Eigne Matrix Class Library

Dependents:   MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more

Revision:
0:13a5d365ba16
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/QR/HouseholderQR.h	Thu Oct 13 04:07:23 2016 +0000
@@ -0,0 +1,388 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2010 Vincent Lejeune
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_QR_H
+#define EIGEN_QR_H
+
+namespace Eigen { 
+
+/** \ingroup QR_Module
+  *
+  *
+  * \class HouseholderQR
+  *
+  * \brief Householder QR decomposition of a matrix
+  *
+  * \param MatrixType the type of the matrix of which we are computing the QR decomposition
+  *
+  * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
+  * such that 
+  * \f[
+  *  \mathbf{A} = \mathbf{Q} \, \mathbf{R}
+  * \f]
+  * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix.
+  * The result is stored in a compact way compatible with LAPACK.
+  *
+  * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
+  * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
+  *
+  * This Householder QR decomposition is faster, but less numerically stable and less feature-full than
+  * FullPivHouseholderQR or ColPivHouseholderQR.
+  *
+  * \sa MatrixBase::householderQr()
+  */
+template<typename _MatrixType> class HouseholderQR
+{
+  public:
+
+    typedef _MatrixType MatrixType;
+    enum {
+      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+      Options = MatrixType::Options,
+      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+    };
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename MatrixType::RealScalar RealScalar;
+    typedef typename MatrixType::Index Index;
+    typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
+    typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
+    typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
+    typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
+
+    /**
+      * \brief Default Constructor.
+      *
+      * The default constructor is useful in cases in which the user intends to
+      * perform decompositions via HouseholderQR::compute(const MatrixType&).
+      */
+    HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {}
+
+    /** \brief Default Constructor with memory preallocation
+      *
+      * Like the default constructor but with preallocation of the internal data
+      * according to the specified problem \a size.
+      * \sa HouseholderQR()
+      */
+    HouseholderQR(Index rows, Index cols)
+      : m_qr(rows, cols),
+        m_hCoeffs((std::min)(rows,cols)),
+        m_temp(cols),
+        m_isInitialized(false) {}
+
+    /** \brief Constructs a QR factorization from a given matrix
+      *
+      * This constructor computes the QR factorization of the matrix \a matrix by calling
+      * the method compute(). It is a short cut for:
+      * 
+      * \code
+      * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
+      * qr.compute(matrix);
+      * \endcode
+      * 
+      * \sa compute()
+      */
+    HouseholderQR(const MatrixType& matrix)
+      : m_qr(matrix.rows(), matrix.cols()),
+        m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
+        m_temp(matrix.cols()),
+        m_isInitialized(false)
+    {
+      compute(matrix);
+    }
+
+    /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
+      * *this is the QR decomposition, if any exists.
+      *
+      * \param b the right-hand-side of the equation to solve.
+      *
+      * \returns a solution.
+      *
+      * \note The case where b is a matrix is not yet implemented. Also, this
+      *       code is space inefficient.
+      *
+      * \note_about_checking_solutions
+      *
+      * \note_about_arbitrary_choice_of_solution
+      *
+      * Example: \include HouseholderQR_solve.cpp
+      * Output: \verbinclude HouseholderQR_solve.out
+      */
+    template<typename Rhs>
+    inline const internal::solve_retval<HouseholderQR, Rhs>
+    solve(const MatrixBase<Rhs>& b) const
+    {
+      eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
+      return internal::solve_retval<HouseholderQR, Rhs>(*this, b.derived());
+    }
+
+    /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
+      *
+      * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object.
+      * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:
+      *
+      * Example: \include HouseholderQR_householderQ.cpp
+      * Output: \verbinclude HouseholderQR_householderQ.out
+      */
+    HouseholderSequenceType householderQ() const
+    {
+      eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
+      return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
+    }
+
+    /** \returns a reference to the matrix where the Householder QR decomposition is stored
+      * in a LAPACK-compatible way.
+      */
+    const MatrixType& matrixQR() const
+    {
+        eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
+        return m_qr;
+    }
+
+    HouseholderQR& compute(const MatrixType& matrix);
+
+    /** \returns the absolute value of the determinant of the matrix of which
+      * *this is the QR decomposition. It has only linear complexity
+      * (that is, O(n) where n is the dimension of the square matrix)
+      * as the QR decomposition has already been computed.
+      *
+      * \note This is only for square matrices.
+      *
+      * \warning a determinant can be very big or small, so for matrices
+      * of large enough dimension, there is a risk of overflow/underflow.
+      * One way to work around that is to use logAbsDeterminant() instead.
+      *
+      * \sa logAbsDeterminant(), MatrixBase::determinant()
+      */
+    typename MatrixType::RealScalar absDeterminant() const;
+
+    /** \returns the natural log of the absolute value of the determinant of the matrix of which
+      * *this is the QR decomposition. It has only linear complexity
+      * (that is, O(n) where n is the dimension of the square matrix)
+      * as the QR decomposition has already been computed.
+      *
+      * \note This is only for square matrices.
+      *
+      * \note This method is useful to work around the risk of overflow/underflow that's inherent
+      * to determinant computation.
+      *
+      * \sa absDeterminant(), MatrixBase::determinant()
+      */
+    typename MatrixType::RealScalar logAbsDeterminant() const;
+
+    inline Index rows() const { return m_qr.rows(); }
+    inline Index cols() const { return m_qr.cols(); }
+    
+    /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
+      * 
+      * For advanced uses only.
+      */
+    const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
+
+  protected:
+    
+    static void check_template_parameters()
+    {
+      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+    }
+    
+    MatrixType m_qr;
+    HCoeffsType m_hCoeffs;
+    RowVectorType m_temp;
+    bool m_isInitialized;
+};
+
+template<typename MatrixType>
+typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
+{
+  using std::abs;
+  eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
+  eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
+  return abs(m_qr.diagonal().prod());
+}
+
+template<typename MatrixType>
+typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
+{
+  eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
+  eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
+  return m_qr.diagonal().cwiseAbs().array().log().sum();
+}
+
+namespace internal {
+
+/** \internal */
+template<typename MatrixQR, typename HCoeffs>
+void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0)
+{
+  typedef typename MatrixQR::Index Index;
+  typedef typename MatrixQR::Scalar Scalar;
+  typedef typename MatrixQR::RealScalar RealScalar;
+  Index rows = mat.rows();
+  Index cols = mat.cols();
+  Index size = (std::min)(rows,cols);
+
+  eigen_assert(hCoeffs.size() == size);
+
+  typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType;
+  TempType tempVector;
+  if(tempData==0)
+  {
+    tempVector.resize(cols);
+    tempData = tempVector.data();
+  }
+
+  for(Index k = 0; k < size; ++k)
+  {
+    Index remainingRows = rows - k;
+    Index remainingCols = cols - k - 1;
+
+    RealScalar beta;
+    mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta);
+    mat.coeffRef(k,k) = beta;
+
+    // apply H to remaining part of m_qr from the left
+    mat.bottomRightCorner(remainingRows, remainingCols)
+        .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1);
+  }
+}
+
+/** \internal */
+template<typename MatrixQR, typename HCoeffs,
+  typename MatrixQRScalar = typename MatrixQR::Scalar,
+  bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)>
+struct householder_qr_inplace_blocked
+{
+  // This is specialized for MKL-supported Scalar types in HouseholderQR_MKL.h
+  static void run(MatrixQR& mat, HCoeffs& hCoeffs,
+      typename MatrixQR::Index maxBlockSize=32,
+      typename MatrixQR::Scalar* tempData = 0)
+  {
+    typedef typename MatrixQR::Index Index;
+    typedef typename MatrixQR::Scalar Scalar;
+    typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;
+
+    Index rows = mat.rows();
+    Index cols = mat.cols();
+    Index size = (std::min)(rows, cols);
+
+    typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType;
+    TempType tempVector;
+    if(tempData==0)
+    {
+      tempVector.resize(cols);
+      tempData = tempVector.data();
+    }
+
+    Index blockSize = (std::min)(maxBlockSize,size);
+
+    Index k = 0;
+    for (k = 0; k < size; k += blockSize)
+    {
+      Index bs = (std::min)(size-k,blockSize);  // actual size of the block
+      Index tcols = cols - k - bs;            // trailing columns
+      Index brows = rows-k;                   // rows of the block
+
+      // partition the matrix:
+      //        A00 | A01 | A02
+      // mat  = A10 | A11 | A12
+      //        A20 | A21 | A22
+      // and performs the qr dec of [A11^T A12^T]^T
+      // and update [A21^T A22^T]^T using level 3 operations.
+      // Finally, the algorithm continue on A22
+
+      BlockType A11_21 = mat.block(k,k,brows,bs);
+      Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs);
+
+      householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData);
+
+      if(tcols)
+      {
+        BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
+        apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment.adjoint());
+      }
+    }
+  }
+};
+
+template<typename _MatrixType, typename Rhs>
+struct solve_retval<HouseholderQR<_MatrixType>, Rhs>
+  : solve_retval_base<HouseholderQR<_MatrixType>, Rhs>
+{
+  EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs)
+
+  template<typename Dest> void evalTo(Dest& dst) const
+  {
+    const Index rows = dec().rows(), cols = dec().cols();
+    const Index rank = (std::min)(rows, cols);
+    eigen_assert(rhs().rows() == rows);
+
+    typename Rhs::PlainObject c(rhs());
+
+    // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
+    c.applyOnTheLeft(householderSequence(
+      dec().matrixQR().leftCols(rank),
+      dec().hCoeffs().head(rank)).transpose()
+    );
+
+    dec().matrixQR()
+       .topLeftCorner(rank, rank)
+       .template triangularView<Upper>()
+       .solveInPlace(c.topRows(rank));
+
+    dst.topRows(rank) = c.topRows(rank);
+    dst.bottomRows(cols-rank).setZero();
+  }
+};
+
+} // end namespace internal
+
+/** Performs the QR factorization of the given matrix \a matrix. The result of
+  * the factorization is stored into \c *this, and a reference to \c *this
+  * is returned.
+  *
+  * \sa class HouseholderQR, HouseholderQR(const MatrixType&)
+  */
+template<typename MatrixType>
+HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix)
+{
+  check_template_parameters();
+  
+  Index rows = matrix.rows();
+  Index cols = matrix.cols();
+  Index size = (std::min)(rows,cols);
+
+  m_qr = matrix;
+  m_hCoeffs.resize(size);
+
+  m_temp.resize(cols);
+
+  internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data());
+
+  m_isInitialized = true;
+  return *this;
+}
+
+/** \return the Householder QR decomposition of \c *this.
+  *
+  * \sa class HouseholderQR
+  */
+template<typename Derived>
+const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
+MatrixBase<Derived>::householderQr() const
+{
+  return HouseholderQR<PlainObject>(eval());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_QR_H
\ No newline at end of file