sprintf enable

Fork of RF24 by Akash Vibhute

Revision:
2:3bdf0d9bb71f
Parent:
1:00706a42491e
Child:
3:e94be00fd19e
--- a/RF24.cpp	Mon Jul 06 05:16:37 2015 +0000
+++ b/RF24.cpp	Thu Nov 05 05:40:23 2015 +0000
@@ -6,47 +6,119 @@
  version 2 as published by the Free Software Foundation.
  */
 
+#include "nRF24L01.h"
+#include "RF24_config.h"
 #include "RF24.h"
 
 /****************************************************************************/
 
-void RF24::csn(int mode)
+void RF24::csn(bool mode)
 {
-  // Minimum ideal spi bus speed is 2x data rate
-  // If we assume 2Mbs data rate and 16Mhz clock, a
-  // divider of 4 is the minimum we want.
-  // CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz
-//#ifdef ARDUINO
-//  spi.setBitOrder(MSBFIRST);
-//  spi.setDataMode(spi_MODE0);
-//  spi.setClockDivider(spi_CLOCK_DIV4);
-//#endif
-//  digitalWrite(csn_pin,mode);
     csn_pin = mode;
+    wait_us(5);
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
+    
     
 }
 
 /****************************************************************************/
 
-void RF24::ce(int level)
+void RF24::ce(bool level)
 {
-  //digitalWrite(ce_pin,level);
   ce_pin = level;
+  
 }
 
 /****************************************************************************/
 
+  inline void RF24::beginTransaction() {
+    csn_pin=LOW;
+    
+    
+    
+  }
+
+/****************************************************************************/
+
+  inline void RF24::endTransaction() {
+    csn_pin=HIGH;
+    
+    
+    
+  }
+
+/****************************************************************************/
+
 uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
 {
   uint8_t status;
 
-  csn(LOW);
+  beginTransaction();
   status = spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
   while ( len-- )
     *buf++ = spi.write(0xff);
+  endTransaction();
 
-  csn(HIGH);
-
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
   return status;
 }
 
@@ -54,11 +126,29 @@
 
 uint8_t RF24::read_register(uint8_t reg)
 {
-  csn(LOW);
+  uint8_t result;
+  
+  beginTransaction();
   spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
-  uint8_t result = spi.write(0xff);
+  result = spi.write(0xff);
+  endTransaction();
 
-  csn(HIGH);
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
   return result;
 }
 
@@ -68,13 +158,30 @@
 {
   uint8_t status;
 
-  csn(LOW);
+  beginTransaction();
   status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
   while ( len-- )
     spi.write(*buf++);
+  endTransaction();
 
-  csn(HIGH);
-
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
   return status;
 }
 
@@ -84,60 +191,127 @@
 {
   uint8_t status;
 
-//  IF_SERIAL_DEBUG(printf(("write_register(%02x,%02x)\r\n"),reg,value));
+  IF_SERIAL_DEBUG(printf(PSTR("write_register(%02x,%02x)\r\n"),reg,value));
 
-  csn(LOW);
+
+  beginTransaction();
   status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
   spi.write(value);
-  csn(HIGH);
+  endTransaction();
+
+
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  return status;
+}
+
+/****************************************************************************/
+uint8_t RF24::write_payload(const void* buf, uint8_t len, const uint8_t writeType)
+{
+  uint8_t status;
+  const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
+
+   uint8_t data_len = rf24_min(data_len, payload_size);
+   uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
+  
+  //printf("[Writing %u bytes %u blanks]",data_len,blank_len);
+  IF_SERIAL_DEBUG( printf("[Writing %u bytes %u blanks]\n",data_len,blank_len); );
+  
 
+  beginTransaction();
+    status = spi.write( W_TX_PAYLOAD );
+  while ( data_len-- )
+    spi.write(*current++);
+  while ( blank_len-- )
+    spi.write(0);
+  
+  endTransaction();
+
+
+
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
   return status;
 }
 
 /****************************************************************************/
 
-uint8_t RF24::write_payload(const void* buf, uint8_t len)
-{
-  uint8_t status;
-
-  const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
-
-  uint8_t data_len = min(len,payload_size);
-  uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
-  
-  //printf("[Writing %u bytes %u blanks]",data_len,blank_len);
-  
-  csn(LOW);
-  status = spi.write( W_TX_PAYLOAD );
-  while ( data_len-- )
-    spi.write(*current++);
-  while ( blank_len-- )
-    spi.write(0);
-  csn(HIGH);
-
-  return status;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::read_payload(void* buf, uint8_t len)
+uint8_t RF24::read_payload(void* buf, uint8_t data_len)
 {
   uint8_t status;
   uint8_t* current = reinterpret_cast<uint8_t*>(buf);
 
-  uint8_t data_len = min(len,payload_size);
+  if(data_len > payload_size) data_len = payload_size;
   uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
   
   //printf("[Reading %u bytes %u blanks]",data_len,blank_len);
-  
-  csn(LOW);
+
+  IF_SERIAL_DEBUG( printf("[Reading %u bytes %u blanks]\n",data_len,blank_len); );
+
+  beginTransaction();
   status = spi.write( R_RX_PAYLOAD );
   while ( data_len-- )
     *current++ = spi.write(0xff);
   while ( blank_len-- )
     spi.write(0xff);
-  csn(HIGH);
+  endTransaction();
 
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
   return status;
 }
 
@@ -145,25 +319,33 @@
 
 uint8_t RF24::flush_rx(void)
 {
-  uint8_t status;
-
-  csn(LOW);
-  status = spi.write( FLUSH_RX );
-  csn(HIGH);
-
-  return status;
+  return spiTrans( FLUSH_RX );
 }
 
 /****************************************************************************/
 
 uint8_t RF24::flush_tx(void)
 {
+  return spiTrans( FLUSH_TX );
+}
+
+/****************************************************************************/
+
+uint8_t RF24::spiTrans(uint8_t cmd){
+
   uint8_t status;
 
-  csn(LOW);
-  status = spi.write( FLUSH_TX );
-  csn(HIGH);
+  beginTransaction();
+  status = spi.write( cmd );
+  endTransaction();
 
+  
+  
+  
+  
+  
+  
+  
   return status;
 }
 
@@ -171,20 +353,14 @@
 
 uint8_t RF24::get_status(void)
 {
-  uint8_t status;
-
-  csn(LOW);
-  status = spi.write( NOP );
-  csn(HIGH);
-
-  return status;
+  return spiTrans(NOP);
 }
 
 /****************************************************************************/
-
+#if !defined (MINIMAL)
 void RF24::print_status(uint8_t status)
 {
-  printf(("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"),
+    printf(("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"),
            status,
            (status & _BV(RX_DR))?1:0,
            (status & _BV(TX_DS))?1:0,
@@ -200,8 +376,8 @@
 {
   printf(("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n"),
            value,
-           (value >> PLOS_CNT) & 15,
-           (value >> ARC_CNT) & 15
+           ((value >> PLOS_CNT) & 15),
+           ((value >> ARC_CNT) & 15)
           );
 }
 
@@ -209,63 +385,83 @@
 
 void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty)
 {
-//  char extra_tab = strlen(name) < 8 ? '\t' : 0;
-  printf("%s =",name);
+printf("%s =",name);
   while (qty--)
-    printf((" 0x%02x"),read_register(reg++));
-  printf(("\r\n"));
+    printf_P(PSTR(" 0x%02x"),read_register(reg++));
+  printf_P(PSTR("\r\n"));
+  
+  
+  
+  
+  
+  
 }
 
 /****************************************************************************/
 
 void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty)
 {
-//  char extra_tab = strlen_P(name) < 8 ? '\t' : 0;
-  printf("%s =",name);
-
+  printf_P(PSTR(PRIPSTR"\t ="),name);
+ 
   while (qty--)
   {
-    uint8_t buffer[5];
+    uint8_t buffer[addr_width];
     read_register(reg++,buffer,sizeof buffer);
 
-    printf((" 0x"));
+    printf_P(PSTR(" 0x"));
     uint8_t* bufptr = buffer + sizeof buffer;
     while( --bufptr >= buffer )
-      printf(("%02x"),*bufptr);
+      printf_P(PSTR("%02x"),*bufptr);
   }
 
-  printf(("\r\n"));
+  printf_P(PSTR("\r\n"));
+  
+  
+  
+  
+}
+#endif
+/****************************************************************************/
+  
+RF24::RF24(PinName mosi, PinName miso, PinName sck, PinName _cepin, PinName _csnpin):
+  ce_pin(_cepin), csn_pin(_csnpin), p_variant(false), 
+  payload_size(32), dynamic_payloads_enabled(false), addr_width(5), spi(mosi, miso, sck)
+{
+  pipe0_reading_address[0]=0;
+  spi.frequency(10000000/5);     // 2Mbit, 1/5th the maximum transfer rate for the spi bus
+  spi.format(8,0);                                   // 8-bit, ClockPhase = 0, ClockPolarity = 0
+  
+  DigitalOut  ce_pin(_cepin); /**< "Chip Enable" pin, activates the RX or TX role */
+  DigitalOut  csn_pin(_csnpin); /**< SPI Chip select */
+  
+  wait_ms(100);
+  
 }
 
-/****************************************************************************/
+
+
 
-RF24::RF24(PinName mosi, PinName miso, PinName sck, PinName _csnpin, PinName _cepin):
-  ce_pin(_cepin), csn_pin(_csnpin), wide_band(true), p_variant(false), 
-  payload_size(32), ack_payload_available(false), dynamic_payloads_enabled(false),
-  pipe0_reading_address(0), spi(mosi, miso, sck)
-{
-    spi.frequency(10000000/5);     // 2Mbit, 1/5th the maximum transfer rate for the spi bus
-    spi.format(8,0);                                   // 8-bit, ClockPhase = 0, ClockPolarity = 0
-    wait_ms(100);
-}
+
+
+
 
 /****************************************************************************/
 
 void RF24::setChannel(uint8_t channel)
 {
-  // TODO: This method could take advantage of the 'wide_band' calculation
-  // done in setChannel() to require certain channel spacing.
-
   const uint8_t max_channel = 127;
-  write_register(RF_CH,min(channel,max_channel));
+  write_register(RF_CH,rf24_min(channel,max_channel));
 }
 
+uint8_t RF24::getChannel()
+{
+  return read_register(RF_CH);
+}
 /****************************************************************************/
 
 void RF24::setPayloadSize(uint8_t size)
 {
-  const uint8_t max_payload_size = 32;
-  payload_size = min(size,max_payload_size);
+  payload_size = rf24_min(size,32);
 }
 
 /****************************************************************************/
@@ -277,100 +473,190 @@
 
 /****************************************************************************/
 
-static const char rf24_datarate_e_str_0[]  = "1MBPS";
-static const char rf24_datarate_e_str_1[]  = "2MBPS";
-static const char rf24_datarate_e_str_2[]  = "250KBPS";
-static const char * const rf24_datarate_e_str_P[]  = {
+#if !defined (MINIMAL)
+
+static const char rf24_datarate_e_str_0[] PROGMEM = "1MBPS";
+static const char rf24_datarate_e_str_1[] PROGMEM = "2MBPS";
+static const char rf24_datarate_e_str_2[] PROGMEM = "250KBPS";
+static const char * const rf24_datarate_e_str_P[] PROGMEM = {
   rf24_datarate_e_str_0,
   rf24_datarate_e_str_1,
   rf24_datarate_e_str_2,
 };
-static const char rf24_model_e_str_0[]  = "nRF24L01";
-static const char rf24_model_e_str_1[]  = "nRF24L01+";
-static const char * const rf24_model_e_str_P[]  = {
+static const char rf24_model_e_str_0[] PROGMEM = "nRF24L01";
+static const char rf24_model_e_str_1[] PROGMEM = "nRF24L01+";
+static const char * const rf24_model_e_str_P[] PROGMEM = {
   rf24_model_e_str_0,
   rf24_model_e_str_1,
 };
-static const char rf24_crclength_e_str_0[]  = "Disabled";
-static const char rf24_crclength_e_str_1[]  = "8 bits";
-static const char rf24_crclength_e_str_2[]  = "16 bits" ;
-static const char * const rf24_crclength_e_str_P[]  = {
+static const char rf24_crclength_e_str_0[] PROGMEM = "Disabled";
+static const char rf24_crclength_e_str_1[] PROGMEM = "8 bits";
+static const char rf24_crclength_e_str_2[] PROGMEM = "16 bits" ;
+static const char * const rf24_crclength_e_str_P[] PROGMEM = {
   rf24_crclength_e_str_0,
   rf24_crclength_e_str_1,
   rf24_crclength_e_str_2,
 };
-static const char rf24_pa_dbm_e_str_0[]  = "PA_MIN";
-static const char rf24_pa_dbm_e_str_1[]  = "PA_LOW";
-static const char rf24_pa_dbm_e_str_2[]  = "PA_MED";
-static const char rf24_pa_dbm_e_str_3[]  = "PA_HIGH";
-static const char * const rf24_pa_dbm_e_str_P[]  = { 
+static const char rf24_pa_dbm_e_str_0[] PROGMEM = "PA_MIN";
+static const char rf24_pa_dbm_e_str_1[] PROGMEM = "PA_LOW";
+static const char rf24_pa_dbm_e_str_2[] PROGMEM = "PA_HIGH";
+static const char rf24_pa_dbm_e_str_3[] PROGMEM = "PA_MAX";
+static const char * const rf24_pa_dbm_e_str_P[] PROGMEM = {
   rf24_pa_dbm_e_str_0,
   rf24_pa_dbm_e_str_1,
   rf24_pa_dbm_e_str_2,
   rf24_pa_dbm_e_str_3,
 };
 
+
+
+
+
+
+
+
+
+
+
+
+
+
 void RF24::printDetails(void)
 {
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
   print_status(get_status());
 
-  print_address_register(("RX_ADDR_P0-1"),RX_ADDR_P0,2);
-  print_byte_register(("RX_ADDR_P2-5"),RX_ADDR_P2,4);
-  print_address_register(("TX_ADDR"),TX_ADDR);
+  print_address_register(PSTR("RX_ADDR_P0-1"),RX_ADDR_P0,2);
+  print_byte_register(PSTR("RX_ADDR_P2-5"),RX_ADDR_P2,4);
+  print_address_register(PSTR("TX_ADDR\t"),TX_ADDR);
 
-  print_byte_register(("RX_PW_P0-6"),RX_PW_P0,6);
-  print_byte_register(("EN_AA"),EN_AA);
-  print_byte_register(("EN_RXADDR"),EN_RXADDR);
-  print_byte_register(("RF_CH"),RF_CH);
-  print_byte_register(("RF_SETUP"),RF_SETUP);
-  print_byte_register(("CONFIG"),CONFIG);
-  print_byte_register(("DYNPD/FEATURE"),DYNPD,2);
+  print_byte_register(PSTR("RX_PW_P0-6"),RX_PW_P0,6);
+  print_byte_register(PSTR("EN_AA\t"),EN_AA);
+  print_byte_register(PSTR("EN_RXADDR"),EN_RXADDR);
+  print_byte_register(PSTR("RF_CH\t"),RF_CH);
+  print_byte_register(PSTR("RF_SETUP"),RF_SETUP);
+  print_byte_register(PSTR("CONFIG\t"),CONFIG);
+  print_byte_register(PSTR("DYNPD/FEATURE"),DYNPD,2);
 
-  printf(("Data Rate\t = %s\r\n"), rf24_datarate_e_str_P[getDataRate()]);
-  printf(("Model\t\t = %s\r\n"), rf24_model_e_str_P[isPVariant()]);
-  printf(("CRC Length\t = %s\r\n"),rf24_crclength_e_str_P[getCRCLength()]);
-  printf(("PA Power\t = %s\r\n"),rf24_pa_dbm_e_str_P[getPALevel()]);
+   printf_P(PSTR("Data Rate\t = "PRIPSTR"\r\n"),pgm_read_word(&rf24_datarate_e_str_P[getDataRate()]));
+  printf_P(PSTR("Model\t\t = "PRIPSTR"\r\n"),pgm_read_word(&rf24_model_e_str_P[isPVariant()]));
+  printf_P(PSTR("CRC Length\t = "PRIPSTR"\r\n"),pgm_read_word(&rf24_crclength_e_str_P[getCRCLength()]));
+  printf_P(PSTR("PA Power\t = "PRIPSTR"\r\n"),  pgm_read_word(&rf24_pa_dbm_e_str_P[getPALevel()]));
+
 }
 
+#endif
 /****************************************************************************/
 
-void RF24::begin(void)
+bool RF24::begin(void)
 {
-  // Initialize pins
-//  pinMode(ce_pin,OUTPUT);
-//  pinMode(csn_pin,OUTPUT);
+
+  uint8_t setup=0;
+
+  mainTimer.start();
+ 
+  ce_pin=LOW;
+  csn_pin=HIGH;
 
-  // Initialize spi bus
-  //spi.begin();
-  mainTimer.start();
-
-  ce(LOW);
-  csn(HIGH);
-
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
   // Must allow the radio time to settle else configuration bits will not necessarily stick.
   // This is actually only required following power up but some settling time also appears to
   // be required after resets too. For full coverage, we'll always assume the worst.
   // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
   // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
-  // WARNING: wait_ms is based on P-variant whereby non-P *may* require different timing.
+  // WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
   wait_ms( 5 ) ;
 
+  // Reset CONFIG and enable 16-bit CRC.
+  write_register( CONFIG, 12 ) ;
+
   // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
   // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
   // sizes must never be used. See documentation for a more complete explanation.
-  write_register(SETUP_RETR,(4 << ARD) | (15 << ARC));
+  setRetries(5,15);
 
-  // Restore our default PA level
+  // Reset value is MAX
   setPALevel( RF24_PA_MAX ) ;
 
-  // Determine if this is a p or non-p RF24 module and then
-  // reset our data rate back to default value. This works
-  // because a non-P variant won't allow the data rate to
-  // be set to 250Kbps.
+  // check for connected module and if this is a p nRF24l01 variant
+  //
   if( setDataRate( RF24_250KBPS ) )
   {
     p_variant = true ;
   }
+  /*setup = read_register(RF_SETUP);
+  if( setup == 0b00001110 )     // register default for nRF24L01P
+  {
+    p_variant = true ;
+  }*/
   
   // Then set the data rate to the slowest (and most reliable) speed supported by all
   // hardware.
@@ -378,157 +664,368 @@
 
   // Initialize CRC and request 2-byte (16bit) CRC
   setCRCLength( RF24_CRC_16 ) ;
-  
-  // Disable dynamic payloads, to match dynamic_payloads_enabled setting
+
+  // Disable dynamic payloads, to match dynamic_payloads_enabled setting - Reset value is 0
+  toggle_features();
+  write_register(FEATURE,0 );
   write_register(DYNPD,0);
 
   // Reset current status
   // Notice reset and flush is the last thing we do
-  write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
+  write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
 
   // Set up default configuration.  Callers can always change it later.
   // This channel should be universally safe and not bleed over into adjacent
   // spectrum.
   setChannel(76);
-  //setChannel(90);
 
   // Flush buffers
   flush_rx();
   flush_tx();
-  
-  // set EN_RXADDRR to 0 to fix pipe 0 from receiving
-  write_register(EN_RXADDR, 0);
+
+  powerUp(); //Power up by default when begin() is called
+
+  // Enable PTX, do not write CE high so radio will remain in standby I mode ( 130us max to transition to RX or TX instead of 1500us from powerUp )
+  // PTX should use only 22uA of power
+  write_register(CONFIG, ( read_register(CONFIG) ) & ~_BV(PRIM_RX) );
+
+  // if setup is 0 or ff then there was no response from module
+  return ( setup != 0 && setup != 0xff );
 }
 
 /****************************************************************************/
 
 void RF24::startListening(void)
 {
-  write_register(CONFIG, read_register(CONFIG) | _BV(PWR_UP) | _BV(PRIM_RX));
-  write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
+
+
 
+  write_register(CONFIG, read_register(CONFIG) | _BV(PRIM_RX));
+  write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
+  ce(true);
   // Restore the pipe0 adddress, if exists
-  if (pipe0_reading_address)
-    write_register(RX_ADDR_P0, reinterpret_cast<const uint8_t*>(&pipe0_reading_address), 5);
+  if (pipe0_reading_address[0] > 0){
+    write_register(RX_ADDR_P0, pipe0_reading_address, addr_width);  
+  }else{
+    closeReadingPipe(0);
+  }
 
   // Flush buffers
-  flush_rx();
-  flush_tx();
+  //flush_rx();
+  if(read_register(FEATURE) & _BV(EN_ACK_PAY)){
+    flush_tx();
+  }
 
   // Go!
-  ce(HIGH);
-
-  // wait for the radio to come up (130us actually only needed)
-//  wait_msMicroseconds(130);
-    wait_us(130);
+  //delayMicroseconds(100);
 }
 
 /****************************************************************************/
+static const uint8_t child_pipe_enable[] PROGMEM =
+{
+  ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5
+};
 
 void RF24::stopListening(void)
-{
-  ce(LOW);
-  flush_tx();
-  flush_rx();
+{  
+  ce_pin=LOW;
+
+  wait_us(txRxDelay);
+  
+  if(read_register(FEATURE) & _BV(EN_ACK_PAY)){
+    wait_us(txRxDelay); //200
+    flush_tx();
+  }
+  //flush_rx();
+  write_register(CONFIG, ( read_register(CONFIG) ) & ~_BV(PRIM_RX) );
+ 
+
+  
+  
+  
+  
+  
+  
+  write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[0]))); // Enable RX on pipe0
+  
+  //delayMicroseconds(100);
+
 }
 
 /****************************************************************************/
 
 void RF24::powerDown(void)
 {
+  ce(false); // Guarantee CE is low on powerDown
   write_register(CONFIG,read_register(CONFIG) & ~_BV(PWR_UP));
 }
 
 /****************************************************************************/
 
+//Power up now. Radio will not power down unless instructed by MCU for config changes etc.
 void RF24::powerUp(void)
 {
-  write_register(CONFIG,read_register(CONFIG) | _BV(PWR_UP));
+   uint8_t cfg = read_register(CONFIG);
+
+   // if not powered up then power up and wait for the radio to initialize
+   if (!(cfg & _BV(PWR_UP))){
+      write_register(CONFIG,read_register(CONFIG) | _BV(PWR_UP));
+
+      // For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode.
+      // There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before
+      // the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet
+      wait_ms(5);
+   }
 }
 
 /******************************************************************/
-
-bool RF24::write( const void* buf, uint8_t len )
-{
-  bool result = false;
-
-  // Begin the write
-  startWrite(buf,len);
-
-  // ------------
-  // At this point we could return from a non-blocking write, and then call
-  // the rest after an interrupt
+#if defined (FAILURE_HANDLING) 
+void RF24::errNotify(){
+    #if defined (SERIAL_DEBUG) 
+      printf_P(PSTR("RF24 HARDWARE FAIL: Radio not responding, verify pin connections, wiring, etc.\r\n"));
+    #endif
+    #if defined (FAILURE_HANDLING)
+    failureDetected = 1;
+    #else
+    wait_ms(5000);
+    #endif
+}
+#endif
+/******************************************************************/
 
-  // Instead, we are going to block here until we get TX_DS (transmission completed and ack'd)
-  // or MAX_RT (maximum retries, transmission failed).  Also, we'll timeout in case the radio
-  // is flaky and we get neither.
-
-  // IN the end, the send should be blocking.  It comes back in 60ms worst case, or much faster
-  // if I tighted up the retry logic.  (Default settings will be 1500us.
-  // Monitor the send
-  uint8_t observe_tx;
-  uint8_t status;
-  uint32_t sent_at = mainTimer.read_ms();
-  const uint32_t timeout = 500; //ms to wait for timeout
-  do
-  {
-    status = read_register(OBSERVE_TX,&observe_tx,1);
-//    IF_SERIAL_DEBUG(Serial.print(observe_tx,HEX));
-  }
-  while( ! ( status & ( _BV(TX_DS) | _BV(MAX_RT) ) ) && ( mainTimer.read_ms() - sent_at < timeout ) );
+//Similar to the previous write, clears the interrupt flags
+bool RF24::write( const void* buf, uint8_t len, const bool multicast )
+{
+    //Start Writing
+    startFastWrite(buf,len,multicast);
 
-  // The part above is what you could recreate with your own interrupt handler,
-  // and then call this when you got an interrupt
-  // ------------
-
-  // Call this when you get an interrupt
-  // The status tells us three things
-  // * The send was successful (TX_DS)
-  // * The send failed, too many retries (MAX_RT)
-  // * There is an ack packet waiting (RX_DR)
-  bool tx_ok, tx_fail;
-  whatHappened(tx_ok,tx_fail,ack_payload_available);
-  
-  //printf("%u%u%u\r\n",tx_ok,tx_fail,ack_payload_available);
-
-  result = tx_ok;
-//  IF_SERIAL_DEBUG(Serial.print(result?"...OK.":"...Failed"));
+    //Wait until complete or failed
+    #if defined (FAILURE_HANDLING) 
+        uint32_t timer = mainTimer.read_ms();
+    #endif 
+    
+    while( ! ( get_status()  & ( _BV(TX_DS) | _BV(MAX_RT) ))) { 
+        #if defined (FAILURE_HANDLING)
+            if(mainTimer.read_ms() - timer > 85){           
+                errNotify();
+                #if defined (FAILURE_HANDLING)
+                  return 0;     
+                #else
+                  wait_ms(100);
+                #endif
+            }
+        #endif
+    }
+    
+    ce_pin=LOW;
 
-  // Handle the ack packet
-  if ( ack_payload_available )
-  {
-    ack_payload_length = getDynamicPayloadSize();
-//    IF_SERIAL_DEBUG(Serial.print("[AckPacket]/"));
-//    IF_SERIAL_DEBUG(Serial.println(ack_payload_length,DEC));
-  }
+    uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
 
-  // Yay, we are done.
-
-  // Power down
-//  powerDown();
+  //Max retries exceeded
+  if( status & _BV(MAX_RT)){
+    flush_tx(); //Only going to be 1 packet int the FIFO at a time using this method, so just flush
+    return 0;
+  }
+    //TX OK 1 or 0
+  return 1;
+}
 
-  // Flush buffers (Is this a relic of past experimentation, and not needed anymore?
-//  flush_tx();
-
-  return result;
+bool RF24::write( const void* buf, uint8_t len ){
+    return write(buf,len,0);
 }
 /****************************************************************************/
 
-void RF24::startWrite( const void* buf, uint8_t len )
+//For general use, the interrupt flags are not important to clear
+bool RF24::writeBlocking( const void* buf, uint8_t len, uint32_t timeout )
+{
+    //Block until the FIFO is NOT full.
+    //Keep track of the MAX retries and set auto-retry if seeing failures
+    //This way the FIFO will fill up and allow blocking until packets go through
+    //The radio will auto-clear everything in the FIFO as long as CE remains high
+
+    uint32_t timer = mainTimer.read_ms();                             //Get the time that the payload transmission started
+
+    while( ( get_status()  & ( _BV(TX_FULL) ))) {         //Blocking only if FIFO is full. This will loop and block until TX is successful or timeout
+
+        if( get_status() & _BV(MAX_RT)){                      //If MAX Retries have been reached
+            reUseTX();                                        //Set re-transmit and clear the MAX_RT interrupt flag
+            if(mainTimer.read_ms() - timer > timeout){ return 0; }        //If this payload has exceeded the user-defined timeout, exit and return 0
+        }
+        #if defined (FAILURE_HANDLING) 
+            if(mainTimer.read_ms() - timer > (timeout+85) ){            
+                errNotify();
+                #if defined (FAILURE_HANDLING)
+                return 0;           
+                #endif              
+            }
+        #endif
+
+    }
+
+    //Start Writing
+    startFastWrite(buf,len,0);                                //Write the payload if a buffer is clear
+
+    return 1;                                                 //Return 1 to indicate successful transmission
+}
+
+/****************************************************************************/
+
+void RF24::reUseTX(){
+        write_register(NRF_STATUS,_BV(MAX_RT) );              //Clear max retry flag
+        spiTrans( REUSE_TX_PL );
+        ce_pin=LOW;                                       //Re-Transfer packet
+        ce_pin=HIGH;
+}
+
+/****************************************************************************/
+
+bool RF24::writeFast( const void* buf, uint8_t len, const bool multicast )
 {
-  // Transmitter power-up
-  write_register(CONFIG, ( read_register(CONFIG) | _BV(PWR_UP) ) & ~_BV(PRIM_RX) );
-//  wait_msMicroseconds(150);
-    wait_us(130);
+    //Block until the FIFO is NOT full.
+    //Keep track of the MAX retries and set auto-retry if seeing failures
+    //Return 0 so the user can control the retrys and set a timer or failure counter if required
+    //The radio will auto-clear everything in the FIFO as long as CE remains high
+
+    #if defined (FAILURE_HANDLING) 
+        uint32_t timer = mainTimer.read_ms();
+    #endif
+    
+    while( ( get_status()  & ( _BV(TX_FULL) ))) {             //Blocking only if FIFO is full. This will loop and block until TX is successful or fail
+
+        if( get_status() & _BV(MAX_RT)){
+            //reUseTX();                                          //Set re-transmit
+            write_register(NRF_STATUS,_BV(MAX_RT) );              //Clear max retry flag
+            return 0;                                         //Return 0. The previous payload has been retransmitted
+                                                              //From the user perspective, if you get a 0, just keep trying to send the same payload
+        }
+        #if defined (FAILURE_HANDLING) 
+            if(mainTimer.read_ms() - timer > 85 ){          
+                errNotify();
+                #if defined (FAILURE_HANDLING)
+                return 0;                           
+                #endif
+            }
+        #endif
+    }
+             //Start Writing
+    startFastWrite(buf,len,multicast);
+
+    return 1;
+}
+
+bool RF24::writeFast( const void* buf, uint8_t len ){
+    return writeFast(buf,len,0);
+}
+
+/****************************************************************************/
+
+//Per the documentation, we want to set PTX Mode when not listening. Then all we do is write data and set CE high
+//In this mode, if we can keep the FIFO buffers loaded, packets will transmit immediately (no 130us delay)
+//Otherwise we enter Standby-II mode, which is still faster than standby mode
+//Also, we remove the need to keep writing the config register over and over and delaying for 150 us each time if sending a stream of data
+
+void RF24::startFastWrite( const void* buf, uint8_t len, const bool multicast, bool startTx){ //TMRh20
+
+    //write_payload( buf,len);
+    write_payload( buf, len,multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ;
+    if(startTx){
+        ce_pin=HIGH;
+    }
+
+}
+
+/****************************************************************************/
+
+//Added the original startWrite back in so users can still use interrupts, ack payloads, etc
+//Allows the library to pass all tests
+void RF24::startWrite( const void* buf, uint8_t len, const bool multicast ){
 
   // Send the payload
-  write_payload( buf, len );
+
+  //write_payload( buf, len );
+  write_payload( buf, len,multicast? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ;
+  ce_pin=HIGH;
+  
+    wait_us(10);
+  
+  ce_pin=LOW;
+
+
+}
+
+/****************************************************************************/
+
+bool RF24::rxFifoFull(){
+    return read_register(FIFO_STATUS) & _BV(RX_FULL);
+}
+/****************************************************************************/
+
+bool RF24::txStandBy(){
+
+    #if defined (FAILURE_HANDLING) 
+        uint32_t timeout = mainTimer.read_ms();
+    #endif
+    while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ){
+        if( get_status() & _BV(MAX_RT)){
+            write_register(NRF_STATUS,_BV(MAX_RT) );
+            ce_pin=LOW;
+            flush_tx();    //Non blocking, flush the data
+            return 0;
+        }
+        #if defined (FAILURE_HANDLING) 
+            if( mainTimer.read_ms() - timeout > 85){
+                errNotify();
+                #if defined (FAILURE_HANDLING)
+                return 0;   
+                #endif
+            }
+        #endif
+    }
 
-  // Allons!
-  ce(HIGH);
-//  wait_msMicroseconds(15);
-    wait_us(15); 
-  ce(LOW);
+    ce_pin=LOW;               //Set STANDBY-I mode
+    return 1;
+}
+
+/****************************************************************************/
+
+bool RF24::txStandBy(uint32_t timeout, bool startTx){
+
+    if(startTx){
+      stopListening();
+      ce_pin=HIGH;
+    }
+    uint32_t start = mainTimer.read_ms();
+
+    while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ){
+        if( get_status() & _BV(MAX_RT)){
+            write_register(NRF_STATUS,_BV(MAX_RT) );
+                ce_pin=LOW;                                          //Set re-transmit
+                ce_pin=HIGH;
+                if(mainTimer.read_ms() - start >= timeout){
+                    ce_pin=LOW;; flush_tx(); return 0;
+                }
+        }
+        #if defined (FAILURE_HANDLING) 
+            if( mainTimer.read_ms() - start > (timeout+85)){
+                errNotify();
+                #if defined (FAILURE_HANDLING)
+                return 0;   
+                #endif
+            }
+        #endif
+    }
+
+    
+    ce_pin=LOW;                   //Set STANDBY-I mode
+    return 1;
+
+}
+
+/****************************************************************************/
+
+void RF24::maskIRQ(bool tx, bool fail, bool rx){
+
+    write_register(CONFIG, ( read_register(CONFIG) ) | fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR  );
 }
 
 /****************************************************************************/
@@ -537,11 +1034,21 @@
 {
   uint8_t result = 0;
 
-  csn(LOW);
+  
+  
+  
+  
+  
+  
+  
+  
+  beginTransaction();
   spi.write( R_RX_PL_WID );
   result = spi.write(0xff);
-  csn(HIGH);
+  endTransaction();
 
+  
+  if(result > 32) { flush_rx(); wait_ms(2); return 0; }
   return result;
 }
 
@@ -556,45 +1063,32 @@
 
 bool RF24::available(uint8_t* pipe_num)
 {
-  uint8_t status = get_status();
-
-  // Too noisy, enable if you really want lots o data!!
-  //IF_SERIAL_DEBUG(print_status(status));
-
-  bool result = ( status & _BV(RX_DR) );
-
-  if (result)
-  {
-    // If the caller wants the pipe number, include that
-    if ( pipe_num )
-      *pipe_num = ( status >> RX_P_NO ) & 7;
+    if (!( read_register(FIFO_STATUS) & _BV(RX_EMPTY) )) {
 
-    // Clear the status bit
-
-    // ??? Should this REALLY be cleared now?  Or wait until we
-    // actually READ the payload?
-
-    write_register(STATUS,_BV(RX_DR) );
-
-    // Handle ack payload receipt
-    if ( status & _BV(TX_DS) )
-    {
-      write_register(STATUS,_BV(TX_DS));
+        // If the caller wants the pipe number, include that
+        if ( pipe_num ) {
+            uint8_t status = get_status();
+            *pipe_num = ( status >> RX_P_NO ) & 7;
+        }
+        return 1;
     }
-  }
-
-  return result;
+    
+    
+    return 0;
+    
+    
 }
 
 /****************************************************************************/
 
-bool RF24::read( void* buf, uint8_t len )
-{
+void RF24::read( void* buf, uint8_t len ){
+
   // Fetch the payload
   read_payload( buf, len );
 
-  // was this the last of the data available?
-  return read_register(FIFO_STATUS) & _BV(RX_EMPTY);
+  //Clear the two possible interrupt flags with one command
+  write_register(NRF_STATUS,_BV(RX_DR) | _BV(MAX_RT) | _BV(TX_DS) );
+
 }
 
 /****************************************************************************/
@@ -603,7 +1097,7 @@
 {
   // Read the status & reset the status in one easy call
   // Or is that such a good idea?
-  uint8_t status = write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
+  uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
 
   // Report to the user what happened
   tx_ok = status & _BV(TX_DS);
@@ -618,63 +1112,128 @@
   // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
   // expects it LSB first too, so we're good.
 
-  write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), 5);
-  write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), 5);
-
-  const uint8_t max_payload_size = 32;
-  write_register(RX_PW_P0,min(payload_size,max_payload_size));
+  write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), addr_width);
+  write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), addr_width);
+  
   
-  flush_tx();
+  //const uint8_t max_payload_size = 32;
+  //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
+  write_register(RX_PW_P0,payload_size);
 }
 
 /****************************************************************************/
+void RF24::openWritingPipe(const uint8_t *address)
+{
+  // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
+  // expects it LSB first too, so we're good.
 
-static const uint8_t child_pipe[]  =
+  write_register(RX_ADDR_P0,address, addr_width);
+  write_register(TX_ADDR, address, addr_width);
+
+  //const uint8_t max_payload_size = 32;
+  //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
+  write_register(RX_PW_P0,payload_size);
+}
+
+/****************************************************************************/
+static const uint8_t child_pipe[] PROGMEM =
 {
   RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5
 };
-static const uint8_t child_payload_size[]  =
+static const uint8_t child_payload_size[] PROGMEM =
 {
   RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5
 };
-static const uint8_t child_pipe_enable[]  =
-{
-  ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5
-};
+
 
 void RF24::openReadingPipe(uint8_t child, uint64_t address)
 {
   // If this is pipe 0, cache the address.  This is needed because
   // openWritingPipe() will overwrite the pipe 0 address, so
   // startListening() will have to restore it.
-  if (child == 0)
-    pipe0_reading_address = address;
+  if (child == 0){
+    memcpy(pipe0_reading_address,&address,addr_width);
+  }
 
   if (child <= 6)
   {
     // For pipes 2-5, only write the LSB
     if ( child < 2 )
-      write_register(child_pipe[child], reinterpret_cast<const uint8_t*>(&address), 5);
+      write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), addr_width);
     else
-      write_register(child_pipe[child], reinterpret_cast<const uint8_t*>(&address), 1);
+      write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), 1);
 
-    write_register(child_payload_size[child],payload_size);
+    write_register(pgm_read_byte(&child_payload_size[child]),payload_size);
 
     // Note it would be more efficient to set all of the bits for all open
     // pipes at once.  However, I thought it would make the calling code
     // more simple to do it this way.
-    write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(child_pipe_enable[child]));
+    write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
+  }
+}
+
+/****************************************************************************/
+void RF24::setAddressWidth(uint8_t a_width){
+
+    if(a_width -= 2){
+        write_register(SETUP_AW,a_width%4);
+        addr_width = (a_width%4) + 2;
+    }
+
+}
+
+/****************************************************************************/
+
+void RF24::openReadingPipe(uint8_t child, const uint8_t *address)
+{
+  // If this is pipe 0, cache the address.  This is needed because
+  // openWritingPipe() will overwrite the pipe 0 address, so
+  // startListening() will have to restore it.
+  if (child == 0){
+    memcpy(pipe0_reading_address,address,addr_width);
   }
+  if (child <= 6)
+  {
+    // For pipes 2-5, only write the LSB
+    if ( child < 2 ){
+      write_register(pgm_read_byte(&child_pipe[child]), address, addr_width);
+    }else{
+      write_register(pgm_read_byte(&child_pipe[child]), address, 1);
+    }
+    write_register(pgm_read_byte(&child_payload_size[child]),payload_size);
+
+    // Note it would be more efficient to set all of the bits for all open
+    // pipes at once.  However, I thought it would make the calling code
+    // more simple to do it this way.
+    write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
+
+  }
+}
+
+/****************************************************************************/
+
+void RF24::closeReadingPipe( uint8_t pipe )
+{
+  write_register(EN_RXADDR,read_register(EN_RXADDR) & ~_BV(pgm_read_byte(&child_pipe_enable[pipe])));
 }
 
 /****************************************************************************/
 
 void RF24::toggle_features(void)
 {
-  csn(LOW);
-  spi.write( ACTIVATE );
-  spi.write( 0x73 );
-  csn(HIGH);
+    beginTransaction();
+    spi.write( ACTIVATE );
+    spi.write( 0x73 );
+    endTransaction();
+    
+    
+    
+    
+    
+    
+    
+    
+    
 }
 
 /****************************************************************************/
@@ -682,17 +1241,12 @@
 void RF24::enableDynamicPayloads(void)
 {
   // Enable dynamic payload throughout the system
-  write_register(FEATURE,read_register(FEATURE) | _BV(EN_DPL) );
 
-  // If it didn't work, the features are not enabled
-  if ( ! read_register(FEATURE) )
-  {
-    // So enable them and try again
-    toggle_features();
+    //toggle_features();
     write_register(FEATURE,read_register(FEATURE) | _BV(EN_DPL) );
-  }
+
 
-//  IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
+  IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
 
   // Enable dynamic payload on all pipes
   //
@@ -711,23 +1265,31 @@
   // enable ack payload and dynamic payload features
   //
 
-  write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) );
+    //toggle_features();
+    write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) );
 
-  // If it didn't work, the features are not enabled
-  if ( ! read_register(FEATURE) )
-  {
-    // So enable them and try again
-    toggle_features();
-    write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) );
-  }
-
-//  IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
+  IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
 
   //
   // Enable dynamic payload on pipes 0 & 1
   //
 
   write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0));
+  dynamic_payloads_enabled = true;
+}
+
+/****************************************************************************/
+
+void RF24::enableDynamicAck(void){
+  //
+  // enable dynamic ack features
+  //
+    //toggle_features();
+    write_register(FEATURE,read_register(FEATURE) | _BV(EN_DYN_ACK) );
+
+  IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
+
+
 }
 
 /****************************************************************************/
@@ -736,23 +1298,22 @@
 {
   const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
 
-  csn(LOW);
-  spi.write( W_ACK_PAYLOAD | ( pipe & 7 ) );
-  const uint8_t max_payload_size = 32;
-  uint8_t data_len = min(len,max_payload_size);
+  uint8_t data_len = rf24_min(len,32);
+
+  beginTransaction();
+  spi.write(W_ACK_PAYLOAD | ( pipe & 7 ) );
+
   while ( data_len-- )
     spi.write(*current++);
+  endTransaction();
 
-  csn(HIGH);
 }
 
 /****************************************************************************/
 
 bool RF24::isAckPayloadAvailable(void)
 {
-  bool result = ack_payload_available;
-  ack_payload_available = false;
-  return result;
+  return ! (read_register(FIFO_STATUS) & _BV(RX_EMPTY));
 }
 
 /****************************************************************************/
@@ -807,63 +1368,27 @@
 
 /****************************************************************************/
 
-void RF24::setPALevel(rf24_pa_dbm_e level)
+void RF24::setPALevel(uint8_t level)
 {
-  uint8_t setup = read_register(RF_SETUP) ;
-  setup &= ~(_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
+
+  uint8_t setup = read_register(RF_SETUP) & 248;
 
-  // switch uses RAM (evil!)
-  if ( level == RF24_PA_MAX )
-  {
-    setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
-  }
-  else if ( level == RF24_PA_HIGH )
-  {
-    setup |= _BV(RF_PWR_HIGH) ;
-  }
-  else if ( level == RF24_PA_LOW )
-  {
-    setup |= _BV(RF_PWR_LOW);
-  }
-  else if ( level == RF24_PA_MIN )
-  {
-    // nothing
-  }
-  else if ( level == RF24_PA_ERROR )
-  {
-    // On error, go to maximum PA
-    setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
+  if(level > 3){                        // If invalid level, go to max PA
+      level = (RF24_PA_MAX << 1) + 1;       // +1 to support the SI24R1 chip extra bit
+  }else{
+      level = (level << 1) + 1;         // Else set level as requested
   }
 
-  write_register( RF_SETUP, setup ) ;
+
+  write_register( RF_SETUP, setup |= level ) ;  // Write it to the chip
 }
 
 /****************************************************************************/
 
-rf24_pa_dbm_e RF24::getPALevel(void)
+uint8_t RF24::getPALevel(void)
 {
-  rf24_pa_dbm_e result = RF24_PA_ERROR ;
-  uint8_t power = read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
 
-  // switch uses RAM (evil!)
-  if ( power == (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) )
-  {
-    result = RF24_PA_MAX ;
-  }
-  else if ( power == _BV(RF_PWR_HIGH) )
-  {
-    result = RF24_PA_HIGH ;
-  }
-  else if ( power == _BV(RF_PWR_LOW) )
-  {
-    result = RF24_PA_LOW ;
-  }
-  else
-  {
-    result = RF24_PA_MIN ;
-  }
-
-  return result ;
+  return (read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) >> 1 ;
 }
 
 /****************************************************************************/
@@ -874,14 +1399,17 @@
   uint8_t setup = read_register(RF_SETUP) ;
 
   // HIGH and LOW '00' is 1Mbs - our default
-  wide_band = false ;
   setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ;
+  
+
+    txRxDelay=85;
+
   if( speed == RF24_250KBPS )
   {
     // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
     // Making it '10'.
-    wide_band = false ;
     setup |= _BV( RF_DR_LOW ) ;
+    txRxDelay=155;
   }
   else
   {
@@ -889,13 +1417,8 @@
     // Making it '01'
     if ( speed == RF24_2MBPS )
     {
-      wide_band = true ;
       setup |= _BV(RF_DR_HIGH);
-    }
-    else
-    {
-      // 1Mbs
-      wide_band = false ;
+      txRxDelay=65;
     }
   }
   write_register(RF_SETUP,setup);
@@ -905,11 +1428,6 @@
   {
     result = true;
   }
-  else
-  {
-    wide_band = false;
-  }
-
   return result;
 }
 
@@ -919,7 +1437,7 @@
 {
   rf24_datarate_e result ;
   uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH));
-  
+
   // switch uses RAM (evil!)
   // Order matters in our case below
   if ( dr == _BV(RF_DR_LOW) )
@@ -945,10 +1463,11 @@
 void RF24::setCRCLength(rf24_crclength_e length)
 {
   uint8_t config = read_register(CONFIG) & ~( _BV(CRCO) | _BV(EN_CRC)) ;
- 
+
+  // switch uses RAM (evil!)
   if ( length == RF24_CRC_DISABLED )
   {
-    // Do nothing, we turned it off above. 
+    // Do nothing, we turned it off above.
   }
   else if ( length == RF24_CRC_8 )
   {
@@ -967,9 +1486,11 @@
 rf24_crclength_e RF24::getCRCLength(void)
 {
   rf24_crclength_e result = RF24_CRC_DISABLED;
+  
   uint8_t config = read_register(CONFIG) & ( _BV(CRCO) | _BV(EN_CRC)) ;
-
-  if ( config & _BV(EN_CRC ) )
+  uint8_t AA = read_register(EN_AA);
+  
+  if ( config & _BV(EN_CRC ) || AA)
   {
     if ( config & _BV(CRCO) )
       result = RF24_CRC_16;
@@ -993,11 +1514,3 @@
 {
  write_register(SETUP_RETR,(delay&0xf)<<ARD | (count&0xf)<<ARC);
 }
-
-uint8_t RF24::min(uint8_t a, uint8_t b)
-{
-    if(a < b)
-        return a;
-    else
-        return b;
-}