Marco Rubio
/
RTOS_Controller
Controller for Seagoat in the RoboSub competition
Fork of ESC by
IMU.h
- Committer:
- gelmes
- Date:
- 2016-07-04
- Revision:
- 3:5ffe7e9c0bb3
File content as of revision 3:5ffe7e9c0bb3:
#include "MPU6050.h" #include "communication.h" float sum = 0; uint32_t sumCount = 0; Timer t; void IMUinit(MPU6050 &mpu6050) { t.start(); // Read the WHO_AM_I register, this is a good test of communication uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050 pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r"); if (whoami == 0x68) { // WHO_AM_I should always be 0x68 pc.printf("MPU6050 is online..."); wait(1); //lcd.clear(); //lcd.printString("MPU6050 OK", 0, 0); mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r"); pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r"); pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r"); pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r"); pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r"); pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r"); wait(1); if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) { mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature wait(2); } else { pc.printf("Device did not the pass self-test!\n\r"); } } else { pc.printf("Could not connect to MPU6050: \n\r"); pc.printf("%#x \n", whoami); while(1) ; // Loop forever if communication doesn't happen } } void IMUPrintData(MPU6050 &mpu6050) { // If data ready bit set, all data registers have new data if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt mpu6050.readAccelData(accelCount); // Read the x/y/z adc values mpu6050.getAres(); // Now we'll calculate the accleration value into actual g's ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set ay = (float)accelCount[1]*aRes - accelBias[1]; az = (float)accelCount[2]*aRes - accelBias[2]; mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values mpu6050.getGres(); // Calculate the gyro value into actual degrees per second gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set gy = (float)gyroCount[1]*gRes; // - gyroBias[1]; gz = (float)gyroCount[2]*gRes; // - gyroBias[2]; tempCount = mpu6050.readTempData(); // Read the x/y/z adc values temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade } Now = t.read_us(); deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update lastUpdate = Now; sum += deltat; sumCount++; if(lastUpdate - firstUpdate > 10000000.0f) { beta = 0.04; // decrease filter gain after stabilized zeta = 0.015; // increasey bias drift gain after stabilized } // Pass gyro rate as rad/s mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f); // Serial print and/or display at 0.5 s rate independent of data rates delt_t = t.read_ms() - count; if (delt_t > 500) { // update LCD once per half-second independent of read rate pc.printf("ax = %f", 1000*ax); pc.printf(" ay = %f", 1000*ay); pc.printf(" az = %f mg\n\r", 1000*az); pc.printf("gx = %f", gx); pc.printf(" gy = %f", gy); pc.printf(" gz = %f deg/s\n\r", gz); pc.printf(" temperature = %f C\n\r", temperature); pc.printf("q0 = %f\n\r", q[0]); pc.printf("q1 = %f\n\r", q[1]); pc.printf("q2 = %f\n\r", q[2]); pc.printf("q3 = %f\n\r", q[3]); // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. // In this coordinate system, the positive z-axis is down toward Earth. // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be // applied in the correct order which for this configuration is yaw, pitch, and then roll. // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); pitch *= 180.0f / PI; yaw *= 180.0f / PI; roll *= 180.0f / PI; // pc.printf("Yaw, Pitch, Roll: \n\r"); // pc.printf("%f", yaw); // pc.printf(", "); // pc.printf("%f", pitch); // pc.printf(", "); // pc.printf("%f\n\r", roll); // pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r"); pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); pc.printf("average rate = %f\n\r", (float) sumCount/sum); //myled= !myled; count = t.read_ms(); sum = 0; sumCount = 0; } } void IMUUpdate(MPU6050 &mpu6050) { // If data ready bit set, all data registers have new data if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt mpu6050.readAccelData(accelCount); // Read the x/y/z adc values mpu6050.getAres(); // Now we'll calculate the accleration value into actual g's ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set ay = (float)accelCount[1]*aRes - accelBias[1]; az = (float)accelCount[2]*aRes - accelBias[2]; mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values mpu6050.getGres(); // Calculate the gyro value into actual degrees per second gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set gy = (float)gyroCount[1]*gRes; // - gyroBias[1]; gz = (float)gyroCount[2]*gRes; // - gyroBias[2]; tempCount = mpu6050.readTempData(); // Read the x/y/z adc values temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade } Now = t.read_us(); deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update lastUpdate = Now; sum += deltat; sumCount++; if(lastUpdate - firstUpdate > 10000000.0f) { beta = 0.04; // decrease filter gain after stabilized zeta = 0.015; // increasey bias drift gain after stabilized } // Pass gyro rate as rad/s mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f); // Serial print and/or display at 0.5 s rate independent of data rates delt_t = t.read_ms() - count; // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. // In this coordinate system, the positive z-axis is down toward Earth. // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be // applied in the correct order which for this configuration is yaw, pitch, and then roll. // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); pitch *= 180.0f / PI; yaw *= 180.0f / PI; roll *= 180.0f / PI; count = t.read_ms(); sum = 0; sumCount = 0; }