An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Fri Apr 21 18:50:37 2017 +0000
Revision:
86:e30a1f60f783
Parent:
82:4f6209cb5c33
Child:
87:8d35c74403af
Capture a bunch of alternative bar code decoder tests, mostly unsuccessful

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 3:3514575d4f86 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
mjr 3:3514575d4f86 2 * Modified Mouse code for Joystick - WH 2012
mjr 3:3514575d4f86 3 *
mjr 3:3514575d4f86 4 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 3:3514575d4f86 5 * and associated documentation files (the "Software"), to deal in the Software without
mjr 3:3514575d4f86 6 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 3:3514575d4f86 7 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 3:3514575d4f86 8 * Software is furnished to do so, subject to the following conditions:
mjr 3:3514575d4f86 9 *
mjr 3:3514575d4f86 10 * The above copyright notice and this permission notice shall be included in all copies or
mjr 3:3514575d4f86 11 * substantial portions of the Software.
mjr 3:3514575d4f86 12 *
mjr 3:3514575d4f86 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 3:3514575d4f86 14 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 3:3514575d4f86 15 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 3:3514575d4f86 16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 3:3514575d4f86 17 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 3:3514575d4f86 18 */
mjr 3:3514575d4f86 19
mjr 3:3514575d4f86 20 #include "stdint.h"
mjr 3:3514575d4f86 21 #include "USBJoystick.h"
mjr 21:5048e16cc9ef 22
mjr 21:5048e16cc9ef 23 #include "config.h" // Pinscape configuration
mjr 21:5048e16cc9ef 24
mjr 35:e959ffba78fd 25
mjr 35:e959ffba78fd 26
mjr 48:058ace2aed1d 27 // Maximum report sizes
mjr 77:0b96f6867312 28 const int MAX_REPORT_JS_TX = USBJoystick::reportLen;
mjr 48:058ace2aed1d 29 const int MAX_REPORT_JS_RX = 8;
mjr 63:5cd1a5f3a41b 30 const int MAX_REPORT_KB_TX = 8;
mjr 63:5cd1a5f3a41b 31 const int MAX_REPORT_KB_RX = 4;
mjr 48:058ace2aed1d 32
mjr 11:bd9da7088e6e 33 bool USBJoystick::update(int16_t x, int16_t y, int16_t z, uint32_t buttons, uint16_t status)
mjr 3:3514575d4f86 34 {
mjr 3:3514575d4f86 35 _x = x;
mjr 3:3514575d4f86 36 _y = y;
mjr 3:3514575d4f86 37 _z = z;
mjr 11:bd9da7088e6e 38 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 39 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 10:976666ffa4ef 40 _status = status;
mjr 3:3514575d4f86 41
mjr 3:3514575d4f86 42 // send the report
mjr 3:3514575d4f86 43 return update();
mjr 3:3514575d4f86 44 }
mjr 35:e959ffba78fd 45
mjr 11:bd9da7088e6e 46 bool USBJoystick::update()
mjr 11:bd9da7088e6e 47 {
mjr 3:3514575d4f86 48 HID_REPORT report;
mjr 63:5cd1a5f3a41b 49
mjr 3:3514575d4f86 50 // Fill the report according to the Joystick Descriptor
mjr 6:cc35eb643e8f 51 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 53:9b2611964afc 52 #define putbe(idx, val) (report.data[(idx)+1] = (val) & 0xff, report.data[idx] = ((val) >> 8) & 0xff)
mjr 40:cc0d9814522b 53 #define putl(idx, val) (put(idx, val), put((idx)+2, (val) >> 16))
mjr 54:fd77a6b2f76c 54 #define putlbe(idx, val) (putbe((idx)+2, val), putbe(idx, (val) >> 16))
mjr 77:0b96f6867312 55 #define put64(idx, val) (putl(idx, val), putl((idx)+4, (val) >> 32))
mjr 63:5cd1a5f3a41b 56 put(0, _status);
mjr 63:5cd1a5f3a41b 57 put(2, 0); // second word of status - zero in high bit identifies as normal joystick report
mjr 63:5cd1a5f3a41b 58 put(4, _buttonsLo);
mjr 63:5cd1a5f3a41b 59 put(6, _buttonsHi);
mjr 63:5cd1a5f3a41b 60 put(8, _x);
mjr 63:5cd1a5f3a41b 61 put(10, _y);
mjr 63:5cd1a5f3a41b 62 put(12, _z);
mjr 21:5048e16cc9ef 63
mjr 21:5048e16cc9ef 64 // important: keep reportLen in sync with the actual byte length of
mjr 21:5048e16cc9ef 65 // the reports we build here
mjr 63:5cd1a5f3a41b 66 report.length = reportLen;
mjr 3:3514575d4f86 67
mjr 5:a70c0bce770d 68 // send the report
mjr 10:976666ffa4ef 69 return sendTO(&report, 100);
mjr 10:976666ffa4ef 70 }
mjr 10:976666ffa4ef 71
mjr 35:e959ffba78fd 72 bool USBJoystick::kbUpdate(uint8_t data[8])
mjr 35:e959ffba78fd 73 {
mjr 35:e959ffba78fd 74 // set up the report
mjr 35:e959ffba78fd 75 HID_REPORT report;
mjr 35:e959ffba78fd 76 report.data[0] = REPORT_ID_KB; // report ID = keyboard
mjr 35:e959ffba78fd 77 memcpy(&report.data[1], data, 8); // copy the kb report data
mjr 35:e959ffba78fd 78 report.length = 9; // length = ID prefix + kb report length
mjr 35:e959ffba78fd 79
mjr 35:e959ffba78fd 80 // send it to endpoint 4 (the keyboard interface endpoint)
mjr 35:e959ffba78fd 81 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 82 }
mjr 35:e959ffba78fd 83
mjr 35:e959ffba78fd 84 bool USBJoystick::mediaUpdate(uint8_t data)
mjr 35:e959ffba78fd 85 {
mjr 35:e959ffba78fd 86 // set up the report
mjr 35:e959ffba78fd 87 HID_REPORT report;
mjr 35:e959ffba78fd 88 report.data[0] = REPORT_ID_MEDIA; // report ID = media
mjr 35:e959ffba78fd 89 report.data[1] = data; // key pressed bits
mjr 35:e959ffba78fd 90 report.length = 2;
mjr 35:e959ffba78fd 91
mjr 35:e959ffba78fd 92 // send it
mjr 35:e959ffba78fd 93 return writeTO(EP4IN, report.data, report.length, MAX_PACKET_SIZE_EPINT, 100);
mjr 35:e959ffba78fd 94 }
mjr 35:e959ffba78fd 95
mjr 52:8298b2a73eb2 96 bool USBJoystick::sendPlungerStatus(
mjr 86:e30a1f60f783 97 int npix, int edgePos, int flags, uint32_t avgScanTime, uint32_t processingTime)
mjr 52:8298b2a73eb2 98 {
mjr 52:8298b2a73eb2 99 HID_REPORT report;
mjr 52:8298b2a73eb2 100
mjr 52:8298b2a73eb2 101 // Set the special status bits to indicate it's an extended
mjr 52:8298b2a73eb2 102 // exposure report.
mjr 63:5cd1a5f3a41b 103 put(0, 0x87FF);
mjr 52:8298b2a73eb2 104
mjr 52:8298b2a73eb2 105 // start at the second byte
mjr 63:5cd1a5f3a41b 106 int ofs = 2;
mjr 52:8298b2a73eb2 107
mjr 52:8298b2a73eb2 108 // write the report subtype (0) to byte 2
mjr 52:8298b2a73eb2 109 report.data[ofs++] = 0;
mjr 52:8298b2a73eb2 110
mjr 52:8298b2a73eb2 111 // write the number of pixels to bytes 3-4
mjr 52:8298b2a73eb2 112 put(ofs, uint16_t(npix));
mjr 52:8298b2a73eb2 113 ofs += 2;
mjr 52:8298b2a73eb2 114
mjr 52:8298b2a73eb2 115 // write the shadow edge position to bytes 5-6
mjr 52:8298b2a73eb2 116 put(ofs, uint16_t(edgePos));
mjr 52:8298b2a73eb2 117 ofs += 2;
mjr 52:8298b2a73eb2 118
mjr 86:e30a1f60f783 119 // Add the calibration mode flag if applicable
mjr 52:8298b2a73eb2 120 extern bool plungerCalMode;
mjr 86:e30a1f60f783 121 if (plungerCalMode) flags |= 0x04;
mjr 86:e30a1f60f783 122
mjr 86:e30a1f60f783 123 // write the flags to byte 7
mjr 52:8298b2a73eb2 124 report.data[ofs++] = flags;
mjr 52:8298b2a73eb2 125
mjr 52:8298b2a73eb2 126 // write the average scan time in 10us intervals to bytes 8-10
mjr 52:8298b2a73eb2 127 uint32_t t = uint32_t(avgScanTime / 10);
mjr 52:8298b2a73eb2 128 report.data[ofs++] = t & 0xff;
mjr 52:8298b2a73eb2 129 report.data[ofs++] = (t >> 8) & 0xff;
mjr 52:8298b2a73eb2 130 report.data[ofs++] = (t >> 16) & 0xff;
mjr 52:8298b2a73eb2 131
mjr 52:8298b2a73eb2 132 // write the processing time to bytes 11-13
mjr 52:8298b2a73eb2 133 t = uint32_t(processingTime / 10);
mjr 52:8298b2a73eb2 134 report.data[ofs++] = t & 0xff;
mjr 52:8298b2a73eb2 135 report.data[ofs++] = (t >> 8) & 0xff;
mjr 52:8298b2a73eb2 136 report.data[ofs++] = (t >> 16) & 0xff;
mjr 52:8298b2a73eb2 137
mjr 52:8298b2a73eb2 138 // send the report
mjr 63:5cd1a5f3a41b 139 report.length = reportLen;
mjr 52:8298b2a73eb2 140 return sendTO(&report, 100);
mjr 52:8298b2a73eb2 141 }
mjr 52:8298b2a73eb2 142
mjr 86:e30a1f60f783 143 bool USBJoystick::sendPlungerStatus2(
mjr 86:e30a1f60f783 144 int nativeScale,
mjr 86:e30a1f60f783 145 int jitterLo, int jitterHi, int rawPos,
mjr 86:e30a1f60f783 146 int axcTime)
mjr 86:e30a1f60f783 147 {
mjr 86:e30a1f60f783 148 HID_REPORT report;
mjr 86:e30a1f60f783 149 memset(report.data, 0, sizeof(report.data));
mjr 86:e30a1f60f783 150
mjr 86:e30a1f60f783 151 // Set the special status bits to indicate it's an extended
mjr 86:e30a1f60f783 152 // exposure report.
mjr 86:e30a1f60f783 153 put(0, 0x87FF);
mjr 86:e30a1f60f783 154
mjr 86:e30a1f60f783 155 // start at the second byte
mjr 86:e30a1f60f783 156 int ofs = 2;
mjr 86:e30a1f60f783 157
mjr 86:e30a1f60f783 158 // write the report subtype (1) to byte 2
mjr 86:e30a1f60f783 159 report.data[ofs++] = 1;
mjr 86:e30a1f60f783 160
mjr 86:e30a1f60f783 161 // write the native scale to bytes 3:4
mjr 86:e30a1f60f783 162 put(ofs, uint16_t(nativeScale));
mjr 86:e30a1f60f783 163 ofs += 2;
mjr 86:e30a1f60f783 164
mjr 86:e30a1f60f783 165 // limit the jitter filter bounds to the native scale
mjr 86:e30a1f60f783 166 if (jitterLo < 0)
mjr 86:e30a1f60f783 167 jitterLo = 0;
mjr 86:e30a1f60f783 168 else if (jitterLo > nativeScale)
mjr 86:e30a1f60f783 169 jitterLo = nativeScale;
mjr 86:e30a1f60f783 170 if (jitterHi < 0)
mjr 86:e30a1f60f783 171 jitterHi = 0;
mjr 86:e30a1f60f783 172 else if (jitterHi > nativeScale)
mjr 86:e30a1f60f783 173 jitterHi = nativeScale;
mjr 86:e30a1f60f783 174
mjr 86:e30a1f60f783 175 // write the jitter filter window bounds to 5:6 and 7:8
mjr 86:e30a1f60f783 176 put(ofs, uint16_t(jitterLo));
mjr 86:e30a1f60f783 177 ofs += 2;
mjr 86:e30a1f60f783 178 put(ofs, uint16_t(jitterHi));
mjr 86:e30a1f60f783 179 ofs += 2;
mjr 86:e30a1f60f783 180
mjr 86:e30a1f60f783 181 // add the raw position
mjr 86:e30a1f60f783 182 put(ofs, uint16_t(rawPos));
mjr 86:e30a1f60f783 183 ofs += 2;
mjr 86:e30a1f60f783 184
mjr 86:e30a1f60f783 185 // add the auto-exposure time
mjr 86:e30a1f60f783 186 put(ofs, uint16_t(axcTime));
mjr 86:e30a1f60f783 187 ofs += 2;
mjr 86:e30a1f60f783 188
mjr 86:e30a1f60f783 189 // send the report
mjr 86:e30a1f60f783 190 report.length = reportLen;
mjr 86:e30a1f60f783 191 return sendTO(&report, 100);
mjr 86:e30a1f60f783 192 }
mjr 86:e30a1f60f783 193
mjr 52:8298b2a73eb2 194 bool USBJoystick::sendPlungerPix(int &idx, int npix, const uint8_t *pix)
mjr 10:976666ffa4ef 195 {
mjr 10:976666ffa4ef 196 HID_REPORT report;
mjr 10:976666ffa4ef 197
mjr 10:976666ffa4ef 198 // Set the special status bits to indicate it's an exposure report.
mjr 10:976666ffa4ef 199 // The high 5 bits of the status word are set to 10000, and the
mjr 10:976666ffa4ef 200 // low 11 bits are the current pixel index.
mjr 10:976666ffa4ef 201 uint16_t s = idx | 0x8000;
mjr 63:5cd1a5f3a41b 202 put(0, s);
mjr 25:e22b88bd783a 203
mjr 25:e22b88bd783a 204 // start at the second byte
mjr 63:5cd1a5f3a41b 205 int ofs = 2;
mjr 25:e22b88bd783a 206
mjr 47:df7a88cd249c 207 // now fill out the remaining bytes with exposure values
mjr 63:5cd1a5f3a41b 208 report.length = reportLen;
mjr 47:df7a88cd249c 209 for ( ; ofs < report.length ; ++ofs)
mjr 47:df7a88cd249c 210 report.data[ofs] = (idx < npix ? pix[idx++] : 0);
mjr 10:976666ffa4ef 211
mjr 10:976666ffa4ef 212 // send the report
mjr 35:e959ffba78fd 213 return sendTO(&report, 100);
mjr 3:3514575d4f86 214 }
mjr 9:fd65b0a94720 215
mjr 53:9b2611964afc 216 bool USBJoystick::reportID(int index)
mjr 40:cc0d9814522b 217 {
mjr 40:cc0d9814522b 218 HID_REPORT report;
mjr 40:cc0d9814522b 219
mjr 40:cc0d9814522b 220 // initially fill the report with zeros
mjr 40:cc0d9814522b 221 memset(report.data, 0, sizeof(report.data));
mjr 40:cc0d9814522b 222
mjr 40:cc0d9814522b 223 // Set the special status bits to indicate that it's an ID report
mjr 40:cc0d9814522b 224 uint16_t s = 0x9000;
mjr 63:5cd1a5f3a41b 225 put(0, s);
mjr 40:cc0d9814522b 226
mjr 53:9b2611964afc 227 // add the requested ID index
mjr 63:5cd1a5f3a41b 228 report.data[2] = (uint8_t)index;
mjr 53:9b2611964afc 229
mjr 53:9b2611964afc 230 // figure out which ID we're reporting
mjr 53:9b2611964afc 231 switch (index)
mjr 53:9b2611964afc 232 {
mjr 53:9b2611964afc 233 case 1:
mjr 53:9b2611964afc 234 // KL25Z CPU ID
mjr 63:5cd1a5f3a41b 235 putbe(3, SIM->UIDMH);
mjr 63:5cd1a5f3a41b 236 putlbe(5, SIM->UIDML);
mjr 63:5cd1a5f3a41b 237 putlbe(9, SIM->UIDL);
mjr 53:9b2611964afc 238 break;
mjr 53:9b2611964afc 239
mjr 53:9b2611964afc 240 case 2:
mjr 53:9b2611964afc 241 // OpenSDA ID. Copy the low-order 80 bits of the OpenSDA ID.
mjr 53:9b2611964afc 242 // (The stored value is 128 bits = 16 bytes; we only want the last
mjr 53:9b2611964afc 243 // 80 bits = 10 bytes. So skip ahead 16 and back up 10 to get
mjr 53:9b2611964afc 244 // the starting point.)
mjr 53:9b2611964afc 245 extern const char *getOpenSDAID();
mjr 63:5cd1a5f3a41b 246 memcpy(&report.data[3], getOpenSDAID() + 16 - 10, 10);
mjr 53:9b2611964afc 247 break;
mjr 53:9b2611964afc 248 }
mjr 53:9b2611964afc 249
mjr 53:9b2611964afc 250 // send the report
mjr 63:5cd1a5f3a41b 251 report.length = reportLen;
mjr 53:9b2611964afc 252 return sendTO(&report, 100);
mjr 53:9b2611964afc 253 }
mjr 53:9b2611964afc 254
mjr 53:9b2611964afc 255 bool USBJoystick::reportBuildInfo(const char *date)
mjr 53:9b2611964afc 256 {
mjr 53:9b2611964afc 257 HID_REPORT report;
mjr 53:9b2611964afc 258
mjr 53:9b2611964afc 259 // initially fill the report with zeros
mjr 53:9b2611964afc 260 memset(report.data, 0, sizeof(report.data));
mjr 53:9b2611964afc 261
mjr 53:9b2611964afc 262 // Set the special status bits to indicate that it's a build
mjr 53:9b2611964afc 263 // info report
mjr 53:9b2611964afc 264 uint16_t s = 0xA000;
mjr 63:5cd1a5f3a41b 265 put(0, s);
mjr 53:9b2611964afc 266
mjr 53:9b2611964afc 267 // Parse the date. This is given in the standard __DATE__ " " __TIME
mjr 53:9b2611964afc 268 // macro format, "Mon dd yyyy hh:mm:ss" (e.g., "Feb 16 2016 12:15:06").
mjr 53:9b2611964afc 269 static const char mon[][4] = {
mjr 53:9b2611964afc 270 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
mjr 53:9b2611964afc 271 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
mjr 53:9b2611964afc 272 };
mjr 53:9b2611964afc 273 long dd = (atol(date + 7) * 10000L) // YYYY0000
mjr 53:9b2611964afc 274 + (atol(date + 4)); // 000000DD
mjr 53:9b2611964afc 275 for (int i = 0 ; i < 12 ; ++i)
mjr 53:9b2611964afc 276 {
mjr 53:9b2611964afc 277 if (memcmp(mon[i], date, 3) == 0)
mjr 53:9b2611964afc 278 {
mjr 53:9b2611964afc 279 dd += (i+1)*100; // 0000MM00
mjr 53:9b2611964afc 280 break;
mjr 53:9b2611964afc 281 }
mjr 53:9b2611964afc 282 }
mjr 53:9b2611964afc 283
mjr 53:9b2611964afc 284 // parse the time into a long formatted as decimal HHMMSS (e.g.,
mjr 53:9b2611964afc 285 // "12:15:06" turns into 121506 decimal)
mjr 53:9b2611964afc 286 long tt = (atol(date+12)*10000)
mjr 53:9b2611964afc 287 + (atol(date+15)*100)
mjr 53:9b2611964afc 288 + (atol(date+18));
mjr 53:9b2611964afc 289
mjr 53:9b2611964afc 290 // store the build date and time
mjr 63:5cd1a5f3a41b 291 putl(2, dd);
mjr 63:5cd1a5f3a41b 292 putl(6, tt);
mjr 40:cc0d9814522b 293
mjr 40:cc0d9814522b 294 // send the report
mjr 63:5cd1a5f3a41b 295 report.length = reportLen;
mjr 40:cc0d9814522b 296 return sendTO(&report, 100);
mjr 40:cc0d9814522b 297 }
mjr 40:cc0d9814522b 298
mjr 52:8298b2a73eb2 299 bool USBJoystick::reportConfigVar(const uint8_t *data)
mjr 52:8298b2a73eb2 300 {
mjr 52:8298b2a73eb2 301 HID_REPORT report;
mjr 52:8298b2a73eb2 302
mjr 52:8298b2a73eb2 303 // initially fill the report with zeros
mjr 52:8298b2a73eb2 304 memset(report.data, 0, sizeof(report.data));
mjr 52:8298b2a73eb2 305
mjr 52:8298b2a73eb2 306 // Set the special status bits to indicate that it's a config
mjr 52:8298b2a73eb2 307 // variable report
mjr 52:8298b2a73eb2 308 uint16_t s = 0x9800;
mjr 63:5cd1a5f3a41b 309 put(0, s);
mjr 52:8298b2a73eb2 310
mjr 52:8298b2a73eb2 311 // Copy the variable data (7 bytes, starting with the variable ID)
mjr 63:5cd1a5f3a41b 312 memcpy(report.data + 2, data, 7);
mjr 52:8298b2a73eb2 313
mjr 52:8298b2a73eb2 314 // send the report
mjr 63:5cd1a5f3a41b 315 report.length = reportLen;
mjr 52:8298b2a73eb2 316 return sendTO(&report, 100);
mjr 52:8298b2a73eb2 317 }
mjr 52:8298b2a73eb2 318
mjr 52:8298b2a73eb2 319 bool USBJoystick::reportConfig(
mjr 52:8298b2a73eb2 320 int numOutputs, int unitNo,
mjr 52:8298b2a73eb2 321 int plungerZero, int plungerMax, int plungerRlsTime,
mjr 82:4f6209cb5c33 322 bool configured, bool sbxpbx, bool newAccelFeatures, bool flashStatusFeature,
mjr 73:4e8ce0b18915 323 size_t freeHeapBytes)
mjr 33:d832bcab089e 324 {
mjr 33:d832bcab089e 325 HID_REPORT report;
mjr 33:d832bcab089e 326
mjr 33:d832bcab089e 327 // initially fill the report with zeros
mjr 33:d832bcab089e 328 memset(report.data, 0, sizeof(report.data));
mjr 33:d832bcab089e 329
mjr 33:d832bcab089e 330 // Set the special status bits to indicate that it's a config report.
mjr 33:d832bcab089e 331 uint16_t s = 0x8800;
mjr 63:5cd1a5f3a41b 332 put(0, s);
mjr 33:d832bcab089e 333
mjr 33:d832bcab089e 334 // write the number of configured outputs
mjr 63:5cd1a5f3a41b 335 put(2, numOutputs);
mjr 33:d832bcab089e 336
mjr 33:d832bcab089e 337 // write the unit number
mjr 63:5cd1a5f3a41b 338 put(4, unitNo);
mjr 33:d832bcab089e 339
mjr 35:e959ffba78fd 340 // write the plunger zero and max values
mjr 63:5cd1a5f3a41b 341 put(6, plungerZero);
mjr 63:5cd1a5f3a41b 342 put(8, plungerMax);
mjr 63:5cd1a5f3a41b 343 report.data[10] = uint8_t(plungerRlsTime);
mjr 35:e959ffba78fd 344
mjr 40:cc0d9814522b 345 // write the status bits:
mjr 40:cc0d9814522b 346 // 0x01 -> configuration loaded
mjr 75:677892300e7a 347 // 0x02 -> SBX/PBX protocol extensions supported
mjr 75:677892300e7a 348 report.data[11] =
mjr 75:677892300e7a 349 (configured ? 0x01 : 0x00)
mjr 78:1e00b3fa11af 350 | (sbxpbx ? 0x02 : 0x00)
mjr 82:4f6209cb5c33 351 | (newAccelFeatures ? 0x04 : 0x00)
mjr 82:4f6209cb5c33 352 | (flashStatusFeature ? 0x08 : 0x00);
mjr 40:cc0d9814522b 353
mjr 73:4e8ce0b18915 354 // write the free heap space
mjr 73:4e8ce0b18915 355 put(12, freeHeapBytes);
mjr 77:0b96f6867312 356
mjr 33:d832bcab089e 357 // send the report
mjr 63:5cd1a5f3a41b 358 report.length = reportLen;
mjr 35:e959ffba78fd 359 return sendTO(&report, 100);
mjr 33:d832bcab089e 360 }
mjr 33:d832bcab089e 361
mjr 77:0b96f6867312 362 // report physical button status
mjr 73:4e8ce0b18915 363 bool USBJoystick::reportButtonStatus(int numButtons, const uint8_t *state)
mjr 73:4e8ce0b18915 364 {
mjr 77:0b96f6867312 365 // initially fill the report with zeros
mjr 73:4e8ce0b18915 366 HID_REPORT report;
mjr 73:4e8ce0b18915 367 memset(report.data, 0, sizeof(report.data));
mjr 73:4e8ce0b18915 368
mjr 77:0b96f6867312 369 // set the special status bits to indicate that it's a buton report
mjr 73:4e8ce0b18915 370 uint16_t s = 0xA100;
mjr 73:4e8ce0b18915 371 put(0, s);
mjr 73:4e8ce0b18915 372
mjr 73:4e8ce0b18915 373 // write the number of buttons
mjr 77:0b96f6867312 374 report.data[2] = uint8_t(numButtons);
mjr 73:4e8ce0b18915 375
mjr 73:4e8ce0b18915 376 // Write the buttons - these are packed into ceil(numButtons/8) bytes.
mjr 73:4e8ce0b18915 377 size_t btnBytes = (numButtons+7)/8;
mjr 73:4e8ce0b18915 378 if (btnBytes + 3 > reportLen) btnBytes = reportLen - 3;
mjr 73:4e8ce0b18915 379 memcpy(&report.data[3], state, btnBytes);
mjr 73:4e8ce0b18915 380
mjr 73:4e8ce0b18915 381 // send the report
mjr 73:4e8ce0b18915 382 report.length = reportLen;
mjr 73:4e8ce0b18915 383 return sendTO(&report, 100);
mjr 73:4e8ce0b18915 384 }
mjr 73:4e8ce0b18915 385
mjr 77:0b96f6867312 386 // report raw IR timing codes (for learning mode)
mjr 77:0b96f6867312 387 bool USBJoystick::reportRawIR(int n, const uint16_t *data)
mjr 77:0b96f6867312 388 {
mjr 77:0b96f6867312 389 // initially fill the report with zeros
mjr 77:0b96f6867312 390 HID_REPORT report;
mjr 77:0b96f6867312 391 memset(report.data, 0, sizeof(report.data));
mjr 77:0b96f6867312 392
mjr 77:0b96f6867312 393 // set the special status bits to indicate that it's an IR report
mjr 77:0b96f6867312 394 uint16_t s = 0xA200;
mjr 77:0b96f6867312 395 put(0, s);
mjr 77:0b96f6867312 396
mjr 77:0b96f6867312 397 // limit the number of items reported to the available space
mjr 77:0b96f6867312 398 if (n > maxRawIR)
mjr 77:0b96f6867312 399 n = maxRawIR;
mjr 77:0b96f6867312 400
mjr 77:0b96f6867312 401 // write the number of codes
mjr 77:0b96f6867312 402 report.data[2] = uint8_t(n);
mjr 77:0b96f6867312 403
mjr 77:0b96f6867312 404 // write the codes
mjr 77:0b96f6867312 405 for (int i = 0, ofs = 3 ; i < n ; ++i, ofs += 2)
mjr 77:0b96f6867312 406 put(ofs, data[i]);
mjr 77:0b96f6867312 407
mjr 77:0b96f6867312 408 // send the report
mjr 77:0b96f6867312 409 report.length = reportLen;
mjr 77:0b96f6867312 410 return sendTO(&report, 100);
mjr 77:0b96f6867312 411 }
mjr 77:0b96f6867312 412
mjr 77:0b96f6867312 413 // report a decoded IR command
mjr 77:0b96f6867312 414 bool USBJoystick::reportIRCode(uint8_t pro, uint8_t flags, uint64_t code)
mjr 77:0b96f6867312 415 {
mjr 77:0b96f6867312 416 // initially fill the report with zeros
mjr 77:0b96f6867312 417 HID_REPORT report;
mjr 77:0b96f6867312 418 memset(report.data, 0, sizeof(report.data));
mjr 77:0b96f6867312 419
mjr 77:0b96f6867312 420 // set the special status bits to indicate that it's an IR report
mjr 77:0b96f6867312 421 uint16_t s = 0xA200;
mjr 77:0b96f6867312 422 put(0, s);
mjr 77:0b96f6867312 423
mjr 77:0b96f6867312 424 // set the raw count to 0xFF to flag that it's a decoded command
mjr 77:0b96f6867312 425 report.data[2] = 0xFF;
mjr 77:0b96f6867312 426
mjr 77:0b96f6867312 427 // write the data
mjr 77:0b96f6867312 428 report.data[3] = pro;
mjr 77:0b96f6867312 429 report.data[4] = flags;
mjr 77:0b96f6867312 430 put64(5, code);
mjr 77:0b96f6867312 431
mjr 77:0b96f6867312 432 // send the report
mjr 77:0b96f6867312 433 report.length = reportLen;
mjr 77:0b96f6867312 434 return sendTO(&report, 100);
mjr 77:0b96f6867312 435 }
mjr 73:4e8ce0b18915 436
mjr 33:d832bcab089e 437 bool USBJoystick::move(int16_t x, int16_t y)
mjr 33:d832bcab089e 438 {
mjr 3:3514575d4f86 439 _x = x;
mjr 3:3514575d4f86 440 _y = y;
mjr 3:3514575d4f86 441 return update();
mjr 3:3514575d4f86 442 }
mjr 3:3514575d4f86 443
mjr 33:d832bcab089e 444 bool USBJoystick::setZ(int16_t z)
mjr 33:d832bcab089e 445 {
mjr 3:3514575d4f86 446 _z = z;
mjr 3:3514575d4f86 447 return update();
mjr 3:3514575d4f86 448 }
mjr 3:3514575d4f86 449
mjr 33:d832bcab089e 450 bool USBJoystick::buttons(uint32_t buttons)
mjr 33:d832bcab089e 451 {
mjr 11:bd9da7088e6e 452 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 453 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 3:3514575d4f86 454 return update();
mjr 3:3514575d4f86 455 }
mjr 21:5048e16cc9ef 456
mjr 21:5048e16cc9ef 457 bool USBJoystick::updateStatus(uint32_t status)
mjr 21:5048e16cc9ef 458 {
mjr 21:5048e16cc9ef 459 HID_REPORT report;
mjr 21:5048e16cc9ef 460
mjr 63:5cd1a5f3a41b 461 // Fill the report according to the Joystick Descriptor
mjr 63:5cd1a5f3a41b 462 memset(report.data, 0, reportLen);
mjr 63:5cd1a5f3a41b 463 put(0, status);
mjr 63:5cd1a5f3a41b 464 report.length = reportLen;
mjr 21:5048e16cc9ef 465
mjr 21:5048e16cc9ef 466 // send the report
mjr 21:5048e16cc9ef 467 return sendTO(&report, 100);
mjr 21:5048e16cc9ef 468 }
mjr 21:5048e16cc9ef 469
mjr 3:3514575d4f86 470 void USBJoystick::_init() {
mjr 3:3514575d4f86 471
mjr 3:3514575d4f86 472 _x = 0;
mjr 3:3514575d4f86 473 _y = 0;
mjr 3:3514575d4f86 474 _z = 0;
mjr 11:bd9da7088e6e 475 _buttonsLo = 0x0000;
mjr 11:bd9da7088e6e 476 _buttonsHi = 0x0000;
mjr 9:fd65b0a94720 477 _status = 0;
mjr 3:3514575d4f86 478 }
mjr 3:3514575d4f86 479
mjr 3:3514575d4f86 480
mjr 35:e959ffba78fd 481 // --------------------------------------------------------------------------
mjr 35:e959ffba78fd 482 //
mjr 63:5cd1a5f3a41b 483 // USB HID Report Descriptor - Joystick
mjr 35:e959ffba78fd 484 //
mjr 63:5cd1a5f3a41b 485 static const uint8_t reportDescriptorJS[] =
mjr 63:5cd1a5f3a41b 486 {
mjr 63:5cd1a5f3a41b 487 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 63:5cd1a5f3a41b 488 USAGE(1), 0x04, // Joystick
mjr 63:5cd1a5f3a41b 489 COLLECTION(1), 0x01, // Application
mjr 63:5cd1a5f3a41b 490 // input report (device to host)
mjr 35:e959ffba78fd 491
mjr 63:5cd1a5f3a41b 492 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 63:5cd1a5f3a41b 493 USAGE(1), 0x00, // undefined device control
mjr 63:5cd1a5f3a41b 494 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 63:5cd1a5f3a41b 495 LOGICAL_MAXIMUM(1), 0xFF,
mjr 63:5cd1a5f3a41b 496 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 63:5cd1a5f3a41b 497 REPORT_COUNT(1), 0x04, // 4 reports (4 bytes)
mjr 63:5cd1a5f3a41b 498 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 35:e959ffba78fd 499
mjr 63:5cd1a5f3a41b 500 USAGE_PAGE(1), 0x09, // Buttons
mjr 63:5cd1a5f3a41b 501 USAGE_MINIMUM(1), 0x01, // { buttons }
mjr 63:5cd1a5f3a41b 502 USAGE_MAXIMUM(1), 0x20, // { 1-32 }
mjr 63:5cd1a5f3a41b 503 LOGICAL_MINIMUM(1), 0x00, // 1-bit buttons - 0...
mjr 63:5cd1a5f3a41b 504 LOGICAL_MAXIMUM(1), 0x01, // ...to 1
mjr 63:5cd1a5f3a41b 505 REPORT_SIZE(1), 0x01, // 1 bit per report
mjr 63:5cd1a5f3a41b 506 REPORT_COUNT(1), 0x20, // 32 reports
mjr 63:5cd1a5f3a41b 507 UNIT_EXPONENT(1), 0x00, // Unit_Exponent (0)
mjr 63:5cd1a5f3a41b 508 UNIT(1), 0x00, // Unit (None)
mjr 63:5cd1a5f3a41b 509 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 510
mjr 63:5cd1a5f3a41b 511 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 63:5cd1a5f3a41b 512 USAGE(1), 0x30, // X axis
mjr 63:5cd1a5f3a41b 513 USAGE(1), 0x31, // Y axis
mjr 63:5cd1a5f3a41b 514 USAGE(1), 0x32, // Z axis
mjr 63:5cd1a5f3a41b 515 LOGICAL_MINIMUM(2), 0x00,0xF0, // each value ranges -4096
mjr 63:5cd1a5f3a41b 516 LOGICAL_MAXIMUM(2), 0x00,0x10, // ...to +4096
mjr 63:5cd1a5f3a41b 517 REPORT_SIZE(1), 0x10, // 16 bits per report
mjr 63:5cd1a5f3a41b 518 REPORT_COUNT(1), 0x03, // 3 reports (X, Y, Z)
mjr 63:5cd1a5f3a41b 519 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 520
mjr 63:5cd1a5f3a41b 521 // output report (host to device)
mjr 63:5cd1a5f3a41b 522 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 63:5cd1a5f3a41b 523 REPORT_COUNT(1), 0x08, // output report count - 8-byte LedWiz format
mjr 63:5cd1a5f3a41b 524 0x09, 0x01, // usage
mjr 63:5cd1a5f3a41b 525 0x91, 0x01, // Output (array)
mjr 35:e959ffba78fd 526
mjr 35:e959ffba78fd 527 END_COLLECTION(0)
mjr 35:e959ffba78fd 528 };
mjr 35:e959ffba78fd 529
mjr 63:5cd1a5f3a41b 530 //
mjr 63:5cd1a5f3a41b 531 // USB HID Report Descriptor - Keyboard/Media Control
mjr 63:5cd1a5f3a41b 532 //
mjr 48:058ace2aed1d 533 static const uint8_t reportDescriptorKB[] =
mjr 35:e959ffba78fd 534 {
mjr 63:5cd1a5f3a41b 535 USAGE_PAGE(1), 0x01, // Generic Desktop
mjr 63:5cd1a5f3a41b 536 USAGE(1), 0x06, // Keyboard
mjr 63:5cd1a5f3a41b 537 COLLECTION(1), 0x01, // Application
mjr 63:5cd1a5f3a41b 538 REPORT_ID(1), REPORT_ID_KB,
mjr 63:5cd1a5f3a41b 539
mjr 63:5cd1a5f3a41b 540 USAGE_PAGE(1), 0x07, // Key Codes
mjr 63:5cd1a5f3a41b 541 USAGE_MINIMUM(1), 0xE0,
mjr 63:5cd1a5f3a41b 542 USAGE_MAXIMUM(1), 0xE7,
mjr 63:5cd1a5f3a41b 543 LOGICAL_MINIMUM(1), 0x00,
mjr 63:5cd1a5f3a41b 544 LOGICAL_MAXIMUM(1), 0x01,
mjr 63:5cd1a5f3a41b 545 REPORT_SIZE(1), 0x01,
mjr 63:5cd1a5f3a41b 546 REPORT_COUNT(1), 0x08,
mjr 63:5cd1a5f3a41b 547 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 548 REPORT_COUNT(1), 0x01,
mjr 63:5cd1a5f3a41b 549 REPORT_SIZE(1), 0x08,
mjr 63:5cd1a5f3a41b 550 INPUT(1), 0x01, // Constant
mjr 63:5cd1a5f3a41b 551
mjr 63:5cd1a5f3a41b 552 REPORT_COUNT(1), 0x05,
mjr 63:5cd1a5f3a41b 553 REPORT_SIZE(1), 0x01,
mjr 63:5cd1a5f3a41b 554 USAGE_PAGE(1), 0x08, // LEDs
mjr 63:5cd1a5f3a41b 555 USAGE_MINIMUM(1), 0x01,
mjr 63:5cd1a5f3a41b 556 USAGE_MAXIMUM(1), 0x05,
mjr 63:5cd1a5f3a41b 557 OUTPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 558 REPORT_COUNT(1), 0x01,
mjr 63:5cd1a5f3a41b 559 REPORT_SIZE(1), 0x03,
mjr 63:5cd1a5f3a41b 560 OUTPUT(1), 0x01, // Constant
mjr 63:5cd1a5f3a41b 561
mjr 63:5cd1a5f3a41b 562 REPORT_COUNT(1), 0x06,
mjr 63:5cd1a5f3a41b 563 REPORT_SIZE(1), 0x08,
mjr 63:5cd1a5f3a41b 564 LOGICAL_MINIMUM(1), 0x00,
mjr 68:998faf685b00 565 LOGICAL_MAXIMUM(1), 0xA4,
mjr 63:5cd1a5f3a41b 566 USAGE_PAGE(1), 0x07, // Key Codes
mjr 63:5cd1a5f3a41b 567 USAGE_MINIMUM(1), 0x00,
mjr 68:998faf685b00 568 USAGE_MAXIMUM(1), 0xA4,
mjr 63:5cd1a5f3a41b 569 INPUT(1), 0x00, // Data, Array
mjr 63:5cd1a5f3a41b 570 END_COLLECTION(0),
mjr 63:5cd1a5f3a41b 571
mjr 63:5cd1a5f3a41b 572 // Media Control
mjr 63:5cd1a5f3a41b 573 USAGE_PAGE(1), 0x0C,
mjr 63:5cd1a5f3a41b 574 USAGE(1), 0x01,
mjr 63:5cd1a5f3a41b 575 COLLECTION(1), 0x01,
mjr 63:5cd1a5f3a41b 576 REPORT_ID(1), REPORT_ID_MEDIA,
mjr 63:5cd1a5f3a41b 577 USAGE_PAGE(1), 0x0C,
mjr 63:5cd1a5f3a41b 578 LOGICAL_MINIMUM(1), 0x00,
mjr 63:5cd1a5f3a41b 579 LOGICAL_MAXIMUM(1), 0x01,
mjr 63:5cd1a5f3a41b 580 REPORT_SIZE(1), 0x01,
mjr 63:5cd1a5f3a41b 581 REPORT_COUNT(1), 0x07,
mjr 63:5cd1a5f3a41b 582 USAGE(1), 0xE2, // Mute -> 0x01
mjr 63:5cd1a5f3a41b 583 USAGE(1), 0xE9, // Volume Up -> 0x02
mjr 63:5cd1a5f3a41b 584 USAGE(1), 0xEA, // Volume Down -> 0x04
mjr 63:5cd1a5f3a41b 585 USAGE(1), 0xB5, // Next Track -> 0x08
mjr 63:5cd1a5f3a41b 586 USAGE(1), 0xB6, // Previous Track -> 0x10
mjr 63:5cd1a5f3a41b 587 USAGE(1), 0xB7, // Stop -> 0x20
mjr 63:5cd1a5f3a41b 588 USAGE(1), 0xCD, // Play / Pause -> 0x40
mjr 63:5cd1a5f3a41b 589 INPUT(1), 0x02, // Input (Data, Variable, Absolute) -> 0x80
mjr 63:5cd1a5f3a41b 590 REPORT_COUNT(1), 0x01,
mjr 63:5cd1a5f3a41b 591 INPUT(1), 0x01,
mjr 63:5cd1a5f3a41b 592 END_COLLECTION(0),
mjr 35:e959ffba78fd 593 };
mjr 29:582472d0bc57 594
mjr 63:5cd1a5f3a41b 595 //
mjr 63:5cd1a5f3a41b 596 // USB HID Report Descriptor - LedWiz only, with no joystick or keyboard
mjr 63:5cd1a5f3a41b 597 // input reporting
mjr 63:5cd1a5f3a41b 598 //
mjr 63:5cd1a5f3a41b 599 static const uint8_t reportDescriptorLW[] =
mjr 63:5cd1a5f3a41b 600 {
mjr 63:5cd1a5f3a41b 601 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 63:5cd1a5f3a41b 602 USAGE(1), 0x00, // Undefined
mjr 63:5cd1a5f3a41b 603
mjr 63:5cd1a5f3a41b 604 COLLECTION(1), 0x01, // Application
mjr 63:5cd1a5f3a41b 605
mjr 63:5cd1a5f3a41b 606 // input report (device to host)
mjr 63:5cd1a5f3a41b 607 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 63:5cd1a5f3a41b 608 USAGE(1), 0x00, // undefined device control
mjr 63:5cd1a5f3a41b 609 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 63:5cd1a5f3a41b 610 LOGICAL_MAXIMUM(1), 0xFF,
mjr 63:5cd1a5f3a41b 611 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 77:0b96f6867312 612 REPORT_COUNT(1), USBJoystick::reportLen, // standard report length (same as if we were in joystick mode)
mjr 63:5cd1a5f3a41b 613 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 63:5cd1a5f3a41b 614
mjr 63:5cd1a5f3a41b 615 // output report (host to device)
mjr 63:5cd1a5f3a41b 616 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 63:5cd1a5f3a41b 617 REPORT_COUNT(1), 0x08, // output report count (LEDWiz messages)
mjr 63:5cd1a5f3a41b 618 0x09, 0x01, // usage
mjr 63:5cd1a5f3a41b 619 0x91, 0x01, // Output (array)
mjr 63:5cd1a5f3a41b 620
mjr 63:5cd1a5f3a41b 621 END_COLLECTION(0)
mjr 35:e959ffba78fd 622 };
mjr 35:e959ffba78fd 623
mjr 63:5cd1a5f3a41b 624
mjr 54:fd77a6b2f76c 625 const uint8_t *USBJoystick::reportDesc(int idx, uint16_t &len)
mjr 35:e959ffba78fd 626 {
mjr 63:5cd1a5f3a41b 627 switch (idx)
mjr 35:e959ffba78fd 628 {
mjr 63:5cd1a5f3a41b 629 case 0:
mjr 63:5cd1a5f3a41b 630 // If the joystick is enabled, this is the joystick.
mjr 63:5cd1a5f3a41b 631 // Otherwise, it's the plain LedWiz control interface.
mjr 63:5cd1a5f3a41b 632 if (enableJoystick)
mjr 63:5cd1a5f3a41b 633 {
mjr 63:5cd1a5f3a41b 634 len = sizeof(reportDescriptorJS);
mjr 63:5cd1a5f3a41b 635 return reportDescriptorJS;
mjr 63:5cd1a5f3a41b 636 }
mjr 63:5cd1a5f3a41b 637 else
mjr 63:5cd1a5f3a41b 638 {
mjr 63:5cd1a5f3a41b 639 len = sizeof(reportDescriptorLW);
mjr 63:5cd1a5f3a41b 640 return reportDescriptorLW;
mjr 63:5cd1a5f3a41b 641 }
mjr 63:5cd1a5f3a41b 642
mjr 63:5cd1a5f3a41b 643 case 1:
mjr 63:5cd1a5f3a41b 644 // This is the keyboard, if enabled.
mjr 63:5cd1a5f3a41b 645 if (useKB)
mjr 63:5cd1a5f3a41b 646 {
mjr 63:5cd1a5f3a41b 647 len = sizeof(reportDescriptorKB);
mjr 63:5cd1a5f3a41b 648 return reportDescriptorKB;
mjr 63:5cd1a5f3a41b 649 }
mjr 63:5cd1a5f3a41b 650 else
mjr 63:5cd1a5f3a41b 651 {
mjr 63:5cd1a5f3a41b 652 len = 0;
mjr 63:5cd1a5f3a41b 653 return 0;
mjr 63:5cd1a5f3a41b 654 }
mjr 63:5cd1a5f3a41b 655
mjr 63:5cd1a5f3a41b 656 default:
mjr 63:5cd1a5f3a41b 657 // Unknown interface ID
mjr 54:fd77a6b2f76c 658 len = 0;
mjr 48:058ace2aed1d 659 return 0;
mjr 35:e959ffba78fd 660 }
mjr 35:e959ffba78fd 661 }
mjr 3:3514575d4f86 662
mjr 48:058ace2aed1d 663 const uint8_t *USBJoystick::stringImanufacturerDesc() {
mjr 48:058ace2aed1d 664 static const uint8_t stringImanufacturerDescriptor[] = {
mjr 61:3c7e6e9ec355 665 0x0E, /* bLength */
mjr 61:3c7e6e9ec355 666 STRING_DESCRIPTOR, /* bDescriptorType 0x03 (String Descriptor) */
mjr 61:3c7e6e9ec355 667 'm',0,'j',0,'r',0,'n',0,'e',0,'t',0 /* bString iManufacturer - mjrnet */
mjr 3:3514575d4f86 668 };
mjr 3:3514575d4f86 669 return stringImanufacturerDescriptor;
mjr 3:3514575d4f86 670 }
mjr 3:3514575d4f86 671
mjr 54:fd77a6b2f76c 672 const uint8_t *USBJoystick::stringIserialDesc()
mjr 54:fd77a6b2f76c 673 {
mjr 54:fd77a6b2f76c 674 // set up a buffer with the length prefix and descriptor type
mjr 61:3c7e6e9ec355 675 const int numChars = 3 + 16 + 1 + 3;
mjr 61:3c7e6e9ec355 676 static uint8_t buf[2 + numChars*2];
mjr 54:fd77a6b2f76c 677 uint8_t *dst = buf;
mjr 54:fd77a6b2f76c 678 *dst++ = sizeof(buf);
mjr 54:fd77a6b2f76c 679 *dst++ = STRING_DESCRIPTOR;
mjr 54:fd77a6b2f76c 680
mjr 54:fd77a6b2f76c 681 // Create an ASCII version of our unique serial number string:
mjr 54:fd77a6b2f76c 682 //
mjr 61:3c7e6e9ec355 683 // PSCxxxxxxxxxxxxxxxxivvv
mjr 54:fd77a6b2f76c 684 //
mjr 54:fd77a6b2f76c 685 // where:
mjr 54:fd77a6b2f76c 686 //
mjr 54:fd77a6b2f76c 687 // xxx... = decimal representation of low 64 bits of CPU ID (16 hex digits)
mjr 54:fd77a6b2f76c 688 // i = interface type: first character is J if joystick is enabled,
mjr 54:fd77a6b2f76c 689 // L = LedWiz/control interface only, no input
mjr 54:fd77a6b2f76c 690 // J = Joystick + LedWiz
mjr 54:fd77a6b2f76c 691 // K = Keyboard + LedWiz
mjr 54:fd77a6b2f76c 692 // C = Joystick + Keyboard + LedWiz ("C" for combo)
mjr 61:3c7e6e9ec355 693 // vvv = version suffix
mjr 54:fd77a6b2f76c 694 //
mjr 54:fd77a6b2f76c 695 // The suffix for the interface type resolves a problem on some Windows systems
mjr 54:fd77a6b2f76c 696 // when switching between interface types. Windows can cache device information
mjr 54:fd77a6b2f76c 697 // that includes the interface descriptors, and it won't recognize a change in
mjr 54:fd77a6b2f76c 698 // the interfaces once the information is cached, causing connection failures.
mjr 54:fd77a6b2f76c 699 // The cache key includes the device serial number, though, so this can be
mjr 54:fd77a6b2f76c 700 // resolved by changing the serial number when the interface setup changes.
mjr 61:3c7e6e9ec355 701 char xbuf[numChars + 1];
mjr 54:fd77a6b2f76c 702 uint32_t x = SIM->UIDML;
mjr 54:fd77a6b2f76c 703 static char ifcCode[] = "LJKC";
mjr 63:5cd1a5f3a41b 704 sprintf(xbuf, "PSC%08lX%08lX%c008",
mjr 54:fd77a6b2f76c 705 SIM->UIDML,
mjr 54:fd77a6b2f76c 706 SIM->UIDL,
mjr 54:fd77a6b2f76c 707 ifcCode[(enableJoystick ? 0x01 : 0x00) | (useKB ? 0x02 : 0x00)]);
mjr 54:fd77a6b2f76c 708
mjr 54:fd77a6b2f76c 709 // copy the ascii bytes into the descriptor buffer, converting to unicode
mjr 54:fd77a6b2f76c 710 // 16-bit little-endian characters
mjr 54:fd77a6b2f76c 711 for (char *src = xbuf ; *src != '\0' && dst < buf + sizeof(buf) ; )
mjr 54:fd77a6b2f76c 712 {
mjr 54:fd77a6b2f76c 713 *dst++ = *src++;
mjr 54:fd77a6b2f76c 714 *dst++ = '\0';
mjr 54:fd77a6b2f76c 715 }
mjr 54:fd77a6b2f76c 716
mjr 54:fd77a6b2f76c 717 // return the buffer
mjr 54:fd77a6b2f76c 718 return buf;
mjr 3:3514575d4f86 719 }
mjr 3:3514575d4f86 720
mjr 48:058ace2aed1d 721 const uint8_t *USBJoystick::stringIproductDesc() {
mjr 48:058ace2aed1d 722 static const uint8_t stringIproductDescriptor[] = {
mjr 9:fd65b0a94720 723 0x28, /*bLength*/
mjr 3:3514575d4f86 724 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 725 'P',0,'i',0,'n',0,'s',0,'c',0,'a',0,'p',0,'e',0,
mjr 3:3514575d4f86 726 ' ',0,'C',0,'o',0,'n',0,'t',0,'r',0,'o',0,'l',0,
mjr 3:3514575d4f86 727 'l',0,'e',0,'r',0 /*String iProduct */
mjr 3:3514575d4f86 728 };
mjr 3:3514575d4f86 729 return stringIproductDescriptor;
mjr 3:3514575d4f86 730 }
mjr 35:e959ffba78fd 731
mjr 35:e959ffba78fd 732 #define DEFAULT_CONFIGURATION (1)
mjr 35:e959ffba78fd 733
mjr 48:058ace2aed1d 734 const uint8_t *USBJoystick::configurationDesc()
mjr 35:e959ffba78fd 735 {
mjr 63:5cd1a5f3a41b 736 int rptlen0 = reportDescLength(0);
mjr 63:5cd1a5f3a41b 737 int rptlen1 = reportDescLength(1);
mjr 63:5cd1a5f3a41b 738 if (useKB)
mjr 35:e959ffba78fd 739 {
mjr 63:5cd1a5f3a41b 740 const int cfglenKB =
mjr 63:5cd1a5f3a41b 741 ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 742 + (2 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 743 + (2 * HID_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 744 + (4 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 63:5cd1a5f3a41b 745 static uint8_t configurationDescriptorWithKB[] =
mjr 63:5cd1a5f3a41b 746 {
mjr 63:5cd1a5f3a41b 747 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 63:5cd1a5f3a41b 748 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 749 LSB(cfglenKB), // wTotalLength (LSB)
mjr 63:5cd1a5f3a41b 750 MSB(cfglenKB), // wTotalLength (MSB)
mjr 63:5cd1a5f3a41b 751 0x02, // bNumInterfaces - TWO INTERFACES (JOYSTICK + KEYBOARD)
mjr 63:5cd1a5f3a41b 752 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 63:5cd1a5f3a41b 753 0x00, // iConfiguration
mjr 63:5cd1a5f3a41b 754 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 63:5cd1a5f3a41b 755 C_POWER(0), // bMaxPower
mjr 63:5cd1a5f3a41b 756
mjr 63:5cd1a5f3a41b 757 // ***** INTERFACE 0 - JOYSTICK/LEDWIZ ******
mjr 63:5cd1a5f3a41b 758 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 759 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 760 0x00, // bInterfaceNumber
mjr 63:5cd1a5f3a41b 761 0x00, // bAlternateSetting
mjr 63:5cd1a5f3a41b 762 0x02, // bNumEndpoints
mjr 63:5cd1a5f3a41b 763 HID_CLASS, // bInterfaceClass
mjr 63:5cd1a5f3a41b 764 HID_SUBCLASS_NONE, // bInterfaceSubClass
mjr 63:5cd1a5f3a41b 765 HID_PROTOCOL_NONE, // bInterfaceProtocol
mjr 63:5cd1a5f3a41b 766 0x00, // iInterface
mjr 63:5cd1a5f3a41b 767
mjr 63:5cd1a5f3a41b 768 HID_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 769 HID_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 770 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 63:5cd1a5f3a41b 771 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 63:5cd1a5f3a41b 772 0x00, // bCountryCode
mjr 63:5cd1a5f3a41b 773 0x01, // bNumDescriptors
mjr 63:5cd1a5f3a41b 774 REPORT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 775 LSB(rptlen0), // wDescriptorLength (LSB)
mjr 63:5cd1a5f3a41b 776 MSB(rptlen0), // wDescriptorLength (MSB)
mjr 63:5cd1a5f3a41b 777
mjr 63:5cd1a5f3a41b 778 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 779 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 780 PHY_TO_DESC(EPINT_IN), // bEndpointAddress - EPINT == EP1
mjr 63:5cd1a5f3a41b 781 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 782 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 783 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 784 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 785
mjr 63:5cd1a5f3a41b 786 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 787 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 788 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress - EPINT == EP1
mjr 63:5cd1a5f3a41b 789 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 790 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 791 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 792 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 793
mjr 63:5cd1a5f3a41b 794 // ****** INTERFACE 1 - KEYBOARD ******
mjr 63:5cd1a5f3a41b 795 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 796 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 797 0x01, // bInterfaceNumber
mjr 63:5cd1a5f3a41b 798 0x00, // bAlternateSetting
mjr 63:5cd1a5f3a41b 799 0x02, // bNumEndpoints
mjr 63:5cd1a5f3a41b 800 HID_CLASS, // bInterfaceClass
mjr 63:5cd1a5f3a41b 801 HID_SUBCLASS_BOOT, // bInterfaceSubClass
mjr 63:5cd1a5f3a41b 802 HID_PROTOCOL_KB, // bInterfaceProtocol
mjr 63:5cd1a5f3a41b 803 0x00, // iInterface
mjr 63:5cd1a5f3a41b 804
mjr 63:5cd1a5f3a41b 805 HID_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 806 HID_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 807 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 63:5cd1a5f3a41b 808 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 63:5cd1a5f3a41b 809 0x00, // bCountryCode
mjr 63:5cd1a5f3a41b 810 0x01, // bNumDescriptors
mjr 63:5cd1a5f3a41b 811 REPORT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 812 LSB(rptlen1), // wDescriptorLength (LSB)
mjr 63:5cd1a5f3a41b 813 MSB(rptlen1), // wDescriptorLength (MSB)
mjr 63:5cd1a5f3a41b 814
mjr 63:5cd1a5f3a41b 815 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 816 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 817 PHY_TO_DESC(EP4IN), // bEndpointAddress
mjr 63:5cd1a5f3a41b 818 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 819 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 820 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 821 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 822
mjr 63:5cd1a5f3a41b 823 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 824 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 825 PHY_TO_DESC(EP4OUT), // bEndpointAddress
mjr 63:5cd1a5f3a41b 826 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 827 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 828 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 829 1, // bInterval (milliseconds)
mjr 61:3c7e6e9ec355 830
mjr 63:5cd1a5f3a41b 831 };
mjr 63:5cd1a5f3a41b 832
mjr 63:5cd1a5f3a41b 833 // Keyboard + joystick interfaces
mjr 63:5cd1a5f3a41b 834 return configurationDescriptorWithKB;
mjr 63:5cd1a5f3a41b 835 }
mjr 63:5cd1a5f3a41b 836 else
mjr 63:5cd1a5f3a41b 837 {
mjr 63:5cd1a5f3a41b 838 // No keyboard - joystick interface only
mjr 63:5cd1a5f3a41b 839 const int cfglenNoKB =
mjr 63:5cd1a5f3a41b 840 ((1 * CONFIGURATION_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 841 + (1 * INTERFACE_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 842 + (1 * HID_DESCRIPTOR_LENGTH)
mjr 63:5cd1a5f3a41b 843 + (2 * ENDPOINT_DESCRIPTOR_LENGTH));
mjr 63:5cd1a5f3a41b 844 static uint8_t configurationDescriptorNoKB[] =
mjr 63:5cd1a5f3a41b 845 {
mjr 63:5cd1a5f3a41b 846 CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
mjr 63:5cd1a5f3a41b 847 CONFIGURATION_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 848 LSB(cfglenNoKB), // wTotalLength (LSB)
mjr 63:5cd1a5f3a41b 849 MSB(cfglenNoKB), // wTotalLength (MSB)
mjr 63:5cd1a5f3a41b 850 0x01, // bNumInterfaces
mjr 63:5cd1a5f3a41b 851 DEFAULT_CONFIGURATION, // bConfigurationValue
mjr 63:5cd1a5f3a41b 852 0x00, // iConfiguration
mjr 63:5cd1a5f3a41b 853 C_RESERVED | C_SELF_POWERED, // bmAttributes
mjr 63:5cd1a5f3a41b 854 C_POWER(0), // bMaxPower
mjr 63:5cd1a5f3a41b 855
mjr 63:5cd1a5f3a41b 856 INTERFACE_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 857 INTERFACE_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 858 0x00, // bInterfaceNumber
mjr 63:5cd1a5f3a41b 859 0x00, // bAlternateSetting
mjr 63:5cd1a5f3a41b 860 0x02, // bNumEndpoints
mjr 63:5cd1a5f3a41b 861 HID_CLASS, // bInterfaceClass
mjr 63:5cd1a5f3a41b 862 HID_SUBCLASS_NONE, // bInterfaceSubClass
mjr 63:5cd1a5f3a41b 863 HID_PROTOCOL_NONE, // bInterfaceProtocol (keyboard)
mjr 63:5cd1a5f3a41b 864 0x00, // iInterface
mjr 63:5cd1a5f3a41b 865
mjr 63:5cd1a5f3a41b 866 HID_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 867 HID_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 868 LSB(HID_VERSION_1_11), // bcdHID (LSB)
mjr 63:5cd1a5f3a41b 869 MSB(HID_VERSION_1_11), // bcdHID (MSB)
mjr 63:5cd1a5f3a41b 870 0x00, // bCountryCode
mjr 63:5cd1a5f3a41b 871 0x01, // bNumDescriptors
mjr 63:5cd1a5f3a41b 872 REPORT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 873 (uint8_t)(LSB(rptlen0)), // wDescriptorLength (LSB)
mjr 63:5cd1a5f3a41b 874 (uint8_t)(MSB(rptlen0)), // wDescriptorLength (MSB)
mjr 63:5cd1a5f3a41b 875
mjr 63:5cd1a5f3a41b 876 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 877 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 878 PHY_TO_DESC(EPINT_IN), // bEndpointAddress
mjr 63:5cd1a5f3a41b 879 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 880 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 881 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 882 1, // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 883
mjr 63:5cd1a5f3a41b 884 ENDPOINT_DESCRIPTOR_LENGTH, // bLength
mjr 63:5cd1a5f3a41b 885 ENDPOINT_DESCRIPTOR, // bDescriptorType
mjr 63:5cd1a5f3a41b 886 PHY_TO_DESC(EPINT_OUT), // bEndpointAddress
mjr 63:5cd1a5f3a41b 887 E_INTERRUPT, // bmAttributes
mjr 63:5cd1a5f3a41b 888 LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
mjr 63:5cd1a5f3a41b 889 MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
mjr 63:5cd1a5f3a41b 890 1 // bInterval (milliseconds)
mjr 63:5cd1a5f3a41b 891 };
mjr 63:5cd1a5f3a41b 892
mjr 63:5cd1a5f3a41b 893 return configurationDescriptorNoKB;
mjr 63:5cd1a5f3a41b 894 }
mjr 35:e959ffba78fd 895 }
mjr 35:e959ffba78fd 896
mjr 35:e959ffba78fd 897 // Set the configuration. We need to set up the endpoints for
mjr 35:e959ffba78fd 898 // our active interfaces.
mjr 35:e959ffba78fd 899 bool USBJoystick::USBCallback_setConfiguration(uint8_t configuration)
mjr 35:e959ffba78fd 900 {
mjr 35:e959ffba78fd 901 // we only have one valid configuration
mjr 35:e959ffba78fd 902 if (configuration != DEFAULT_CONFIGURATION)
mjr 35:e959ffba78fd 903 return false;
mjr 35:e959ffba78fd 904
mjr 63:5cd1a5f3a41b 905 // Configure endpoint 1 - we use this in all cases, for either
mjr 63:5cd1a5f3a41b 906 // the combined joystick/ledwiz interface or just the ledwiz interface
mjr 48:058ace2aed1d 907 addEndpoint(EPINT_IN, MAX_REPORT_JS_TX + 1);
mjr 48:058ace2aed1d 908 addEndpoint(EPINT_OUT, MAX_REPORT_JS_RX + 1);
mjr 48:058ace2aed1d 909 readStart(EPINT_OUT, MAX_REPORT_JS_TX + 1);
mjr 63:5cd1a5f3a41b 910
mjr 63:5cd1a5f3a41b 911 // if the keyboard is enabled, configure endpoint 4 for the kb interface
mjr 63:5cd1a5f3a41b 912 if (useKB)
mjr 63:5cd1a5f3a41b 913 {
mjr 63:5cd1a5f3a41b 914 addEndpoint(EP4IN, MAX_REPORT_KB_TX + 1);
mjr 63:5cd1a5f3a41b 915 addEndpoint(EP4OUT, MAX_REPORT_KB_RX + 1);
mjr 63:5cd1a5f3a41b 916 readStart(EP4OUT, MAX_REPORT_KB_TX + 1);
mjr 63:5cd1a5f3a41b 917 }
mjr 35:e959ffba78fd 918
mjr 35:e959ffba78fd 919 // success
mjr 35:e959ffba78fd 920 return true;
mjr 35:e959ffba78fd 921 }
mjr 35:e959ffba78fd 922
mjr 38:091e511ce8a0 923 // Handle incoming messages on the joystick/LedWiz interface = endpoint 1.
mjr 38:091e511ce8a0 924 // This interface receives LedWiz protocol commands and commands using our
mjr 38:091e511ce8a0 925 // custom LedWiz protocol extensions.
mjr 38:091e511ce8a0 926 //
mjr 38:091e511ce8a0 927 // We simply queue the messages in our circular buffer for processing in
mjr 38:091e511ce8a0 928 // the main loop. The circular buffer object is designed for safe access
mjr 38:091e511ce8a0 929 // from the interrupt handler using the rule that only the interrupt
mjr 38:091e511ce8a0 930 // handler can change the write pointer, and only the regular code can
mjr 38:091e511ce8a0 931 // change the read pointer.
mjr 38:091e511ce8a0 932 bool USBJoystick::EP1_OUT_callback()
mjr 38:091e511ce8a0 933 {
mjr 38:091e511ce8a0 934 // Read this message
mjr 63:5cd1a5f3a41b 935 union {
mjr 63:5cd1a5f3a41b 936 LedWizMsg msg;
mjr 63:5cd1a5f3a41b 937 uint8_t buf[MAX_HID_REPORT_SIZE];
mjr 63:5cd1a5f3a41b 938 } buf;
mjr 38:091e511ce8a0 939 uint32_t bytesRead = 0;
mjr 63:5cd1a5f3a41b 940 USBDevice::readEP(EP1OUT, buf.buf, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 941
mjr 63:5cd1a5f3a41b 942 // if it's the right length, queue it to our circular buffer
mjr 63:5cd1a5f3a41b 943 if (bytesRead == 8)
mjr 63:5cd1a5f3a41b 944 lwbuf.write(buf.msg);
mjr 38:091e511ce8a0 945
mjr 38:091e511ce8a0 946 // start the next read
mjr 39:b3815a1c3802 947 return readStart(EP1OUT, MAX_HID_REPORT_SIZE);
mjr 38:091e511ce8a0 948 }
mjr 63:5cd1a5f3a41b 949
mjr 63:5cd1a5f3a41b 950 // Handle incoming messages on the keyboard interface = endpoint 4.
mjr 63:5cd1a5f3a41b 951 // The host uses this to send updates for the keyboard indicator LEDs
mjr 63:5cd1a5f3a41b 952 // (caps lock, num lock, etc). We don't do anything with these, but
mjr 63:5cd1a5f3a41b 953 // we have to read them to keep the pipe open.
mjr 63:5cd1a5f3a41b 954 bool USBJoystick::EP4_OUT_callback()
mjr 63:5cd1a5f3a41b 955 {
mjr 63:5cd1a5f3a41b 956 // read this message
mjr 63:5cd1a5f3a41b 957 uint32_t bytesRead = 0;
mjr 63:5cd1a5f3a41b 958 uint8_t led[MAX_HID_REPORT_SIZE];
mjr 63:5cd1a5f3a41b 959 USBDevice::readEP(EP4OUT, led, &bytesRead, MAX_HID_REPORT_SIZE);
mjr 63:5cd1a5f3a41b 960
mjr 63:5cd1a5f3a41b 961 // start the next read
mjr 63:5cd1a5f3a41b 962 return readStart(EP4OUT, MAX_HID_REPORT_SIZE);
mjr 63:5cd1a5f3a41b 963 }
mjr 63:5cd1a5f3a41b 964