Spring 2014, ECE 4180 project, Georgia Institute of Technolgoy. This is the autonomous driver program for the Robotics Cat and Mouse program.

Dependencies:   IMUfilter ADXL345_I2C mbed ITG3200 USBHost mbed-rtos

IMU_RPY.h

Committer:
Strikewolf
Date:
2014-04-27
Revision:
0:84d5aa80fd77
Child:
1:dacf7db790f6

File content as of revision 0:84d5aa80fd77:

    

    /**
     * IMU filter example.
     *
     * Calculate the roll, pitch and yaw angles.
     */
    #include "IMUfilter.h"
    #include "ADXL345_I2C.h"
    #include "ITG3200.h"
     
    //Gravity at Earth's surface in m/s/s
    #define g0 9.812865328
    //Number of samples to average.
    #define SAMPLES 4
    //Number of samples to be averaged for a null bias calculation
    //during calibration.
    #define CALIBRATION_SAMPLES 128
    //Convert from radians to degrees.
    #define toDegrees(x) (x * 57.2957795)
    //Convert from degrees to radians.
    #define toRadians(x) (x * 0.01745329252)
    //ITG-3200 sensitivity is 14.375 LSB/(degrees/sec).
    #define GYROSCOPE_GAIN (1 / 14.375)
    //Full scale resolution on the ADXL345 is 4mg/LSB.
    #define ACCELEROMETER_GAIN (0.004 * g0)
    //Sampling gyroscope at 200Hz.
    #define GYRO_RATE   0.005
    //Sampling accelerometer at 200Hz.
    #define ACC_RATE    0.005
    //Updating filter at 40Hz.
    #define FILTER_RATE 0.1
     
    //At rest the gyroscope is centred around 0 and goes between about
    //-5 and 5 counts. As 1 degrees/sec is ~15 LSB, error is roughly
    //5/15 = 0.3 degrees/sec.
    IMUfilter imuFilter(FILTER_RATE, 0.3);
    ADXL345_I2C accelerometer(p28, p27);
    ITG3200 gyroscope(p28, p27);
    Ticker accelerometerTicker;
    Ticker gyroscopeTicker;
    Ticker filterTicker;
     
    //Offsets for the gyroscope.
    //The readings we take when the gyroscope is stationary won't be 0, so we'll
    //average a set of readings we do get when the gyroscope is stationary and
    //take those away from subsequent readings to ensure the gyroscope is offset
    //or "biased" to 0.
    double w_xBias;
    double w_yBias;
    double w_zBias;
     
    //Offsets for the accelerometer.
    //Same as with the gyroscope.
    double a_xBias;
    double a_yBias;
    double a_zBias;
     
    //Accumulators used for oversampling and then averaging.
    volatile double a_xAccumulator = 0;
    volatile double a_yAccumulator = 0;
    volatile double a_zAccumulator = 0;
    volatile double w_xAccumulator = 0;
    volatile double w_yAccumulator = 0;
    volatile double w_zAccumulator = 0;
     
    //Accelerometer and gyroscope readings for x, y, z axes.
    volatile double a_x;
    volatile double a_y;
    volatile double a_z;
    volatile double w_x;
    volatile double w_y;
    volatile double w_z;
     
    //Buffer for accelerometer readings.
    int readings[3];
    //Number of accelerometer samples we're on.
    int accelerometerSamples = 0;
    //Number of gyroscope samples we're on.
    int gyroscopeSamples = 0;
     
    /**
     * Prototypes
     */
    //Set up the ADXL345 appropriately.
    void initializeAcceleromter(void);
    //Calculate the null bias.
    void calibrateAccelerometer(void);
    //Take a set of samples and average them.
    void sampleAccelerometer(void);
    //Set up the ITG3200 appropriately.
    void initializeGyroscope(void);
    //Calculate the null bias.
    void calibrateGyroscope(void);
    //Take a set of samples and average them.
    void sampleGyroscope(void);
    //Update the filter and calculate the Euler angles.
    void filter(void);
     
    void initializeAccelerometer(void)
    {
     
        //Go into standby mode to configure the device.
        accelerometer.setPowerControl(0x00);
        //Full resolution, +/-16g, 4mg/LSB.
        accelerometer.setDataFormatControl(0x0B);
        //200Hz data rate.
        accelerometer.setDataRate(ADXL345_200HZ);
        //Measurement mode.
        accelerometer.setPowerControl(0x08);
        //See http://www.analog.com/static/imported-files/application_notes/AN-1077.pdf
        wait_ms(22);
     
    }
     
    void sampleAccelerometer(void)
    {
     
        //Have we taken enough samples?
        if (accelerometerSamples == SAMPLES) {
     
            //Average the samples, remove the bias, and calculate the acceleration
            //in m/s/s.
            a_x = ((a_xAccumulator / SAMPLES) - a_xBias) * ACCELEROMETER_GAIN;
            a_y = ((a_yAccumulator / SAMPLES) - a_yBias) * ACCELEROMETER_GAIN;
            a_z = ((a_zAccumulator / SAMPLES) - a_zBias) * ACCELEROMETER_GAIN;
     
            a_xAccumulator = 0;
            a_yAccumulator = 0;
            a_zAccumulator = 0;
            accelerometerSamples = 0;
     
        } else {
            //Take another sample.
            accelerometer.getOutput(readings);
     
            a_xAccumulator += (int16_t) readings[0];
            a_yAccumulator += (int16_t) readings[1];
            a_zAccumulator += (int16_t) readings[2];
     
            accelerometerSamples++;
     
        }
     
    }
     
    void calibrateAccelerometer(void)
    {
     
        a_xAccumulator = 0;
        a_yAccumulator = 0;
        a_zAccumulator = 0;
     
        //Take a number of readings and average them
        //to calculate the zero g offset.
        for (int i = 0; i < CALIBRATION_SAMPLES; i++) {
     
            accelerometer.getOutput(readings);
     
            a_xAccumulator += (int16_t) readings[0];
            a_yAccumulator += (int16_t) readings[1];
            a_zAccumulator += (int16_t) readings[2];
     
            wait(ACC_RATE);
     
        }
     
        a_xAccumulator /= CALIBRATION_SAMPLES;
        a_yAccumulator /= CALIBRATION_SAMPLES;
        a_zAccumulator /= CALIBRATION_SAMPLES;
     
        //At 4mg/LSB, 250 LSBs is 1g.
        a_xBias = a_xAccumulator;
        a_yBias = a_yAccumulator;
        a_zBias = (a_zAccumulator - 250);
     
        a_xAccumulator = 0;
        a_yAccumulator = 0;
        a_zAccumulator = 0;
     
    }
     
    void initializeGyroscope(void)
    {
     
        //Low pass filter bandwidth of 42Hz.
        gyroscope.setLpBandwidth(LPFBW_42HZ);
        //Internal sample rate of 200Hz. (1kHz / 5).
        gyroscope.setSampleRateDivider(4);
     
    }
     
    void calibrateGyroscope(void)
    {
     
        w_xAccumulator = 0;
        w_yAccumulator = 0;
        w_zAccumulator = 0;
     
        //Take a number of readings and average them
        //to calculate the gyroscope bias offset.
        for (int i = 0; i < CALIBRATION_SAMPLES; i++) {
     
            w_xAccumulator += gyroscope.getGyroX();
            w_yAccumulator += gyroscope.getGyroY();
            w_zAccumulator += gyroscope.getGyroZ();
            wait(GYRO_RATE);
     
        }
     
        //Average the samples.
        w_xAccumulator /= CALIBRATION_SAMPLES;
        w_yAccumulator /= CALIBRATION_SAMPLES;
        w_zAccumulator /= CALIBRATION_SAMPLES;
     
        w_xBias = w_xAccumulator;
        w_yBias = w_yAccumulator;
        w_zBias = w_zAccumulator;
     
        w_xAccumulator = 0;
        w_yAccumulator = 0;
        w_zAccumulator = 0;
     
    }
     
    void sampleGyroscope(void)
    {
     
        //Have we taken enough samples?
        if (gyroscopeSamples == SAMPLES) {
     
            //Average the samples, remove the bias, and calculate the angular
            //velocity in rad/s.
            w_x = toRadians(((w_xAccumulator / SAMPLES) - w_xBias) * GYROSCOPE_GAIN);
            w_y = toRadians(((w_yAccumulator / SAMPLES) - w_yBias) * GYROSCOPE_GAIN);
            w_z = toRadians(((w_zAccumulator / SAMPLES) - w_zBias) * GYROSCOPE_GAIN);
     
            w_xAccumulator = 0;
            w_yAccumulator = 0;
            w_zAccumulator = 0;
            gyroscopeSamples = 0;
     
        } else {
            //Take another sample.
            w_xAccumulator += gyroscope.getGyroX();
            w_yAccumulator += gyroscope.getGyroY();
            w_zAccumulator += gyroscope.getGyroZ();
     
            gyroscopeSamples++;
     
        }
     
    }
     
    void filter(void)
    {
     
        //Update the filter variables.
        imuFilter.updateFilter(w_y, w_x, w_z, a_y, a_x, a_z);
        //Calculate the new Euler angles.
        imuFilter.computeEuler();
     
    }
     
    void rpy_init()
    {
        //Initialize inertial sensors.
        initializeAccelerometer();
        calibrateAccelerometer();
        initializeGyroscope();
        //calibrateGyroscope();
     
     
       /* //Set up timers.
        //Accelerometer data rate is 200Hz, so we'll sample at this speed.
        accelerometerTicker.attach(&sampleAccelerometer, 0.005);
        //Gyroscope data rate is 200Hz, so we'll sample at this speed.
        gyroscopeTicker.attach(&sampleGyroscope, 0.005);
        //Update the filter variables at the correct rate.
        filterTicker.attach(&filter, FILTER_RATE);*/
    }