AHRS based on MatrixPilot DCM algorithm; ported from Pololu MinIMU-9 example code in turn based on ArduPilot 1.5 built for sensor gy_80
Fork of DCM_AHRS by
DCM.cpp
- Committer:
- shimniok
- Date:
- 2012-01-24
- Revision:
- 0:62284d27d75e
- Child:
- 1:115cf0a84a9d
File content as of revision 0:62284d27d75e:
/* MinIMU-9-mbed-AHRS Pololu MinIMU-9 + mbed AHRS (Attitude and Heading Reference System) Modified and ported to mbed environment by Michael Shimniok http://www.bot-thoughts.com/ Basedd on MinIMU-9-Arduino-AHRS Pololu MinIMU-9 + Arduino AHRS (Attitude and Heading Reference System) Copyright (c) 2011 Pololu Corporation. http://www.pololu.com/ MinIMU-9-Arduino-AHRS is based on sf9domahrs by Doug Weibel and Jose Julio: http://code.google.com/p/sf9domahrs/ sf9domahrs is based on ArduIMU v1.5 by Jordi Munoz and William Premerlani, Jose Julio and Doug Weibel: http://code.google.com/p/ardu-imu/ MinIMU-9-Arduino-AHRS is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. MinIMU-9-Arduino-AHRS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with MinIMU-9-Arduino-AHRS. If not, see <http://www.gnu.org/licenses/>. */ #include "DCM.h" #include "Matrix.h" #include "math.h" #include "Sensors.h" #define MAG_SKIP 2 float DCM::constrain(float x, float a, float b) { float result = x; if (x < a) result = a; if (x > b) result = b; return result; } DCM::DCM(void): G_Dt(0.02), update_count(MAG_SKIP) { for (int m=0; m < 3; m++) { Accel_Vector[m] = 0; Gyro_Vector[m] = 0; Omega_Vector[m] = 0; Omega_P[m] = 0; Omega_I[m] = 0; Omega[m] = 0; errorRollPitch[m] = 0; errorYaw[m] = 0; for (int n=0; n < 3; n++) { dcm[m][n] = (m == n) ? 1 : 0; // dcm starts as identity matrix } } } /**************************************************/ void DCM::Normalize(void) { float error=0; float temporary[3][3]; float renorm=0; error= -Vector_Dot_Product(&dcm[0][0], &dcm[1][0])*.5; //eq.19 Vector_Scale(&temporary[0][0], &dcm[1][0], error); //eq.19 Vector_Scale(&temporary[1][0], &dcm[0][0], error); //eq.19 Vector_Add(&temporary[0][0], &temporary[0][0], &dcm[0][0]);//eq.19 Vector_Add(&temporary[1][0], &temporary[1][0], &dcm[1][0]);//eq.19 Vector_Cross_Product(&temporary[2][0],&temporary[0][0],&temporary[1][0]); // c= a x b //eq.20 renorm= .5 *(3 - Vector_Dot_Product(&temporary[0][0],&temporary[0][0])); //eq.21 Vector_Scale(&dcm[0][0], &temporary[0][0], renorm); renorm= .5 *(3 - Vector_Dot_Product(&temporary[1][0],&temporary[1][0])); //eq.21 Vector_Scale(&dcm[1][0], &temporary[1][0], renorm); renorm= .5 *(3 - Vector_Dot_Product(&temporary[2][0],&temporary[2][0])); //eq.21 Vector_Scale(&dcm[2][0], &temporary[2][0], renorm); } /**************************************************/ void DCM::Drift_correction(void) { float mag_heading_x; float mag_heading_y; float errorCourse; //Compensation the Roll, Pitch and Yaw drift. static float Scaled_Omega_P[3]; static float Scaled_Omega_I[3]; float Accel_magnitude; float Accel_weight; //*****Roll and Pitch*************** // Calculate the magnitude of the accelerometer vector Accel_magnitude = sqrt(Accel_Vector[0]*Accel_Vector[0] + Accel_Vector[1]*Accel_Vector[1] + Accel_Vector[2]*Accel_Vector[2]); Accel_magnitude = Accel_magnitude / GRAVITY; // Scale to gravity. // Dynamic weighting of accelerometer info (reliability filter) // Weight for accelerometer info (<0.5G = 0.0, 1G = 1.0 , >1.5G = 0.0) Accel_weight = constrain(1 - 2*abs(1 - Accel_magnitude),0,1); // Vector_Cross_Product(&errorRollPitch[0],&Accel_Vector[0],&dcm[2][0]); //adjust the ground of reference Vector_Scale(&Omega_P[0],&errorRollPitch[0],Kp_ROLLPITCH*Accel_weight); Vector_Scale(&Scaled_Omega_I[0],&errorRollPitch[0],Ki_ROLLPITCH*Accel_weight); Vector_Add(Omega_I,Omega_I,Scaled_Omega_I); //*****YAW*************** // We make the gyro YAW drift correction based on compass magnetic heading /* http://tinyurl.com/7bul438 * William Premerlani: * 1. If you are treating the magnetometer as a tilt compensated compass, it will not work for pitch values near 90 degrees. * A better way to do it is to use the magnetometer measurement as a reference vector instead. Use the direction cosine * matrix to transform the magnetometer vector from body frame to earth frame, which works in any orientation, even with * 90 degree pitch. Then, extract the horizontal component of the magnetometer earth frame vector, and take the cross * product of it with the known horizontal component of the earth's magnetic field. The result is a rotation error vector * that you transform back into the body frame, and use it to compensate for gyro drift. That is technique we are using in * MatrixPilot, it works for any orientation. A combination of two reference vectors (magnetometer and accelerometer) will * provide a 3 axis lock. * 2. If you are using Euler angles to represent orientation, they do not work for 90 degree pitch. There is an effect known * as "gimbal lock" that throws off the roll. It is better to use either an angle and rotation axis representation, or * quaternions. * * ummm... we're no actually calculating MAG_Heading anywhere... so it's zero... * mag_earth[3x1] = mag[3x1] dot dcm[3x3] * earth_rotation_error_vector = mag_earth[x and y] cross known_earth_mag[??] * gyro drift error aka body_rotation_error_vector = earth_rotation_error_Vector times dcm[3x3] float mag_earth[3], mag_sensor[3]; mag_sensor[0] = magnetom_x; mag_sensor[1] = magnetom_y; mag_sensor[2] = magnetom_z; mag_earth[0] = VectorDotProduct( &dcm[0] , mag_sensor ) << 1; mag_earth[1] = VectorDotProduct( &dcm[1] , mag_sensor ) << 1; mag_earth[2] = VectorDotProduct( &dcm[2] , mag_sensor ) << 1; mag_error = 100 * VectorDotProduct( 2 , mag_earth , declinationVector ) ; // Dotgain = 1/2 VectorScale( 3 , errorYawplane , &rmat[6] , mag_error ) ; // Scalegain = 1/2 */ mag_heading_x = cos(MAG_Heading); mag_heading_y = sin(MAG_Heading); errorCourse=(dcm[0][0]*mag_heading_y) - (dcm[1][0]*mag_heading_x); //Calculating YAW error Vector_Scale(errorYaw,&dcm[2][0],errorCourse); //Applys the yaw correction to the XYZ rotation of the aircraft, depeding the position. Vector_Scale(&Scaled_Omega_P[0],&errorYaw[0],Kp_YAW);//.01proportional of YAW. Vector_Add(Omega_P,Omega_P,Scaled_Omega_P);//Adding Proportional. Vector_Scale(&Scaled_Omega_I[0],&errorYaw[0],Ki_YAW);//.00001Integrator Vector_Add(Omega_I,Omega_I,Scaled_Omega_I);//adding integrator to the Omega_I } /**************************************************/ void DCM::Accel_adjust(void) { Accel_Vector[1] += Accel_Scale(speed_3d*Omega[2]); // Centrifugal force on Acc_y = GPS_speed*GyroZ Accel_Vector[2] -= Accel_Scale(speed_3d*Omega[1]); // Centrifugal force on Acc_z = GPS_speed*GyroY // Add linear (x-axis) acceleration correction here // from MatrixPilot // total (3D) airspeed in cm/sec is used to adjust for acceleration //gplane[0]=gplane[0]- omegaSOG( omegaAccum[2] , air_speed_3DGPS ) ; //gplane[2]=gplane[2]+ omegaSOG( omegaAccum[0] , air_speed_3DGPS ) ; //gplane[1]=gplane[1]+ ((unsigned int)(ACCELSCALE))*forward_acceleration } /**************************************************/ void DCM::Matrix_update(void) { // TODO: Hardware-specific routines to convert gyro to units; this (probably) should be handled elsewhere Gyro_Vector[0]=Gyro_Scaled_X(gyro_x); //gyro x roll Gyro_Vector[1]=Gyro_Scaled_Y(gyro_y); //gyro y pitch Gyro_Vector[2]=Gyro_Scaled_Z(gyro_z); //gyro Z yaw // Why aren't we scaling accelerometer? I think the DCM paper talks a little about this... ?? Accel_Vector[0]=accel_x; Accel_Vector[1]=accel_y; Accel_Vector[2]=accel_z; Vector_Add(&Omega[0], &Gyro_Vector[0], &Omega_I[0]); //adding proportional term Vector_Add(&Omega_Vector[0], &Omega[0], &Omega_P[0]); //adding Integrator term // Remove centrifugal & linear acceleration. Accel_adjust(); #if OUTPUTMODE==1 Update_Matrix[0][0]=0; Update_Matrix[0][1]=-G_Dt*Omega_Vector[2];//-z Update_Matrix[0][2]=G_Dt*Omega_Vector[1];//y Update_Matrix[1][0]=G_Dt*Omega_Vector[2];//z Update_Matrix[1][1]=0; Update_Matrix[1][2]=-G_Dt*Omega_Vector[0];//-x Update_Matrix[2][0]=-G_Dt*Omega_Vector[1];//-y Update_Matrix[2][1]=G_Dt*Omega_Vector[0];//x Update_Matrix[2][2]=0; #else // Uncorrected data (no drift correction) Update_Matrix[0][0]=0; Update_Matrix[0][1]=-G_Dt*Gyro_Vector[2];//-z Update_Matrix[0][2]=G_Dt*Gyro_Vector[1];//y Update_Matrix[1][0]=G_Dt*Gyro_Vector[2];//z Update_Matrix[1][1]=0; Update_Matrix[1][2]=-G_Dt*Gyro_Vector[0]; Update_Matrix[2][0]=-G_Dt*Gyro_Vector[1]; Update_Matrix[2][1]=G_Dt*Gyro_Vector[0]; Update_Matrix[2][2]=0; #endif Matrix_Multiply(Temporary_Matrix, dcm, Update_Matrix); //c=a*b // ??? Matrix_Add(dcm, dcm, Temporary_Matrix); ??? for(int x=0; x<3; x++) { //Matrix Addition (update) for(int y=0; y<3; y++) { dcm[x][y] += Temporary_Matrix[x][y]; } } } void DCM::Euler_angles(void) { pitch = -asin(dcm[2][0]); roll = atan2(dcm[2][1],dcm[2][2]); yaw = atan2(dcm[1][0],dcm[0][0]); } void DCM::Update_step() { Read_Gyro(); Read_Accel(); if (--update_count == 0) { Update_mag(); update_count = MAG_SKIP; } Matrix_update(); Normalize(); Drift_correction(); //Accel_adjust(); Euler_angles(); } void DCM::Update_mag() { Read_Compass(); Compass_Heading(); }