Driver for CC3000 Wi-Fi module

Dependencies:   NVIC_set_all_priorities

Dependents:   CC3000_Simple_Socket Wi-Go_IOT_Demo

Information

The current code has been reworked to a full object oriented application and contains an mbed socket compatible API.

CC3000 Wi-Fi module library

Info

This is the low level driver for TI's SimpleLink CC3000 device.
Port from Avnet's Wi-Go KEIL code (based on TI's CC3000 code).
Special thanks to Jim Carver from Avnet for providing the Wi-Go board and for his assistance.

Differences with TI's original code

The code functionality stays exactly the same.
In order to make it easier to use the code, following changes were made :

  • Addition of a tool to shift all IRQ priorities to a lower level since it is very important to keep the SPI handler at the highest system priority, the WLAN interrupt the second highest and all other system interrupts at a lower priority, so their handlers can be preempted by the CC3000 interrupts.
  • Addition of low level I/O controls and conditional compiler controls in cc3000_common.h.
  • CC3000 initialisation, pin declarations, SPI and WLAN irq priorities are set in Init_HostDriver , we need to call this function at the start of the main function.
  • The SPI and HCI code are joined into one file.
  • The include list has been rearranged - Only #include "wlan.h" is needed in the user API.
  • Part of the CC3000's user eeprom memory is used to store additional info (52 bytes in NVMEM_USER_FILE_1):
# bytesDescriptionInfo
1First time config parameterUseful when connecting
2Firmware updater versionused with the Firmware update tool
2Service Pack versionused with the Firmware update tool
3Driver Versionused with the Firmware update tool
3Firmware Versionused with the Firmware update tool
1CIK validation (Client Interface Key)
40CIK data (Client Interface Key)used with the exosite

Using the Library

A user API is needed to access the CC3000 functions.
Examples:

Using the library with other processors

cc3000_common.cpp loads the irq tool for all targets:
All current mbed targets are supported by this library.

#include "NVIC_set_all_priorities.h"


All low level settings that need to change are available in cc3000_common.h

//*****************************************************************************
//              PIN CONTROLS & COMPILE CONTROLS
//*****************************************************************************
// Compiler control
#define CC3000_UNENCRYPTED_SMART_CONFIG   // No encryption
//#define CC3000_TINY_DRIVER                // Driver for small memory model CPUs

//Interrupt controls
#define NVIC_ALL_IRQ        NVIC_set_all_irq_priorities(3);         // Set ALL interrupt priorities to level 3
#define NVIC_SPI_IRQ        NVIC_SetPriority(SPI0_IRQn, 0x0);       // Wi-Fi SPI interrupt must be higher priority than SysTick
#define NVIC_PORT_IRQ       NVIC_SetPriority(PORTA_IRQn, 0x1);
#define NVIC_SYSTICK_IRQ    NVIC_SetPriority(SysTick_IRQn, 0x2);    // SysTick set to lower priority than Wi-Fi SPI bus interrupt
//#define NVIC_ADC_IRQ        NVIC_SetPriority(ADC0_IRQn, 0x3);       // ADC is the lowest of all

// Wlan controls
#define WLAN_ISF_PCR        PORTA->PCR[16]
#define WLAN_ISF_ISFR       PORTA->ISFR
#define WLAN_ISF_MASK       (1<<16)

#define WLAN_ASSERT_CS      wlan_cs = 0;   //CS : active low
#define WLAN_DEASSERT_CS    wlan_cs = 1;

#define WLAN_ASSERT_EN      wlan_en = 1;   //EN : active high
#define WLAN_DEASSERT_EN    wlan_en = 0;

#define WLAN_READ_IRQ       wlan_int

#define WLAN_ENABLE_IRQ     wlan_int.fall(&WLAN_IRQHandler);
#define WLAN_DISABLE_IRQ    wlan_int.fall(NULL);

#define WLAN_IRQ_PIN_CREATE         InterruptIn wlan_int (PTA16);
#define WLAN_EN_PIN_CREATE          DigitalOut  wlan_en  (PTA13);
#define WLAN_CS_PIN_CREATE          DigitalOut  wlan_cs  (PTD0);
#define WLAN_SPI_PORT_CREATE        SPI wlan(PTD2, PTD3, PTC5); // mosi, miso, sclk

#define WLAN_SPI_PORT_INIT          wlan.format(8,1);
#define WLAN_SPI_SET_FREQ           wlan.frequency(12000000);
#define WLAN_SPI_SET_IRQ_HANDLER    wlan_int.fall(&WLAN_IRQHandler);

#define WLAN_SPI_WRITE              wlan.write(*data++);
#define WLAN_SPI_READ               wlan.write(0x03);          // !! DO NOT MODIFY the 0x03 parameter (CC3000 will not respond).

API documentation

Due to a little problem with the links on the mbed site, the API documentation is not directly accessible (will be solved in a next release).
Currently, it is only accessible by adding modules.html to the API doc link: http://mbed.org/users/frankvnk/code/CC3000_Hostdriver/docs/tip/modules.html

cc3000_spi_hci.cpp

Committer:
frankvnk
Date:
2013-11-29
Revision:
13:e1ab6b5ab826
Parent:
9:8db50def96e5

File content as of revision 13:e1ab6b5ab826:

/****************************************************************************
* File       : cc3000_soi_hci
* Date       : 12/11/2012 (Menu "banner" reports actual build date)
* Purpose    : Wi-Go SPI interface driver to CC3000 Wi-Fi module 
* Author     : Peter Fenn, Avnet Global Technical Marketing
* Description: SPI interface driver between Host MCU (KL25Z) and CC3000
*****************************************************************************

*****************************************************************************
*
*  spi.c - CC3000 Host Driver Implementation.
*  Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions
*  are met:
*
*    Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
*
*    Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the
*    distribution.
*
*    Neither the name of Texas Instruments Incorporated nor the names of
*    its contributors may be used to endorse or promote products derived
*    from this software without specific prior written permission.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
*  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
*  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
*  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
*  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
*  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
*  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
*  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
*  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/

#include "cc3000_spi_hci.h"

/* ===========================================================================================
                                              SPI 
   =========================================================================================== */

tSpiInformation sSpiInformation;

//TX and RX buffers
char spi_buffer[CC3000_RX_BUFFER_SIZE];
unsigned char wlan_tx_buffer[CC3000_TX_BUFFER_SIZE];

void SpiClose(void)
{
   if (sSpiInformation.pRxPacket)
   {
      sSpiInformation.pRxPacket = 0;
   }
    tSLInformation.WlanInterruptDisable();
}


void SpiOpen(gcSpiHandleRx pfRxHandler)
{
   sSpiInformation.ulSpiState = eSPI_STATE_POWERUP;
   sSpiInformation.SPIRxHandler = pfRxHandler;
   sSpiInformation.usTxPacketLength = 0;
   sSpiInformation.pTxPacket = NULL;
   sSpiInformation.pRxPacket = (unsigned char *)spi_buffer;
   sSpiInformation.usRxPacketLength = 0;
   spi_buffer[CC3000_RX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;
   wlan_tx_buffer[CC3000_TX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;
   tSLInformation.WlanInterruptEnable();
}


long SpiFirstWrite(unsigned char *ucBuf, unsigned short usLength)
{
    WLAN_ASSERT_CS;
    wait_us(50);

    // SPI writes first 4 bytes of data
    SpiWriteDataSynchronous(ucBuf, 4);
    wait_us(50);

    SpiWriteDataSynchronous(ucBuf + 4, usLength - 4);

    // From this point on - operate in a regular way
    sSpiInformation.ulSpiState = eSPI_STATE_IDLE;

    WLAN_DEASSERT_CS;

    return(0);
}


long SpiWrite(unsigned char *pUserBuffer, unsigned short usLength)
{
   unsigned char ucPad = 0;
   // check the total length of the packet in order to figure out if padding is necessary
   if(!(usLength & 0x0001))
   {
      ucPad++;
   }

   pUserBuffer[0] = WRITE;
   pUserBuffer[1] = HI(usLength + ucPad);
   pUserBuffer[2] = LO(usLength + ucPad);
   pUserBuffer[3] = 0;
   pUserBuffer[4] = 0;

   usLength += (SPI_HEADER_SIZE + ucPad);

   // The magic number resides at the end of the TX/RX buffer (1 byte after the allocated size)
   // If the magic number is overwitten - buffer overrun occurred - we will be stuck here forever!
   if (wlan_tx_buffer[CC3000_TX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER)
   {
      while (1);
   }

   if (sSpiInformation.ulSpiState == eSPI_STATE_POWERUP)
   {
      while (sSpiInformation.ulSpiState != eSPI_STATE_INITIALIZED);
   }

   if (sSpiInformation.ulSpiState == eSPI_STATE_INITIALIZED)
   {
      // TX/RX transaction over SPI after powerup: IRQ is low - send read buffer size command
      SpiFirstWrite(pUserBuffer, usLength);
   }
   else
   {
      // Prevent occurence of a race condition when 2 back to back packets are sent to the
      // device, so the state will move to IDLE and once again to not IDLE due to IRQ
      tSLInformation.WlanInterruptDisable();

      while (sSpiInformation.ulSpiState != eSPI_STATE_IDLE);

      sSpiInformation.ulSpiState = eSPI_STATE_WRITE_IRQ;
      sSpiInformation.pTxPacket = pUserBuffer;
      sSpiInformation.usTxPacketLength = usLength;

      // Assert the CS line and wait until the IRQ line is active, then initialize the write operation
      WLAN_ASSERT_CS;

      tSLInformation.WlanInterruptEnable();
   }

   // Wait until the transaction ends
   while (sSpiInformation.ulSpiState != eSPI_STATE_IDLE);
   return(0);
}


void SpiWriteDataSynchronous(unsigned char *data, unsigned short size)
{
   while(size)
   {
        WLAN_SPI_WRITE;
        size--;
   }
}


void SpiReadDataSynchronous(unsigned char *data, unsigned short size)
{
   long i = 0;
   for (i = 0; i < size; i++)
   {
      data[i] = WLAN_SPI_READ;
   }
}


long SpiReadDataCont(void)
{
   long data_to_recv;
   unsigned char *evnt_buff, type;

   //determine the packet type
   evnt_buff =  sSpiInformation.pRxPacket;
   data_to_recv = 0;
   STREAM_TO_UINT8((char *)(evnt_buff + SPI_HEADER_SIZE), HCI_PACKET_TYPE_OFFSET, type);

    switch(type)
    {
        case HCI_TYPE_DATA:
        {
         // Read the remaining data..
         STREAM_TO_UINT16((char *)(evnt_buff + SPI_HEADER_SIZE), HCI_DATA_LENGTH_OFFSET, data_to_recv);
         if (!((HEADERS_SIZE_EVNT + data_to_recv) & 1))
         {
              data_to_recv++;
         }

         if (data_to_recv)
         {
               SpiReadDataSynchronous(evnt_buff + 10, data_to_recv);
         }
            break;
        }
        case HCI_TYPE_EVNT:
        {
         // Calculate the rest length of the data
            STREAM_TO_UINT8((char *)(evnt_buff + SPI_HEADER_SIZE), HCI_EVENT_LENGTH_OFFSET, data_to_recv);
         data_to_recv -= 1;
         // Add padding byte if needed
         if ((HEADERS_SIZE_EVNT + data_to_recv) & 1)
         {
               data_to_recv++;
         }

         if (data_to_recv)
         {
               SpiReadDataSynchronous(evnt_buff + 10, data_to_recv);
         }

         sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;
            break;
        }
    }
    return (0);
}


void WLAN_IRQHandler(void)
{
   if (sSpiInformation.ulSpiState == eSPI_STATE_POWERUP)
   {
      // Inform HCI Layer that IRQ occured after powerup
      sSpiInformation.ulSpiState = eSPI_STATE_INITIALIZED;
   }
   else if (sSpiInformation.ulSpiState == eSPI_STATE_IDLE)
   {
      sSpiInformation.ulSpiState = eSPI_STATE_READ_IRQ;
      /* IRQ line goes low - acknowledge it */
      WLAN_ASSERT_CS;
      SpiReadDataSynchronous(sSpiInformation.pRxPacket, 10);
      sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;


      // The header was read - continue with the payload read
      if (!SpiReadDataCont())
      {
          // All the data was read - finalize handling by switching to the task
          // Trigger Rx processing
          tSLInformation.WlanInterruptDisable();
          WLAN_DEASSERT_CS;
          // The magic number resides at the end of the TX/RX buffer (1 byte after the allocated size)
          // If the magic number is overwitten - buffer overrun occurred - we will be stuck here forever!
          if (sSpiInformation.pRxPacket[CC3000_RX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER)
              {
                  while (1);
              }
              sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
              sSpiInformation.SPIRxHandler(sSpiInformation.pRxPacket + SPI_HEADER_SIZE);
      }
   }
   else if (sSpiInformation.ulSpiState == eSPI_STATE_WRITE_IRQ)
   {
      SpiWriteDataSynchronous(sSpiInformation.pTxPacket, sSpiInformation.usTxPacketLength);
      sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
      WLAN_DEASSERT_CS;
   }
}


/* ===========================================================================================
                                              HCI 
   =========================================================================================== */

unsigned short hci_command_send(unsigned short usOpcode, unsigned char *pucBuff, unsigned char ucArgsLength)
{ 
    unsigned char *stream;
    
    stream = (pucBuff + SPI_HEADER_SIZE);
    
    UINT8_TO_STREAM(stream, HCI_TYPE_CMND);
    stream = UINT16_TO_STREAM(stream, usOpcode);
    UINT8_TO_STREAM(stream, ucArgsLength);
    //Update the opcode of the event we will be waiting for
    SpiWrite(pucBuff, ucArgsLength + SIMPLE_LINK_HCI_CMND_HEADER_SIZE);
    return(0);
}


long hci_data_send(unsigned char ucOpcode, 
                   unsigned char *ucArgs,
                   unsigned short usArgsLength, 
                   unsigned short usDataLength,
                   const unsigned char *ucTail,
                   unsigned short usTailLength)
{
    unsigned char *stream;
    
    stream = ((ucArgs) + SPI_HEADER_SIZE);
    
    UINT8_TO_STREAM(stream, HCI_TYPE_DATA);
    UINT8_TO_STREAM(stream, ucOpcode);
    UINT8_TO_STREAM(stream, usArgsLength);
    stream = UINT16_TO_STREAM(stream, usArgsLength + usDataLength + usTailLength);
    
    // Send the packet
    SpiWrite(ucArgs, SIMPLE_LINK_HCI_DATA_HEADER_SIZE + usArgsLength + usDataLength + usTailLength);
    
    return(ESUCCESS);
}


void hci_data_command_send(unsigned short usOpcode,
                           unsigned char *pucBuff,
                           unsigned char ucArgsLength,
                           unsigned short ucDataLength)
{ 
     unsigned char *stream = (pucBuff + SPI_HEADER_SIZE);
    
    UINT8_TO_STREAM(stream, HCI_TYPE_DATA);
    UINT8_TO_STREAM(stream, usOpcode);
    UINT8_TO_STREAM(stream, ucArgsLength);
    stream = UINT16_TO_STREAM(stream, ucArgsLength + ucDataLength);
    
    // Send the command
    SpiWrite(pucBuff, ucArgsLength + ucDataLength + SIMPLE_LINK_HCI_DATA_CMND_HEADER_SIZE);
    
    return;
}


void hci_patch_send(unsigned char ucOpcode,
                    unsigned char *pucBuff,
                    char *patch,
                    unsigned short usDataLength)
{ 
    unsigned short usTransLength;
    unsigned char *stream = (pucBuff + SPI_HEADER_SIZE);
    UINT8_TO_STREAM(stream, HCI_TYPE_PATCH);
    UINT8_TO_STREAM(stream, ucOpcode);
    stream = UINT16_TO_STREAM(stream, usDataLength + SIMPLE_LINK_HCI_PATCH_HEADER_SIZE);
    if (usDataLength <= SL_PATCH_PORTION_SIZE)
    {
        UINT16_TO_STREAM(stream, usDataLength);
        stream = UINT16_TO_STREAM(stream, usDataLength);
        memcpy((pucBuff + SPI_HEADER_SIZE) + HCI_PATCH_HEADER_SIZE, patch, usDataLength);
        // Update the opcode of the event we will be waiting for
        SpiWrite(pucBuff, usDataLength + HCI_PATCH_HEADER_SIZE);
    }
    else
    {
        
        usTransLength = (usDataLength/SL_PATCH_PORTION_SIZE);
        UINT16_TO_STREAM(stream, usDataLength + SIMPLE_LINK_HCI_PATCH_HEADER_SIZE + usTransLength*SIMPLE_LINK_HCI_PATCH_HEADER_SIZE);
        stream = UINT16_TO_STREAM(stream, SL_PATCH_PORTION_SIZE);
        memcpy(pucBuff + SPI_HEADER_SIZE + HCI_PATCH_HEADER_SIZE, patch, SL_PATCH_PORTION_SIZE);
        usDataLength -= SL_PATCH_PORTION_SIZE;
        patch += SL_PATCH_PORTION_SIZE;
        
        // Update the opcode of the event we will be waiting for
        SpiWrite(pucBuff, SL_PATCH_PORTION_SIZE + HCI_PATCH_HEADER_SIZE);
        
        stream = (pucBuff + SPI_HEADER_SIZE);
        while (usDataLength)
        {
            if (usDataLength <= SL_PATCH_PORTION_SIZE)
            {
                usTransLength = usDataLength;
                usDataLength = 0;
                
            }
            else
            {
                usTransLength = SL_PATCH_PORTION_SIZE;
                usDataLength -= usTransLength;
            }
            
            *(unsigned short *)stream = usTransLength;
            memcpy(stream + SIMPLE_LINK_HCI_PATCH_HEADER_SIZE, patch, usTransLength);
            patch += usTransLength;
            
            // Update the opcode of the event we will be waiting for
            SpiWrite((unsigned char *)stream, usTransLength + sizeof(usTransLength));
        }
    }
}