sprintf enable

Fork of RF24 by Akash Vibhute

RF24.cpp

Committer:
akashvibhute
Date:
2016-02-23
Revision:
5:ee34c2837c4c
Parent:
3:e94be00fd19e
Child:
6:5cc7136648d1

File content as of revision 5:ee34c2837c4c:

/*
 Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>

 This program is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License
 version 2 as published by the Free Software Foundation.
 */

/*
 * Mbed support added by Akash Vibhute <akash.roboticist@gmail.com>
 * Porting completed on Nov/05/2015
 *
 * Updated with TMRh20's RF24 library on Nov/04/2015 from https://github.com/TMRh20
 *
 */

#include "nRF24L01.h"
#include "RF24_config.h"
#include "RF24.h"

/****************************************************************************/

void RF24::csn(bool mode)
{
    csn_pin = mode;
    wait_us(5);
}

/****************************************************************************/

void RF24::ce(bool level)
{
    ce_pin = level;
}

/****************************************************************************/

inline void RF24::beginTransaction()
{
    csn_pin=LOW;
}

/****************************************************************************/

inline void RF24::endTransaction()
{
    csn_pin=HIGH;
}

/****************************************************************************/

uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
{
    uint8_t status;

    beginTransaction();
    status = spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
    while ( len-- )
        *buf++ = spi.write(0xff);
    endTransaction();

    return status;
}

/****************************************************************************/

uint8_t RF24::read_register(uint8_t reg)
{
    uint8_t result;

    beginTransaction();
    spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
    result = spi.write(0xff);
    endTransaction();

    return result;
}

/****************************************************************************/

uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len)
{
    uint8_t status;

    beginTransaction();
    status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
    while ( len-- )
        spi.write(*buf++);
    endTransaction();

    return status;
}

/****************************************************************************/

uint8_t RF24::write_register(uint8_t reg, uint8_t value)
{
    uint8_t status;

    IF_SERIAL_DEBUG(printf(PSTR("write_register(%02x,%02x)\r\n"),reg,value));

    beginTransaction();
    status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
    spi.write(value);
    endTransaction();

    return status;
}

/****************************************************************************/
uint8_t RF24::write_payload(const void* buf, uint8_t len, const uint8_t writeType)
{
    uint8_t status;
    const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);

    uint8_t data_len = rf24_min(len, payload_size);
    uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;

    IF_SERIAL_DEBUG( printf("[Writing %u bytes %u blanks]\n",data_len,blank_len); );

    beginTransaction();
    status = spi.write( W_TX_PAYLOAD );
    while ( data_len-- )
        spi.write(*current++);
    while ( blank_len-- )
        spi.write(0);

    endTransaction();

    return status;
}

/****************************************************************************/

uint8_t RF24::read_payload(void* buf, uint8_t data_len)
{
    uint8_t status;
    uint8_t* current = reinterpret_cast<uint8_t*>(buf);

    if(data_len > payload_size) data_len = payload_size;
    uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;

    IF_SERIAL_DEBUG( printf("[Reading %u bytes %u blanks]\n",data_len,blank_len); );

    beginTransaction();
    status = spi.write( R_RX_PAYLOAD );
    while ( data_len-- )
        *current++ = spi.write(0xff);
    while ( blank_len-- )
        spi.write(0xff);
    endTransaction();

    return status;
}

/****************************************************************************/

uint8_t RF24::flush_rx(void)
{
    return spiTrans( FLUSH_RX );
}

/****************************************************************************/

uint8_t RF24::flush_tx(void)
{
    return spiTrans( FLUSH_TX );
}

/****************************************************************************/

uint8_t RF24::spiTrans(uint8_t cmd)
{

    uint8_t status;

    beginTransaction();
    status = spi.write( cmd );
    endTransaction();

    return status;
}

/****************************************************************************/

uint8_t RF24::get_status(void)
{
    return spiTrans(NOP);
}

/****************************************************************************/
#if !defined (MINIMAL)
void RF24::print_status(uint8_t status)
{
    printf(("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"),
           status,
           (status & _BV(RX_DR))?1:0,
           (status & _BV(TX_DS))?1:0,
           (status & _BV(MAX_RT))?1:0,
           ((status >> RX_P_NO) & 7),
           (status & _BV(TX_FULL))?1:0
          );
}

/****************************************************************************/

void RF24::print_observe_tx(uint8_t value)
{
    printf(("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n"),
           value,
           ((value >> PLOS_CNT) & 15),
           ((value >> ARC_CNT) & 15)
          );
}

/****************************************************************************/

void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty)
{
    printf("%s =",name);
    while (qty--)
        printf_P(PSTR(" 0x%02x"),read_register(reg++));
    printf_P(PSTR("\r\n"));

}

/****************************************************************************/

void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty)
{
    printf_P(PSTR(PRIPSTR"\t ="),name);

    while (qty--) {
        uint8_t buffer[addr_width];
        read_register(reg++,buffer,sizeof buffer);

        printf_P(PSTR(" 0x"));
        uint8_t* bufptr = buffer + sizeof buffer;
        while( --bufptr >= buffer )
            printf_P(PSTR("%02x"),*bufptr);
    }

    printf_P(PSTR("\r\n"));

}
#endif
/****************************************************************************/

RF24::RF24(PinName mosi, PinName miso, PinName sck, PinName _cepin, PinName _csnpin):
    ce_pin(_cepin), csn_pin(_csnpin), p_variant(false),
    payload_size(32), dynamic_payloads_enabled(false), addr_width(5), spi(mosi, miso, sck)
{
    pipe0_reading_address[0]=0;
    spi.frequency(10000000/5);     // 2Mbit, 1/5th the maximum transfer rate for the spi bus
    spi.format(8,0);                                   // 8-bit, ClockPhase = 0, ClockPolarity = 0

    DigitalOut  ce_pin(_cepin); /**< "Chip Enable" pin, activates the RX or TX role */
    DigitalOut  csn_pin(_csnpin); /**< SPI Chip select */

    wait_ms(100);

}








/****************************************************************************/

void RF24::setChannel(uint8_t channel)
{
    const uint8_t max_channel = 127;
    write_register(RF_CH,rf24_min(channel,max_channel));
}

uint8_t RF24::getChannel()
{
    return read_register(RF_CH);
}
/****************************************************************************/

void RF24::setPayloadSize(uint8_t size)
{
    payload_size = rf24_min(size,32);
}

/****************************************************************************/

uint8_t RF24::getPayloadSize(void)
{
    return payload_size;
}

/****************************************************************************/

#if !defined (MINIMAL)

static const char rf24_datarate_e_str_0[] PROGMEM = "1MBPS";
static const char rf24_datarate_e_str_1[] PROGMEM = "2MBPS";
static const char rf24_datarate_e_str_2[] PROGMEM = "250KBPS";
static const char * const rf24_datarate_e_str_P[] PROGMEM = {
    rf24_datarate_e_str_0,
    rf24_datarate_e_str_1,
    rf24_datarate_e_str_2,
};
static const char rf24_model_e_str_0[] PROGMEM = "nRF24L01";
static const char rf24_model_e_str_1[] PROGMEM = "nRF24L01+";
static const char * const rf24_model_e_str_P[] PROGMEM = {
    rf24_model_e_str_0,
    rf24_model_e_str_1,
};
static const char rf24_crclength_e_str_0[] PROGMEM = "Disabled";
static const char rf24_crclength_e_str_1[] PROGMEM = "8 bits";
static const char rf24_crclength_e_str_2[] PROGMEM = "16 bits" ;
static const char * const rf24_crclength_e_str_P[] PROGMEM = {
    rf24_crclength_e_str_0,
    rf24_crclength_e_str_1,
    rf24_crclength_e_str_2,
};
static const char rf24_pa_dbm_e_str_0[] PROGMEM = "PA_MIN";
static const char rf24_pa_dbm_e_str_1[] PROGMEM = "PA_LOW";
static const char rf24_pa_dbm_e_str_2[] PROGMEM = "PA_HIGH";
static const char rf24_pa_dbm_e_str_3[] PROGMEM = "PA_MAX";
static const char * const rf24_pa_dbm_e_str_P[] PROGMEM = {
    rf24_pa_dbm_e_str_0,
    rf24_pa_dbm_e_str_1,
    rf24_pa_dbm_e_str_2,
    rf24_pa_dbm_e_str_3,
};

void RF24::printDetails(void)
{
    print_status(get_status());

    print_address_register(PSTR("RX_ADDR_P0-1"),RX_ADDR_P0,2);
    print_byte_register(PSTR("RX_ADDR_P2-5"),RX_ADDR_P2,4);
    print_address_register(PSTR("TX_ADDR\t"),TX_ADDR);

    print_byte_register(PSTR("RX_PW_P0-6"),RX_PW_P0,6);
    print_byte_register(PSTR("EN_AA\t"),EN_AA);
    print_byte_register(PSTR("EN_RXADDR"),EN_RXADDR);
    print_byte_register(PSTR("RF_CH\t"),RF_CH);
    print_byte_register(PSTR("RF_SETUP"),RF_SETUP);
    print_byte_register(PSTR("CONFIG\t"),CONFIG);
    print_byte_register(PSTR("DYNPD/FEATURE"),DYNPD,2);

    printf_P(PSTR("Data Rate\t = "PRIPSTR"\r\n"),pgm_read_word(&rf24_datarate_e_str_P[getDataRate()]));
    printf_P(PSTR("Model\t\t = "PRIPSTR"\r\n"),pgm_read_word(&rf24_model_e_str_P[isPVariant()]));
    printf_P(PSTR("CRC Length\t = "PRIPSTR"\r\n"),pgm_read_word(&rf24_crclength_e_str_P[getCRCLength()]));
    printf_P(PSTR("PA Power\t = "PRIPSTR"\r\n"),  pgm_read_word(&rf24_pa_dbm_e_str_P[getPALevel()]));

}

#endif
/****************************************************************************/

bool RF24::begin(void)
{
    uint8_t setup=0;

    mainTimer.start();

    ce_pin=LOW;
    csn_pin=HIGH;

    // Must allow the radio time to settle else configuration bits will not necessarily stick.
    // This is actually only required following power up but some settling time also appears to
    // be required after resets too. For full coverage, we'll always assume the worst.
    // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
    // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
    // WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
    wait_ms( 5 ) ;

    // Reset CONFIG and enable 16-bit CRC.
    write_register( CONFIG, 12 ) ;

    // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
    // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
    // sizes must never be used. See documentation for a more complete explanation.
    setRetries(5,15);

    // Reset value is MAX
    setPALevel( RF24_PA_MAX ) ;

    // check for connected module and if this is a p nRF24l01 variant
    //
    if( setDataRate( RF24_250KBPS ) ) {
        p_variant = true ;
    }
    /*setup = read_register(RF_SETUP);
    if( setup == 0b00001110 )     // register default for nRF24L01P
    {
      p_variant = true ;
    }*/

    // Then set the data rate to the slowest (and most reliable) speed supported by all
    // hardware.
    setDataRate( RF24_1MBPS ) ;

    // Initialize CRC and request 2-byte (16bit) CRC
    setCRCLength( RF24_CRC_16 ) ;

    // Disable dynamic payloads, to match dynamic_payloads_enabled setting - Reset value is 0
    toggle_features();
    write_register(FEATURE,0 );
    write_register(DYNPD,0);

    // Reset current status
    // Notice reset and flush is the last thing we do
    write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );

    // Set up default configuration.  Callers can always change it later.
    // This channel should be universally safe and not bleed over into adjacent
    // spectrum.
    setChannel(76);

    // Flush buffers
    flush_rx();
    flush_tx();

    powerUp(); //Power up by default when begin() is called

    // Enable PTX, do not write CE high so radio will remain in standby I mode ( 130us max to transition to RX or TX instead of 1500us from powerUp )
    // PTX should use only 22uA of power
    write_register(CONFIG, ( read_register(CONFIG) ) & ~_BV(PRIM_RX) );

    // if setup is 0 or ff then there was no response from module
    return ( setup != 0 && setup != 0xff );
}

/****************************************************************************/

void RF24::startListening(void)
{
    write_register(CONFIG, read_register(CONFIG) | _BV(PRIM_RX));
    write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
    ce(true);
    // Restore the pipe0 adddress, if exists
    if (pipe0_reading_address[0] > 0) {
        write_register(RX_ADDR_P0, pipe0_reading_address, addr_width);
    } else {
        closeReadingPipe(0);
    }

    // Flush buffers
    //flush_rx();
    if(read_register(FEATURE) & _BV(EN_ACK_PAY)) {
        flush_tx();
    }

    //wait_us(100);
}

/****************************************************************************/
static const uint8_t child_pipe_enable[] PROGMEM = {
    ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5
};

void RF24::stopListening(void)
{
    ce_pin=LOW;

    wait_us(txRxDelay);

    if(read_register(FEATURE) & _BV(EN_ACK_PAY)) {
        wait_us(txRxDelay); //200
        flush_tx();
    }
    //flush_rx();
    write_register(CONFIG, ( read_register(CONFIG) ) & ~_BV(PRIM_RX) );

    write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[0]))); // Enable RX on pipe0

    //wait_us(100);
}

/****************************************************************************/

void RF24::powerDown(void)
{
    ce(false); // Guarantee CE is low on powerDown
    write_register(CONFIG,read_register(CONFIG) & ~_BV(PWR_UP));
}

/****************************************************************************/

//Power up now. Radio will not power down unless instructed by MCU for config changes etc.
void RF24::powerUp(void)
{
    uint8_t cfg = read_register(CONFIG);

    // if not powered up then power up and wait for the radio to initialize
    if (!(cfg & _BV(PWR_UP))) {
        write_register(CONFIG,read_register(CONFIG) | _BV(PWR_UP));

        // For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode.
        // There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before
        // the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet
        wait_ms(5);
    }
}

/******************************************************************/
#if defined (FAILURE_HANDLING)
void RF24::errNotify()
{
#if defined (SERIAL_DEBUG)
    printf_P(PSTR("RF24 HARDWARE FAIL: Radio not responding, verify pin connections, wiring, etc.\r\n"));
#endif
#if defined (FAILURE_HANDLING)
    failureDetected = 1;
#else
    wait_ms(5000);
#endif
}
#endif
/******************************************************************/

//Similar to the previous write, clears the interrupt flags
bool RF24::write( const void* buf, uint8_t len, const bool multicast )
{
    //Start Writing
    startFastWrite(buf,len,multicast);

    //Wait until complete or failed
#if defined (FAILURE_HANDLING)
    uint32_t timer = mainTimer.read_ms();
#endif

    while( ! ( get_status()  & ( _BV(TX_DS) | _BV(MAX_RT) ))) {
#if defined (FAILURE_HANDLING)
        if(mainTimer.read_ms() - timer > 85) {
            errNotify();
#if defined (FAILURE_HANDLING)
            return 0;
#else
            wait_ms(100);
#endif
        }
#endif
    }

    ce_pin=LOW;

    uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );

    //Max retries exceeded
    if( status & _BV(MAX_RT)) {
        flush_tx(); //Only going to be 1 packet int the FIFO at a time using this method, so just flush
        return 0;
    }
    //TX OK 1 or 0
    return 1;
}

bool RF24::write( const void* buf, uint8_t len )
{
    return write(buf,len,0);
}
/****************************************************************************/

//For general use, the interrupt flags are not important to clear
bool RF24::writeBlocking( const void* buf, uint8_t len, uint32_t timeout )
{
    //Block until the FIFO is NOT full.
    //Keep track of the MAX retries and set auto-retry if seeing failures
    //This way the FIFO will fill up and allow blocking until packets go through
    //The radio will auto-clear everything in the FIFO as long as CE remains high

    uint32_t timer = mainTimer.read_ms();                             //Get the time that the payload transmission started

    while( ( get_status()  & ( _BV(TX_FULL) ))) {         //Blocking only if FIFO is full. This will loop and block until TX is successful or timeout

        if( get_status() & _BV(MAX_RT)) {                     //If MAX Retries have been reached
            reUseTX();                                        //Set re-transmit and clear the MAX_RT interrupt flag
            if(mainTimer.read_ms() - timer > timeout) {
                return 0;    //If this payload has exceeded the user-defined timeout, exit and return 0
            }
        }
#if defined (FAILURE_HANDLING)
        if(mainTimer.read_ms() - timer > (timeout+85) ) {
            errNotify();
#if defined (FAILURE_HANDLING)
            return 0;
#endif
        }
#endif
    }

    //Start Writing
    startFastWrite(buf,len,0);                                //Write the payload if a buffer is clear

    return 1;                                                 //Return 1 to indicate successful transmission
}

/****************************************************************************/

void RF24::reUseTX()
{
    write_register(NRF_STATUS,_BV(MAX_RT) );              //Clear max retry flag
    spiTrans( REUSE_TX_PL );
    ce_pin=LOW;                                       //Re-Transfer packet
    ce_pin=HIGH;
}

/****************************************************************************/

bool RF24::writeFast( const void* buf, uint8_t len, const bool multicast )
{
    //Block until the FIFO is NOT full.
    //Keep track of the MAX retries and set auto-retry if seeing failures
    //Return 0 so the user can control the retrys and set a timer or failure counter if required
    //The radio will auto-clear everything in the FIFO as long as CE remains high

#if defined (FAILURE_HANDLING)
    uint32_t timer = mainTimer.read_ms();
#endif

    while( ( get_status()  & ( _BV(TX_FULL) ))) {             //Blocking only if FIFO is full. This will loop and block until TX is successful or fail

        if( get_status() & _BV(MAX_RT)) {
            //reUseTX();                                          //Set re-transmit
            write_register(NRF_STATUS,_BV(MAX_RT) );              //Clear max retry flag
            return 0;                                         //Return 0. The previous payload has been retransmitted
            //From the user perspective, if you get a 0, just keep trying to send the same payload
        }
#if defined (FAILURE_HANDLING)
        if(mainTimer.read_ms() - timer > 85 ) {
            errNotify();
#if defined (FAILURE_HANDLING)
            return 0;
#endif
        }
#endif
    }
    //Start Writing
    startFastWrite(buf,len,multicast);

    return 1;
}

bool RF24::writeFast( const void* buf, uint8_t len )
{
    return writeFast(buf,len,0);
}

/****************************************************************************/

//Per the documentation, we want to set PTX Mode when not listening. Then all we do is write data and set CE high
//In this mode, if we can keep the FIFO buffers loaded, packets will transmit immediately (no 130us delay)
//Otherwise we enter Standby-II mode, which is still faster than standby mode
//Also, we remove the need to keep writing the config register over and over and delaying for 150 us each time if sending a stream of data

void RF24::startFastWrite( const void* buf, uint8_t len, const bool multicast, bool startTx)  //TMRh20
{

    //write_payload( buf,len);
    write_payload( buf, len,multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ;
    if(startTx) {
        ce_pin=HIGH;
    }
}

/****************************************************************************/

//Added the original startWrite back in so users can still use interrupts, ack payloads, etc
//Allows the library to pass all tests
void RF24::startWrite( const void* buf, uint8_t len, const bool multicast )
{

    // Send the payload

    //write_payload( buf, len );
    write_payload( buf, len,multicast? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ;
    ce_pin=HIGH;

    wait_us(10);

    ce_pin=LOW;
}

/****************************************************************************/

bool RF24::rxFifoFull()
{
    return read_register(FIFO_STATUS) & _BV(RX_FULL);
}
/****************************************************************************/

bool RF24::txStandBy()
{

#if defined (FAILURE_HANDLING)
    uint32_t timeout = mainTimer.read_ms();
#endif
    while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ) {
        if( get_status() & _BV(MAX_RT)) {
            write_register(NRF_STATUS,_BV(MAX_RT) );
            ce_pin=LOW;
            flush_tx();    //Non blocking, flush the data
            return 0;
        }
#if defined (FAILURE_HANDLING)
        if( mainTimer.read_ms() - timeout > 85) {
            errNotify();
#if defined (FAILURE_HANDLING)
            return 0;
#endif
        }
#endif
    }

    ce_pin=LOW;               //Set STANDBY-I mode
    return 1;
}

/****************************************************************************/

bool RF24::txStandBy(uint32_t timeout, bool startTx)
{

    if(startTx) {
        stopListening();
        ce_pin=HIGH;
    }
    uint32_t start = mainTimer.read_ms();

    while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ) {
        if( get_status() & _BV(MAX_RT)) {
            write_register(NRF_STATUS,_BV(MAX_RT) );
            ce_pin=LOW;                                          //Set re-transmit
            ce_pin=HIGH;
            if(mainTimer.read_ms() - start >= timeout) {
                ce_pin=LOW;;
                flush_tx();
                return 0;
            }
        }
#if defined (FAILURE_HANDLING)
        if( mainTimer.read_ms() - start > (timeout+85)) {
            errNotify();
#if defined (FAILURE_HANDLING)
            return 0;
#endif
        }
#endif
    }

    ce_pin=LOW;                   //Set STANDBY-I mode
    return 1;

}

/****************************************************************************/

void RF24::maskIRQ(bool tx, bool fail, bool rx)
{

    write_register(CONFIG, ( read_register(CONFIG) ) | fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR  );
}

/****************************************************************************/

uint8_t RF24::getDynamicPayloadSize(void)
{
    uint8_t result = 0;

    beginTransaction();
    spi.write( R_RX_PL_WID );
    result = spi.write(0xff);
    endTransaction();


    if(result > 32) {
        flush_rx();
        wait_ms(2);
        return 0;
    }
    return result;
}

/****************************************************************************/

bool RF24::available(void)
{
    return available(NULL);
}

/****************************************************************************/

bool RF24::available(uint8_t* pipe_num)
{
    if (!( read_register(FIFO_STATUS) & _BV(RX_EMPTY) )) {

        // If the caller wants the pipe number, include that
        if ( pipe_num ) {
            uint8_t status = get_status();
            *pipe_num = ( status >> RX_P_NO ) & 7;
        }
        return 1;
    }

    return 0;
}

/****************************************************************************/

void RF24::read( void* buf, uint8_t len )
{

    // Fetch the payload
    read_payload( buf, len );

    //Clear the two possible interrupt flags with one command
    write_register(NRF_STATUS,_BV(RX_DR) | _BV(MAX_RT) | _BV(TX_DS) );
}

/****************************************************************************/

void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready)
{
    // Read the status & reset the status in one easy call
    // Or is that such a good idea?
    uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );

    // Report to the user what happened
    tx_ok = status & _BV(TX_DS);
    tx_fail = status & _BV(MAX_RT);
    rx_ready = status & _BV(RX_DR);
}

/****************************************************************************/

void RF24::openWritingPipe(uint64_t value)
{
    // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
    // expects it LSB first too, so we're good.

    write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), addr_width);
    write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), addr_width);

    //const uint8_t max_payload_size = 32;
    //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
    write_register(RX_PW_P0,payload_size);
}

/****************************************************************************/
void RF24::openWritingPipe(const uint8_t *address)
{
    // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
    // expects it LSB first too, so we're good.

    write_register(RX_ADDR_P0,address, addr_width);
    write_register(TX_ADDR, address, addr_width);

    //const uint8_t max_payload_size = 32;
    //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
    write_register(RX_PW_P0,payload_size);
}

/****************************************************************************/
static const uint8_t child_pipe[] PROGMEM = {
    RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5
};
static const uint8_t child_payload_size[] PROGMEM = {
    RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5
};


void RF24::openReadingPipe(uint8_t child, uint64_t address)
{
    // If this is pipe 0, cache the address.  This is needed because
    // openWritingPipe() will overwrite the pipe 0 address, so
    // startListening() will have to restore it.
    if (child == 0) {
        memcpy(pipe0_reading_address,&address,addr_width);
    }

    if (child <= 6) {
        // For pipes 2-5, only write the LSB
        if ( child < 2 )
            write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), addr_width);
        else
            write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), 1);

        write_register(pgm_read_byte(&child_payload_size[child]),payload_size);

        // Note it would be more efficient to set all of the bits for all open
        // pipes at once.  However, I thought it would make the calling code
        // more simple to do it this way.
        write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
    }
}

/****************************************************************************/
void RF24::setAddressWidth(uint8_t a_width)
{

    if(a_width -= 2) {
        write_register(SETUP_AW,a_width%4);
        addr_width = (a_width%4) + 2;
    }
}

/****************************************************************************/

void RF24::openReadingPipe(uint8_t child, const uint8_t *address)
{
    // If this is pipe 0, cache the address.  This is needed because
    // openWritingPipe() will overwrite the pipe 0 address, so
    // startListening() will have to restore it.
    if (child == 0) {
        memcpy(pipe0_reading_address,address,addr_width);
    }
    if (child <= 6) {
        // For pipes 2-5, only write the LSB
        if ( child < 2 ) {
            write_register(pgm_read_byte(&child_pipe[child]), address, addr_width);
        } else {
            write_register(pgm_read_byte(&child_pipe[child]), address, 1);
        }
        write_register(pgm_read_byte(&child_payload_size[child]),payload_size);

        // Note it would be more efficient to set all of the bits for all open
        // pipes at once.  However, I thought it would make the calling code
        // more simple to do it this way.
        write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
    }
}

/****************************************************************************/

void RF24::closeReadingPipe( uint8_t pipe )
{
    write_register(EN_RXADDR,read_register(EN_RXADDR) & ~_BV(pgm_read_byte(&child_pipe_enable[pipe])));
}

/****************************************************************************/

void RF24::toggle_features(void)
{
    beginTransaction();
    spi.write( ACTIVATE );
    spi.write( 0x73 );
    endTransaction();
}

/****************************************************************************/

void RF24::enableDynamicPayloads(void)
{
    // Enable dynamic payload throughout the system

    //toggle_features();
    write_register(FEATURE,read_register(FEATURE) | _BV(EN_DPL) );

    IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));

    // Enable dynamic payload on all pipes
    //
    // Not sure the use case of only having dynamic payload on certain
    // pipes, so the library does not support it.
    write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0));

    dynamic_payloads_enabled = true;
}

/****************************************************************************/

void RF24::enableAckPayload(void)
{
    //
    // enable ack payload and dynamic payload features
    //

    //toggle_features();
    write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) );

    IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));

    //
    // Enable dynamic payload on pipes 0 & 1
    //

    write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0));
    dynamic_payloads_enabled = true;
}

/****************************************************************************/

void RF24::enableDynamicAck(void)
{
    //
    // enable dynamic ack features
    //
    //toggle_features();
    write_register(FEATURE,read_register(FEATURE) | _BV(EN_DYN_ACK) );

    IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));


}

/****************************************************************************/

void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len)
{
    const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);

    uint8_t data_len = rf24_min(len,32);

    beginTransaction();
    spi.write(W_ACK_PAYLOAD | ( pipe & 7 ) );

    while ( data_len-- )
        spi.write(*current++);
    endTransaction();

}

/****************************************************************************/

bool RF24::isAckPayloadAvailable(void)
{
    return ! (read_register(FIFO_STATUS) & _BV(RX_EMPTY));
}

/****************************************************************************/

bool RF24::isPVariant(void)
{
    return p_variant ;
}

/****************************************************************************/

void RF24::setAutoAck(bool enable)
{
    if ( enable )
        write_register(EN_AA, 63);
    else
        write_register(EN_AA, 0);
}

/****************************************************************************/

void RF24::setAutoAck( uint8_t pipe, bool enable )
{
    if ( pipe <= 6 ) {
        uint8_t en_aa = read_register( EN_AA ) ;
        if( enable ) {
            en_aa |= _BV(pipe) ;
        } else {
            en_aa &= ~_BV(pipe) ;
        }
        write_register( EN_AA, en_aa ) ;
    }
}

/****************************************************************************/

bool RF24::testCarrier(void)
{
    return ( read_register(CD) & 1 );
}

/****************************************************************************/

bool RF24::testRPD(void)
{
    return ( read_register(RPD) & 1 ) ;
}

/****************************************************************************/

void RF24::setPALevel(uint8_t level)
{

    uint8_t setup = read_register(RF_SETUP) & 248;

    if(level > 3) {                       // If invalid level, go to max PA
        level = (RF24_PA_MAX << 1) + 1;       // +1 to support the SI24R1 chip extra bit
    } else {
        level = (level << 1) + 1;         // Else set level as requested
    }


    write_register( RF_SETUP, setup |= level ) ;  // Write it to the chip
}

/****************************************************************************/

uint8_t RF24::getPALevel(void)
{

    return (read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) >> 1 ;
}

/****************************************************************************/

bool RF24::setDataRate(rf24_datarate_e speed)
{
    bool result = false;
    uint8_t setup = read_register(RF_SETUP) ;

    // HIGH and LOW '00' is 1Mbs - our default
    setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ;

    txRxDelay=85;

    if( speed == RF24_250KBPS ) {
        // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
        // Making it '10'.
        setup |= _BV( RF_DR_LOW ) ;
        txRxDelay=155;
    } else {
        // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
        // Making it '01'
        if ( speed == RF24_2MBPS ) {
            setup |= _BV(RF_DR_HIGH);
            txRxDelay=65;
        }
    }
    write_register(RF_SETUP,setup);

    // Verify our result
    if ( read_register(RF_SETUP) == setup ) {
        result = true;
    }
    return result;
}

/****************************************************************************/

rf24_datarate_e RF24::getDataRate( void )
{
    rf24_datarate_e result ;
    uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH));

    // switch uses RAM (evil!)
    // Order matters in our case below
    if ( dr == _BV(RF_DR_LOW) ) {
        // '10' = 250KBPS
        result = RF24_250KBPS ;
    } else if ( dr == _BV(RF_DR_HIGH) ) {
        // '01' = 2MBPS
        result = RF24_2MBPS ;
    } else {
        // '00' = 1MBPS
        result = RF24_1MBPS ;
    }
    return result ;
}

/****************************************************************************/

void RF24::setCRCLength(rf24_crclength_e length)
{
    uint8_t config = read_register(CONFIG) & ~( _BV(CRCO) | _BV(EN_CRC)) ;

    // switch uses RAM (evil!)
    if ( length == RF24_CRC_DISABLED ) {
        // Do nothing, we turned it off above.
    } else if ( length == RF24_CRC_8 ) {
        config |= _BV(EN_CRC);
    } else {
        config |= _BV(EN_CRC);
        config |= _BV( CRCO );
    }
    write_register( CONFIG, config ) ;
}

/****************************************************************************/

rf24_crclength_e RF24::getCRCLength(void)
{
    rf24_crclength_e result = RF24_CRC_DISABLED;

    uint8_t config = read_register(CONFIG) & ( _BV(CRCO) | _BV(EN_CRC)) ;
    uint8_t AA = read_register(EN_AA);

    if ( config & _BV(EN_CRC ) || AA) {
        if ( config & _BV(CRCO) )
            result = RF24_CRC_16;
        else
            result = RF24_CRC_8;
    }

    return result;
}

/****************************************************************************/

void RF24::disableCRC( void )
{
    uint8_t disable = read_register(CONFIG) & ~_BV(EN_CRC) ;
    write_register( CONFIG, disable ) ;
}

/****************************************************************************/
void RF24::setRetries(uint8_t delay, uint8_t count)
{
    write_register(SETUP_RETR,(delay&0xf)<<ARD | (count&0xf)<<ARC);
}