Controller for Seagoat in the RoboSub competition

Dependencies:   Servo mbed

Fork of ESC by Matteo Terruzzi

Revision:
3:5ffe7e9c0bb3
diff -r aabc14a9a8c8 -r 5ffe7e9c0bb3 IMU.h
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/IMU.h	Mon Jul 04 18:56:23 2016 +0000
@@ -0,0 +1,219 @@
+
+#include "MPU6050.h"
+#include "communication.h"
+
+float sum = 0;
+uint32_t sumCount = 0;
+
+Timer t;
+
+void IMUinit(MPU6050 &mpu6050)
+{
+    t.start();
+
+// Read the WHO_AM_I register, this is a good test of communication
+    uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
+    pc.printf("I AM 0x%x\n\r", whoami);
+    pc.printf("I SHOULD BE 0x68\n\r");
+
+    if (whoami == 0x68) { // WHO_AM_I should always be 0x68
+        pc.printf("MPU6050 is online...");
+        wait(1);
+        //lcd.clear();
+        //lcd.printString("MPU6050 OK", 0, 0);
+
+
+        mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
+        pc.printf("x-axis self test: acceleration trim within : ");
+        pc.printf("%f", SelfTest[0]);
+        pc.printf("% of factory value \n\r");
+        pc.printf("y-axis self test: acceleration trim within : ");
+        pc.printf("%f", SelfTest[1]);
+        pc.printf("% of factory value \n\r");
+        pc.printf("z-axis self test: acceleration trim within : ");
+        pc.printf("%f", SelfTest[2]);
+        pc.printf("% of factory value \n\r");
+        pc.printf("x-axis self test: gyration trim within : ");
+        pc.printf("%f", SelfTest[3]);
+        pc.printf("% of factory value \n\r");
+        pc.printf("y-axis self test: gyration trim within : ");
+        pc.printf("%f", SelfTest[4]);
+        pc.printf("% of factory value \n\r");
+        pc.printf("z-axis self test: gyration trim within : ");
+        pc.printf("%f", SelfTest[5]);
+        pc.printf("% of factory value \n\r");
+        wait(1);
+
+        if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {
+            mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
+            mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
+            mpu6050.initMPU6050();
+            pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+            wait(2);
+        } else {
+            pc.printf("Device did not the pass self-test!\n\r");
+        }
+    } else {
+        pc.printf("Could not connect to MPU6050: \n\r");
+        pc.printf("%#x \n",  whoami);
+
+        while(1) ; // Loop forever if communication doesn't happen
+    }
+}
+
+
+void IMUPrintData(MPU6050 &mpu6050)
+{
+// If data ready bit set, all data registers have new data
+    if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
+        mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
+        mpu6050.getAres();
+
+        // Now we'll calculate the accleration value into actual g's
+        ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+        ay = (float)accelCount[1]*aRes - accelBias[1];
+        az = (float)accelCount[2]*aRes - accelBias[2];
+
+        mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
+        mpu6050.getGres();
+
+        // Calculate the gyro value into actual degrees per second
+        gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
+        gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
+        gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
+
+        tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
+        temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
+    }
+
+    Now = t.read_us();
+    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+    lastUpdate = Now;
+
+    sum += deltat;
+    sumCount++;
+
+    if(lastUpdate - firstUpdate > 10000000.0f) {
+        beta = 0.04;  // decrease filter gain after stabilized
+        zeta = 0.015; // increasey bias drift gain after stabilized
+    }
+
+    // Pass gyro rate as rad/s
+    mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
+
+    // Serial print and/or display at 0.5 s rate independent of data rates
+    delt_t = t.read_ms() - count;
+    if (delt_t > 500) { // update LCD once per half-second independent of read rate
+
+        pc.printf("ax = %f", 1000*ax);
+        pc.printf(" ay = %f", 1000*ay);
+        pc.printf(" az = %f  mg\n\r", 1000*az);
+
+        pc.printf("gx = %f", gx);
+        pc.printf(" gy = %f", gy);
+        pc.printf(" gz = %f  deg/s\n\r", gz);
+
+        pc.printf(" temperature = %f  C\n\r", temperature);
+
+        pc.printf("q0 = %f\n\r", q[0]);
+        pc.printf("q1 = %f\n\r", q[1]);
+        pc.printf("q2 = %f\n\r", q[2]);
+        pc.printf("q3 = %f\n\r", q[3]);
+
+        // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
+        // In this coordinate system, the positive z-axis is down toward Earth.
+        // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
+        // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
+        // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
+        // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
+        // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
+        // applied in the correct order which for this configuration is yaw, pitch, and then roll.
+        // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
+        yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
+        pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+        roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+        pitch *= 180.0f / PI;
+        yaw   *= 180.0f / PI;
+        roll  *= 180.0f / PI;
+
+//    pc.printf("Yaw, Pitch, Roll: \n\r");
+//    pc.printf("%f", yaw);
+//    pc.printf(", ");
+//    pc.printf("%f", pitch);
+//    pc.printf(", ");
+//    pc.printf("%f\n\r", roll);
+//    pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
+
+        pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
+        pc.printf("average rate = %f\n\r", (float) sumCount/sum);
+
+        //myled= !myled;
+        count = t.read_ms();
+        sum = 0;
+        sumCount = 0;
+    }
+}
+
+void IMUUpdate(MPU6050 &mpu6050)
+{
+    // If data ready bit set, all data registers have new data
+    if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
+        mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
+        mpu6050.getAres();
+
+        // Now we'll calculate the accleration value into actual g's
+        ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+        ay = (float)accelCount[1]*aRes - accelBias[1];
+        az = (float)accelCount[2]*aRes - accelBias[2];
+
+        mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
+        mpu6050.getGres();
+
+        // Calculate the gyro value into actual degrees per second
+        gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
+        gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
+        gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
+
+        tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
+        temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
+    }
+
+    Now = t.read_us();
+    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+    lastUpdate = Now;
+
+    sum += deltat;
+    sumCount++;
+
+    if(lastUpdate - firstUpdate > 10000000.0f) {
+        beta = 0.04;  // decrease filter gain after stabilized
+        zeta = 0.015; // increasey bias drift gain after stabilized
+    }
+
+    // Pass gyro rate as rad/s
+    mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
+
+    // Serial print and/or display at 0.5 s rate independent of data rates
+    delt_t = t.read_ms() - count;
+
+    // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
+    // In this coordinate system, the positive z-axis is down toward Earth.
+    // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
+    // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
+    // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
+    // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
+    // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
+    // applied in the correct order which for this configuration is yaw, pitch, and then roll.
+    // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
+    yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
+    pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+    roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+    pitch *= 180.0f / PI;
+    yaw   *= 180.0f / PI;
+    roll  *= 180.0f / PI;
+
+    count = t.read_ms();
+    sum = 0;
+    sumCount = 0;
+
+}