Eigne Matrix Class Library

Dependents:   MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more

Committer:
ykuroda
Date:
Thu Oct 13 04:07:23 2016 +0000
Revision:
0:13a5d365ba16
First commint, Eigne Matrix Class Library

Who changed what in which revision?

UserRevisionLine numberNew contents of line
ykuroda 0:13a5d365ba16 1 // This file is part of Eigen, a lightweight C++ template library
ykuroda 0:13a5d365ba16 2 // for linear algebra.
ykuroda 0:13a5d365ba16 3 //
ykuroda 0:13a5d365ba16 4 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
ykuroda 0:13a5d365ba16 5 // Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
ykuroda 0:13a5d365ba16 6 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
ykuroda 0:13a5d365ba16 7 // Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com >
ykuroda 0:13a5d365ba16 8 //
ykuroda 0:13a5d365ba16 9 // This Source Code Form is subject to the terms of the Mozilla
ykuroda 0:13a5d365ba16 10 // Public License v. 2.0. If a copy of the MPL was not distributed
ykuroda 0:13a5d365ba16 11 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
ykuroda 0:13a5d365ba16 12
ykuroda 0:13a5d365ba16 13 #ifndef EIGEN_LDLT_H
ykuroda 0:13a5d365ba16 14 #define EIGEN_LDLT_H
ykuroda 0:13a5d365ba16 15
ykuroda 0:13a5d365ba16 16 namespace Eigen {
ykuroda 0:13a5d365ba16 17
ykuroda 0:13a5d365ba16 18 namespace internal {
ykuroda 0:13a5d365ba16 19 template<typename MatrixType, int UpLo> struct LDLT_Traits;
ykuroda 0:13a5d365ba16 20
ykuroda 0:13a5d365ba16 21 // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef
ykuroda 0:13a5d365ba16 22 enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite };
ykuroda 0:13a5d365ba16 23 }
ykuroda 0:13a5d365ba16 24
ykuroda 0:13a5d365ba16 25 /** \ingroup Cholesky_Module
ykuroda 0:13a5d365ba16 26 *
ykuroda 0:13a5d365ba16 27 * \class LDLT
ykuroda 0:13a5d365ba16 28 *
ykuroda 0:13a5d365ba16 29 * \brief Robust Cholesky decomposition of a matrix with pivoting
ykuroda 0:13a5d365ba16 30 *
ykuroda 0:13a5d365ba16 31 * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
ykuroda 0:13a5d365ba16 32 * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
ykuroda 0:13a5d365ba16 33 * The other triangular part won't be read.
ykuroda 0:13a5d365ba16 34 *
ykuroda 0:13a5d365ba16 35 * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
ykuroda 0:13a5d365ba16 36 * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L
ykuroda 0:13a5d365ba16 37 * is lower triangular with a unit diagonal and D is a diagonal matrix.
ykuroda 0:13a5d365ba16 38 *
ykuroda 0:13a5d365ba16 39 * The decomposition uses pivoting to ensure stability, so that L will have
ykuroda 0:13a5d365ba16 40 * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
ykuroda 0:13a5d365ba16 41 * on D also stabilizes the computation.
ykuroda 0:13a5d365ba16 42 *
ykuroda 0:13a5d365ba16 43 * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
ykuroda 0:13a5d365ba16 44 * decomposition to determine whether a system of equations has a solution.
ykuroda 0:13a5d365ba16 45 *
ykuroda 0:13a5d365ba16 46 * \sa MatrixBase::ldlt(), class LLT
ykuroda 0:13a5d365ba16 47 */
ykuroda 0:13a5d365ba16 48 template<typename _MatrixType, int _UpLo> class LDLT
ykuroda 0:13a5d365ba16 49 {
ykuroda 0:13a5d365ba16 50 public:
ykuroda 0:13a5d365ba16 51 typedef _MatrixType MatrixType;
ykuroda 0:13a5d365ba16 52 enum {
ykuroda 0:13a5d365ba16 53 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ykuroda 0:13a5d365ba16 54 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
ykuroda 0:13a5d365ba16 55 Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
ykuroda 0:13a5d365ba16 56 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
ykuroda 0:13a5d365ba16 57 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
ykuroda 0:13a5d365ba16 58 UpLo = _UpLo
ykuroda 0:13a5d365ba16 59 };
ykuroda 0:13a5d365ba16 60 typedef typename MatrixType::Scalar Scalar;
ykuroda 0:13a5d365ba16 61 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
ykuroda 0:13a5d365ba16 62 typedef typename MatrixType::Index Index;
ykuroda 0:13a5d365ba16 63 typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
ykuroda 0:13a5d365ba16 64
ykuroda 0:13a5d365ba16 65 typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
ykuroda 0:13a5d365ba16 66 typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
ykuroda 0:13a5d365ba16 67
ykuroda 0:13a5d365ba16 68 typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;
ykuroda 0:13a5d365ba16 69
ykuroda 0:13a5d365ba16 70 /** \brief Default Constructor.
ykuroda 0:13a5d365ba16 71 *
ykuroda 0:13a5d365ba16 72 * The default constructor is useful in cases in which the user intends to
ykuroda 0:13a5d365ba16 73 * perform decompositions via LDLT::compute(const MatrixType&).
ykuroda 0:13a5d365ba16 74 */
ykuroda 0:13a5d365ba16 75 LDLT()
ykuroda 0:13a5d365ba16 76 : m_matrix(),
ykuroda 0:13a5d365ba16 77 m_transpositions(),
ykuroda 0:13a5d365ba16 78 m_sign(internal::ZeroSign),
ykuroda 0:13a5d365ba16 79 m_isInitialized(false)
ykuroda 0:13a5d365ba16 80 {}
ykuroda 0:13a5d365ba16 81
ykuroda 0:13a5d365ba16 82 /** \brief Default Constructor with memory preallocation
ykuroda 0:13a5d365ba16 83 *
ykuroda 0:13a5d365ba16 84 * Like the default constructor but with preallocation of the internal data
ykuroda 0:13a5d365ba16 85 * according to the specified problem \a size.
ykuroda 0:13a5d365ba16 86 * \sa LDLT()
ykuroda 0:13a5d365ba16 87 */
ykuroda 0:13a5d365ba16 88 LDLT(Index size)
ykuroda 0:13a5d365ba16 89 : m_matrix(size, size),
ykuroda 0:13a5d365ba16 90 m_transpositions(size),
ykuroda 0:13a5d365ba16 91 m_temporary(size),
ykuroda 0:13a5d365ba16 92 m_sign(internal::ZeroSign),
ykuroda 0:13a5d365ba16 93 m_isInitialized(false)
ykuroda 0:13a5d365ba16 94 {}
ykuroda 0:13a5d365ba16 95
ykuroda 0:13a5d365ba16 96 /** \brief Constructor with decomposition
ykuroda 0:13a5d365ba16 97 *
ykuroda 0:13a5d365ba16 98 * This calculates the decomposition for the input \a matrix.
ykuroda 0:13a5d365ba16 99 * \sa LDLT(Index size)
ykuroda 0:13a5d365ba16 100 */
ykuroda 0:13a5d365ba16 101 LDLT(const MatrixType& matrix)
ykuroda 0:13a5d365ba16 102 : m_matrix(matrix.rows(), matrix.cols()),
ykuroda 0:13a5d365ba16 103 m_transpositions(matrix.rows()),
ykuroda 0:13a5d365ba16 104 m_temporary(matrix.rows()),
ykuroda 0:13a5d365ba16 105 m_sign(internal::ZeroSign),
ykuroda 0:13a5d365ba16 106 m_isInitialized(false)
ykuroda 0:13a5d365ba16 107 {
ykuroda 0:13a5d365ba16 108 compute(matrix);
ykuroda 0:13a5d365ba16 109 }
ykuroda 0:13a5d365ba16 110
ykuroda 0:13a5d365ba16 111 /** Clear any existing decomposition
ykuroda 0:13a5d365ba16 112 * \sa rankUpdate(w,sigma)
ykuroda 0:13a5d365ba16 113 */
ykuroda 0:13a5d365ba16 114 void setZero()
ykuroda 0:13a5d365ba16 115 {
ykuroda 0:13a5d365ba16 116 m_isInitialized = false;
ykuroda 0:13a5d365ba16 117 }
ykuroda 0:13a5d365ba16 118
ykuroda 0:13a5d365ba16 119 /** \returns a view of the upper triangular matrix U */
ykuroda 0:13a5d365ba16 120 inline typename Traits::MatrixU matrixU() const
ykuroda 0:13a5d365ba16 121 {
ykuroda 0:13a5d365ba16 122 eigen_assert(m_isInitialized && "LDLT is not initialized.");
ykuroda 0:13a5d365ba16 123 return Traits::getU(m_matrix);
ykuroda 0:13a5d365ba16 124 }
ykuroda 0:13a5d365ba16 125
ykuroda 0:13a5d365ba16 126 /** \returns a view of the lower triangular matrix L */
ykuroda 0:13a5d365ba16 127 inline typename Traits::MatrixL matrixL() const
ykuroda 0:13a5d365ba16 128 {
ykuroda 0:13a5d365ba16 129 eigen_assert(m_isInitialized && "LDLT is not initialized.");
ykuroda 0:13a5d365ba16 130 return Traits::getL(m_matrix);
ykuroda 0:13a5d365ba16 131 }
ykuroda 0:13a5d365ba16 132
ykuroda 0:13a5d365ba16 133 /** \returns the permutation matrix P as a transposition sequence.
ykuroda 0:13a5d365ba16 134 */
ykuroda 0:13a5d365ba16 135 inline const TranspositionType& transpositionsP() const
ykuroda 0:13a5d365ba16 136 {
ykuroda 0:13a5d365ba16 137 eigen_assert(m_isInitialized && "LDLT is not initialized.");
ykuroda 0:13a5d365ba16 138 return m_transpositions;
ykuroda 0:13a5d365ba16 139 }
ykuroda 0:13a5d365ba16 140
ykuroda 0:13a5d365ba16 141 /** \returns the coefficients of the diagonal matrix D */
ykuroda 0:13a5d365ba16 142 inline Diagonal<const MatrixType> vectorD() const
ykuroda 0:13a5d365ba16 143 {
ykuroda 0:13a5d365ba16 144 eigen_assert(m_isInitialized && "LDLT is not initialized.");
ykuroda 0:13a5d365ba16 145 return m_matrix.diagonal();
ykuroda 0:13a5d365ba16 146 }
ykuroda 0:13a5d365ba16 147
ykuroda 0:13a5d365ba16 148 /** \returns true if the matrix is positive (semidefinite) */
ykuroda 0:13a5d365ba16 149 inline bool isPositive() const
ykuroda 0:13a5d365ba16 150 {
ykuroda 0:13a5d365ba16 151 eigen_assert(m_isInitialized && "LDLT is not initialized.");
ykuroda 0:13a5d365ba16 152 return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
ykuroda 0:13a5d365ba16 153 }
ykuroda 0:13a5d365ba16 154
ykuroda 0:13a5d365ba16 155 #ifdef EIGEN2_SUPPORT
ykuroda 0:13a5d365ba16 156 inline bool isPositiveDefinite() const
ykuroda 0:13a5d365ba16 157 {
ykuroda 0:13a5d365ba16 158 return isPositive();
ykuroda 0:13a5d365ba16 159 }
ykuroda 0:13a5d365ba16 160 #endif
ykuroda 0:13a5d365ba16 161
ykuroda 0:13a5d365ba16 162 /** \returns true if the matrix is negative (semidefinite) */
ykuroda 0:13a5d365ba16 163 inline bool isNegative(void) const
ykuroda 0:13a5d365ba16 164 {
ykuroda 0:13a5d365ba16 165 eigen_assert(m_isInitialized && "LDLT is not initialized.");
ykuroda 0:13a5d365ba16 166 return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign;
ykuroda 0:13a5d365ba16 167 }
ykuroda 0:13a5d365ba16 168
ykuroda 0:13a5d365ba16 169 /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
ykuroda 0:13a5d365ba16 170 *
ykuroda 0:13a5d365ba16 171 * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
ykuroda 0:13a5d365ba16 172 *
ykuroda 0:13a5d365ba16 173 * \note_about_checking_solutions
ykuroda 0:13a5d365ba16 174 *
ykuroda 0:13a5d365ba16 175 * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
ykuroda 0:13a5d365ba16 176 * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,
ykuroda 0:13a5d365ba16 177 * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
ykuroda 0:13a5d365ba16 178 * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
ykuroda 0:13a5d365ba16 179 * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
ykuroda 0:13a5d365ba16 180 * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
ykuroda 0:13a5d365ba16 181 *
ykuroda 0:13a5d365ba16 182 * \sa MatrixBase::ldlt()
ykuroda 0:13a5d365ba16 183 */
ykuroda 0:13a5d365ba16 184 template<typename Rhs>
ykuroda 0:13a5d365ba16 185 inline const internal::solve_retval<LDLT, Rhs>
ykuroda 0:13a5d365ba16 186 solve(const MatrixBase<Rhs>& b) const
ykuroda 0:13a5d365ba16 187 {
ykuroda 0:13a5d365ba16 188 eigen_assert(m_isInitialized && "LDLT is not initialized.");
ykuroda 0:13a5d365ba16 189 eigen_assert(m_matrix.rows()==b.rows()
ykuroda 0:13a5d365ba16 190 && "LDLT::solve(): invalid number of rows of the right hand side matrix b");
ykuroda 0:13a5d365ba16 191 return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
ykuroda 0:13a5d365ba16 192 }
ykuroda 0:13a5d365ba16 193
ykuroda 0:13a5d365ba16 194 #ifdef EIGEN2_SUPPORT
ykuroda 0:13a5d365ba16 195 template<typename OtherDerived, typename ResultType>
ykuroda 0:13a5d365ba16 196 bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
ykuroda 0:13a5d365ba16 197 {
ykuroda 0:13a5d365ba16 198 *result = this->solve(b);
ykuroda 0:13a5d365ba16 199 return true;
ykuroda 0:13a5d365ba16 200 }
ykuroda 0:13a5d365ba16 201 #endif
ykuroda 0:13a5d365ba16 202
ykuroda 0:13a5d365ba16 203 template<typename Derived>
ykuroda 0:13a5d365ba16 204 bool solveInPlace(MatrixBase<Derived> &bAndX) const;
ykuroda 0:13a5d365ba16 205
ykuroda 0:13a5d365ba16 206 LDLT& compute(const MatrixType& matrix);
ykuroda 0:13a5d365ba16 207
ykuroda 0:13a5d365ba16 208 template <typename Derived>
ykuroda 0:13a5d365ba16 209 LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1);
ykuroda 0:13a5d365ba16 210
ykuroda 0:13a5d365ba16 211 /** \returns the internal LDLT decomposition matrix
ykuroda 0:13a5d365ba16 212 *
ykuroda 0:13a5d365ba16 213 * TODO: document the storage layout
ykuroda 0:13a5d365ba16 214 */
ykuroda 0:13a5d365ba16 215 inline const MatrixType& matrixLDLT() const
ykuroda 0:13a5d365ba16 216 {
ykuroda 0:13a5d365ba16 217 eigen_assert(m_isInitialized && "LDLT is not initialized.");
ykuroda 0:13a5d365ba16 218 return m_matrix;
ykuroda 0:13a5d365ba16 219 }
ykuroda 0:13a5d365ba16 220
ykuroda 0:13a5d365ba16 221 MatrixType reconstructedMatrix() const;
ykuroda 0:13a5d365ba16 222
ykuroda 0:13a5d365ba16 223 inline Index rows() const { return m_matrix.rows(); }
ykuroda 0:13a5d365ba16 224 inline Index cols() const { return m_matrix.cols(); }
ykuroda 0:13a5d365ba16 225
ykuroda 0:13a5d365ba16 226 /** \brief Reports whether previous computation was successful.
ykuroda 0:13a5d365ba16 227 *
ykuroda 0:13a5d365ba16 228 * \returns \c Success if computation was succesful,
ykuroda 0:13a5d365ba16 229 * \c NumericalIssue if the matrix.appears to be negative.
ykuroda 0:13a5d365ba16 230 */
ykuroda 0:13a5d365ba16 231 ComputationInfo info() const
ykuroda 0:13a5d365ba16 232 {
ykuroda 0:13a5d365ba16 233 eigen_assert(m_isInitialized && "LDLT is not initialized.");
ykuroda 0:13a5d365ba16 234 return Success;
ykuroda 0:13a5d365ba16 235 }
ykuroda 0:13a5d365ba16 236
ykuroda 0:13a5d365ba16 237 protected:
ykuroda 0:13a5d365ba16 238
ykuroda 0:13a5d365ba16 239 static void check_template_parameters()
ykuroda 0:13a5d365ba16 240 {
ykuroda 0:13a5d365ba16 241 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
ykuroda 0:13a5d365ba16 242 }
ykuroda 0:13a5d365ba16 243
ykuroda 0:13a5d365ba16 244 /** \internal
ykuroda 0:13a5d365ba16 245 * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
ykuroda 0:13a5d365ba16 246 * The strict upper part is used during the decomposition, the strict lower
ykuroda 0:13a5d365ba16 247 * part correspond to the coefficients of L (its diagonal is equal to 1 and
ykuroda 0:13a5d365ba16 248 * is not stored), and the diagonal entries correspond to D.
ykuroda 0:13a5d365ba16 249 */
ykuroda 0:13a5d365ba16 250 MatrixType m_matrix;
ykuroda 0:13a5d365ba16 251 TranspositionType m_transpositions;
ykuroda 0:13a5d365ba16 252 TmpMatrixType m_temporary;
ykuroda 0:13a5d365ba16 253 internal::SignMatrix m_sign;
ykuroda 0:13a5d365ba16 254 bool m_isInitialized;
ykuroda 0:13a5d365ba16 255 };
ykuroda 0:13a5d365ba16 256
ykuroda 0:13a5d365ba16 257 namespace internal {
ykuroda 0:13a5d365ba16 258
ykuroda 0:13a5d365ba16 259 template<int UpLo> struct ldlt_inplace;
ykuroda 0:13a5d365ba16 260
ykuroda 0:13a5d365ba16 261 template<> struct ldlt_inplace<Lower>
ykuroda 0:13a5d365ba16 262 {
ykuroda 0:13a5d365ba16 263 template<typename MatrixType, typename TranspositionType, typename Workspace>
ykuroda 0:13a5d365ba16 264 static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
ykuroda 0:13a5d365ba16 265 {
ykuroda 0:13a5d365ba16 266 using std::abs;
ykuroda 0:13a5d365ba16 267 typedef typename MatrixType::Scalar Scalar;
ykuroda 0:13a5d365ba16 268 typedef typename MatrixType::RealScalar RealScalar;
ykuroda 0:13a5d365ba16 269 typedef typename MatrixType::Index Index;
ykuroda 0:13a5d365ba16 270 eigen_assert(mat.rows()==mat.cols());
ykuroda 0:13a5d365ba16 271 const Index size = mat.rows();
ykuroda 0:13a5d365ba16 272
ykuroda 0:13a5d365ba16 273 if (size <= 1)
ykuroda 0:13a5d365ba16 274 {
ykuroda 0:13a5d365ba16 275 transpositions.setIdentity();
ykuroda 0:13a5d365ba16 276 if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef;
ykuroda 0:13a5d365ba16 277 else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef;
ykuroda 0:13a5d365ba16 278 else sign = ZeroSign;
ykuroda 0:13a5d365ba16 279 return true;
ykuroda 0:13a5d365ba16 280 }
ykuroda 0:13a5d365ba16 281
ykuroda 0:13a5d365ba16 282 for (Index k = 0; k < size; ++k)
ykuroda 0:13a5d365ba16 283 {
ykuroda 0:13a5d365ba16 284 // Find largest diagonal element
ykuroda 0:13a5d365ba16 285 Index index_of_biggest_in_corner;
ykuroda 0:13a5d365ba16 286 mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
ykuroda 0:13a5d365ba16 287 index_of_biggest_in_corner += k;
ykuroda 0:13a5d365ba16 288
ykuroda 0:13a5d365ba16 289 transpositions.coeffRef(k) = index_of_biggest_in_corner;
ykuroda 0:13a5d365ba16 290 if(k != index_of_biggest_in_corner)
ykuroda 0:13a5d365ba16 291 {
ykuroda 0:13a5d365ba16 292 // apply the transposition while taking care to consider only
ykuroda 0:13a5d365ba16 293 // the lower triangular part
ykuroda 0:13a5d365ba16 294 Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
ykuroda 0:13a5d365ba16 295 mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
ykuroda 0:13a5d365ba16 296 mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
ykuroda 0:13a5d365ba16 297 std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
ykuroda 0:13a5d365ba16 298 for(int i=k+1;i<index_of_biggest_in_corner;++i)
ykuroda 0:13a5d365ba16 299 {
ykuroda 0:13a5d365ba16 300 Scalar tmp = mat.coeffRef(i,k);
ykuroda 0:13a5d365ba16 301 mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
ykuroda 0:13a5d365ba16 302 mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp);
ykuroda 0:13a5d365ba16 303 }
ykuroda 0:13a5d365ba16 304 if(NumTraits<Scalar>::IsComplex)
ykuroda 0:13a5d365ba16 305 mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k));
ykuroda 0:13a5d365ba16 306 }
ykuroda 0:13a5d365ba16 307
ykuroda 0:13a5d365ba16 308 // partition the matrix:
ykuroda 0:13a5d365ba16 309 // A00 | - | -
ykuroda 0:13a5d365ba16 310 // lu = A10 | A11 | -
ykuroda 0:13a5d365ba16 311 // A20 | A21 | A22
ykuroda 0:13a5d365ba16 312 Index rs = size - k - 1;
ykuroda 0:13a5d365ba16 313 Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
ykuroda 0:13a5d365ba16 314 Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
ykuroda 0:13a5d365ba16 315 Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
ykuroda 0:13a5d365ba16 316
ykuroda 0:13a5d365ba16 317 if(k>0)
ykuroda 0:13a5d365ba16 318 {
ykuroda 0:13a5d365ba16 319 temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
ykuroda 0:13a5d365ba16 320 mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
ykuroda 0:13a5d365ba16 321 if(rs>0)
ykuroda 0:13a5d365ba16 322 A21.noalias() -= A20 * temp.head(k);
ykuroda 0:13a5d365ba16 323 }
ykuroda 0:13a5d365ba16 324
ykuroda 0:13a5d365ba16 325 // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
ykuroda 0:13a5d365ba16 326 // was smaller than the cutoff value. However, soince LDLT is not rank-revealing
ykuroda 0:13a5d365ba16 327 // we should only make sure we do not introduce INF or NaN values.
ykuroda 0:13a5d365ba16 328 // LAPACK also uses 0 as the cutoff value.
ykuroda 0:13a5d365ba16 329 RealScalar realAkk = numext::real(mat.coeffRef(k,k));
ykuroda 0:13a5d365ba16 330 if((rs>0) && (abs(realAkk) > RealScalar(0)))
ykuroda 0:13a5d365ba16 331 A21 /= realAkk;
ykuroda 0:13a5d365ba16 332
ykuroda 0:13a5d365ba16 333 if (sign == PositiveSemiDef) {
ykuroda 0:13a5d365ba16 334 if (realAkk < 0) sign = Indefinite;
ykuroda 0:13a5d365ba16 335 } else if (sign == NegativeSemiDef) {
ykuroda 0:13a5d365ba16 336 if (realAkk > 0) sign = Indefinite;
ykuroda 0:13a5d365ba16 337 } else if (sign == ZeroSign) {
ykuroda 0:13a5d365ba16 338 if (realAkk > 0) sign = PositiveSemiDef;
ykuroda 0:13a5d365ba16 339 else if (realAkk < 0) sign = NegativeSemiDef;
ykuroda 0:13a5d365ba16 340 }
ykuroda 0:13a5d365ba16 341 }
ykuroda 0:13a5d365ba16 342
ykuroda 0:13a5d365ba16 343 return true;
ykuroda 0:13a5d365ba16 344 }
ykuroda 0:13a5d365ba16 345
ykuroda 0:13a5d365ba16 346 // Reference for the algorithm: Davis and Hager, "Multiple Rank
ykuroda 0:13a5d365ba16 347 // Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
ykuroda 0:13a5d365ba16 348 // Trivial rearrangements of their computations (Timothy E. Holy)
ykuroda 0:13a5d365ba16 349 // allow their algorithm to work for rank-1 updates even if the
ykuroda 0:13a5d365ba16 350 // original matrix is not of full rank.
ykuroda 0:13a5d365ba16 351 // Here only rank-1 updates are implemented, to reduce the
ykuroda 0:13a5d365ba16 352 // requirement for intermediate storage and improve accuracy
ykuroda 0:13a5d365ba16 353 template<typename MatrixType, typename WDerived>
ykuroda 0:13a5d365ba16 354 static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1)
ykuroda 0:13a5d365ba16 355 {
ykuroda 0:13a5d365ba16 356 using numext::isfinite;
ykuroda 0:13a5d365ba16 357 typedef typename MatrixType::Scalar Scalar;
ykuroda 0:13a5d365ba16 358 typedef typename MatrixType::RealScalar RealScalar;
ykuroda 0:13a5d365ba16 359 typedef typename MatrixType::Index Index;
ykuroda 0:13a5d365ba16 360
ykuroda 0:13a5d365ba16 361 const Index size = mat.rows();
ykuroda 0:13a5d365ba16 362 eigen_assert(mat.cols() == size && w.size()==size);
ykuroda 0:13a5d365ba16 363
ykuroda 0:13a5d365ba16 364 RealScalar alpha = 1;
ykuroda 0:13a5d365ba16 365
ykuroda 0:13a5d365ba16 366 // Apply the update
ykuroda 0:13a5d365ba16 367 for (Index j = 0; j < size; j++)
ykuroda 0:13a5d365ba16 368 {
ykuroda 0:13a5d365ba16 369 // Check for termination due to an original decomposition of low-rank
ykuroda 0:13a5d365ba16 370 if (!(isfinite)(alpha))
ykuroda 0:13a5d365ba16 371 break;
ykuroda 0:13a5d365ba16 372
ykuroda 0:13a5d365ba16 373 // Update the diagonal terms
ykuroda 0:13a5d365ba16 374 RealScalar dj = numext::real(mat.coeff(j,j));
ykuroda 0:13a5d365ba16 375 Scalar wj = w.coeff(j);
ykuroda 0:13a5d365ba16 376 RealScalar swj2 = sigma*numext::abs2(wj);
ykuroda 0:13a5d365ba16 377 RealScalar gamma = dj*alpha + swj2;
ykuroda 0:13a5d365ba16 378
ykuroda 0:13a5d365ba16 379 mat.coeffRef(j,j) += swj2/alpha;
ykuroda 0:13a5d365ba16 380 alpha += swj2/dj;
ykuroda 0:13a5d365ba16 381
ykuroda 0:13a5d365ba16 382
ykuroda 0:13a5d365ba16 383 // Update the terms of L
ykuroda 0:13a5d365ba16 384 Index rs = size-j-1;
ykuroda 0:13a5d365ba16 385 w.tail(rs) -= wj * mat.col(j).tail(rs);
ykuroda 0:13a5d365ba16 386 if(gamma != 0)
ykuroda 0:13a5d365ba16 387 mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
ykuroda 0:13a5d365ba16 388 }
ykuroda 0:13a5d365ba16 389 return true;
ykuroda 0:13a5d365ba16 390 }
ykuroda 0:13a5d365ba16 391
ykuroda 0:13a5d365ba16 392 template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
ykuroda 0:13a5d365ba16 393 static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1)
ykuroda 0:13a5d365ba16 394 {
ykuroda 0:13a5d365ba16 395 // Apply the permutation to the input w
ykuroda 0:13a5d365ba16 396 tmp = transpositions * w;
ykuroda 0:13a5d365ba16 397
ykuroda 0:13a5d365ba16 398 return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
ykuroda 0:13a5d365ba16 399 }
ykuroda 0:13a5d365ba16 400 };
ykuroda 0:13a5d365ba16 401
ykuroda 0:13a5d365ba16 402 template<> struct ldlt_inplace<Upper>
ykuroda 0:13a5d365ba16 403 {
ykuroda 0:13a5d365ba16 404 template<typename MatrixType, typename TranspositionType, typename Workspace>
ykuroda 0:13a5d365ba16 405 static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
ykuroda 0:13a5d365ba16 406 {
ykuroda 0:13a5d365ba16 407 Transpose<MatrixType> matt(mat);
ykuroda 0:13a5d365ba16 408 return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
ykuroda 0:13a5d365ba16 409 }
ykuroda 0:13a5d365ba16 410
ykuroda 0:13a5d365ba16 411 template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
ykuroda 0:13a5d365ba16 412 static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1)
ykuroda 0:13a5d365ba16 413 {
ykuroda 0:13a5d365ba16 414 Transpose<MatrixType> matt(mat);
ykuroda 0:13a5d365ba16 415 return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
ykuroda 0:13a5d365ba16 416 }
ykuroda 0:13a5d365ba16 417 };
ykuroda 0:13a5d365ba16 418
ykuroda 0:13a5d365ba16 419 template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
ykuroda 0:13a5d365ba16 420 {
ykuroda 0:13a5d365ba16 421 typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
ykuroda 0:13a5d365ba16 422 typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
ykuroda 0:13a5d365ba16 423 static inline MatrixL getL(const MatrixType& m) { return m; }
ykuroda 0:13a5d365ba16 424 static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
ykuroda 0:13a5d365ba16 425 };
ykuroda 0:13a5d365ba16 426
ykuroda 0:13a5d365ba16 427 template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
ykuroda 0:13a5d365ba16 428 {
ykuroda 0:13a5d365ba16 429 typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
ykuroda 0:13a5d365ba16 430 typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
ykuroda 0:13a5d365ba16 431 static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
ykuroda 0:13a5d365ba16 432 static inline MatrixU getU(const MatrixType& m) { return m; }
ykuroda 0:13a5d365ba16 433 };
ykuroda 0:13a5d365ba16 434
ykuroda 0:13a5d365ba16 435 } // end namespace internal
ykuroda 0:13a5d365ba16 436
ykuroda 0:13a5d365ba16 437 /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
ykuroda 0:13a5d365ba16 438 */
ykuroda 0:13a5d365ba16 439 template<typename MatrixType, int _UpLo>
ykuroda 0:13a5d365ba16 440 LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
ykuroda 0:13a5d365ba16 441 {
ykuroda 0:13a5d365ba16 442 check_template_parameters();
ykuroda 0:13a5d365ba16 443
ykuroda 0:13a5d365ba16 444 eigen_assert(a.rows()==a.cols());
ykuroda 0:13a5d365ba16 445 const Index size = a.rows();
ykuroda 0:13a5d365ba16 446
ykuroda 0:13a5d365ba16 447 m_matrix = a;
ykuroda 0:13a5d365ba16 448
ykuroda 0:13a5d365ba16 449 m_transpositions.resize(size);
ykuroda 0:13a5d365ba16 450 m_isInitialized = false;
ykuroda 0:13a5d365ba16 451 m_temporary.resize(size);
ykuroda 0:13a5d365ba16 452 m_sign = internal::ZeroSign;
ykuroda 0:13a5d365ba16 453
ykuroda 0:13a5d365ba16 454 internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign);
ykuroda 0:13a5d365ba16 455
ykuroda 0:13a5d365ba16 456 m_isInitialized = true;
ykuroda 0:13a5d365ba16 457 return *this;
ykuroda 0:13a5d365ba16 458 }
ykuroda 0:13a5d365ba16 459
ykuroda 0:13a5d365ba16 460 /** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
ykuroda 0:13a5d365ba16 461 * \param w a vector to be incorporated into the decomposition.
ykuroda 0:13a5d365ba16 462 * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
ykuroda 0:13a5d365ba16 463 * \sa setZero()
ykuroda 0:13a5d365ba16 464 */
ykuroda 0:13a5d365ba16 465 template<typename MatrixType, int _UpLo>
ykuroda 0:13a5d365ba16 466 template<typename Derived>
ykuroda 0:13a5d365ba16 467 LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma)
ykuroda 0:13a5d365ba16 468 {
ykuroda 0:13a5d365ba16 469 const Index size = w.rows();
ykuroda 0:13a5d365ba16 470 if (m_isInitialized)
ykuroda 0:13a5d365ba16 471 {
ykuroda 0:13a5d365ba16 472 eigen_assert(m_matrix.rows()==size);
ykuroda 0:13a5d365ba16 473 }
ykuroda 0:13a5d365ba16 474 else
ykuroda 0:13a5d365ba16 475 {
ykuroda 0:13a5d365ba16 476 m_matrix.resize(size,size);
ykuroda 0:13a5d365ba16 477 m_matrix.setZero();
ykuroda 0:13a5d365ba16 478 m_transpositions.resize(size);
ykuroda 0:13a5d365ba16 479 for (Index i = 0; i < size; i++)
ykuroda 0:13a5d365ba16 480 m_transpositions.coeffRef(i) = i;
ykuroda 0:13a5d365ba16 481 m_temporary.resize(size);
ykuroda 0:13a5d365ba16 482 m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
ykuroda 0:13a5d365ba16 483 m_isInitialized = true;
ykuroda 0:13a5d365ba16 484 }
ykuroda 0:13a5d365ba16 485
ykuroda 0:13a5d365ba16 486 internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);
ykuroda 0:13a5d365ba16 487
ykuroda 0:13a5d365ba16 488 return *this;
ykuroda 0:13a5d365ba16 489 }
ykuroda 0:13a5d365ba16 490
ykuroda 0:13a5d365ba16 491 namespace internal {
ykuroda 0:13a5d365ba16 492 template<typename _MatrixType, int _UpLo, typename Rhs>
ykuroda 0:13a5d365ba16 493 struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
ykuroda 0:13a5d365ba16 494 : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
ykuroda 0:13a5d365ba16 495 {
ykuroda 0:13a5d365ba16 496 typedef LDLT<_MatrixType,_UpLo> LDLTType;
ykuroda 0:13a5d365ba16 497 EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)
ykuroda 0:13a5d365ba16 498
ykuroda 0:13a5d365ba16 499 template<typename Dest> void evalTo(Dest& dst) const
ykuroda 0:13a5d365ba16 500 {
ykuroda 0:13a5d365ba16 501 eigen_assert(rhs().rows() == dec().matrixLDLT().rows());
ykuroda 0:13a5d365ba16 502 // dst = P b
ykuroda 0:13a5d365ba16 503 dst = dec().transpositionsP() * rhs();
ykuroda 0:13a5d365ba16 504
ykuroda 0:13a5d365ba16 505 // dst = L^-1 (P b)
ykuroda 0:13a5d365ba16 506 dec().matrixL().solveInPlace(dst);
ykuroda 0:13a5d365ba16 507
ykuroda 0:13a5d365ba16 508 // dst = D^-1 (L^-1 P b)
ykuroda 0:13a5d365ba16 509 // more precisely, use pseudo-inverse of D (see bug 241)
ykuroda 0:13a5d365ba16 510 using std::abs;
ykuroda 0:13a5d365ba16 511 using std::max;
ykuroda 0:13a5d365ba16 512 typedef typename LDLTType::MatrixType MatrixType;
ykuroda 0:13a5d365ba16 513 typedef typename LDLTType::RealScalar RealScalar;
ykuroda 0:13a5d365ba16 514 const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
ykuroda 0:13a5d365ba16 515 // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
ykuroda 0:13a5d365ba16 516 // as motivated by LAPACK's xGELSS:
ykuroda 0:13a5d365ba16 517 // RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
ykuroda 0:13a5d365ba16 518 // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
ykuroda 0:13a5d365ba16 519 // diagonal element is not well justified and to numerical issues in some cases.
ykuroda 0:13a5d365ba16 520 // Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
ykuroda 0:13a5d365ba16 521 RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
ykuroda 0:13a5d365ba16 522
ykuroda 0:13a5d365ba16 523 for (Index i = 0; i < vectorD.size(); ++i) {
ykuroda 0:13a5d365ba16 524 if(abs(vectorD(i)) > tolerance)
ykuroda 0:13a5d365ba16 525 dst.row(i) /= vectorD(i);
ykuroda 0:13a5d365ba16 526 else
ykuroda 0:13a5d365ba16 527 dst.row(i).setZero();
ykuroda 0:13a5d365ba16 528 }
ykuroda 0:13a5d365ba16 529
ykuroda 0:13a5d365ba16 530 // dst = L^-T (D^-1 L^-1 P b)
ykuroda 0:13a5d365ba16 531 dec().matrixU().solveInPlace(dst);
ykuroda 0:13a5d365ba16 532
ykuroda 0:13a5d365ba16 533 // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
ykuroda 0:13a5d365ba16 534 dst = dec().transpositionsP().transpose() * dst;
ykuroda 0:13a5d365ba16 535 }
ykuroda 0:13a5d365ba16 536 };
ykuroda 0:13a5d365ba16 537 }
ykuroda 0:13a5d365ba16 538
ykuroda 0:13a5d365ba16 539 /** \internal use x = ldlt_object.solve(x);
ykuroda 0:13a5d365ba16 540 *
ykuroda 0:13a5d365ba16 541 * This is the \em in-place version of solve().
ykuroda 0:13a5d365ba16 542 *
ykuroda 0:13a5d365ba16 543 * \param bAndX represents both the right-hand side matrix b and result x.
ykuroda 0:13a5d365ba16 544 *
ykuroda 0:13a5d365ba16 545 * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
ykuroda 0:13a5d365ba16 546 *
ykuroda 0:13a5d365ba16 547 * This version avoids a copy when the right hand side matrix b is not
ykuroda 0:13a5d365ba16 548 * needed anymore.
ykuroda 0:13a5d365ba16 549 *
ykuroda 0:13a5d365ba16 550 * \sa LDLT::solve(), MatrixBase::ldlt()
ykuroda 0:13a5d365ba16 551 */
ykuroda 0:13a5d365ba16 552 template<typename MatrixType,int _UpLo>
ykuroda 0:13a5d365ba16 553 template<typename Derived>
ykuroda 0:13a5d365ba16 554 bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
ykuroda 0:13a5d365ba16 555 {
ykuroda 0:13a5d365ba16 556 eigen_assert(m_isInitialized && "LDLT is not initialized.");
ykuroda 0:13a5d365ba16 557 eigen_assert(m_matrix.rows() == bAndX.rows());
ykuroda 0:13a5d365ba16 558
ykuroda 0:13a5d365ba16 559 bAndX = this->solve(bAndX);
ykuroda 0:13a5d365ba16 560
ykuroda 0:13a5d365ba16 561 return true;
ykuroda 0:13a5d365ba16 562 }
ykuroda 0:13a5d365ba16 563
ykuroda 0:13a5d365ba16 564 /** \returns the matrix represented by the decomposition,
ykuroda 0:13a5d365ba16 565 * i.e., it returns the product: P^T L D L^* P.
ykuroda 0:13a5d365ba16 566 * This function is provided for debug purpose. */
ykuroda 0:13a5d365ba16 567 template<typename MatrixType, int _UpLo>
ykuroda 0:13a5d365ba16 568 MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
ykuroda 0:13a5d365ba16 569 {
ykuroda 0:13a5d365ba16 570 eigen_assert(m_isInitialized && "LDLT is not initialized.");
ykuroda 0:13a5d365ba16 571 const Index size = m_matrix.rows();
ykuroda 0:13a5d365ba16 572 MatrixType res(size,size);
ykuroda 0:13a5d365ba16 573
ykuroda 0:13a5d365ba16 574 // P
ykuroda 0:13a5d365ba16 575 res.setIdentity();
ykuroda 0:13a5d365ba16 576 res = transpositionsP() * res;
ykuroda 0:13a5d365ba16 577 // L^* P
ykuroda 0:13a5d365ba16 578 res = matrixU() * res;
ykuroda 0:13a5d365ba16 579 // D(L^*P)
ykuroda 0:13a5d365ba16 580 res = vectorD().real().asDiagonal() * res;
ykuroda 0:13a5d365ba16 581 // L(DL^*P)
ykuroda 0:13a5d365ba16 582 res = matrixL() * res;
ykuroda 0:13a5d365ba16 583 // P^T (LDL^*P)
ykuroda 0:13a5d365ba16 584 res = transpositionsP().transpose() * res;
ykuroda 0:13a5d365ba16 585
ykuroda 0:13a5d365ba16 586 return res;
ykuroda 0:13a5d365ba16 587 }
ykuroda 0:13a5d365ba16 588
ykuroda 0:13a5d365ba16 589 /** \cholesky_module
ykuroda 0:13a5d365ba16 590 * \returns the Cholesky decomposition with full pivoting without square root of \c *this
ykuroda 0:13a5d365ba16 591 */
ykuroda 0:13a5d365ba16 592 template<typename MatrixType, unsigned int UpLo>
ykuroda 0:13a5d365ba16 593 inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
ykuroda 0:13a5d365ba16 594 SelfAdjointView<MatrixType, UpLo>::ldlt() const
ykuroda 0:13a5d365ba16 595 {
ykuroda 0:13a5d365ba16 596 return LDLT<PlainObject,UpLo>(m_matrix);
ykuroda 0:13a5d365ba16 597 }
ykuroda 0:13a5d365ba16 598
ykuroda 0:13a5d365ba16 599 /** \cholesky_module
ykuroda 0:13a5d365ba16 600 * \returns the Cholesky decomposition with full pivoting without square root of \c *this
ykuroda 0:13a5d365ba16 601 */
ykuroda 0:13a5d365ba16 602 template<typename Derived>
ykuroda 0:13a5d365ba16 603 inline const LDLT<typename MatrixBase<Derived>::PlainObject>
ykuroda 0:13a5d365ba16 604 MatrixBase<Derived>::ldlt() const
ykuroda 0:13a5d365ba16 605 {
ykuroda 0:13a5d365ba16 606 return LDLT<PlainObject>(derived());
ykuroda 0:13a5d365ba16 607 }
ykuroda 0:13a5d365ba16 608
ykuroda 0:13a5d365ba16 609 } // end namespace Eigen
ykuroda 0:13a5d365ba16 610
ykuroda 0:13a5d365ba16 611 #endif // EIGEN_LDLT_H