Eigne Matrix Class Library

Dependents:   MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more

Revision:
0:13a5d365ba16
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Cholesky/LDLT.h	Thu Oct 13 04:07:23 2016 +0000
@@ -0,0 +1,611 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
+// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com >
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_LDLT_H
+#define EIGEN_LDLT_H
+
+namespace Eigen { 
+
+namespace internal {
+  template<typename MatrixType, int UpLo> struct LDLT_Traits;
+
+  // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef
+  enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite };
+}
+
+/** \ingroup Cholesky_Module
+  *
+  * \class LDLT
+  *
+  * \brief Robust Cholesky decomposition of a matrix with pivoting
+  *
+  * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
+  * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
+  *             The other triangular part won't be read.
+  *
+  * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
+  * matrix \f$ A \f$ such that \f$ A =  P^TLDL^*P \f$, where P is a permutation matrix, L
+  * is lower triangular with a unit diagonal and D is a diagonal matrix.
+  *
+  * The decomposition uses pivoting to ensure stability, so that L will have
+  * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
+  * on D also stabilizes the computation.
+  *
+  * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
+  * decomposition to determine whether a system of equations has a solution.
+  *
+  * \sa MatrixBase::ldlt(), class LLT
+  */
+template<typename _MatrixType, int _UpLo> class LDLT
+{
+  public:
+    typedef _MatrixType MatrixType;
+    enum {
+      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+      Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
+      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
+      UpLo = _UpLo
+    };
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+    typedef typename MatrixType::Index Index;
+    typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
+
+    typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
+    typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
+
+    typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;
+
+    /** \brief Default Constructor.
+      *
+      * The default constructor is useful in cases in which the user intends to
+      * perform decompositions via LDLT::compute(const MatrixType&).
+      */
+    LDLT() 
+      : m_matrix(), 
+        m_transpositions(), 
+        m_sign(internal::ZeroSign),
+        m_isInitialized(false) 
+    {}
+
+    /** \brief Default Constructor with memory preallocation
+      *
+      * Like the default constructor but with preallocation of the internal data
+      * according to the specified problem \a size.
+      * \sa LDLT()
+      */
+    LDLT(Index size)
+      : m_matrix(size, size),
+        m_transpositions(size),
+        m_temporary(size),
+        m_sign(internal::ZeroSign),
+        m_isInitialized(false)
+    {}
+
+    /** \brief Constructor with decomposition
+      *
+      * This calculates the decomposition for the input \a matrix.
+      * \sa LDLT(Index size)
+      */
+    LDLT(const MatrixType& matrix)
+      : m_matrix(matrix.rows(), matrix.cols()),
+        m_transpositions(matrix.rows()),
+        m_temporary(matrix.rows()),
+        m_sign(internal::ZeroSign),
+        m_isInitialized(false)
+    {
+      compute(matrix);
+    }
+
+    /** Clear any existing decomposition
+     * \sa rankUpdate(w,sigma)
+     */
+    void setZero()
+    {
+      m_isInitialized = false;
+    }
+
+    /** \returns a view of the upper triangular matrix U */
+    inline typename Traits::MatrixU matrixU() const
+    {
+      eigen_assert(m_isInitialized && "LDLT is not initialized.");
+      return Traits::getU(m_matrix);
+    }
+
+    /** \returns a view of the lower triangular matrix L */
+    inline typename Traits::MatrixL matrixL() const
+    {
+      eigen_assert(m_isInitialized && "LDLT is not initialized.");
+      return Traits::getL(m_matrix);
+    }
+
+    /** \returns the permutation matrix P as a transposition sequence.
+      */
+    inline const TranspositionType& transpositionsP() const
+    {
+      eigen_assert(m_isInitialized && "LDLT is not initialized.");
+      return m_transpositions;
+    }
+
+    /** \returns the coefficients of the diagonal matrix D */
+    inline Diagonal<const MatrixType> vectorD() const
+    {
+      eigen_assert(m_isInitialized && "LDLT is not initialized.");
+      return m_matrix.diagonal();
+    }
+
+    /** \returns true if the matrix is positive (semidefinite) */
+    inline bool isPositive() const
+    {
+      eigen_assert(m_isInitialized && "LDLT is not initialized.");
+      return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
+    }
+    
+    #ifdef EIGEN2_SUPPORT
+    inline bool isPositiveDefinite() const
+    {
+      return isPositive();
+    }
+    #endif
+
+    /** \returns true if the matrix is negative (semidefinite) */
+    inline bool isNegative(void) const
+    {
+      eigen_assert(m_isInitialized && "LDLT is not initialized.");
+      return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign;
+    }
+
+    /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
+      *
+      * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
+      *
+      * \note_about_checking_solutions
+      *
+      * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
+      * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, 
+      * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
+      * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
+      * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
+      * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
+      *
+      * \sa MatrixBase::ldlt()
+      */
+    template<typename Rhs>
+    inline const internal::solve_retval<LDLT, Rhs>
+    solve(const MatrixBase<Rhs>& b) const
+    {
+      eigen_assert(m_isInitialized && "LDLT is not initialized.");
+      eigen_assert(m_matrix.rows()==b.rows()
+                && "LDLT::solve(): invalid number of rows of the right hand side matrix b");
+      return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
+    }
+
+    #ifdef EIGEN2_SUPPORT
+    template<typename OtherDerived, typename ResultType>
+    bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
+    {
+      *result = this->solve(b);
+      return true;
+    }
+    #endif
+
+    template<typename Derived>
+    bool solveInPlace(MatrixBase<Derived> &bAndX) const;
+
+    LDLT& compute(const MatrixType& matrix);
+
+    template <typename Derived>
+    LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1);
+
+    /** \returns the internal LDLT decomposition matrix
+      *
+      * TODO: document the storage layout
+      */
+    inline const MatrixType& matrixLDLT() const
+    {
+      eigen_assert(m_isInitialized && "LDLT is not initialized.");
+      return m_matrix;
+    }
+
+    MatrixType reconstructedMatrix() const;
+
+    inline Index rows() const { return m_matrix.rows(); }
+    inline Index cols() const { return m_matrix.cols(); }
+
+    /** \brief Reports whether previous computation was successful.
+      *
+      * \returns \c Success if computation was succesful,
+      *          \c NumericalIssue if the matrix.appears to be negative.
+      */
+    ComputationInfo info() const
+    {
+      eigen_assert(m_isInitialized && "LDLT is not initialized.");
+      return Success;
+    }
+
+  protected:
+    
+    static void check_template_parameters()
+    {
+      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+    }
+
+    /** \internal
+      * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
+      * The strict upper part is used during the decomposition, the strict lower
+      * part correspond to the coefficients of L (its diagonal is equal to 1 and
+      * is not stored), and the diagonal entries correspond to D.
+      */
+    MatrixType m_matrix;
+    TranspositionType m_transpositions;
+    TmpMatrixType m_temporary;
+    internal::SignMatrix m_sign;
+    bool m_isInitialized;
+};
+
+namespace internal {
+
+template<int UpLo> struct ldlt_inplace;
+
+template<> struct ldlt_inplace<Lower>
+{
+  template<typename MatrixType, typename TranspositionType, typename Workspace>
+  static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
+  {
+    using std::abs;
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename MatrixType::RealScalar RealScalar;
+    typedef typename MatrixType::Index Index;
+    eigen_assert(mat.rows()==mat.cols());
+    const Index size = mat.rows();
+
+    if (size <= 1)
+    {
+      transpositions.setIdentity();
+      if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef;
+      else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef;
+      else sign = ZeroSign;
+      return true;
+    }
+
+    for (Index k = 0; k < size; ++k)
+    {
+      // Find largest diagonal element
+      Index index_of_biggest_in_corner;
+      mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
+      index_of_biggest_in_corner += k;
+
+      transpositions.coeffRef(k) = index_of_biggest_in_corner;
+      if(k != index_of_biggest_in_corner)
+      {
+        // apply the transposition while taking care to consider only
+        // the lower triangular part
+        Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
+        mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
+        mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
+        std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
+        for(int i=k+1;i<index_of_biggest_in_corner;++i)
+        {
+          Scalar tmp = mat.coeffRef(i,k);
+          mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
+          mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp);
+        }
+        if(NumTraits<Scalar>::IsComplex)
+          mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k));
+      }
+
+      // partition the matrix:
+      //       A00 |  -  |  -
+      // lu  = A10 | A11 |  -
+      //       A20 | A21 | A22
+      Index rs = size - k - 1;
+      Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
+      Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
+      Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
+
+      if(k>0)
+      {
+        temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
+        mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
+        if(rs>0)
+          A21.noalias() -= A20 * temp.head(k);
+      }
+      
+      // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
+      // was smaller than the cutoff value. However, soince LDLT is not rank-revealing
+      // we should only make sure we do not introduce INF or NaN values.
+      // LAPACK also uses 0 as the cutoff value.
+      RealScalar realAkk = numext::real(mat.coeffRef(k,k));
+      if((rs>0) && (abs(realAkk) > RealScalar(0)))
+        A21 /= realAkk;
+
+      if (sign == PositiveSemiDef) {
+        if (realAkk < 0) sign = Indefinite;
+      } else if (sign == NegativeSemiDef) {
+        if (realAkk > 0) sign = Indefinite;
+      } else if (sign == ZeroSign) {
+        if (realAkk > 0) sign = PositiveSemiDef;
+        else if (realAkk < 0) sign = NegativeSemiDef;
+      }
+    }
+
+    return true;
+  }
+
+  // Reference for the algorithm: Davis and Hager, "Multiple Rank
+  // Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
+  // Trivial rearrangements of their computations (Timothy E. Holy)
+  // allow their algorithm to work for rank-1 updates even if the
+  // original matrix is not of full rank.
+  // Here only rank-1 updates are implemented, to reduce the
+  // requirement for intermediate storage and improve accuracy
+  template<typename MatrixType, typename WDerived>
+  static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1)
+  {
+    using numext::isfinite;
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename MatrixType::RealScalar RealScalar;
+    typedef typename MatrixType::Index Index;
+
+    const Index size = mat.rows();
+    eigen_assert(mat.cols() == size && w.size()==size);
+
+    RealScalar alpha = 1;
+
+    // Apply the update
+    for (Index j = 0; j < size; j++)
+    {
+      // Check for termination due to an original decomposition of low-rank
+      if (!(isfinite)(alpha))
+        break;
+
+      // Update the diagonal terms
+      RealScalar dj = numext::real(mat.coeff(j,j));
+      Scalar wj = w.coeff(j);
+      RealScalar swj2 = sigma*numext::abs2(wj);
+      RealScalar gamma = dj*alpha + swj2;
+
+      mat.coeffRef(j,j) += swj2/alpha;
+      alpha += swj2/dj;
+
+
+      // Update the terms of L
+      Index rs = size-j-1;
+      w.tail(rs) -= wj * mat.col(j).tail(rs);
+      if(gamma != 0)
+        mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
+    }
+    return true;
+  }
+
+  template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
+  static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1)
+  {
+    // Apply the permutation to the input w
+    tmp = transpositions * w;
+
+    return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
+  }
+};
+
+template<> struct ldlt_inplace<Upper>
+{
+  template<typename MatrixType, typename TranspositionType, typename Workspace>
+  static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
+  {
+    Transpose<MatrixType> matt(mat);
+    return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
+  }
+
+  template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
+  static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1)
+  {
+    Transpose<MatrixType> matt(mat);
+    return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
+  }
+};
+
+template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
+{
+  typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
+  typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
+  static inline MatrixL getL(const MatrixType& m) { return m; }
+  static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
+};
+
+template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
+{
+  typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
+  typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
+  static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
+  static inline MatrixU getU(const MatrixType& m) { return m; }
+};
+
+} // end namespace internal
+
+/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
+  */
+template<typename MatrixType, int _UpLo>
+LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
+{
+  check_template_parameters();
+  
+  eigen_assert(a.rows()==a.cols());
+  const Index size = a.rows();
+
+  m_matrix = a;
+
+  m_transpositions.resize(size);
+  m_isInitialized = false;
+  m_temporary.resize(size);
+  m_sign = internal::ZeroSign;
+
+  internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign);
+
+  m_isInitialized = true;
+  return *this;
+}
+
+/** Update the LDLT decomposition:  given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
+ * \param w a vector to be incorporated into the decomposition.
+ * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
+ * \sa setZero()
+  */
+template<typename MatrixType, int _UpLo>
+template<typename Derived>
+LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma)
+{
+  const Index size = w.rows();
+  if (m_isInitialized)
+  {
+    eigen_assert(m_matrix.rows()==size);
+  }
+  else
+  {    
+    m_matrix.resize(size,size);
+    m_matrix.setZero();
+    m_transpositions.resize(size);
+    for (Index i = 0; i < size; i++)
+      m_transpositions.coeffRef(i) = i;
+    m_temporary.resize(size);
+    m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
+    m_isInitialized = true;
+  }
+
+  internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);
+
+  return *this;
+}
+
+namespace internal {
+template<typename _MatrixType, int _UpLo, typename Rhs>
+struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
+  : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
+{
+  typedef LDLT<_MatrixType,_UpLo> LDLTType;
+  EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)
+
+  template<typename Dest> void evalTo(Dest& dst) const
+  {
+    eigen_assert(rhs().rows() == dec().matrixLDLT().rows());
+    // dst = P b
+    dst = dec().transpositionsP() * rhs();
+
+    // dst = L^-1 (P b)
+    dec().matrixL().solveInPlace(dst);
+
+    // dst = D^-1 (L^-1 P b)
+    // more precisely, use pseudo-inverse of D (see bug 241)
+    using std::abs;
+    using std::max;
+    typedef typename LDLTType::MatrixType MatrixType;
+    typedef typename LDLTType::RealScalar RealScalar;
+    const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
+    // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
+    // as motivated by LAPACK's xGELSS:
+    // RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
+    // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
+    // diagonal element is not well justified and to numerical issues in some cases.
+    // Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
+    RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
+    
+    for (Index i = 0; i < vectorD.size(); ++i) {
+      if(abs(vectorD(i)) > tolerance)
+        dst.row(i) /= vectorD(i);
+      else
+        dst.row(i).setZero();
+    }
+
+    // dst = L^-T (D^-1 L^-1 P b)
+    dec().matrixU().solveInPlace(dst);
+
+    // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
+    dst = dec().transpositionsP().transpose() * dst;
+  }
+};
+}
+
+/** \internal use x = ldlt_object.solve(x);
+  *
+  * This is the \em in-place version of solve().
+  *
+  * \param bAndX represents both the right-hand side matrix b and result x.
+  *
+  * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
+  *
+  * This version avoids a copy when the right hand side matrix b is not
+  * needed anymore.
+  *
+  * \sa LDLT::solve(), MatrixBase::ldlt()
+  */
+template<typename MatrixType,int _UpLo>
+template<typename Derived>
+bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
+{
+  eigen_assert(m_isInitialized && "LDLT is not initialized.");
+  eigen_assert(m_matrix.rows() == bAndX.rows());
+
+  bAndX = this->solve(bAndX);
+
+  return true;
+}
+
+/** \returns the matrix represented by the decomposition,
+ * i.e., it returns the product: P^T L D L^* P.
+ * This function is provided for debug purpose. */
+template<typename MatrixType, int _UpLo>
+MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
+{
+  eigen_assert(m_isInitialized && "LDLT is not initialized.");
+  const Index size = m_matrix.rows();
+  MatrixType res(size,size);
+
+  // P
+  res.setIdentity();
+  res = transpositionsP() * res;
+  // L^* P
+  res = matrixU() * res;
+  // D(L^*P)
+  res = vectorD().real().asDiagonal() * res;
+  // L(DL^*P)
+  res = matrixL() * res;
+  // P^T (LDL^*P)
+  res = transpositionsP().transpose() * res;
+
+  return res;
+}
+
+/** \cholesky_module
+  * \returns the Cholesky decomposition with full pivoting without square root of \c *this
+  */
+template<typename MatrixType, unsigned int UpLo>
+inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
+SelfAdjointView<MatrixType, UpLo>::ldlt() const
+{
+  return LDLT<PlainObject,UpLo>(m_matrix);
+}
+
+/** \cholesky_module
+  * \returns the Cholesky decomposition with full pivoting without square root of \c *this
+  */
+template<typename Derived>
+inline const LDLT<typename MatrixBase<Derived>::PlainObject>
+MatrixBase<Derived>::ldlt() const
+{
+  return LDLT<PlainObject>(derived());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_LDLT_H
\ No newline at end of file