 58:523fdcffbe6d | 5193 | int64_t filterSum; |
mjr | 58:523fdcffbe6d | 5194 | int64_t filterN; |
mjr | 58:523fdcffbe6d | 5195 | uint16_t filterDir; |
mjr | 58:523fdcffbe6d | 5196 | |
mjr | 58:523fdcffbe6d | 5197 | |
mjr | 52:8298b2a73eb2 | 5198 | // Calibration state. During calibration mode, we watch for release |
mjr | 52:8298b2a73eb2 | 5199 | // events, to measure the time it takes to complete the release |
mjr | 52:8298b2a73eb2 | 5200 | // motion; and we watch for the plunger to come to reset after a |
mjr | 52:8298b2a73eb2 | 5201 | // release, to gather statistics on the rest position. |
mjr | 52:8298b2a73eb2 | 5202 | // 0 = waiting to settle |
mjr | 52:8298b2a73eb2 | 5203 | // 1 = at rest |
mjr | 52:8298b2a73eb2 | 5204 | // 2 = retracting |
mjr | 52:8298b2a73eb2 | 5205 | // 3 = possibly releasing |
mjr | 52:8298b2a73eb2 | 5206 | uint8_t calState; |
mjr | 52:8298b2a73eb2 | 5207 | |
mjr | 52:8298b2a73eb2 | 5208 | // Calibration zero point statistics. |
mjr | 52:8298b2a73eb2 | 5209 | // During calibration mode, we collect data on the rest position (the |
mjr | 52:8298b2a73eb2 | 5210 | // zero point) by watching for the plunger to come to rest after each |
mjr | 52:8298b2a73eb2 | 5211 | // release. We average these rest positions to get the calibrated |
mjr | 52:8298b2a73eb2 | 5212 | // zero point. We use the average because the real physical plunger |
mjr | 52:8298b2a73eb2 | 5213 | // itself doesn't come to rest at exactly the same spot every time, |
mjr | 52:8298b2a73eb2 | 5214 | // largely due to friction in the mechanism. To calculate the average, |
mjr | 52:8298b2a73eb2 | 5215 | // we keep a sum of the readings and a count of samples. |
mjr | 53:9b2611964afc | 5216 | PlungerReading calZeroStart; |
mjr | 52:8298b2a73eb2 | 5217 | long calZeroPosSum; |
mjr | 52:8298b2a73eb2 | 5218 | int calZeroPosN; |
mjr | 52:8298b2a73eb2 | 5219 | |
mjr | 52:8298b2a73eb2 | 5220 | // Calibration release time statistics. |
mjr | 52:8298b2a73eb2 | 5221 | // During calibration, we collect an average for the release time. |
mjr | 52:8298b2a73eb2 | 5222 | long calRlsTimeSum; |
mjr | 52:8298b2a73eb2 | 5223 | int calRlsTimeN; |
mjr | 52:8298b2a73eb2 | 5224 | |
mjr | 48:058ace2aed1d | 5225 | // set a firing mode |
mjr | 48:058ace2aed1d | 5226 | inline void firingMode(int m) |
mjr | 48:058ace2aed1d | 5227 | { |
mjr | 48:058ace2aed1d | 5228 | firing = m; |
mjr | 48:058ace2aed1d | 5229 | } |
mjr | 48:058ace2aed1d | 5230 | |
mjr | 48:058ace2aed1d | 5231 | // Find the most recent local maximum in the history data, up to |
mjr | 48:058ace2aed1d | 5232 | // the given time limit. |
mjr | 48:058ace2aed1d | 5233 | int histLocalMax(uint32_t tcur, uint32_t dt) |
mjr | 48:058ace2aed1d | 5234 | { |
mjr | 48:058ace2aed1d | 5235 | // start with the prior entry |
mjr | 48:058ace2aed1d | 5236 | int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1; |
mjr | 48:058ace2aed1d | 5237 | int hi = hist[idx].pos; |
mjr | 48:058ace2aed1d | 5238 | |
mjr | 48:058ace2aed1d | 5239 | // scan backwards for a local maximum |
mjr | 48:058ace2aed1d | 5240 | for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1) |
mjr | 48:058ace2aed1d | 5241 | { |
mjr | 48:058ace2aed1d | 5242 | // if this isn't within the time window, stop |
mjr | 48:058ace2aed1d | 5243 | if (uint32_t(tcur - hist[idx].t) > dt) |
mjr | 48:058ace2aed1d | 5244 | break; |
mjr | 48:058ace2aed1d | 5245 | |
mjr | 48:058ace2aed1d | 5246 | // if this isn't above the current hith, stop |
mjr | 48:058ace2aed1d | 5247 | if (hist[idx].pos < hi) |
mjr | 48:058ace2aed1d | 5248 | break; |
mjr | 48:058ace2aed1d | 5249 | |
mjr | 48:058ace2aed1d | 5250 | // this is the new high |
mjr | 48:058ace2aed1d | 5251 | hi = hist[idx].pos; |
mjr | 48:058ace2aed1d | 5252 | } |
mjr | 48:058ace2aed1d | 5253 | |
mjr | 48:058ace2aed1d | 5254 | // return the local maximum |
mjr | 48:058ace2aed1d | 5255 | return hi; |
mjr | 48:058ace2aed1d | 5256 | } |
mjr | 48:058ace2aed1d | 5257 | |
mjr | 50:40015764bbe6 | 5258 | // velocity at previous reading, and the one before that |
mjr | 76:7f5912b6340e | 5259 | int vprv, vprv2; |
mjr | 48:058ace2aed1d | 5260 | |
mjr | 48:058ace2aed1d | 5261 | // Circular buffer of recent readings. We keep a short history |
mjr | 48:058ace2aed1d | 5262 | // of readings to analyze during firing events. We can only identify |
mjr | 48:058ace2aed1d | 5263 | // a firing event once it's somewhat under way, so we need a little |
mjr | 48:058ace2aed1d | 5264 | // retrospective information to accurately determine after the fact |
mjr | 48:058ace2aed1d | 5265 | // exactly when it started. We throttle our readings to no more |
mjr | 74:822a92bc11d2 | 5266 | // than one every 1ms, so we have at least N*1ms of history in this |
mjr | 48:058ace2aed1d | 5267 | // array. |
mjr | 74:822a92bc11d2 | 5268 | PlungerReading hist[32]; |
mjr | 48:058ace2aed1d | 5269 | int histIdx; |
mjr | 49:37bd97eb7688 | 5270 | |
mjr | 50:40015764bbe6 | 5271 | // get the nth history item (0=last, 1=2nd to last, etc) |
mjr | 74:822a92bc11d2 | 5272 | inline const PlungerReading &nthHist(int n) const |
mjr | 50:40015764bbe6 | 5273 | { |
mjr | 50:40015764bbe6 | 5274 | // histIdx-1 is the last written; go from there |
mjr | 50:40015764bbe6 | 5275 | n = histIdx - 1 - n; |
mjr | 50:40015764bbe6 | 5276 | |
mjr | 50:40015764bbe6 | 5277 | // adjust for wrapping |
mjr | 50:40015764bbe6 | 5278 | if (n < 0) |
mjr | 50:40015764bbe6 | 5279 | n += countof(hist); |
mjr | 50:40015764bbe6 | 5280 | |
mjr | 50:40015764bbe6 | 5281 | // return the item |
mjr | 50:40015764bbe6 | 5282 | return hist[n]; |
mjr | 50:40015764bbe6 | 5283 | } |
mjr | 48:058ace2aed1d | 5284 | |
mjr | 48:058ace2aed1d | 5285 | // Firing event state. |
mjr | 48:058ace2aed1d | 5286 | // |
mjr | 48:058ace2aed1d | 5287 | // 0 - Default state. We report the real instantaneous plunger |
mjr | 48:058ace2aed1d | 5288 | // position to the joystick interface. |
mjr | 48:058ace2aed1d | 5289 | // |
mjr | 53:9b2611964afc | 5290 | // 1 - Moving forward |
mjr | 48:058ace2aed1d | 5291 | // |
mjr | 53:9b2611964afc | 5292 | // 2 - Accelerating |
mjr | 48:058ace2aed1d | 5293 | // |
mjr | 53:9b2611964afc | 5294 | // 3 - Firing. We report the rest position for a minimum interval, |
mjr | 53:9b2611964afc | 5295 | // or until the real plunger comes to rest somewhere. |
mjr | 48:058ace2aed1d | 5296 | // |
mjr | 48:058ace2aed1d | 5297 | int firing; |
mjr | 48:058ace2aed1d | 5298 | |
mjr | 51:57eb311faafa | 5299 | // Position/timestamp at start of firing phase 1. When we see a |
mjr | 51:57eb311faafa | 5300 | // sustained forward acceleration, we freeze joystick reports at |
mjr | 51:57eb311faafa | 5301 | // the recent local maximum, on the assumption that this was the |
mjr | 51:57eb311faafa | 5302 | // start of the release. If this is zero, it means that we're |
mjr | 51:57eb311faafa | 5303 | // monitoring accelerating motion but haven't seen it for long |
mjr | 51:57eb311faafa | 5304 | // enough yet to be confident that a release is in progress. |
mjr | 48:058ace2aed1d | 5305 | PlungerReading f1; |
mjr | 48:058ace2aed1d | 5306 | |
mjr | 48:058ace2aed1d | 5307 | // Position/timestamp at start of firing phase 2. The position is |
mjr | 48:058ace2aed1d | 5308 | // the fake "bounce" position we report during this phase, and the |
mjr | 48:058ace2aed1d | 5309 | // timestamp tells us when the phase began so that we can end it |
mjr | 48:058ace2aed1d | 5310 | // after enough time elapses. |
mjr | 48:058ace2aed1d | 5311 | PlungerReading f2; |
mjr | 48:058ace2aed1d | 5312 | |
mjr | 48:058ace2aed1d | 5313 | // Position/timestamp of start of stability window during phase 3. |
mjr | 48:058ace2aed1d | 5314 | // We use this to determine when the plunger comes to rest. We set |
mjr | 51:57eb311faafa | 5315 | // this at the beginning of phase 3, and then reset it when the |
mjr | 48:058ace2aed1d | 5316 | // plunger moves too far from the last position. |
mjr | 48:058ace2aed1d | 5317 | PlungerReading f3s; |
mjr | 48:058ace2aed1d | 5318 | |
mjr | 48:058ace2aed1d | 5319 | // Position/timestamp of start of retraction window during phase 3. |
mjr | 48:058ace2aed1d | 5320 | // We use this to determine if the user is drawing the plunger back. |
mjr | 48:058ace2aed1d | 5321 | // If we see retraction motion for more than about 65ms, we assume |
mjr | 48:058ace2aed1d | 5322 | // that the user has taken over, because we should see forward |
mjr | 48:058ace2aed1d | 5323 | // motion within this timeframe if the plunger is just bouncing |
mjr | 48:058ace2aed1d | 5324 | // freely. |
mjr | 48:058ace2aed1d | 5325 | PlungerReading f3r; |
mjr | 48:058ace2aed1d | 5326 | |
mjr | 58:523fdcffbe6d | 5327 | // next raw (unfiltered) Z value to report to the joystick interface |
mjr | 58:523fdcffbe6d | 5328 | // (in joystick distance units) |
mjr | 48:058ace2aed1d | 5329 | int z; |
mjr | 48:058ace2aed1d | 5330 | |
mjr | 58:523fdcffbe6d | 5331 | // next filtered Z value to report to the joystick interface |
mjr | 58:523fdcffbe6d | 5332 | int zf; |
mjr | 48:058ace2aed1d | 5333 | }; |
mjr | 48:058ace2aed1d | 5334 | |
mjr | 48:058ace2aed1d | 5335 | // plunger reader singleton |
mjr | 48:058ace2aed1d | 5336 | PlungerReader plungerReader; |
mjr | 48:058ace2aed1d | 5337 | |
mjr | 48:058ace2aed1d | 5338 | // --------------------------------------------------------------------------- |
mjr | 48:058ace2aed1d | 5339 | // |
mjr | 48:058ace2aed1d | 5340 | // Handle the ZB Launch Ball feature. |
mjr | 48:058ace2aed1d | 5341 | // |
mjr | 48:058ace2aed1d | 5342 | // The ZB Launch Ball feature, if enabled, lets the mechanical plunger |
mjr | 48:058ace2aed1d | 5343 | // serve as a substitute for a physical Launch Ball button. When a table |
mjr | 48:058ace2aed1d | 5344 | // is loaded in VP, and the table has the ZB Launch Ball LedWiz port |
mjr | 48:058ace2aed1d | 5345 | // turned on, we'll disable mechanical plunger reports through the |
mjr | 48:058ace2aed1d | 5346 | // joystick interface and instead use the plunger only to simulate the |
mjr | 48:058ace2aed1d | 5347 | // Launch Ball button. When the mode is active, pulling back and |
mjr | 48:058ace2aed1d | 5348 | // releasing the plunger causes a brief simulated press of the Launch |
mjr | 48:058ace2aed1d | 5349 | // button, and pushing the plunger forward of the rest position presses |
mjr | 48:058ace2aed1d | 5350 | // the Launch button as long as the plunger is pressed forward. |
mjr | 48:058ace2aed1d | 5351 | // |
mjr | 48:058ace2aed1d | 5352 | // This feature has two configuration components: |
mjr | 48:058ace2aed1d | 5353 | // |
mjr | 48:058ace2aed1d | 5354 | // - An LedWiz port number. This port is a "virtual" port that doesn't |
mjr | 48:058ace2aed1d | 5355 | // have to be attached to any actual output. DOF uses it to signal |
mjr | 48:058ace2aed1d | 5356 | // that the current table uses a Launch button instead of a plunger. |
mjr | 48:058ace2aed1d | 5357 | // DOF simply turns the port on when such a table is loaded and turns |
mjr | 48:058ace2aed1d | 5358 | // it off at all other times. We use it to enable and disable the |
mjr | 48:058ace2aed1d | 5359 | // plunger/launch button connection. |
mjr | 48:058ace2aed1d | 5360 | // |
mjr | 48:058ace2aed1d | 5361 | // - A joystick button ID. We simulate pressing this button when the |
mjr | 48:058ace2aed1d | 5362 | // launch feature is activated via the LedWiz port and the plunger is |
mjr | 48:058ace2aed1d | 5363 | // either pulled back and releasd, or pushed forward past the rest |
mjr | 48:058ace2aed1d | 5364 | // position. |
mjr | 48:058ace2aed1d | 5365 | // |
mjr | 48:058ace2aed1d | 5366 | class ZBLaunchBall |
mjr | 48:058ace2aed1d | 5367 | { |
mjr | 48:058ace2aed1d | 5368 | public: |
mjr | 48:058ace2aed1d | 5369 | ZBLaunchBall() |
mjr | 48:058ace2aed1d | 5370 | { |
mjr | 48:058ace2aed1d | 5371 | // start in the default state |
mjr | 48:058ace2aed1d | 5372 | lbState = 0; |
mjr | 53:9b2611964afc | 5373 | btnState = false; |
mjr | 48:058ace2aed1d | 5374 | } |
mjr | 48:058ace2aed1d | 5375 | |
mjr | 48:058ace2aed1d | 5376 | // Update state. This checks the current plunger position and |
mjr | 48:058ace2aed1d | 5377 | // the timers to see if the plunger is in a position that simulates |
mjr | 48:058ace2aed1d | 5378 | // a Launch Ball button press via the ZB Launch Ball feature. |
mjr | 48:058ace2aed1d | 5379 | // Updates the simulated button vector according to the current |
mjr | 48:058ace2aed1d | 5380 | // launch ball state. The main loop calls this before each |
mjr | 48:058ace2aed1d | 5381 | // joystick update to figure the new simulated button state. |
mjr | 53:9b2611964afc | 5382 | void update() |
mjr | 48:058ace2aed1d | 5383 | { |
mjr | 53:9b2611964afc | 5384 | // If the ZB Launch Ball led wiz output is ON, check for a |
mjr | 53:9b2611964afc | 5385 | // plunger firing event |
mjr | 53:9b2611964afc | 5386 | if (zbLaunchOn) |
mjr | 48:058ace2aed1d | 5387 | { |
mjr | 53:9b2611964afc | 5388 | // note the new position |
mjr | 48:058ace2aed1d | 5389 | int znew = plungerReader.getPosition(); |
mjr | 53:9b2611964afc | 5390 | |
mjr | 53:9b2611964afc | 5391 | // figure the push threshold from the configuration data |
mjr | 51:57eb311faafa | 5392 | const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0); |
mjr | 53:9b2611964afc | 5393 | |
mjr | 53:9b2611964afc | 5394 | // check the state |
mjr | 48:058ace2aed1d | 5395 | switch (lbState) |
mjr | 48:058ace2aed1d | 5396 | { |
mjr | 48:058ace2aed1d | 5397 | case 0: |
mjr | 53:9b2611964afc | 5398 | // Default state. If a launch event has been detected on |
mjr | 53:9b2611964afc | 5399 | // the plunger, activate a timed pulse and switch to state 1. |
mjr | 53:9b2611964afc | 5400 | // If the plunger is pushed forward of the threshold, push |
mjr | 53:9b2611964afc | 5401 | // the button. |
mjr | 53:9b2611964afc | 5402 | if (plungerReader.isFiring()) |
mjr | 53:9b2611964afc | 5403 | { |
mjr | 53:9b2611964afc | 5404 | // firing event - start a timed Launch button pulse |
mjr | 53:9b2611964afc | 5405 | lbTimer.reset(); |
mjr | 53:9b2611964afc | 5406 | lbTimer.start(); |
mjr | 53:9b2611964afc | 5407 | setButton(true); |
mjr | 53:9b2611964afc | 5408 | |
mjr | 53:9b2611964afc | 5409 | // switch to state 1 |
mjr | 53:9b2611964afc | 5410 | lbState = 1; |
mjr | 53:9b2611964afc | 5411 | } |
mjr | 48:058ace2aed1d | 5412 | else if (znew <= pushThreshold) |
mjr | 53:9b2611964afc | 5413 | { |
mjr | 53:9b2611964afc | 5414 | // pushed forward without a firing event - hold the |
mjr | 53:9b2611964afc | 5415 | // button as long as we're pushed forward |
mjr | 53:9b2611964afc | 5416 | setButton(true); |
mjr | 53:9b2611964afc | 5417 | } |
mjr | 53:9b2611964afc | 5418 | else |
mjr | 53:9b2611964afc | 5419 | { |
mjr | 53:9b2611964afc | 5420 | // not pushed forward - turn off the Launch button |
mjr | 53:9b2611964afc | 5421 | setButton(false); |
mjr | 53:9b2611964afc | 5422 | } |
mjr | 48:058ace2aed1d | 5423 | break; |
mjr | 48:058ace2aed1d | 5424 | |
mjr | 48:058ace2aed1d | 5425 | case 1: |
mjr | 53:9b2611964afc | 5426 | // State 1: Timed Launch button pulse in progress after a |
mjr | 53:9b2611964afc | 5427 | // firing event. Wait for the timer to expire. |
mjr | 53:9b2611964afc | 5428 | if (lbTimer.read_us() > 200000UL) |
mjr | 53:9b2611964afc | 5429 | { |
mjr | 53:9b2611964afc | 5430 | // timer expired - turn off the button |
mjr | 53:9b2611964afc | 5431 | setButton(false); |
mjr | 53:9b2611964afc | 5432 | |
mjr | 53:9b2611964afc | 5433 | // switch to state 2 |
mjr | 53:9b2611964afc | 5434 | lbState = 2; |
mjr | 53:9b2611964afc | 5435 | } |
mjr | 48:058ace2aed1d | 5436 | break; |
mjr | 48:058ace2aed1d | 5437 | |
mjr | 48:058ace2aed1d | 5438 | case 2: |
mjr | 53:9b2611964afc | 5439 | // State 2: Timed Launch button pulse done. Wait for the |
mjr | 53:9b2611964afc | 5440 | // plunger launch event to end. |
mjr | 53:9b2611964afc | 5441 | if (!plungerReader.isFiring()) |
mjr | 53:9b2611964afc | 5442 | { |
mjr | 53:9b2611964afc | 5443 | // firing event done - return to default state |
mjr | 53:9b2611964afc | 5444 | lbState = 0; |
mjr | 53:9b2611964afc | 5445 | } |
mjr | 48:058ace2aed1d | 5446 | break; |
mjr | 48:058ace2aed1d | 5447 | } |
mjr | 53:9b2611964afc | 5448 | } |
mjr | 53:9b2611964afc | 5449 | else |
mjr | 53:9b2611964afc | 5450 | { |
mjr | 53:9b2611964afc | 5451 | // ZB Launch Ball disabled - turn off the button if it was on |
mjr | 53:9b2611964afc | 5452 | setButton(false); |
mjr | 48:058ace2aed1d | 5453 | |
mjr | 53:9b2611964afc | 5454 | // return to the default state |
mjr | 53:9b2611964afc | 5455 | lbState = 0; |
mjr | 48:058ace2aed1d | 5456 | } |
mjr | 48:058ace2aed1d | 5457 | } |
mjr | 53:9b2611964afc | 5458 | |
mjr | 53:9b2611964afc | 5459 | // Set the button state |
mjr | 53:9b2611964afc | 5460 | void setButton(bool on) |
mjr | 53:9b2611964afc | 5461 | { |
mjr | 53:9b2611964afc | 5462 | if (btnState != on) |
mjr | 53:9b2611964afc | 5463 | { |
mjr | 53:9b2611964afc | 5464 | // remember the new state |
mjr | 53:9b2611964afc | 5465 | btnState = on; |
mjr | 53:9b2611964afc | 5466 | |
mjr | 53:9b2611964afc | 5467 | // update the virtual button state |
mjr | 65:739875521aae | 5468 | buttonState[zblButtonIndex].virtPress(on); |
mjr | 53:9b2611964afc | 5469 | } |
mjr | 53:9b2611964afc | 5470 | } |
mjr | 53:9b2611964afc | 5471 | |
mjr | 48:058ace2aed1d | 5472 | private: |
mjr | 48:058ace2aed1d | 5473 | // Simulated Launch Ball button state. If a "ZB Launch Ball" port is |
mjr | 48:058ace2aed1d | 5474 | // defined for our LedWiz port mapping, any time that port is turned ON, |
mjr | 48:058ace2aed1d | 5475 | // we'll simulate pushing the Launch Ball button if the player pulls |
mjr | 48:058ace2aed1d | 5476 | // back and releases the plunger, or simply pushes on the plunger from |
mjr | 48:058ace2aed1d | 5477 | // the rest position. This allows the plunger to be used in lieu of a |
mjr | 48:058ace2aed1d | 5478 | // physical Launch Ball button for tables that don't have plungers. |
mjr | 48:058ace2aed1d | 5479 | // |
mjr | 48:058ace2aed1d | 5480 | // States: |
mjr | 48:058ace2aed1d | 5481 | // 0 = default |
mjr | 53:9b2611964afc | 5482 | // 1 = firing (firing event has activated a Launch button pulse) |
mjr | 53:9b2611964afc | 5483 | // 2 = firing done (Launch button pulse ended, waiting for plunger |
mjr | 53:9b2611964afc | 5484 | // firing event to end) |
mjr | 53:9b2611964afc | 5485 | uint8_t lbState; |
mjr | 48:058ace2aed1d | 5486 | |
mjr | 53:9b2611964afc | 5487 | // button state |
mjr | 53:9b2611964afc | 5488 | bool btnState; |
mjr | 48:058ace2aed1d | 5489 | |
mjr | 48:058ace2aed1d | 5490 | // Time since last lbState transition. Some of the states are time- |
mjr | 48:058ace2aed1d | 5491 | // sensitive. In the "uncocked" state, we'll return to state 0 if |
mjr | 48:058ace2aed1d | 5492 | // we remain in this state for more than a few milliseconds, since |
mjr | 48:058ace2aed1d | 5493 | // it indicates that the plunger is being slowly returned to rest |
mjr | 48:058ace2aed1d | 5494 | // rather than released. In the "launching" state, we need to release |
mjr | 48:058ace2aed1d | 5495 | // the Launch Ball button after a moment, and we need to wait for |
mjr | 48:058ace2aed1d | 5496 | // the plunger to come to rest before returning to state 0. |
mjr | 48:058ace2aed1d | 5497 | Timer lbTimer; |
mjr | 48:058ace2aed1d | 5498 | }; |
mjr | 48:058ace2aed1d | 5499 | |
mjr | 35:e959ffba78fd | 5500 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 5501 | // |
mjr | 35:e959ffba78fd | 5502 | // Reboot - resets the microcontroller |
mjr | 35:e959ffba78fd | 5503 | // |
mjr | 54:fd77a6b2f76c | 5504 | void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L) |
mjr | 35:e959ffba78fd | 5505 | { |
mjr | 35:e959ffba78fd | 5506 | // disconnect from USB |
mjr | 54:fd77a6b2f76c | 5507 | if (disconnect) |
mjr | 54:fd77a6b2f76c | 5508 | js.disconnect(); |
mjr | 35:e959ffba78fd | 5509 | |
mjr | 35:e959ffba78fd | 5510 | // wait a few seconds to make sure the host notices the disconnect |
mjr | 54:fd77a6b2f76c | 5511 | wait_us(pause_us); |
mjr | 35:e959ffba78fd | 5512 | |
mjr | 35:e959ffba78fd | 5513 | // reset the device |
mjr | 35:e959ffba78fd | 5514 | NVIC_SystemReset(); |
mjr | 35:e959ffba78fd | 5515 | while (true) { } |
mjr | 35:e959ffba78fd | 5516 | } |
mjr | 35:e959ffba78fd | 5517 | |
mjr | 35:e959ffba78fd | 5518 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 5519 | // |
mjr | 35:e959ffba78fd | 5520 | // Translate joystick readings from raw values to reported values, based |
mjr | 35:e959ffba78fd | 5521 | // on the orientation of the controller card in the cabinet. |
mjr | 35:e959ffba78fd | 5522 | // |
mjr | 35:e959ffba78fd | 5523 | void accelRotate(int &x, int &y) |
mjr | 35:e959ffba78fd | 5524 | { |
mjr | 35:e959ffba78fd | 5525 | int tmp; |
mjr | 78:1e00b3fa11af | 5526 | switch (cfg.accel.orientation) |
mjr | 35:e959ffba78fd | 5527 | { |
mjr | 35:e959ffba78fd | 5528 | case OrientationFront: |
mjr | 35:e959ffba78fd | 5529 | tmp = x; |
mjr | 35:e959ffba78fd | 5530 | x = y; |
mjr | 35:e959ffba78fd | 5531 | y = tmp; |
mjr | 35:e959ffba78fd | 5532 | break; |
mjr | 35:e959ffba78fd | 5533 | |
mjr | 35:e959ffba78fd | 5534 | case OrientationLeft: |
mjr | 35:e959ffba78fd | 5535 | x = -x; |
mjr | 35:e959ffba78fd | 5536 | break; |
mjr | 35:e959ffba78fd | 5537 | |
mjr | 35:e959ffba78fd | 5538 | case OrientationRight: |
mjr | 35:e959ffba78fd | 5539 | y = -y; |
mjr | 35:e959ffba78fd | 5540 | break; |
mjr | 35:e959ffba78fd | 5541 | |
mjr | 35:e959ffba78fd | 5542 | case OrientationRear: |
mjr | 35:e959ffba78fd | 5543 | tmp = -x; |
mjr | 35:e959ffba78fd | 5544 | x = -y; |
mjr | 35:e959ffba78fd | 5545 | y = tmp; |
mjr | 35:e959ffba78fd | 5546 | break; |
mjr | 35:e959ffba78fd | 5547 | } |
mjr | 35:e959ffba78fd | 5548 | } |
mjr | 35:e959ffba78fd | 5549 | |
mjr | 35:e959ffba78fd | 5550 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 5551 | // |
mjr | 35:e959ffba78fd | 5552 | // Calibration button state: |
mjr | 35:e959ffba78fd | 5553 | // 0 = not pushed |
mjr | 35:e959ffba78fd | 5554 | // 1 = pushed, not yet debounced |
mjr | 35:e959ffba78fd | 5555 | // 2 = pushed, debounced, waiting for hold time |
mjr | 35:e959ffba78fd | 5556 | // 3 = pushed, hold time completed - in calibration mode |
mjr | 35:e959ffba78fd | 5557 | int calBtnState = 0; |
mjr | 35:e959ffba78fd | 5558 | |
mjr | 35:e959ffba78fd | 5559 | // calibration button debounce timer |
mjr | 35:e959ffba78fd | 5560 | Timer calBtnTimer; |
mjr | 35:e959ffba78fd | 5561 | |
mjr | 35:e959ffba78fd | 5562 | // calibration button light state |
mjr | 35:e959ffba78fd | 5563 | int calBtnLit = false; |
mjr | 35:e959ffba78fd | 5564 | |
mjr | 35:e959ffba78fd | 5565 | |
mjr | 35:e959ffba78fd | 5566 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 5567 | // |
mjr | 40:cc0d9814522b | 5568 | // Configuration variable get/set message handling |
mjr | 35:e959ffba78fd | 5569 | // |
mjr | 40:cc0d9814522b | 5570 | |
mjr | 40:cc0d9814522b | 5571 | // Handle SET messages - write configuration variables from USB message data |
mjr | 40:cc0d9814522b | 5572 | #define if_msg_valid(test) if (test) |
mjr | 53:9b2611964afc | 5573 | #define v_byte(var, ofs) cfg.var = data[ofs] |
mjr | 53:9b2611964afc | 5574 | #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs)) |
mjr | 77:0b96f6867312 | 5575 | #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs)) |
mjr | 53:9b2611964afc | 5576 | #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs]) |
mjr | 53:9b2611964afc | 5577 | #define v_byte_ro(val, ofs) // ignore read-only variables on SET |
mjr | 74:822a92bc11d2 | 5578 | #define v_ui32_ro(val, ofs) // ignore read-only variables on SET |
mjr | 74:822a92bc11d2 | 5579 | #define VAR_MODE_SET 1 // we're in SET mode |
mjr | 76:7f5912b6340e | 5580 | #define v_func configVarSet(const uint8_t *data) |
mjr | 40:cc0d9814522b | 5581 | #include "cfgVarMsgMap.h" |
mjr | 35:e959ffba78fd | 5582 | |
mjr | 40:cc0d9814522b | 5583 | // redefine everything for the SET messages |
mjr | 40:cc0d9814522b | 5584 | #undef if_msg_valid |
mjr | 40:cc0d9814522b | 5585 | #undef v_byte |
mjr | 40:cc0d9814522b | 5586 | #undef v_ui16 |
mjr | 77:0b96f6867312 | 5587 | #undef v_ui32 |
mjr | 40:cc0d9814522b | 5588 | #undef v_pin |
mjr | 53:9b2611964afc | 5589 | #undef v_byte_ro |
mjr | 74:822a92bc11d2 | 5590 | #undef v_ui32_ro |
mjr | 74:822a92bc11d2 | 5591 | #undef VAR_MODE_SET |
mjr | 40:cc0d9814522b | 5592 | #undef v_func |
mjr | 38:091e511ce8a0 | 5593 | |
mjr | 40:cc0d9814522b | 5594 | // Handle GET messages - read variable values and return in USB message daa |
mjr | 40:cc0d9814522b | 5595 | #define if_msg_valid(test) |
mjr | 53:9b2611964afc | 5596 | #define v_byte(var, ofs) data[ofs] = cfg.var |
mjr | 53:9b2611964afc | 5597 | #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var) |
mjr | 77:0b96f6867312 | 5598 | #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var) |
mjr | 53:9b2611964afc | 5599 | #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var) |
mjr | 73:4e8ce0b18915 | 5600 | #define v_byte_ro(val, ofs) data[ofs] = (val) |
mjr | 74:822a92bc11d2 | 5601 | #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val); |
mjr | 74:822a92bc11d2 | 5602 | #define VAR_MODE_SET 0 // we're in GET mode |
mjr | 76:7f5912b6340e | 5603 | #define v_func configVarGet(uint8_t *data) |
mjr | 40:cc0d9814522b | 5604 | #include "cfgVarMsgMap.h" |
mjr | 40:cc0d9814522b | 5605 | |
mjr | 35:e959ffba78fd | 5606 | |
mjr | 35:e959ffba78fd | 5607 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 5608 | // |
mjr | 35:e959ffba78fd | 5609 | // Handle an input report from the USB host. Input reports use our extended |
mjr | 35:e959ffba78fd | 5610 | // LedWiz protocol. |
mjr | 33:d832bcab089e | 5611 | // |
mjr | 78:1e00b3fa11af | 5612 | void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel) |
mjr | 35:e959ffba78fd | 5613 | { |
mjr | 38:091e511ce8a0 | 5614 | // LedWiz commands come in two varieties: SBA and PBA. An |
mjr | 38:091e511ce8a0 | 5615 | // SBA is marked by the first byte having value 64 (0x40). In |
mjr | 38:091e511ce8a0 | 5616 | // the real LedWiz protocol, any other value in the first byte |
mjr | 38:091e511ce8a0 | 5617 | // means it's a PBA message. However, *valid* PBA messages |
mjr | 38:091e511ce8a0 | 5618 | // always have a first byte (and in fact all 8 bytes) in the |
mjr | 38:091e511ce8a0 | 5619 | // range 0-49 or 129-132. Anything else is invalid. We take |
mjr | 38:091e511ce8a0 | 5620 | // advantage of this to implement private protocol extensions. |
mjr | 38:091e511ce8a0 | 5621 | // So our full protocol is as follows: |
mjr | 38:091e511ce8a0 | 5622 | // |
mjr | 38:091e511ce8a0 | 5623 | // first byte = |
mjr | 74:822a92bc11d2 | 5624 | // 0-48 -> PBA |
mjr | 74:822a92bc11d2 | 5625 | // 64 -> SBA |
mjr | 38:091e511ce8a0 | 5626 | // 65 -> private control message; second byte specifies subtype |
mjr | 74:822a92bc11d2 | 5627 | // 129-132 -> PBA |
mjr | 38:091e511ce8a0 | 5628 | // 200-228 -> extended bank brightness set for outputs N to N+6, where |
mjr | 38:091e511ce8a0 | 5629 | // N is (first byte - 200)*7 |
mjr | 38:091e511ce8a0 | 5630 | // other -> reserved for future use |
mjr | 38:091e511ce8a0 | 5631 | // |
mjr | 39:b3815a1c3802 | 5632 | uint8_t *data = lwm.data; |
mjr | 74:822a92bc11d2 | 5633 | if (data[0] == 64) |
mjr | 35:e959ffba78fd | 5634 | { |
mjr | 74:822a92bc11d2 | 5635 | // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32) |
mjr | 74:822a92bc11d2 | 5636 | //printf("SBA %02x %02x %02x %02x, speed %02x\r\n", |
mjr | 38:091e511ce8a0 | 5637 | // data[1], data[2], data[3], data[4], data[5]); |
mjr | 74:822a92bc11d2 | 5638 | sba_sbx(0, data); |
mjr | 74:822a92bc11d2 | 5639 | |
mjr | 74:822a92bc11d2 | 5640 | // SBA resets the PBA port group counter |
mjr | 38:091e511ce8a0 | 5641 | pbaIdx = 0; |
mjr | 38:091e511ce8a0 | 5642 | } |
mjr | 38:091e511ce8a0 | 5643 | else if (data[0] == 65) |
mjr | 38:091e511ce8a0 | 5644 | { |
mjr | 38:091e511ce8a0 | 5645 | // Private control message. This isn't an LedWiz message - it's |
mjr | 38:091e511ce8a0 | 5646 | // an extension for this device. 65 is an invalid PBA setting, |
mjr | 38:091e511ce8a0 | 5647 | // and isn't used for any other LedWiz message, so we appropriate |
mjr | 38:091e511ce8a0 | 5648 | // it for our own private use. The first byte specifies the |
mjr | 38:091e511ce8a0 | 5649 | // message type. |
mjr | 39:b3815a1c3802 | 5650 | switch (data[1]) |
mjr | 38:091e511ce8a0 | 5651 | { |
mjr | 39:b3815a1c3802 | 5652 | case 0: |
mjr | 39:b3815a1c3802 | 5653 | // No Op |
mjr | 39:b3815a1c3802 | 5654 | break; |
mjr | 39:b3815a1c3802 | 5655 | |
mjr | 39:b3815a1c3802 | 5656 | case 1: |
mjr | 38:091e511ce8a0 | 5657 | // 1 = Old Set Configuration: |
mjr | 38:091e511ce8a0 | 5658 | // data[2] = LedWiz unit number (0x00 to 0x0f) |
mjr | 38:091e511ce8a0 | 5659 | // data[3] = feature enable bit mask: |
mjr | 38:091e511ce8a0 | 5660 | // 0x01 = enable plunger sensor |
mjr | 39:b3815a1c3802 | 5661 | { |
mjr | 39:b3815a1c3802 | 5662 | |
mjr | 39:b3815a1c3802 | 5663 | // get the new LedWiz unit number - this is 0-15, whereas we |
mjr | 39:b3815a1c3802 | 5664 | // we save the *nominal* unit number 1-16 in the config |
mjr | 39:b3815a1c3802 | 5665 | uint8_t newUnitNo = (data[2] & 0x0f) + 1; |
mjr | 39:b3815a1c3802 | 5666 | |
mjr | 39:b3815a1c3802 | 5667 | // we'll need a reset if the LedWiz unit number is changing |
mjr | 39:b3815a1c3802 | 5668 | bool needReset = (newUnitNo != cfg.psUnitNo); |
mjr | 39:b3815a1c3802 | 5669 | |
mjr | 39:b3815a1c3802 | 5670 | // set the configuration parameters from the message |
mjr | 39:b3815a1c3802 | 5671 | cfg.psUnitNo = newUnitNo; |
mjr | 39:b3815a1c3802 | 5672 | cfg.plunger.enabled = data[3] & 0x01; |
mjr | 39:b3815a1c3802 | 5673 | |
mjr | 77:0b96f6867312 | 5674 | // set the flag to do the save |
mjr | 77:0b96f6867312 | 5675 | saveConfigPending = needReset ? SAVE_CONFIG_AND_REBOOT : SAVE_CONFIG_ONLY; |
mjr | 77:0b96f6867312 | 5676 | saveConfigRebootTime = 0; |
mjr | 39:b3815a1c3802 | 5677 | } |
mjr | 39:b3815a1c3802 | 5678 | break; |
mjr | 38:091e511ce8a0 | 5679 | |
mjr | 39:b3815a1c3802 | 5680 | case 2: |
mjr | 38:091e511ce8a0 | 5681 | // 2 = Calibrate plunger |
mjr | 38:091e511ce8a0 | 5682 | // (No parameters) |
mjr | 38:091e511ce8a0 | 5683 | |
mjr | 38:091e511ce8a0 | 5684 | // enter calibration mode |
mjr | 38:091e511ce8a0 | 5685 | calBtnState = 3; |
mjr | 52:8298b2a73eb2 | 5686 | plungerReader.setCalMode(true); |
mjr | 38:091e511ce8a0 | 5687 | calBtnTimer.reset(); |
mjr | 39:b3815a1c3802 | 5688 | break; |
mjr | 39:b3815a1c3802 | 5689 | |
mjr | 39:b3815a1c3802 | 5690 | case 3: |
mjr | 52:8298b2a73eb2 | 5691 | // 3 = plunger sensor status report |
mjr | 48:058ace2aed1d | 5692 | // data[2] = flag bits |
mjr | 53:9b2611964afc | 5693 | // data[3] = extra exposure time, 100us (.1ms) increments |
mjr | 52:8298b2a73eb2 | 5694 | reportPlungerStat = true; |
mjr | 53:9b2611964afc | 5695 | reportPlungerStatFlags = data[2]; |
mjr | 53:9b2611964afc | 5696 | reportPlungerStatTime = data[3]; |
mjr | 38:091e511ce8a0 | 5697 | |
mjr | 38:091e511ce8a0 | 5698 | // show purple until we finish sending the report |
mjr | 38:091e511ce8a0 | 5699 | diagLED(1, 0, 1); |
mjr | 39:b3815a1c3802 | 5700 | break; |
mjr | 39:b3815a1c3802 | 5701 | |
mjr | 39:b3815a1c3802 | 5702 | case 4: |
mjr | 38:091e511ce8a0 | 5703 | // 4 = hardware configuration query |
mjr | 38:091e511ce8a0 | 5704 | // (No parameters) |
mjr | 38:091e511ce8a0 | 5705 | js.reportConfig( |
mjr | 38:091e511ce8a0 | 5706 | numOutputs, |
mjr | 38:091e511ce8a0 | 5707 | cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally) |
mjr | 52:8298b2a73eb2 | 5708 | cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease, |
mjr | 75:677892300e7a | 5709 | nvm.valid(), // a config is loaded if the config memory block is valid |
mjr | 75:677892300e7a | 5710 | true, // we support sbx/pbx extensions |
mjr | 78:1e00b3fa11af | 5711 | true, // we support the new accelerometer settings |
mjr | 75:677892300e7a | 5712 | xmalloc_rem); // remaining memory size |
mjr | 39:b3815a1c3802 | 5713 | break; |
mjr | 39:b3815a1c3802 | 5714 | |
mjr | 39:b3815a1c3802 | 5715 | case 5: |
mjr | 38:091e511ce8a0 | 5716 | // 5 = all outputs off, reset to LedWiz defaults |
mjr | 38:091e511ce8a0 | 5717 | allOutputsOff(); |
mjr | 39:b3815a1c3802 | 5718 | break; |
mjr | 39:b3815a1c3802 | 5719 | |
mjr | 39:b3815a1c3802 | 5720 | case 6: |
mjr | 77:0b96f6867312 | 5721 | // 6 = Save configuration to flash. Reboot after the delay |
mjr | 77:0b96f6867312 | 5722 | // time in seconds given in data[2]. |
mjr | 77:0b96f6867312 | 5723 | saveConfigPending = SAVE_CONFIG_AND_REBOOT; |
mjr | 77:0b96f6867312 | 5724 | saveConfigRebootTime = data[2]; |
mjr | 39:b3815a1c3802 | 5725 | break; |
mjr | 40:cc0d9814522b | 5726 | |
mjr | 40:cc0d9814522b | 5727 | case 7: |
mjr | 40:cc0d9814522b | 5728 | // 7 = Device ID report |
mjr | 53:9b2611964afc | 5729 | // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID |
mjr | 53:9b2611964afc | 5730 | js.reportID(data[2]); |
mjr | 40:cc0d9814522b | 5731 | break; |
mjr | 40:cc0d9814522b | 5732 | |
mjr | 40:cc0d9814522b | 5733 | case 8: |
mjr | 40:cc0d9814522b | 5734 | // 8 = Engage/disengage night mode. |
mjr | 40:cc0d9814522b | 5735 | // data[2] = 1 to engage, 0 to disengage |
mjr | 40:cc0d9814522b | 5736 | setNightMode(data[2]); |
mjr | 40:cc0d9814522b | 5737 | break; |
mjr | 52:8298b2a73eb2 | 5738 | |
mjr | 52:8298b2a73eb2 | 5739 | case 9: |
mjr | 52:8298b2a73eb2 | 5740 | // 9 = Config variable query. |
mjr | 52:8298b2a73eb2 | 5741 | // data[2] = config var ID |
mjr | 52:8298b2a73eb2 | 5742 | // data[3] = array index (for array vars: button assignments, output ports) |
mjr | 52:8298b2a73eb2 | 5743 | { |
mjr | 53:9b2611964afc | 5744 | // set up the reply buffer with the variable ID data, and zero out |
mjr | 53:9b2611964afc | 5745 | // the rest of the buffer |
mjr | 52:8298b2a73eb2 | 5746 | uint8_t reply[8]; |
mjr | 52:8298b2a73eb2 | 5747 | reply[1] = data[2]; |
mjr | 52:8298b2a73eb2 | 5748 | reply[2] = data[3]; |
mjr | 53:9b2611964afc | 5749 | memset(reply+3, 0, sizeof(reply)-3); |
mjr | 52:8298b2a73eb2 | 5750 | |
mjr | 52:8298b2a73eb2 | 5751 | // query the value |
mjr | 52:8298b2a73eb2 | 5752 | configVarGet(reply); |
mjr | 52:8298b2a73eb2 | 5753 | |
mjr | 52:8298b2a73eb2 | 5754 | // send the reply |
mjr | 52:8298b2a73eb2 | 5755 | js.reportConfigVar(reply + 1); |
mjr | 52:8298b2a73eb2 | 5756 | } |
mjr | 52:8298b2a73eb2 | 5757 | break; |
mjr | 53:9b2611964afc | 5758 | |
mjr | 53:9b2611964afc | 5759 | case 10: |
mjr | 53:9b2611964afc | 5760 | // 10 = Build ID query. |
mjr | 53:9b2611964afc | 5761 | js.reportBuildInfo(getBuildID()); |
mjr | 53:9b2611964afc | 5762 | break; |
mjr | 73:4e8ce0b18915 | 5763 | |
mjr | 73:4e8ce0b18915 | 5764 | case 11: |
mjr | 73:4e8ce0b18915 | 5765 | // 11 = TV ON relay control. |
mjr | 73:4e8ce0b18915 | 5766 | // data[2] = operation: |
mjr | 73:4e8ce0b18915 | 5767 | // 0 = turn relay off |
mjr | 73:4e8ce0b18915 | 5768 | // 1 = turn relay on |
mjr | 73:4e8ce0b18915 | 5769 | // 2 = pulse relay (as though the power-on timer fired) |
mjr | 73:4e8ce0b18915 | 5770 | TVRelay(data[2]); |
mjr | 73:4e8ce0b18915 | 5771 | break; |
mjr | 73:4e8ce0b18915 | 5772 | |
mjr | 73:4e8ce0b18915 | 5773 | case 12: |
mjr | 77:0b96f6867312 | 5774 | // 12 = Learn IR code. This enters IR learning mode. While |
mjr | 77:0b96f6867312 | 5775 | // in learning mode, we report raw IR signals and the first IR |
mjr | 77:0b96f6867312 | 5776 | // command decoded through the special IR report format. IR |
mjr | 77:0b96f6867312 | 5777 | // learning mode automatically ends after a timeout expires if |
mjr | 77:0b96f6867312 | 5778 | // no command can be decoded within the time limit. |
mjr | 77:0b96f6867312 | 5779 | |
mjr | 77:0b96f6867312 | 5780 | // enter IR learning mode |
mjr | 77:0b96f6867312 | 5781 | IRLearningMode = 1; |
mjr | 77:0b96f6867312 | 5782 | |
mjr | 77:0b96f6867312 | 5783 | // cancel any regular IR input in progress |
mjr | 77:0b96f6867312 | 5784 | IRCommandIn = 0; |
mjr | 77:0b96f6867312 | 5785 | |
mjr | 77:0b96f6867312 | 5786 | // reset and start the learning mode timeout timer |
mjr | 77:0b96f6867312 | 5787 | IRTimer.reset(); |
mjr | 73:4e8ce0b18915 | 5788 | break; |
mjr | 73:4e8ce0b18915 | 5789 | |
mjr | 73:4e8ce0b18915 | 5790 | case 13: |
mjr | 73:4e8ce0b18915 | 5791 | // 13 = Send button status report |
mjr | 73:4e8ce0b18915 | 5792 | reportButtonStatus(js); |
mjr | 73:4e8ce0b18915 | 5793 | break; |
mjr | 78:1e00b3fa11af | 5794 | |
mjr | 78:1e00b3fa11af | 5795 | case 14: |
mjr | 78:1e00b3fa11af | 5796 | // 14 = manually center the accelerometer |
mjr | 78:1e00b3fa11af | 5797 | accel.manualCenterRequest(); |
mjr | 78:1e00b3fa11af | 5798 | break; |
mjr | 78:1e00b3fa11af | 5799 | |
mjr | 78:1e00b3fa11af | 5800 | case 15: |
mjr | 78:1e00b3fa11af | 5801 | // 15 = set up ad hoc IR command, part 1. Mark the command |
mjr | 78:1e00b3fa11af | 5802 | // as not ready, and save the partial data from the message. |
mjr | 78:1e00b3fa11af | 5803 | IRAdHocCmd.ready = 0; |
mjr | 78:1e00b3fa11af | 5804 | IRAdHocCmd.protocol = data[2]; |
mjr | 78:1e00b3fa11af | 5805 | IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0; |
mjr | 78:1e00b3fa11af | 5806 | IRAdHocCmd.code = wireUI32(&data[4]); |
mjr | 78:1e00b3fa11af | 5807 | break; |
mjr | 78:1e00b3fa11af | 5808 | |
mjr | 78:1e00b3fa11af | 5809 | case 16: |
mjr | 78:1e00b3fa11af | 5810 | // 16 = send ad hoc IR command, part 2. Fill in the rest |
mjr | 78:1e00b3fa11af | 5811 | // of the data from the message and mark the command as |
mjr | 78:1e00b3fa11af | 5812 | // ready. The IR polling routine will send this as soon |
mjr | 78:1e00b3fa11af | 5813 | // as the IR transmitter is free. |
mjr | 78:1e00b3fa11af | 5814 | IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32); |
mjr | 78:1e00b3fa11af | 5815 | IRAdHocCmd.ready = 1; |
mjr | 78:1e00b3fa11af | 5816 | break; |
mjr | 38:091e511ce8a0 | 5817 | } |
mjr | 38:091e511ce8a0 | 5818 | } |
mjr | 38:091e511ce8a0 | 5819 | else if (data[0] == 66) |
mjr | 38:091e511ce8a0 | 5820 | { |
mjr | 38:091e511ce8a0 | 5821 | // Extended protocol - Set configuration variable. |
mjr | 38:091e511ce8a0 | 5822 | // The second byte of the message is the ID of the variable |
mjr | 38:091e511ce8a0 | 5823 | // to update, and the remaining bytes give the new value, |
mjr | 38:091e511ce8a0 | 5824 | // in a variable-dependent format. |
mjr | 40:cc0d9814522b | 5825 | configVarSet(data); |
mjr | 38:091e511ce8a0 | 5826 | } |
mjr | 74:822a92bc11d2 | 5827 | else if (data[0] == 67) |
mjr | 74:822a92bc11d2 | 5828 | { |
mjr | 74:822a92bc11d2 | 5829 | // SBX - extended SBA message. This is the same as SBA, except |
mjr | 74:822a92bc11d2 | 5830 | // that the 7th byte selects a group of 32 ports, to allow access |
mjr | 74:822a92bc11d2 | 5831 | // to ports beyond the first 32. |
mjr | 74:822a92bc11d2 | 5832 | sba_sbx(data[6], data); |
mjr | 74:822a92bc11d2 | 5833 | } |
mjr | 74:822a92bc11d2 | 5834 | else if (data[0] == 68) |
mjr | 74:822a92bc11d2 | 5835 | { |
mjr | 74:822a92bc11d2 | 5836 | // PBX - extended PBA message. This is similar to PBA, but |
mjr | 74:822a92bc11d2 | 5837 | // allows access to more than the first 32 ports by encoding |
mjr | 74:822a92bc11d2 | 5838 | // a port group byte that selects a block of 8 ports. |
mjr | 74:822a92bc11d2 | 5839 | |
mjr | 74:822a92bc11d2 | 5840 | // get the port group - the first port is 8*group |
mjr | 74:822a92bc11d2 | 5841 | int portGroup = data[1]; |
mjr | 74:822a92bc11d2 | 5842 | |
mjr | 74:822a92bc11d2 | 5843 | // unpack the brightness values |
mjr | 74:822a92bc11d2 | 5844 | uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16); |
mjr | 74:822a92bc11d2 | 5845 | uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16); |
mjr | 74:822a92bc11d2 | 5846 | uint8_t bri[8] = { |
mjr | 74:822a92bc11d2 | 5847 | tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F, |
mjr | 74:822a92bc11d2 | 5848 | tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F |
mjr | 74:822a92bc11d2 | 5849 | }; |
mjr | 74:822a92bc11d2 | 5850 | |
mjr | 74:822a92bc11d2 | 5851 | // map the flash levels: 60->129, 61->130, 62->131, 63->132 |
mjr | 74:822a92bc11d2 | 5852 | for (int i = 0 ; i < 8 ; ++i) |
mjr | 74:822a92bc11d2 | 5853 | { |
mjr | 74:822a92bc11d2 | 5854 | if (bri[i] >= 60) |
mjr | 74:822a92bc11d2 | 5855 | bri[i] += 129-60; |
mjr | 74:822a92bc11d2 | 5856 | } |
mjr | 74:822a92bc11d2 | 5857 | |
mjr | 74:822a92bc11d2 | 5858 | // Carry out the PBA |
mjr | 74:822a92bc11d2 | 5859 | pba_pbx(portGroup*8, bri); |
mjr | 74:822a92bc11d2 | 5860 | } |
mjr | 38:091e511ce8a0 | 5861 | else if (data[0] >= 200 && data[0] <= 228) |
mjr | 38:091e511ce8a0 | 5862 | { |
mjr | 38:091e511ce8a0 | 5863 | // Extended protocol - Extended output port brightness update. |
mjr | 38:091e511ce8a0 | 5864 | // data[0]-200 gives us the bank of 7 outputs we're setting: |
mjr | 38:091e511ce8a0 | 5865 | // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc. |
mjr | 38:091e511ce8a0 | 5866 | // The remaining bytes are brightness levels, 0-255, for the |
mjr | 38:091e511ce8a0 | 5867 | // seven outputs in the selected bank. The LedWiz flashing |
mjr | 38:091e511ce8a0 | 5868 | // modes aren't accessible in this message type; we can only |
mjr | 38:091e511ce8a0 | 5869 | // set a fixed brightness, but in exchange we get 8-bit |
mjr | 38:091e511ce8a0 | 5870 | // resolution rather than the paltry 0-48 scale that the real |
mjr | 38:091e511ce8a0 | 5871 | // LedWiz uses. There's no separate on/off status for outputs |
mjr | 38:091e511ce8a0 | 5872 | // adjusted with this message type, either, as there would be |
mjr | 38:091e511ce8a0 | 5873 | // for a PBA message - setting a non-zero value immediately |
mjr | 38:091e511ce8a0 | 5874 | // turns the output, overriding the last SBA setting. |
mjr | 38:091e511ce8a0 | 5875 | // |
mjr | 38:091e511ce8a0 | 5876 | // For outputs 0-31, this overrides any previous PBA/SBA |
mjr | 38:091e511ce8a0 | 5877 | // settings for the port. Any subsequent PBA/SBA message will |
mjr | 38:091e511ce8a0 | 5878 | // in turn override the setting made here. It's simple - the |
mjr | 38:091e511ce8a0 | 5879 | // most recent message of either type takes precedence. For |
mjr | 38:091e511ce8a0 | 5880 | // outputs above the LedWiz range, PBA/SBA messages can't |
mjr | 38:091e511ce8a0 | 5881 | // address those ports anyway. |
mjr | 63:5cd1a5f3a41b | 5882 | |
mjr | 63:5cd1a5f3a41b | 5883 | // figure the block of 7 ports covered in the message |
mjr | 38:091e511ce8a0 | 5884 | int i0 = (data[0] - 200)*7; |
mjr | 38:091e511ce8a0 | 5885 | int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs; |
mjr | 63:5cd1a5f3a41b | 5886 | |
mjr | 63:5cd1a5f3a41b | 5887 | // update each port |
mjr | 38:091e511ce8a0 | 5888 | for (int i = i0 ; i < i1 ; ++i) |
mjr | 38:091e511ce8a0 | 5889 | { |
mjr | 38:091e511ce8a0 | 5890 | // set the brightness level for the output |
mjr | 40:cc0d9814522b | 5891 | uint8_t b = data[i-i0+1]; |
mjr | 38:091e511ce8a0 | 5892 | outLevel[i] = b; |
mjr | 38:091e511ce8a0 | 5893 | |
mjr | 74:822a92bc11d2 | 5894 | // set the port's LedWiz state to the nearest equivalent, so |
mjr | 74:822a92bc11d2 | 5895 | // that it maintains its current setting if we switch back to |
mjr | 74:822a92bc11d2 | 5896 | // LedWiz mode on a future update |
mjr | 76:7f5912b6340e | 5897 | if (b != 0) |
mjr | 76:7f5912b6340e | 5898 | { |
mjr | 76:7f5912b6340e | 5899 | // Non-zero brightness - set the SBA switch on, and set the |
mjr | 76:7f5912b6340e | 5900 | // PBA brightness to the DOF brightness rescaled to the 1..48 |
mjr | 76:7f5912b6340e | 5901 | // LedWiz range. If the port is subsequently addressed by an |
mjr | 76:7f5912b6340e | 5902 | // LedWiz command, this will carry the current DOF setting |
mjr | 76:7f5912b6340e | 5903 | // forward unchanged. |
mjr | 76:7f5912b6340e | 5904 | wizOn[i] = 1; |
mjr | 76:7f5912b6340e | 5905 | wizVal[i] = dof_to_lw[b]; |
mjr | 76:7f5912b6340e | 5906 | } |
mjr | 76:7f5912b6340e | 5907 | else |
mjr | 76:7f5912b6340e | 5908 | { |
mjr | 76:7f5912b6340e | 5909 | // Zero brightness. Set the SBA switch off, and leave the |
mjr | 76:7f5912b6340e | 5910 | // PBA brightness the same as it was. |
mjr | 76:7f5912b6340e | 5911 | wizOn[i] = 0; |
mjr | 76:7f5912b6340e | 5912 | } |
mjr | 74:822a92bc11d2 | 5913 | |
mjr | 38:091e511ce8a0 | 5914 | // set the output |
mjr | 40:cc0d9814522b | 5915 | lwPin[i]->set(b); |
mjr | 38:091e511ce8a0 | 5916 | } |
mjr | 38:091e511ce8a0 | 5917 | |
mjr | 38:091e511ce8a0 | 5918 | // update 74HC595 outputs, if attached |
mjr | 38:091e511ce8a0 | 5919 | if (hc595 != 0) |
mjr | 38:091e511ce8a0 | 5920 | hc595->update(); |
mjr | 38:091e511ce8a0 | 5921 | } |
mjr | 38:091e511ce8a0 | 5922 | else |
mjr | 38:091e511ce8a0 | 5923 | { |
mjr | 74:822a92bc11d2 | 5924 | // Everything else is an LedWiz PBA message. This is a full |
mjr | 74:822a92bc11d2 | 5925 | // "profile" dump from the host for one bank of 8 outputs. Each |
mjr | 74:822a92bc11d2 | 5926 | // byte sets one output in the current bank. The current bank |
mjr | 74:822a92bc11d2 | 5927 | // is implied; the bank starts at 0 and is reset to 0 by any SBA |
mjr | 74:822a92bc11d2 | 5928 | // message, and is incremented to the next bank by each PBA. Our |
mjr | 74:822a92bc11d2 | 5929 | // variable pbaIdx keeps track of the current bank. There's no |
mjr | 74:822a92bc11d2 | 5930 | // direct way for the host to select the bank; it just has to count |
mjr | 74:822a92bc11d2 | 5931 | // on us staying in sync. In practice, clients always send the |
mjr | 74:822a92bc11d2 | 5932 | // full set of 4 PBA messages in a row to set all 32 outputs. |
mjr | 38:091e511ce8a0 | 5933 | // |
mjr | 38:091e511ce8a0 | 5934 | // Note that a PBA implicitly overrides our extended profile |
mjr | 38:091e511ce8a0 | 5935 | // messages (message prefix 200-219), because this sets the |
mjr | 38:091e511ce8a0 | 5936 | // wizVal[] entry for each output, and that takes precedence |
mjr | 63:5cd1a5f3a41b | 5937 | // over the extended protocol settings when we're in LedWiz |
mjr | 63:5cd1a5f3a41b | 5938 | // protocol mode. |
mjr | 38:091e511ce8a0 | 5939 | // |
mjr | 38:091e511ce8a0 | 5940 | //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n", |
mjr | 38:091e511ce8a0 | 5941 | // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); |
mjr | 38:091e511ce8a0 | 5942 | |
mjr | 74:822a92bc11d2 | 5943 | // carry out the PBA |
mjr | 74:822a92bc11d2 | 5944 | pba_pbx(pbaIdx, data); |
mjr | 74:822a92bc11d2 | 5945 | |
mjr | 74:822a92bc11d2 | 5946 | // update the PBX index state for the next message |
mjr | 74:822a92bc11d2 | 5947 | pbaIdx = (pbaIdx + 8) % 32; |
mjr | 38:091e511ce8a0 | 5948 | } |
mjr | 38:091e511ce8a0 | 5949 | } |
mjr | 35:e959ffba78fd | 5950 | |
mjr | 38:091e511ce8a0 | 5951 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 5952 | // |
mjr | 5:a70c0bce770d | 5953 | // Main program loop. This is invoked on startup and runs forever. Our |
mjr | 5:a70c0bce770d | 5954 | // main work is to read our devices (the accelerometer and the CCD), process |
mjr | 5:a70c0bce770d | 5955 | // the readings into nudge and plunger position data, and send the results |
mjr | 5:a70c0bce770d | 5956 | // to the host computer via the USB joystick interface. We also monitor |
mjr | 5:a70c0bce770d | 5957 | // the USB connection for incoming LedWiz commands and process those into |
mjr | 5:a70c0bce770d | 5958 | // port outputs. |
mjr | 5:a70c0bce770d | 5959 | // |
mjr | 0:5acbbe3f4cf4 | 5960 | int main(void) |
mjr | 0:5acbbe3f4cf4 | 5961 | { |
mjr | 60:f38da020aa13 | 5962 | // say hello to the debug console, in case it's connected |
mjr | 39:b3815a1c3802 | 5963 | printf("\r\nPinscape Controller starting\r\n"); |
mjr | 77:0b96f6867312 | 5964 | |
mjr | 77:0b96f6867312 | 5965 | |
mjr | 60:f38da020aa13 | 5966 | // debugging: print memory config info |
mjr | 59:94eb9265b6d7 | 5967 | // -> no longer very useful, since we use our own custom malloc/new allocator (see xmalloc() above) |
mjr | 60:f38da020aa13 | 5968 | // {int *a = new int; printf("Stack=%lx, heap=%lx, free=%ld\r\n", (long)&a, (long)a, (long)&a - (long)a);} |
mjr | 1:d913e0afb2ac | 5969 | |
mjr | 76:7f5912b6340e | 5970 | // clear the I2C connection |
mjr | 35:e959ffba78fd | 5971 | clear_i2c(); |
mjr | 38:091e511ce8a0 | 5972 | |
mjr | 76:7f5912b6340e | 5973 | // Load the saved configuration. There are two sources of the |
mjr | 76:7f5912b6340e | 5974 | // configuration data: |
mjr | 76:7f5912b6340e | 5975 | // |
mjr | 76:7f5912b6340e | 5976 | // - Look for an NVM (flash non-volatile memory) configuration. |
mjr | 76:7f5912b6340e | 5977 | // If this is valid, we'll load it. The NVM is config data that can |
mjr | 76:7f5912b6340e | 5978 | // be updated dynamically by the host via USB commands and then stored |
mjr | 76:7f5912b6340e | 5979 | // in the flash by the firmware itself. If this exists, it supersedes |
mjr | 76:7f5912b6340e | 5980 | // any of the other settings stores. The Windows config tool uses this |
mjr | 76:7f5912b6340e | 5981 | // to store user settings updates. |
mjr | 76:7f5912b6340e | 5982 | // |
mjr | 76:7f5912b6340e | 5983 | // - If there's no NVM, we'll load the factory defaults, then we'll |
mjr | 76:7f5912b6340e | 5984 | // load any settings stored in the host-loaded configuration. The |
mjr | 76:7f5912b6340e | 5985 | // host can patch a set of configuration variable settings into the |
mjr | 76:7f5912b6340e | 5986 | // .bin file when loading new firmware, in the host-loaded config |
mjr | 76:7f5912b6340e | 5987 | // area that we reserve for this purpose. This allows the host to |
mjr | 76:7f5912b6340e | 5988 | // restore a configuration at the same time it installs firmware, |
mjr | 76:7f5912b6340e | 5989 | // without a separate download of the config data. |
mjr | 76:7f5912b6340e | 5990 | // |
mjr | 76:7f5912b6340e | 5991 | // The NVM supersedes the host-loaded config, since it can be updated |
mjr | 76:7f5912b6340e | 5992 | // between firmware updated and is thus presumably more recent if it's |
mjr | 76:7f5912b6340e | 5993 | // present. (Note that the NVM and host-loaded config are both in |
mjr | 76:7f5912b6340e | 5994 | // flash, so in principle we could just have a single NVM store that |
mjr | 76:7f5912b6340e | 5995 | // the host patches. The only reason we don't is that the NVM store |
mjr | 76:7f5912b6340e | 5996 | // is an image of our in-memory config structure, which is a native C |
mjr | 76:7f5912b6340e | 5997 | // struct, and we don't want the host to have to know the details of |
mjr | 76:7f5912b6340e | 5998 | // its byte layout, for obvious reasons. The host-loaded config, in |
mjr | 76:7f5912b6340e | 5999 | // contrast, uses the wire protocol format, which has a well-defined |
mjr | 76:7f5912b6340e | 6000 | // byte layout that's independent of the firmware version or the |
mjr | 76:7f5912b6340e | 6001 | // details of how the C compiler arranges the struct memory.) |
mjr | 76:7f5912b6340e | 6002 | if (!loadConfigFromFlash()) |
mjr | 76:7f5912b6340e | 6003 | loadHostLoadedConfig(); |
mjr | 35:e959ffba78fd | 6004 | |
mjr | 38:091e511ce8a0 | 6005 | // initialize the diagnostic LEDs |
mjr | 38:091e511ce8a0 | 6006 | initDiagLEDs(cfg); |
mjr | 38:091e511ce8a0 | 6007 | |
mjr | 33:d832bcab089e | 6008 | // we're not connected/awake yet |
mjr | 33:d832bcab089e | 6009 | bool connected = false; |
mjr | 40:cc0d9814522b | 6010 | Timer connectChangeTimer; |
mjr | 33:d832bcab089e | 6011 | |
mjr | 35:e959ffba78fd | 6012 | // create the plunger sensor interface |
mjr | 35:e959ffba78fd | 6013 | createPlunger(); |
mjr | 76:7f5912b6340e | 6014 | |
mjr | 76:7f5912b6340e | 6015 | // update the plunger reader's cached calibration data |
mjr | 76:7f5912b6340e | 6016 | plungerReader.onUpdateCal(); |
mjr | 33:d832bcab089e | 6017 | |
mjr | 60:f38da020aa13 | 6018 | // set up the TLC5940 interface, if these chips are present |
mjr | 35:e959ffba78fd | 6019 | init_tlc5940(cfg); |
mjr | 34:6b981a2afab7 | 6020 | |
mjr | 60:f38da020aa13 | 6021 | // set up 74HC595 interface, if these chips are present |
mjr | 35:e959ffba78fd | 6022 | init_hc595(cfg); |
mjr | 6:cc35eb643e8f | 6023 | |
mjr | 54:fd77a6b2f76c | 6024 | // Initialize the LedWiz ports. Note that the ordering here is important: |
mjr | 54:fd77a6b2f76c | 6025 | // this has to come after we create the TLC5940 and 74HC595 object instances |
mjr | 54:fd77a6b2f76c | 6026 | // (which we just did above), since we need to access those objects to set |
mjr | 54:fd77a6b2f76c | 6027 | // up ports assigned to the respective chips. |
mjr | 35:e959ffba78fd | 6028 | initLwOut(cfg); |
mjr | 48:058ace2aed1d | 6029 | |
mjr | 60:f38da020aa13 | 6030 | // start the TLC5940 refresh cycle clock |
mjr | 35:e959ffba78fd | 6031 | if (tlc5940 != 0) |
mjr | 35:e959ffba78fd | 6032 | tlc5940->start(); |
mjr | 77:0b96f6867312 | 6033 | |
mjr | 77:0b96f6867312 | 6034 | // Assume that nothing uses keyboard keys. We'll check for keyboard |
mjr | 77:0b96f6867312 | 6035 | // usage when initializing the various subsystems that can send keys |
mjr | 77:0b96f6867312 | 6036 | // (buttons, IR). If we find anything that does, we'll create the |
mjr | 77:0b96f6867312 | 6037 | // USB keyboard interface. |
mjr | 77:0b96f6867312 | 6038 | bool kbKeys = false; |
mjr | 77:0b96f6867312 | 6039 | |
mjr | 77:0b96f6867312 | 6040 | // set up the IR remote control emitter & receiver, if present |
mjr | 77:0b96f6867312 | 6041 | init_IR(cfg, kbKeys); |
mjr | 77:0b96f6867312 | 6042 | |
mjr | 77:0b96f6867312 | 6043 | // start the power status time, if applicable |
mjr | 77:0b96f6867312 | 6044 | startPowerStatusTimer(cfg); |
mjr | 48:058ace2aed1d | 6045 | |
mjr | 35:e959ffba78fd | 6046 | // initialize the button input ports |
mjr | 35:e959ffba78fd | 6047 | initButtons(cfg, kbKeys); |
mjr | 38:091e511ce8a0 | 6048 | |
mjr | 60:f38da020aa13 | 6049 | // Create the joystick USB client. Note that the USB vendor/product ID |
mjr | 60:f38da020aa13 | 6050 | // information comes from the saved configuration. Also note that we have |
mjr | 60:f38da020aa13 | 6051 | // to wait until after initializing the input buttons (which we just did |
mjr | 60:f38da020aa13 | 6052 | // above) to set up the interface, since the button setup will determine |
mjr | 60:f38da020aa13 | 6053 | // whether or not we need to present a USB keyboard interface in addition |
mjr | 60:f38da020aa13 | 6054 | // to the joystick interface. |
mjr | 51:57eb311faafa | 6055 | MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false, |
mjr | 51:57eb311faafa | 6056 | cfg.joystickEnabled, kbKeys); |
mjr | 51:57eb311faafa | 6057 | |
mjr | 60:f38da020aa13 | 6058 | // Wait for the USB connection to start up. Show a distinctive diagnostic |
mjr | 60:f38da020aa13 | 6059 | // flash pattern while waiting. |
mjr | 70:9f58735a1732 | 6060 | Timer connTimeoutTimer, connFlashTimer; |
mjr | 70:9f58735a1732 | 6061 | connTimeoutTimer.start(); |
mjr | 70:9f58735a1732 | 6062 | connFlashTimer.start(); |
mjr | 51:57eb311faafa | 6063 | while (!js.configured()) |
mjr | 51:57eb311faafa | 6064 | { |
mjr | 51:57eb311faafa | 6065 | // show one short yellow flash at 2-second intervals |
mjr | 70:9f58735a1732 | 6066 | if (connFlashTimer.read_us() > 2000000) |
mjr | 51:57eb311faafa | 6067 | { |
mjr | 51:57eb311faafa | 6068 | // short yellow flash |
mjr | 51:57eb311faafa | 6069 | diagLED(1, 1, 0); |
mjr | 54:fd77a6b2f76c | 6070 | wait_us(50000); |
mjr | 51:57eb311faafa | 6071 | diagLED(0, 0, 0); |
mjr | 51:57eb311faafa | 6072 | |
mjr | 51:57eb311faafa | 6073 | // reset the flash timer |
mjr | 70:9f58735a1732 | 6074 | connFlashTimer.reset(); |
mjr | 51:57eb311faafa | 6075 | } |
mjr | 70:9f58735a1732 | 6076 | |
mjr | 77:0b96f6867312 | 6077 | // If we've been disconnected for more than the reboot timeout, |
mjr | 77:0b96f6867312 | 6078 | // reboot. Some PCs won't reconnect if we were left plugged in |
mjr | 77:0b96f6867312 | 6079 | // during a power cycle on the PC, but fortunately a reboot on |
mjr | 77:0b96f6867312 | 6080 | // the KL25Z will make the host notice us and trigger a reconnect. |
mjr | 70:9f58735a1732 | 6081 | if (cfg.disconnectRebootTimeout != 0 |
mjr | 70:9f58735a1732 | 6082 | && connTimeoutTimer.read() > cfg.disconnectRebootTimeout) |
mjr | 70:9f58735a1732 | 6083 | reboot(js, false, 0); |
mjr | 77:0b96f6867312 | 6084 | |
mjr | 77:0b96f6867312 | 6085 | // update the PSU2 power sensing status |
mjr | 77:0b96f6867312 | 6086 | powerStatusUpdate(cfg); |
mjr | 51:57eb311faafa | 6087 | } |
mjr | 60:f38da020aa13 | 6088 | |
mjr | 60:f38da020aa13 | 6089 | // we're now connected to the host |
mjr | 54:fd77a6b2f76c | 6090 | connected = true; |
mjr | 40:cc0d9814522b | 6091 | |
mjr | 60:f38da020aa13 | 6092 | // Last report timer for the joytick interface. We use this timer to |
mjr | 60:f38da020aa13 | 6093 | // throttle the report rate to a pace that's suitable for VP. Without |
mjr | 60:f38da020aa13 | 6094 | // any artificial delays, we could generate data to send on the joystick |
mjr | 60:f38da020aa13 | 6095 | // interface on every loop iteration. The loop iteration time depends |
mjr | 60:f38da020aa13 | 6096 | // on which devices are attached, since most of the work in our main |
mjr | 60:f38da020aa13 | 6097 | // loop is simply polling our devices. For typical setups, the loop |
mjr | 60:f38da020aa13 | 6098 | // time ranges from about 0.25ms to 2.5ms; the biggest factor is the |
mjr | 60:f38da020aa13 | 6099 | // plunger sensor. But VP polls for input about every 10ms, so there's |
mjr | 60:f38da020aa13 | 6100 | // no benefit in sending data faster than that, and there's some harm, |
mjr | 60:f38da020aa13 | 6101 | // in that it creates USB overhead (both on the wire and on the host |
mjr | 60:f38da020aa13 | 6102 | // CPU). We therefore use this timer to pace our reports to roughly |
mjr | 60:f38da020aa13 | 6103 | // the VP input polling rate. Note that there's no way to actually |
mjr | 60:f38da020aa13 | 6104 | // synchronize with VP's polling, but there's also no need to, as the |
mjr | 60:f38da020aa13 | 6105 | // input model is designed to reflect the overall current state at any |
mjr | 60:f38da020aa13 | 6106 | // given time rather than events or deltas. If VP polls twice between |
mjr | 60:f38da020aa13 | 6107 | // two updates, it simply sees no state change; if we send two updates |
mjr | 60:f38da020aa13 | 6108 | // between VP polls, VP simply sees the latest state when it does get |
mjr | 60:f38da020aa13 | 6109 | // around to polling. |
mjr | 38:091e511ce8a0 | 6110 | Timer jsReportTimer; |
mjr | 38:091e511ce8a0 | 6111 | jsReportTimer.start(); |
mjr | 38:091e511ce8a0 | 6112 | |
mjr | 60:f38da020aa13 | 6113 | // Time since we successfully sent a USB report. This is a hacky |
mjr | 60:f38da020aa13 | 6114 | // workaround to deal with any remaining sporadic problems in the USB |
mjr | 60:f38da020aa13 | 6115 | // stack. I've been trying to bulletproof the USB code over time to |
mjr | 60:f38da020aa13 | 6116 | // remove all such problems at their source, but it seems unlikely that |
mjr | 60:f38da020aa13 | 6117 | // we'll ever get them all. Thus this hack. The idea here is that if |
mjr | 60:f38da020aa13 | 6118 | // we go too long without successfully sending a USB report, we'll |
mjr | 60:f38da020aa13 | 6119 | // assume that the connection is broken (and the KL25Z USB hardware |
mjr | 60:f38da020aa13 | 6120 | // hasn't noticed this), and we'll try taking measures to recover. |
mjr | 38:091e511ce8a0 | 6121 | Timer jsOKTimer; |
mjr | 38:091e511ce8a0 | 6122 | jsOKTimer.start(); |
mjr | 35:e959ffba78fd | 6123 | |
mjr | 55:4db125cd11a0 | 6124 | // Initialize the calibration button and lamp, if enabled. To be enabled, |
mjr | 55:4db125cd11a0 | 6125 | // the pin has to be assigned to something other than NC (0xFF), AND the |
mjr | 55:4db125cd11a0 | 6126 | // corresponding feature enable flag has to be set. |
mjr | 55:4db125cd11a0 | 6127 | DigitalIn *calBtn = 0; |
mjr | 55:4db125cd11a0 | 6128 | DigitalOut *calBtnLed = 0; |
mjr | 55:4db125cd11a0 | 6129 | |
mjr | 55:4db125cd11a0 | 6130 | // calibration button input - feature flag 0x01 |
mjr | 55:4db125cd11a0 | 6131 | if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF) |
mjr | 55:4db125cd11a0 | 6132 | calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn)); |
mjr | 55:4db125cd11a0 | 6133 | |
mjr | 55:4db125cd11a0 | 6134 | // calibration button indicator lamp output - feature flag 0x02 |
mjr | 55:4db125cd11a0 | 6135 | if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF) |
mjr | 55:4db125cd11a0 | 6136 | calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led)); |
mjr | 6:cc35eb643e8f | 6137 | |
mjr | 35:e959ffba78fd | 6138 | // initialize the calibration button |
mjr | 1:d913e0afb2ac | 6139 | calBtnTimer.start(); |
mjr | 35:e959ffba78fd | 6140 | calBtnState = 0; |
mjr | 1:d913e0afb2ac | 6141 | |
mjr | 1:d913e0afb2ac | 6142 | // set up a timer for our heartbeat indicator |
mjr | 1:d913e0afb2ac | 6143 | Timer hbTimer; |
mjr | 1:d913e0afb2ac | 6144 | hbTimer.start(); |
mjr | 1:d913e0afb2ac | 6145 | int hb = 0; |
mjr | 5:a70c0bce770d | 6146 | uint16_t hbcnt = 0; |
mjr | 1:d913e0afb2ac | 6147 | |
mjr | 1:d913e0afb2ac | 6148 | // set a timer for accelerometer auto-centering |
mjr | 1:d913e0afb2ac | 6149 | Timer acTimer; |
mjr | 1:d913e0afb2ac | 6150 | acTimer.start(); |
mjr | 1:d913e0afb2ac | 6151 | |
mjr | 0:5acbbe3f4cf4 | 6152 | // create the accelerometer object |
mjr | 77:0b96f6867312 | 6153 | Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, |
mjr | 78:1e00b3fa11af | 6154 | MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime); |
mjr | 76:7f5912b6340e | 6155 | |
mjr | 17:ab3cec0c8bf4 | 6156 | // last accelerometer report, in joystick units (we report the nudge |
mjr | 17:ab3cec0c8bf4 | 6157 | // acceleration via the joystick x & y axes, per the VP convention) |
mjr | 17:ab3cec0c8bf4 | 6158 | int x = 0, y = 0; |
mjr | 17:ab3cec0c8bf4 | 6159 | |
mjr | 48:058ace2aed1d | 6160 | // initialize the plunger sensor |
mjr | 35:e959ffba78fd | 6161 | plungerSensor->init(); |
mjr | 10:976666ffa4ef | 6162 | |
mjr | 48:058ace2aed1d | 6163 | // set up the ZB Launch Ball monitor |
mjr | 48:058ace2aed1d | 6164 | ZBLaunchBall zbLaunchBall; |
mjr | 48:058ace2aed1d | 6165 | |
mjr | 54:fd77a6b2f76c | 6166 | // enable the peripheral chips |
mjr | 54:fd77a6b2f76c | 6167 | if (tlc5940 != 0) |
mjr | 54:fd77a6b2f76c | 6168 | tlc5940->enable(true); |
mjr | 54:fd77a6b2f76c | 6169 | if (hc595 != 0) |
mjr | 54:fd77a6b2f76c | 6170 | hc595->enable(true); |
mjr | 74:822a92bc11d2 | 6171 | |
mjr | 76:7f5912b6340e | 6172 | // start the LedWiz flash cycle timer |
mjr | 74:822a92bc11d2 | 6173 | wizCycleTimer.start(); |
mjr | 74:822a92bc11d2 | 6174 | |
mjr | 74:822a92bc11d2 | 6175 | // start the PWM update polling timer |
mjr | 74:822a92bc11d2 | 6176 | polledPwmTimer.start(); |
mjr | 43:7a6364d82a41 | 6177 | |
mjr | 77:0b96f6867312 | 6178 | // Timer for configuration change reboots |
mjr | 77:0b96f6867312 | 6179 | ExtTimer saveConfigRebootTimer; |
mjr | 77:0b96f6867312 | 6180 | |
mjr | 1:d913e0afb2ac | 6181 | // we're all set up - now just loop, processing sensor reports and |
mjr | 1:d913e0afb2ac | 6182 | // host requests |
mjr | 0:5acbbe3f4cf4 | 6183 | for (;;) |
mjr | 0:5acbbe3f4cf4 | 6184 | { |
mjr | 74:822a92bc11d2 | 6185 | // start the main loop timer for diagnostic data collection |
mjr | 76:7f5912b6340e | 6186 | IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();) |
mjr | 74:822a92bc11d2 | 6187 | |
mjr | 48:058ace2aed1d | 6188 | // Process incoming reports on the joystick interface. The joystick |
mjr | 48:058ace2aed1d | 6189 | // "out" (receive) endpoint is used for LedWiz commands and our |
mjr | 48:058ace2aed1d | 6190 | // extended protocol commands. Limit processing time to 5ms to |
mjr | 48:058ace2aed1d | 6191 | // ensure we don't starve the input side. |
mjr | 39:b3815a1c3802 | 6192 | LedWizMsg lwm; |
mjr | 48:058ace2aed1d | 6193 | Timer lwt; |
mjr | 48:058ace2aed1d | 6194 | lwt.start(); |
mjr | 77:0b96f6867312 | 6195 | IF_DIAG(int msgCount = 0;) |
mjr | 48:058ace2aed1d | 6196 | while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000) |
mjr | 74:822a92bc11d2 | 6197 | { |
mjr | 78:1e00b3fa11af | 6198 | handleInputMsg(lwm, js, accel); |
mjr | 74:822a92bc11d2 | 6199 | IF_DIAG(++msgCount;) |
mjr | 74:822a92bc11d2 | 6200 | } |
mjr | 74:822a92bc11d2 | 6201 | |
mjr | 74:822a92bc11d2 | 6202 | // collect performance statistics on the message reader, if desired |
mjr | 74:822a92bc11d2 | 6203 | IF_DIAG( |
mjr | 74:822a92bc11d2 | 6204 | if (msgCount != 0) |
mjr | 74:822a92bc11d2 | 6205 | { |
mjr | 76:7f5912b6340e | 6206 | mainLoopMsgTime += lwt.read_us(); |
mjr | 74:822a92bc11d2 | 6207 | mainLoopMsgCount++; |
mjr | 74:822a92bc11d2 | 6208 | } |
mjr | 74:822a92bc11d2 | 6209 | ) |
mjr | 74:822a92bc11d2 | 6210 | |
mjr | 77:0b96f6867312 | 6211 | // process IR input |
mjr | 77:0b96f6867312 | 6212 | process_IR(cfg, js); |
mjr | 77:0b96f6867312 | 6213 | |
mjr | 77:0b96f6867312 | 6214 | // update the PSU2 power sensing status |
mjr | 77:0b96f6867312 | 6215 | powerStatusUpdate(cfg); |
mjr | 77:0b96f6867312 | 6216 | |
mjr | 74:822a92bc11d2 | 6217 | // update flashing LedWiz outputs periodically |
mjr | 74:822a92bc11d2 | 6218 | wizPulse(); |
mjr | 74:822a92bc11d2 | 6219 | |
mjr | 74:822a92bc11d2 | 6220 | // update PWM outputs |
mjr | 74:822a92bc11d2 | 6221 | pollPwmUpdates(); |
mjr | 77:0b96f6867312 | 6222 | |
mjr | 77:0b96f6867312 | 6223 | // poll the accelerometer |
mjr | 77:0b96f6867312 | 6224 | accel.poll(); |
mjr | 55:4db125cd11a0 | 6225 | |
mjr | 76:7f5912b6340e | 6226 | // collect diagnostic statistics, checkpoint 0 |
mjr | 76:7f5912b6340e | 6227 | IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();) |
mjr | 76:7f5912b6340e | 6228 | |
mjr | 55:4db125cd11a0 | 6229 | // send TLC5940 data updates if applicable |
mjr | 55:4db125cd11a0 | 6230 | if (tlc5940 != 0) |
mjr | 55:4db125cd11a0 | 6231 | tlc5940->send(); |
mjr | 1:d913e0afb2ac | 6232 | |
mjr | 76:7f5912b6340e | 6233 | // collect diagnostic statistics, checkpoint 1 |
mjr | 76:7f5912b6340e | 6234 | IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();) |
mjr | 77:0b96f6867312 | 6235 | |
mjr | 1:d913e0afb2ac | 6236 | // check for plunger calibration |
mjr | 17:ab3cec0c8bf4 | 6237 | if (calBtn != 0 && !calBtn->read()) |
mjr | 0:5acbbe3f4cf4 | 6238 | { |
mjr | 1:d913e0afb2ac | 6239 | // check the state |
mjr | 1:d913e0afb2ac | 6240 | switch (calBtnState) |
mjr | 0:5acbbe3f4cf4 | 6241 | { |
mjr | 1:d913e0afb2ac | 6242 | case 0: |
mjr | 1:d913e0afb2ac | 6243 | // button not yet pushed - start debouncing |
mjr | 1:d913e0afb2ac | 6244 | calBtnTimer.reset(); |
mjr | 1:d913e0afb2ac | 6245 | calBtnState = 1; |
mjr | 1:d913e0afb2ac | 6246 | break; |
mjr | 1:d913e0afb2ac | 6247 | |
mjr | 1:d913e0afb2ac | 6248 | case 1: |
mjr | 1:d913e0afb2ac | 6249 | // pushed, not yet debounced - if the debounce time has |
mjr | 1:d913e0afb2ac | 6250 | // passed, start the hold period |
mjr | 48:058ace2aed1d | 6251 | if (calBtnTimer.read_us() > 50000) |
mjr | 1:d913e0afb2ac | 6252 | calBtnState = 2; |
mjr | 1:d913e0afb2ac | 6253 | break; |
mjr | 1:d913e0afb2ac | 6254 | |
mjr | 1:d913e0afb2ac | 6255 | case 2: |
mjr | 1:d913e0afb2ac | 6256 | // in the hold period - if the button has been held down |
mjr | 1:d913e0afb2ac | 6257 | // for the entire hold period, move to calibration mode |
mjr | 48:058ace2aed1d | 6258 | if (calBtnTimer.read_us() > 2050000) |
mjr | 1:d913e0afb2ac | 6259 | { |
mjr | 1:d913e0afb2ac | 6260 | // enter calibration mode |
mjr | 1:d913e0afb2ac | 6261 | calBtnState = 3; |
mjr | 9:fd65b0a94720 | 6262 | calBtnTimer.reset(); |
mjr | 35:e959ffba78fd | 6263 | |
mjr | 44:b5ac89b9cd5d | 6264 | // begin the plunger calibration limits |
mjr | 52:8298b2a73eb2 | 6265 | plungerReader.setCalMode(true); |
mjr | 1:d913e0afb2ac | 6266 | } |
mjr | 1:d913e0afb2ac | 6267 | break; |
mjr | 2:c174f9ee414a | 6268 | |
mjr | 2:c174f9ee414a | 6269 | case 3: |
mjr | 9:fd65b0a94720 | 6270 | // Already in calibration mode - pushing the button here |
mjr | 9:fd65b0a94720 | 6271 | // doesn't change the current state, but we won't leave this |
mjr | 9:fd65b0a94720 | 6272 | // state as long as it's held down. So nothing changes here. |
mjr | 2:c174f9ee414a | 6273 | break; |
mjr | 0:5acbbe3f4cf4 | 6274 | } |
mjr | 0:5acbbe3f4cf4 | 6275 | } |
mjr | 1:d913e0afb2ac | 6276 | else |
mjr | 1:d913e0afb2ac | 6277 | { |
mjr | 2:c174f9ee414a | 6278 | // Button released. If we're in calibration mode, and |
mjr | 2:c174f9ee414a | 6279 | // the calibration time has elapsed, end the calibration |
mjr | 2:c174f9ee414a | 6280 | // and save the results to flash. |
mjr | 2:c174f9ee414a | 6281 | // |
mjr | 2:c174f9ee414a | 6282 | // Otherwise, return to the base state without saving anything. |
mjr | 2:c174f9ee414a | 6283 | // If the button is released before we make it to calibration |
mjr | 2:c174f9ee414a | 6284 | // mode, it simply cancels the attempt. |
mjr | 48:058ace2aed1d | 6285 | if (calBtnState == 3 && calBtnTimer.read_us() > 15000000) |
mjr | 2:c174f9ee414a | 6286 | { |
mjr | 2:c174f9ee414a | 6287 | // exit calibration mode |
mjr | 1:d913e0afb2ac | 6288 | calBtnState = 0; |
mjr | 52:8298b2a73eb2 | 6289 | plungerReader.setCalMode(false); |
mjr | 2:c174f9ee414a | 6290 | |
mjr | 6:cc35eb643e8f | 6291 | // save the updated configuration |
mjr | 35:e959ffba78fd | 6292 | cfg.plunger.cal.calibrated = 1; |
mjr | 35:e959ffba78fd | 6293 | saveConfigToFlash(); |
mjr | 2:c174f9ee414a | 6294 | } |
mjr | 2:c174f9ee414a | 6295 | else if (calBtnState != 3) |
mjr | 2:c174f9ee414a | 6296 | { |
mjr | 2:c174f9ee414a | 6297 | // didn't make it to calibration mode - cancel the operation |
mjr | 1:d913e0afb2ac | 6298 | calBtnState = 0; |
mjr | 2:c174f9ee414a | 6299 | } |
mjr | 1:d913e0afb2ac | 6300 | } |
mjr | 1:d913e0afb2ac | 6301 | |
mjr | 1:d913e0afb2ac | 6302 | // light/flash the calibration button light, if applicable |
mjr | 1:d913e0afb2ac | 6303 | int newCalBtnLit = calBtnLit; |
mjr | 1:d913e0afb2ac | 6304 | switch (calBtnState) |
mjr | 0:5acbbe3f4cf4 | 6305 | { |
mjr | 1:d913e0afb2ac | 6306 | case 2: |
mjr | 1:d913e0afb2ac | 6307 | // in the hold period - flash the light |
mjr | 48:058ace2aed1d | 6308 | newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1); |
mjr | 1:d913e0afb2ac | 6309 | break; |
mjr | 1:d913e0afb2ac | 6310 | |
mjr | 1:d913e0afb2ac | 6311 | case 3: |
mjr | 1:d913e0afb2ac | 6312 | // calibration mode - show steady on |
mjr | 1:d913e0afb2ac | 6313 | newCalBtnLit = true; |
mjr | 1:d913e0afb2ac | 6314 | break; |
mjr | 1:d913e0afb2ac | 6315 | |
mjr | 1:d913e0afb2ac | 6316 | default: |
mjr | 1:d913e0afb2ac | 6317 | // not calibrating/holding - show steady off |
mjr | 1:d913e0afb2ac | 6318 | newCalBtnLit = false; |
mjr | 1:d913e0afb2ac | 6319 | break; |
mjr | 1:d913e0afb2ac | 6320 | } |
mjr | 3:3514575d4f86 | 6321 | |
mjr | 3:3514575d4f86 | 6322 | // light or flash the external calibration button LED, and |
mjr | 3:3514575d4f86 | 6323 | // do the same with the on-board blue LED |
mjr | 1:d913e0afb2ac | 6324 | if (calBtnLit != newCalBtnLit) |
mjr | 1:d913e0afb2ac | 6325 | { |
mjr | 1:d913e0afb2ac | 6326 | calBtnLit = newCalBtnLit; |
mjr | 2:c174f9ee414a | 6327 | if (calBtnLit) { |
mjr | 17:ab3cec0c8bf4 | 6328 | if (calBtnLed != 0) |
mjr | 17:ab3cec0c8bf4 | 6329 | calBtnLed->write(1); |
mjr | 38:091e511ce8a0 | 6330 | diagLED(0, 0, 1); // blue |
mjr | 2:c174f9ee414a | 6331 | } |
mjr | 2:c174f9ee414a | 6332 | else { |
mjr | 17:ab3cec0c8bf4 | 6333 | if (calBtnLed != 0) |
mjr | 17:ab3cec0c8bf4 | 6334 | calBtnLed->write(0); |
mjr | 38:091e511ce8a0 | 6335 | diagLED(0, 0, 0); // off |
mjr | 2:c174f9ee414a | 6336 | } |
mjr | 1:d913e0afb2ac | 6337 | } |
mjr | 35:e959ffba78fd | 6338 | |
mjr | 76:7f5912b6340e | 6339 | // collect diagnostic statistics, checkpoint 2 |
mjr | 76:7f5912b6340e | 6340 | IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();) |
mjr | 76:7f5912b6340e | 6341 | |
mjr | 48:058ace2aed1d | 6342 | // read the plunger sensor |
mjr | 48:058ace2aed1d | 6343 | plungerReader.read(); |
mjr | 48:058ace2aed1d | 6344 | |
mjr | 76:7f5912b6340e | 6345 | // collect diagnostic statistics, checkpoint 3 |
mjr | 76:7f5912b6340e | 6346 | IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();) |
mjr | 76:7f5912b6340e | 6347 | |
mjr | 53:9b2611964afc | 6348 | // update the ZB Launch Ball status |
mjr | 53:9b2611964afc | 6349 | zbLaunchBall.update(); |
mjr | 37:ed52738445fc | 6350 | |
mjr | 76:7f5912b6340e | 6351 | // collect diagnostic statistics, checkpoint 4 |
mjr | 76:7f5912b6340e | 6352 | IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();) |
mjr | 76:7f5912b6340e | 6353 | |
mjr | 53:9b2611964afc | 6354 | // process button updates |
mjr | 53:9b2611964afc | 6355 | processButtons(cfg); |
mjr | 53:9b2611964afc | 6356 | |
mjr | 76:7f5912b6340e | 6357 | // collect diagnostic statistics, checkpoint 5 |
mjr | 76:7f5912b6340e | 6358 | IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();) |
mjr | 76:7f5912b6340e | 6359 | |
mjr | 38:091e511ce8a0 | 6360 | // send a keyboard report if we have new data |
mjr | 37:ed52738445fc | 6361 | if (kbState.changed) |
mjr | 37:ed52738445fc | 6362 | { |
mjr | 38:091e511ce8a0 | 6363 | // send a keyboard report |
mjr | 37:ed52738445fc | 6364 | js.kbUpdate(kbState.data); |
mjr | 37:ed52738445fc | 6365 | kbState.changed = false; |
mjr | 37:ed52738445fc | 6366 | } |
mjr | 38:091e511ce8a0 | 6367 | |
mjr | 38:091e511ce8a0 | 6368 | // likewise for the media controller |
mjr | 37:ed52738445fc | 6369 | if (mediaState.changed) |
mjr | 37:ed52738445fc | 6370 | { |
mjr | 38:091e511ce8a0 | 6371 | // send a media report |
mjr | 37:ed52738445fc | 6372 | js.mediaUpdate(mediaState.data); |
mjr | 37:ed52738445fc | 6373 | mediaState.changed = false; |
mjr | 37:ed52738445fc | 6374 | } |
mjr | 38:091e511ce8a0 | 6375 | |
mjr | 76:7f5912b6340e | 6376 | // collect diagnostic statistics, checkpoint 6 |
mjr | 76:7f5912b6340e | 6377 | IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();) |
mjr | 76:7f5912b6340e | 6378 | |
mjr | 38:091e511ce8a0 | 6379 | // flag: did we successfully send a joystick report on this round? |
mjr | 38:091e511ce8a0 | 6380 | bool jsOK = false; |
mjr | 55:4db125cd11a0 | 6381 | |
mjr | 55:4db125cd11a0 | 6382 | // figure the current status flags for joystick reports |
mjr | 77:0b96f6867312 | 6383 | uint16_t statusFlags = |
mjr | 77:0b96f6867312 | 6384 | cfg.plunger.enabled // 0x01 |
mjr | 77:0b96f6867312 | 6385 | | nightMode // 0x02 |
mjr | 77:0b96f6867312 | 6386 | | ((psu2_state & 0x07) << 2); // 0x04 0x08 0x10 |
mjr | 77:0b96f6867312 | 6387 | if (IRLearningMode != 0) |
mjr | 77:0b96f6867312 | 6388 | statusFlags |= 0x20; |
mjr | 17:ab3cec0c8bf4 | 6389 | |
mjr | 50:40015764bbe6 | 6390 | // If it's been long enough since our last USB status report, send |
mjr | 50:40015764bbe6 | 6391 | // the new report. VP only polls for input in 10ms intervals, so |
mjr | 50:40015764bbe6 | 6392 | // there's no benefit in sending reports more frequently than this. |
mjr | 50:40015764bbe6 | 6393 | // More frequent reporting would only add USB I/O overhead. |
mjr | 50:40015764bbe6 | 6394 | if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL) |
mjr | 17:ab3cec0c8bf4 | 6395 | { |
mjr | 17:ab3cec0c8bf4 | 6396 | // read the accelerometer |
mjr | 17:ab3cec0c8bf4 | 6397 | int xa, ya; |
mjr | 17:ab3cec0c8bf4 | 6398 | accel.get(xa, ya); |
mjr | 17:ab3cec0c8bf4 | 6399 | |
mjr | 17:ab3cec0c8bf4 | 6400 | // confine the results to our joystick axis range |
mjr | 17:ab3cec0c8bf4 | 6401 | if (xa < -JOYMAX) xa = -JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 6402 | if (xa > JOYMAX) xa = JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 6403 | if (ya < -JOYMAX) ya = -JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 6404 | if (ya > JOYMAX) ya = JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 6405 | |
mjr | 17:ab3cec0c8bf4 | 6406 | // store the updated accelerometer coordinates |
mjr | 17:ab3cec0c8bf4 | 6407 | x = xa; |
mjr | 17:ab3cec0c8bf4 | 6408 | y = ya; |
mjr | 17:ab3cec0c8bf4 | 6409 | |
mjr | 48:058ace2aed1d | 6410 | // Report the current plunger position unless the plunger is |
mjr | 48:058ace2aed1d | 6411 | // disabled, or the ZB Launch Ball signal is on. In either of |
mjr | 48:058ace2aed1d | 6412 | // those cases, just report a constant 0 value. ZB Launch Ball |
mjr | 48:058ace2aed1d | 6413 | // temporarily disables mechanical plunger reporting because it |
mjr | 21:5048e16cc9ef | 6414 | // tells us that the table has a Launch Ball button instead of |
mjr | 48:058ace2aed1d | 6415 | // a traditional plunger, so we don't want to confuse VP with |
mjr | 48:058ace2aed1d | 6416 | // regular plunger inputs. |
mjr | 48:058ace2aed1d | 6417 | int z = plungerReader.getPosition(); |
mjr | 53:9b2611964afc | 6418 | int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z); |
mjr | 35:e959ffba78fd | 6419 | |
mjr | 35:e959ffba78fd | 6420 | // rotate X and Y according to the device orientation in the cabinet |
mjr | 35:e959ffba78fd | 6421 | accelRotate(x, y); |
mjr | 35:e959ffba78fd | 6422 | |
mjr | 35:e959ffba78fd | 6423 | // send the joystick report |
mjr | 53:9b2611964afc | 6424 | jsOK = js.update(x, y, zrep, jsButtons, statusFlags); |
mjr | 21:5048e16cc9ef | 6425 | |
mjr | 17:ab3cec0c8bf4 | 6426 | // we've just started a new report interval, so reset the timer |
mjr | 38:091e511ce8a0 | 6427 | jsReportTimer.reset(); |
mjr | 17:ab3cec0c8bf4 | 6428 | } |
mjr | 21:5048e16cc9ef | 6429 | |
mjr | 52:8298b2a73eb2 | 6430 | // If we're in sensor status mode, report all pixel exposure values |
mjr | 52:8298b2a73eb2 | 6431 | if (reportPlungerStat) |
mjr | 10:976666ffa4ef | 6432 | { |
mjr | 17:ab3cec0c8bf4 | 6433 | // send the report |
mjr | 53:9b2611964afc | 6434 | plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime); |
mjr | 17:ab3cec0c8bf4 | 6435 | |
mjr | 10:976666ffa4ef | 6436 | // we have satisfied this request |
mjr | 52:8298b2a73eb2 | 6437 | reportPlungerStat = false; |
mjr | 10:976666ffa4ef | 6438 | } |
mjr | 10:976666ffa4ef | 6439 | |
mjr | 35:e959ffba78fd | 6440 | // If joystick reports are turned off, send a generic status report |
mjr | 35:e959ffba78fd | 6441 | // periodically for the sake of the Windows config tool. |
mjr | 77:0b96f6867312 | 6442 | if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL) |
mjr | 21:5048e16cc9ef | 6443 | { |
mjr | 55:4db125cd11a0 | 6444 | jsOK = js.updateStatus(statusFlags); |
mjr | 38:091e511ce8a0 | 6445 | jsReportTimer.reset(); |
mjr | 38:091e511ce8a0 | 6446 | } |
mjr | 38:091e511ce8a0 | 6447 | |
mjr | 38:091e511ce8a0 | 6448 | // if we successfully sent a joystick report, reset the watchdog timer |
mjr | 38:091e511ce8a0 | 6449 | if (jsOK) |
mjr | 38:091e511ce8a0 | 6450 | { |
mjr | 38:091e511ce8a0 | 6451 | jsOKTimer.reset(); |
mjr | 38:091e511ce8a0 | 6452 | jsOKTimer.start(); |
mjr | 21:5048e16cc9ef | 6453 | } |
mjr | 21:5048e16cc9ef | 6454 | |
mjr | 76:7f5912b6340e | 6455 | // collect diagnostic statistics, checkpoint 7 |
mjr | 76:7f5912b6340e | 6456 | IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();) |
mjr | 76:7f5912b6340e | 6457 | |
mjr | 6:cc35eb643e8f | 6458 | #ifdef DEBUG_PRINTF |
mjr | 6:cc35eb643e8f | 6459 | if (x != 0 || y != 0) |
mjr | 6:cc35eb643e8f | 6460 | printf("%d,%d\r\n", x, y); |
mjr | 6:cc35eb643e8f | 6461 | #endif |
mjr | 6:cc35eb643e8f | 6462 | |
mjr | 33:d832bcab089e | 6463 | // check for connection status changes |
mjr | 54:fd77a6b2f76c | 6464 | bool newConnected = js.isConnected() && !js.isSleeping(); |
mjr | 33:d832bcab089e | 6465 | if (newConnected != connected) |
mjr | 33:d832bcab089e | 6466 | { |
mjr | 54:fd77a6b2f76c | 6467 | // give it a moment to stabilize |
mjr | 40:cc0d9814522b | 6468 | connectChangeTimer.start(); |
mjr | 55:4db125cd11a0 | 6469 | if (connectChangeTimer.read_us() > 1000000) |
mjr | 33:d832bcab089e | 6470 | { |
mjr | 33:d832bcab089e | 6471 | // note the new status |
mjr | 33:d832bcab089e | 6472 | connected = newConnected; |
mjr | 40:cc0d9814522b | 6473 | |
mjr | 40:cc0d9814522b | 6474 | // done with the change timer for this round - reset it for next time |
mjr | 40:cc0d9814522b | 6475 | connectChangeTimer.stop(); |
mjr | 40:cc0d9814522b | 6476 | connectChangeTimer.reset(); |
mjr | 33:d832bcab089e | 6477 | |
mjr | 54:fd77a6b2f76c | 6478 | // if we're newly disconnected, clean up for PC suspend mode or power off |
mjr | 54:fd77a6b2f76c | 6479 | if (!connected) |
mjr | 40:cc0d9814522b | 6480 | { |
mjr | 54:fd77a6b2f76c | 6481 | // turn off all outputs |
mjr | 33:d832bcab089e | 6482 | allOutputsOff(); |
mjr | 40:cc0d9814522b | 6483 | |
mjr | 40:cc0d9814522b | 6484 | // The KL25Z runs off of USB power, so we might (depending on the PC |
mjr | 40:cc0d9814522b | 6485 | // and OS configuration) continue to receive power even when the main |
mjr | 40:cc0d9814522b | 6486 | // PC power supply is turned off, such as in soft-off or suspend/sleep |
mjr | 40:cc0d9814522b | 6487 | // mode. Any external output controller chips (TLC5940, 74HC595) might |
mjr | 40:cc0d9814522b | 6488 | // be powered from the PC power supply directly rather than from our |
mjr | 40:cc0d9814522b | 6489 | // USB power, so they might be powered off even when we're still running. |
mjr | 40:cc0d9814522b | 6490 | // To ensure cleaner startup when the power comes back on, globally |
mjr | 40:cc0d9814522b | 6491 | // disable the outputs. The global disable signals come from GPIO lines |
mjr | 40:cc0d9814522b | 6492 | // that remain powered as long as the KL25Z is powered, so these modes |
mjr | 40:cc0d9814522b | 6493 | // will apply smoothly across power state transitions in the external |
mjr | 40:cc0d9814522b | 6494 | // hardware. That is, when the external chips are powered up, they'll |
mjr | 40:cc0d9814522b | 6495 | // see the global disable signals as stable voltage inputs immediately, |
mjr | 40:cc0d9814522b | 6496 | // which will cause them to suppress any output triggering. This ensures |
mjr | 40:cc0d9814522b | 6497 | // that we don't fire any solenoids or flash any lights spuriously when |
mjr | 40:cc0d9814522b | 6498 | // the power first comes on. |
mjr | 40:cc0d9814522b | 6499 | if (tlc5940 != 0) |
mjr | 40:cc0d9814522b | 6500 | tlc5940->enable(false); |
mjr | 40:cc0d9814522b | 6501 | if (hc595 != 0) |
mjr | 40:cc0d9814522b | 6502 | hc595->enable(false); |
mjr | 40:cc0d9814522b | 6503 | } |
mjr | 33:d832bcab089e | 6504 | } |
mjr | 33:d832bcab089e | 6505 | } |
mjr | 48:058ace2aed1d | 6506 | |
mjr | 53:9b2611964afc | 6507 | // if we have a reboot timer pending, check for completion |
mjr | 77:0b96f6867312 | 6508 | if (saveConfigRebootTimer.isRunning() |
mjr | 77:0b96f6867312 | 6509 | && saveConfigRebootTimer.read() > saveConfigRebootTime) |
mjr | 53:9b2611964afc | 6510 | reboot(js); |
mjr | 77:0b96f6867312 | 6511 | |
mjr | 77:0b96f6867312 | 6512 | // if a config save is pending, do it now |
mjr | 77:0b96f6867312 | 6513 | if (saveConfigPending != 0) |
mjr | 77:0b96f6867312 | 6514 | { |
mjr | 77:0b96f6867312 | 6515 | // save the configuration |
mjr | 77:0b96f6867312 | 6516 | saveConfigToFlash(); |
mjr | 77:0b96f6867312 | 6517 | |
mjr | 77:0b96f6867312 | 6518 | // if desired, reboot after the specified delay |
mjr | 77:0b96f6867312 | 6519 | if (saveConfigPending == SAVE_CONFIG_AND_REBOOT) |
mjr | 77:0b96f6867312 | 6520 | saveConfigRebootTimer.start(); |
mjr | 77:0b96f6867312 | 6521 | |
mjr | 77:0b96f6867312 | 6522 | // the save is no longer pending |
mjr | 77:0b96f6867312 | 6523 | saveConfigPending = 0; |
mjr | 77:0b96f6867312 | 6524 | } |
mjr | 53:9b2611964afc | 6525 | |
mjr | 48:058ace2aed1d | 6526 | // if we're disconnected, initiate a new connection |
mjr | 51:57eb311faafa | 6527 | if (!connected) |
mjr | 48:058ace2aed1d | 6528 | { |
mjr | 54:fd77a6b2f76c | 6529 | // show USB HAL debug events |
mjr | 54:fd77a6b2f76c | 6530 | extern void HAL_DEBUG_PRINTEVENTS(const char *prefix); |
mjr | 54:fd77a6b2f76c | 6531 | HAL_DEBUG_PRINTEVENTS(">DISC"); |
mjr | 54:fd77a6b2f76c | 6532 | |
mjr | 54:fd77a6b2f76c | 6533 | // show immediate diagnostic feedback |
mjr | 54:fd77a6b2f76c | 6534 | js.diagFlash(); |
mjr | 54:fd77a6b2f76c | 6535 | |
mjr | 54:fd77a6b2f76c | 6536 | // clear any previous diagnostic LED display |
mjr | 54:fd77a6b2f76c | 6537 | diagLED(0, 0, 0); |
mjr | 51:57eb311faafa | 6538 | |
mjr | 51:57eb311faafa | 6539 | // set up a timer to monitor the reboot timeout |
mjr | 70:9f58735a1732 | 6540 | Timer reconnTimeoutTimer; |
mjr | 70:9f58735a1732 | 6541 | reconnTimeoutTimer.start(); |
mjr | 48:058ace2aed1d | 6542 | |
mjr | 54:fd77a6b2f76c | 6543 | // set up a timer for diagnostic displays |
mjr | 54:fd77a6b2f76c | 6544 | Timer diagTimer; |
mjr | 54:fd77a6b2f76c | 6545 | diagTimer.reset(); |
mjr | 54:fd77a6b2f76c | 6546 | diagTimer.start(); |
mjr | 74:822a92bc11d2 | 6547 | |
mjr | 74:822a92bc11d2 | 6548 | // turn off the main loop timer while spinning |
mjr | 74:822a92bc11d2 | 6549 | IF_DIAG(mainLoopTimer.stop();) |
mjr | 54:fd77a6b2f76c | 6550 | |
mjr | 54:fd77a6b2f76c | 6551 | // loop until we get our connection back |
mjr | 54:fd77a6b2f76c | 6552 | while (!js.isConnected() || js.isSleeping()) |
mjr | 51:57eb311faafa | 6553 | { |
mjr | 54:fd77a6b2f76c | 6554 | // try to recover the connection |
mjr | 54:fd77a6b2f76c | 6555 | js.recoverConnection(); |
mjr | 54:fd77a6b2f76c | 6556 | |
mjr | 55:4db125cd11a0 | 6557 | // send TLC5940 data if necessary |
mjr | 55:4db125cd11a0 | 6558 | if (tlc5940 != 0) |
mjr | 55:4db125cd11a0 | 6559 | tlc5940->send(); |
mjr | 55:4db125cd11a0 | 6560 | |
mjr | 54:fd77a6b2f76c | 6561 | // show a diagnostic flash every couple of seconds |
mjr | 54:fd77a6b2f76c | 6562 | if (diagTimer.read_us() > 2000000) |
mjr | 51:57eb311faafa | 6563 | { |
mjr | 54:fd77a6b2f76c | 6564 | // flush the USB HAL debug events, if in debug mode |
mjr | 54:fd77a6b2f76c | 6565 | HAL_DEBUG_PRINTEVENTS(">NC"); |
mjr | 54:fd77a6b2f76c | 6566 | |
mjr | 54:fd77a6b2f76c | 6567 | // show diagnostic feedback |
mjr | 54:fd77a6b2f76c | 6568 | js.diagFlash(); |
mjr | 51:57eb311faafa | 6569 | |
mjr | 51:57eb311faafa | 6570 | // reset the flash timer |
mjr | 54:fd77a6b2f76c | 6571 | diagTimer.reset(); |
mjr | 51:57eb311faafa | 6572 | } |
mjr | 51:57eb311faafa | 6573 | |
mjr | 77:0b96f6867312 | 6574 | // If the disconnect reboot timeout has expired, reboot. |
mjr | 77:0b96f6867312 | 6575 | // Some PC hosts won't reconnect to a device that's left |
mjr | 77:0b96f6867312 | 6576 | // plugged in through various events on the PC side, such as |
mjr | 77:0b96f6867312 | 6577 | // rebooting Windows, cycling power on the PC, or just a lost |
mjr | 77:0b96f6867312 | 6578 | // USB connection. Rebooting the KL25Z seems to be the most |
mjr | 77:0b96f6867312 | 6579 | // reliable way to get Windows to notice us again after one |
mjr | 77:0b96f6867312 | 6580 | // of these events and make it reconnect. |
mjr | 51:57eb311faafa | 6581 | if (cfg.disconnectRebootTimeout != 0 |
mjr | 70:9f58735a1732 | 6582 | && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout) |
mjr | 54:fd77a6b2f76c | 6583 | reboot(js, false, 0); |
mjr | 77:0b96f6867312 | 6584 | |
mjr | 77:0b96f6867312 | 6585 | // update the PSU2 power sensing status |
mjr | 77:0b96f6867312 | 6586 | powerStatusUpdate(cfg); |
mjr | 54:fd77a6b2f76c | 6587 | } |
mjr | 54:fd77a6b2f76c | 6588 | |
mjr | 74:822a92bc11d2 | 6589 | // resume the main loop timer |
mjr | 74:822a92bc11d2 | 6590 | IF_DIAG(mainLoopTimer.start();) |
mjr | 74:822a92bc11d2 | 6591 | |
mjr | 54:fd77a6b2f76c | 6592 | // if we made it out of that loop alive, we're connected again! |
mjr | 54:fd77a6b2f76c | 6593 | connected = true; |
mjr | 54:fd77a6b2f76c | 6594 | HAL_DEBUG_PRINTEVENTS(">C"); |
mjr | 54:fd77a6b2f76c | 6595 | |
mjr | 54:fd77a6b2f76c | 6596 | // Enable peripheral chips and update them with current output data |
mjr | 54:fd77a6b2f76c | 6597 | if (tlc5940 != 0) |
mjr | 54:fd77a6b2f76c | 6598 | { |
mjr | 55:4db125cd11a0 | 6599 | tlc5940->enable(true); |
mjr | 54:fd77a6b2f76c | 6600 | tlc5940->update(true); |
mjr | 54:fd77a6b2f76c | 6601 | } |
mjr | 54:fd77a6b2f76c | 6602 | if (hc595 != 0) |
mjr | 54:fd77a6b2f76c | 6603 | { |
mjr | 55:4db125cd11a0 | 6604 | hc595->enable(true); |
mjr | 54:fd77a6b2f76c | 6605 | hc595->update(true); |
mjr | 51:57eb311faafa | 6606 | } |
mjr | 48:058ace2aed1d | 6607 | } |
mjr | 43:7a6364d82a41 | 6608 | |
mjr | 6:cc35eb643e8f | 6609 | // provide a visual status indication on the on-board LED |
mjr | 48:058ace2aed1d | 6610 | if (calBtnState < 2 && hbTimer.read_us() > 1000000) |
mjr | 1:d913e0afb2ac | 6611 | { |
mjr | 54:fd77a6b2f76c | 6612 | if (jsOKTimer.read_us() > 1000000) |
mjr | 38:091e511ce8a0 | 6613 | { |
mjr | 39:b3815a1c3802 | 6614 | // USB freeze - show red/yellow. |
mjr | 40:cc0d9814522b | 6615 | // |
mjr | 54:fd77a6b2f76c | 6616 | // It's been more than a second since we successfully sent a joystick |
mjr | 54:fd77a6b2f76c | 6617 | // update message. This must mean that something's wrong on the USB |
mjr | 54:fd77a6b2f76c | 6618 | // connection, even though we haven't detected an outright disconnect. |
mjr | 54:fd77a6b2f76c | 6619 | // Show a distinctive diagnostic LED pattern when this occurs. |
mjr | 38:091e511ce8a0 | 6620 | hb = !hb; |
mjr | 38:091e511ce8a0 | 6621 | diagLED(1, hb, 0); |
mjr | 54:fd77a6b2f76c | 6622 | |
mjr | 54:fd77a6b2f76c | 6623 | // If the reboot-on-disconnect option is in effect, treat this condition |
mjr | 54:fd77a6b2f76c | 6624 | // as equivalent to a disconnect, since something is obviously wrong |
mjr | 54:fd77a6b2f76c | 6625 | // with the USB connection. |
mjr | 54:fd77a6b2f76c | 6626 | if (cfg.disconnectRebootTimeout != 0) |
mjr | 54:fd77a6b2f76c | 6627 | { |
mjr | 54:fd77a6b2f76c | 6628 | // The reboot timeout is in effect. If we've been incommunicado for |
mjr | 54:fd77a6b2f76c | 6629 | // longer than the timeout, reboot. If we haven't reached the time |
mjr | 54:fd77a6b2f76c | 6630 | // limit, keep running for now, and leave the OK timer running so |
mjr | 54:fd77a6b2f76c | 6631 | // that we can continue to monitor this. |
mjr | 54:fd77a6b2f76c | 6632 | if (jsOKTimer.read() > cfg.disconnectRebootTimeout) |
mjr | 54:fd77a6b2f76c | 6633 | reboot(js, false, 0); |
mjr | 54:fd77a6b2f76c | 6634 | } |
mjr | 54:fd77a6b2f76c | 6635 | else |
mjr | 54:fd77a6b2f76c | 6636 | { |
mjr | 54:fd77a6b2f76c | 6637 | // There's no reboot timer, so just keep running with the diagnostic |
mjr | 54:fd77a6b2f76c | 6638 | // pattern displayed. Since we're not waiting for any other timed |
mjr | 54:fd77a6b2f76c | 6639 | // conditions in this state, stop the timer so that it doesn't |
mjr | 54:fd77a6b2f76c | 6640 | // overflow if this condition persists for a long time. |
mjr | 54:fd77a6b2f76c | 6641 | jsOKTimer.stop(); |
mjr | 54:fd77a6b2f76c | 6642 | } |
mjr | 38:091e511ce8a0 | 6643 | } |
mjr | 73:4e8ce0b18915 | 6644 | else if (psu2_state >= 4) |
mjr | 73:4e8ce0b18915 | 6645 | { |
mjr | 73:4e8ce0b18915 | 6646 | // We're in the TV timer countdown. Skip the normal heartbeat |
mjr | 73:4e8ce0b18915 | 6647 | // flashes and show the TV timer flashes instead. |
mjr | 73:4e8ce0b18915 | 6648 | diagLED(0, 0, 0); |
mjr | 73:4e8ce0b18915 | 6649 | } |
mjr | 35:e959ffba78fd | 6650 | else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated) |
mjr | 6:cc35eb643e8f | 6651 | { |
mjr | 6:cc35eb643e8f | 6652 | // connected, plunger calibration needed - flash yellow/green |
mjr | 6:cc35eb643e8f | 6653 | hb = !hb; |
mjr | 38:091e511ce8a0 | 6654 | diagLED(hb, 1, 0); |
mjr | 6:cc35eb643e8f | 6655 | } |
mjr | 6:cc35eb643e8f | 6656 | else |
mjr | 6:cc35eb643e8f | 6657 | { |
mjr | 6:cc35eb643e8f | 6658 | // connected - flash blue/green |
mjr | 2:c174f9ee414a | 6659 | hb = !hb; |
mjr | 38:091e511ce8a0 | 6660 | diagLED(0, hb, !hb); |
mjr | 2:c174f9ee414a | 6661 | } |
mjr | 1:d913e0afb2ac | 6662 | |
mjr | 1:d913e0afb2ac | 6663 | // reset the heartbeat timer |
mjr | 1:d913e0afb2ac | 6664 | hbTimer.reset(); |
mjr | 5:a70c0bce770d | 6665 | ++hbcnt; |
mjr | 1:d913e0afb2ac | 6666 | } |
mjr | 74:822a92bc11d2 | 6667 | |
mjr | 74:822a92bc11d2 | 6668 | // collect statistics on the main loop time, if desired |
mjr | 74:822a92bc11d2 | 6669 | IF_DIAG( |
mjr | 76:7f5912b6340e | 6670 | mainLoopIterTime += mainLoopTimer.read_us(); |
mjr | 74:822a92bc11d2 | 6671 | mainLoopIterCount++; |
mjr | 74:822a92bc11d2 | 6672 | ) |
mjr | 1:d913e0afb2ac | 6673 | } |
mjr | 0:5acbbe3f4cf4 | 6674 | } |