Eigne Matrix Class Library
Dependents: MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more
Diff: src/QR/HouseholderQR.h
- Revision:
- 0:13a5d365ba16
diff -r 000000000000 -r 13a5d365ba16 src/QR/HouseholderQR.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/QR/HouseholderQR.h Thu Oct 13 04:07:23 2016 +0000 @@ -0,0 +1,388 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> +// Copyright (C) 2010 Vincent Lejeune +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_QR_H +#define EIGEN_QR_H + +namespace Eigen { + +/** \ingroup QR_Module + * + * + * \class HouseholderQR + * + * \brief Householder QR decomposition of a matrix + * + * \param MatrixType the type of the matrix of which we are computing the QR decomposition + * + * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R + * such that + * \f[ + * \mathbf{A} = \mathbf{Q} \, \mathbf{R} + * \f] + * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix. + * The result is stored in a compact way compatible with LAPACK. + * + * Note that no pivoting is performed. This is \b not a rank-revealing decomposition. + * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead. + * + * This Householder QR decomposition is faster, but less numerically stable and less feature-full than + * FullPivHouseholderQR or ColPivHouseholderQR. + * + * \sa MatrixBase::householderQr() + */ +template<typename _MatrixType> class HouseholderQR +{ + public: + + typedef _MatrixType MatrixType; + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::Index Index; + typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType; + typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; + typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; + typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType; + + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via HouseholderQR::compute(const MatrixType&). + */ + HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa HouseholderQR() + */ + HouseholderQR(Index rows, Index cols) + : m_qr(rows, cols), + m_hCoeffs((std::min)(rows,cols)), + m_temp(cols), + m_isInitialized(false) {} + + /** \brief Constructs a QR factorization from a given matrix + * + * This constructor computes the QR factorization of the matrix \a matrix by calling + * the method compute(). It is a short cut for: + * + * \code + * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()); + * qr.compute(matrix); + * \endcode + * + * \sa compute() + */ + HouseholderQR(const MatrixType& matrix) + : m_qr(matrix.rows(), matrix.cols()), + m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), + m_temp(matrix.cols()), + m_isInitialized(false) + { + compute(matrix); + } + + /** This method finds a solution x to the equation Ax=b, where A is the matrix of which + * *this is the QR decomposition, if any exists. + * + * \param b the right-hand-side of the equation to solve. + * + * \returns a solution. + * + * \note The case where b is a matrix is not yet implemented. Also, this + * code is space inefficient. + * + * \note_about_checking_solutions + * + * \note_about_arbitrary_choice_of_solution + * + * Example: \include HouseholderQR_solve.cpp + * Output: \verbinclude HouseholderQR_solve.out + */ + template<typename Rhs> + inline const internal::solve_retval<HouseholderQR, Rhs> + solve(const MatrixBase<Rhs>& b) const + { + eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); + return internal::solve_retval<HouseholderQR, Rhs>(*this, b.derived()); + } + + /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations. + * + * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object. + * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*: + * + * Example: \include HouseholderQR_householderQ.cpp + * Output: \verbinclude HouseholderQR_householderQ.out + */ + HouseholderSequenceType householderQ() const + { + eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); + return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); + } + + /** \returns a reference to the matrix where the Householder QR decomposition is stored + * in a LAPACK-compatible way. + */ + const MatrixType& matrixQR() const + { + eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); + return m_qr; + } + + HouseholderQR& compute(const MatrixType& matrix); + + /** \returns the absolute value of the determinant of the matrix of which + * *this is the QR decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the QR decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * One way to work around that is to use logAbsDeterminant() instead. + * + * \sa logAbsDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::RealScalar absDeterminant() const; + + /** \returns the natural log of the absolute value of the determinant of the matrix of which + * *this is the QR decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the QR decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \note This method is useful to work around the risk of overflow/underflow that's inherent + * to determinant computation. + * + * \sa absDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::RealScalar logAbsDeterminant() const; + + inline Index rows() const { return m_qr.rows(); } + inline Index cols() const { return m_qr.cols(); } + + /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. + * + * For advanced uses only. + */ + const HCoeffsType& hCoeffs() const { return m_hCoeffs; } + + protected: + + static void check_template_parameters() + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + } + + MatrixType m_qr; + HCoeffsType m_hCoeffs; + RowVectorType m_temp; + bool m_isInitialized; +}; + +template<typename MatrixType> +typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const +{ + using std::abs; + eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); + eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); + return abs(m_qr.diagonal().prod()); +} + +template<typename MatrixType> +typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const +{ + eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); + eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); + return m_qr.diagonal().cwiseAbs().array().log().sum(); +} + +namespace internal { + +/** \internal */ +template<typename MatrixQR, typename HCoeffs> +void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0) +{ + typedef typename MatrixQR::Index Index; + typedef typename MatrixQR::Scalar Scalar; + typedef typename MatrixQR::RealScalar RealScalar; + Index rows = mat.rows(); + Index cols = mat.cols(); + Index size = (std::min)(rows,cols); + + eigen_assert(hCoeffs.size() == size); + + typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType; + TempType tempVector; + if(tempData==0) + { + tempVector.resize(cols); + tempData = tempVector.data(); + } + + for(Index k = 0; k < size; ++k) + { + Index remainingRows = rows - k; + Index remainingCols = cols - k - 1; + + RealScalar beta; + mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta); + mat.coeffRef(k,k) = beta; + + // apply H to remaining part of m_qr from the left + mat.bottomRightCorner(remainingRows, remainingCols) + .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1); + } +} + +/** \internal */ +template<typename MatrixQR, typename HCoeffs, + typename MatrixQRScalar = typename MatrixQR::Scalar, + bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)> +struct householder_qr_inplace_blocked +{ + // This is specialized for MKL-supported Scalar types in HouseholderQR_MKL.h + static void run(MatrixQR& mat, HCoeffs& hCoeffs, + typename MatrixQR::Index maxBlockSize=32, + typename MatrixQR::Scalar* tempData = 0) + { + typedef typename MatrixQR::Index Index; + typedef typename MatrixQR::Scalar Scalar; + typedef Block<MatrixQR,Dynamic,Dynamic> BlockType; + + Index rows = mat.rows(); + Index cols = mat.cols(); + Index size = (std::min)(rows, cols); + + typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType; + TempType tempVector; + if(tempData==0) + { + tempVector.resize(cols); + tempData = tempVector.data(); + } + + Index blockSize = (std::min)(maxBlockSize,size); + + Index k = 0; + for (k = 0; k < size; k += blockSize) + { + Index bs = (std::min)(size-k,blockSize); // actual size of the block + Index tcols = cols - k - bs; // trailing columns + Index brows = rows-k; // rows of the block + + // partition the matrix: + // A00 | A01 | A02 + // mat = A10 | A11 | A12 + // A20 | A21 | A22 + // and performs the qr dec of [A11^T A12^T]^T + // and update [A21^T A22^T]^T using level 3 operations. + // Finally, the algorithm continue on A22 + + BlockType A11_21 = mat.block(k,k,brows,bs); + Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs); + + householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData); + + if(tcols) + { + BlockType A21_22 = mat.block(k,k+bs,brows,tcols); + apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment.adjoint()); + } + } + } +}; + +template<typename _MatrixType, typename Rhs> +struct solve_retval<HouseholderQR<_MatrixType>, Rhs> + : solve_retval_base<HouseholderQR<_MatrixType>, Rhs> +{ + EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs) + + template<typename Dest> void evalTo(Dest& dst) const + { + const Index rows = dec().rows(), cols = dec().cols(); + const Index rank = (std::min)(rows, cols); + eigen_assert(rhs().rows() == rows); + + typename Rhs::PlainObject c(rhs()); + + // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T + c.applyOnTheLeft(householderSequence( + dec().matrixQR().leftCols(rank), + dec().hCoeffs().head(rank)).transpose() + ); + + dec().matrixQR() + .topLeftCorner(rank, rank) + .template triangularView<Upper>() + .solveInPlace(c.topRows(rank)); + + dst.topRows(rank) = c.topRows(rank); + dst.bottomRows(cols-rank).setZero(); + } +}; + +} // end namespace internal + +/** Performs the QR factorization of the given matrix \a matrix. The result of + * the factorization is stored into \c *this, and a reference to \c *this + * is returned. + * + * \sa class HouseholderQR, HouseholderQR(const MatrixType&) + */ +template<typename MatrixType> +HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix) +{ + check_template_parameters(); + + Index rows = matrix.rows(); + Index cols = matrix.cols(); + Index size = (std::min)(rows,cols); + + m_qr = matrix; + m_hCoeffs.resize(size); + + m_temp.resize(cols); + + internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data()); + + m_isInitialized = true; + return *this; +} + +/** \return the Householder QR decomposition of \c *this. + * + * \sa class HouseholderQR + */ +template<typename Derived> +const HouseholderQR<typename MatrixBase<Derived>::PlainObject> +MatrixBase<Derived>::householderQr() const +{ + return HouseholderQR<PlainObject>(eval()); +} + +} // end namespace Eigen + +#endif // EIGEN_QR_H \ No newline at end of file