Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
mjr
Date:
Thu Apr 13 23:22:12 2017 +0000
Revision:
83:ea44e193fd55
Parent:
80:94dc2946871b
Child:
84:31e926f4f3bc
Fixed night mode button toggle problem

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 77:0b96f6867312 55 // Note that VP has built-in support for plunger devices like this one, but
mjr 77:0b96f6867312 56 // some VP tables can't use it without some additional scripting work. The
mjr 77:0b96f6867312 57 // Build Guide has advice on adjusting tables to add plunger support when
mjr 77:0b96f6867312 58 // necessary.
mjr 5:a70c0bce770d 59 //
mjr 6:cc35eb643e8f 60 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 61 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 62 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 63 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 64 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 65 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 66 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 67 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 68 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 69 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 70 //
mjr 17:ab3cec0c8bf4 71 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 72 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 73 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 74 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 75 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 76 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 77 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 78 //
mjr 77:0b96f6867312 79 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 80 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 81 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 82 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 83 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 143 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 144 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 145 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 146 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 147 // remote control transmitter feature below.
mjr 77:0b96f6867312 148 //
mjr 77:0b96f6867312 149 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 150 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 151 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 152 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 153 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 154 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 155 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 156 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 157 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 158 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 159 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 160 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 161 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 162 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 163 //
mjr 35:e959ffba78fd 164 //
mjr 35:e959ffba78fd 165 //
mjr 33:d832bcab089e 166 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 167 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 168 //
mjr 48:058ace2aed1d 169 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 170 //
mjr 48:058ace2aed1d 171 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 172 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 173 // has been established)
mjr 48:058ace2aed1d 174 //
mjr 48:058ace2aed1d 175 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 176 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 177 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 178 //
mjr 38:091e511ce8a0 179 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 180 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 181 // transmissions are failing.
mjr 38:091e511ce8a0 182 //
mjr 73:4e8ce0b18915 183 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 184 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 185 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 186 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 187 // enabled.
mjr 73:4e8ce0b18915 188 //
mjr 6:cc35eb643e8f 189 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 190 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 191 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 192 // no plunger sensor configured.
mjr 6:cc35eb643e8f 193 //
mjr 38:091e511ce8a0 194 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 195 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 196 //
mjr 48:058ace2aed1d 197 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 198 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 199 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 200 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 201 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 202 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 203 //
mjr 48:058ace2aed1d 204 //
mjr 48:058ace2aed1d 205 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 206 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 207 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 208 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 209 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 210 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 211 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 212 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 213
mjr 33:d832bcab089e 214
mjr 0:5acbbe3f4cf4 215 #include "mbed.h"
mjr 6:cc35eb643e8f 216 #include "math.h"
mjr 74:822a92bc11d2 217 #include "diags.h"
mjr 48:058ace2aed1d 218 #include "pinscape.h"
mjr 79:682ae3171a08 219 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 220 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 221 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 222 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 223 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 224 #include "crc32.h"
mjr 26:cb71c4af2912 225 #include "TLC5940.h"
mjr 34:6b981a2afab7 226 #include "74HC595.h"
mjr 35:e959ffba78fd 227 #include "nvm.h"
mjr 35:e959ffba78fd 228 #include "plunger.h"
mjr 35:e959ffba78fd 229 #include "ccdSensor.h"
mjr 35:e959ffba78fd 230 #include "potSensor.h"
mjr 35:e959ffba78fd 231 #include "nullSensor.h"
mjr 48:058ace2aed1d 232 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 233 #include "IRReceiver.h"
mjr 77:0b96f6867312 234 #include "IRTransmitter.h"
mjr 77:0b96f6867312 235 #include "NewPwm.h"
mjr 74:822a92bc11d2 236
mjr 2:c174f9ee414a 237
mjr 21:5048e16cc9ef 238 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 239 #include "config.h"
mjr 17:ab3cec0c8bf4 240
mjr 76:7f5912b6340e 241 // forward declarations
mjr 76:7f5912b6340e 242 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 243
mjr 53:9b2611964afc 244 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 245 //
mjr 53:9b2611964afc 246 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 247 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 248 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 249 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 250 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 251 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 252 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 253 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 254 // interface.
mjr 53:9b2611964afc 255 //
mjr 53:9b2611964afc 256 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 257 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 258 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 259 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 260 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 261 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 262 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 263 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 264 //
mjr 53:9b2611964afc 265 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 266 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 267 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 268 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 269 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 270 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 271 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 272 //
mjr 53:9b2611964afc 273 const char *getOpenSDAID()
mjr 53:9b2611964afc 274 {
mjr 53:9b2611964afc 275 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 276 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 277 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 278
mjr 53:9b2611964afc 279 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 280 }
mjr 53:9b2611964afc 281
mjr 53:9b2611964afc 282 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 283 //
mjr 53:9b2611964afc 284 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 285 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 286 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 287 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 288 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 289 // want from this.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 292 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 293 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 294 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 295 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 296 // macros.
mjr 53:9b2611964afc 297 //
mjr 53:9b2611964afc 298 const char *getBuildID()
mjr 53:9b2611964afc 299 {
mjr 53:9b2611964afc 300 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 301 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 302 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 303
mjr 53:9b2611964afc 304 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 305 }
mjr 53:9b2611964afc 306
mjr 74:822a92bc11d2 307 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 308 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 309 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 310 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 311 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 312 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 313 Timer mainLoopTimer;
mjr 76:7f5912b6340e 314 #endif
mjr 76:7f5912b6340e 315
mjr 53:9b2611964afc 316
mjr 5:a70c0bce770d 317 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 318 //
mjr 38:091e511ce8a0 319 // Forward declarations
mjr 38:091e511ce8a0 320 //
mjr 38:091e511ce8a0 321 void setNightMode(bool on);
mjr 38:091e511ce8a0 322 void toggleNightMode();
mjr 38:091e511ce8a0 323
mjr 38:091e511ce8a0 324 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 325 // utilities
mjr 17:ab3cec0c8bf4 326
mjr 77:0b96f6867312 327 // int/float point square of a number
mjr 77:0b96f6867312 328 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 329 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 330
mjr 26:cb71c4af2912 331 // floating point rounding
mjr 26:cb71c4af2912 332 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 333
mjr 17:ab3cec0c8bf4 334
mjr 33:d832bcab089e 335 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 336 //
mjr 40:cc0d9814522b 337 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 338 // the running state.
mjr 40:cc0d9814522b 339 //
mjr 77:0b96f6867312 340 class ExtTimer: public Timer
mjr 40:cc0d9814522b 341 {
mjr 40:cc0d9814522b 342 public:
mjr 77:0b96f6867312 343 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 344
mjr 40:cc0d9814522b 345 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 346 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 347
mjr 40:cc0d9814522b 348 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 349
mjr 40:cc0d9814522b 350 private:
mjr 40:cc0d9814522b 351 bool running;
mjr 40:cc0d9814522b 352 };
mjr 40:cc0d9814522b 353
mjr 53:9b2611964afc 354
mjr 53:9b2611964afc 355 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 356 //
mjr 33:d832bcab089e 357 // USB product version number
mjr 5:a70c0bce770d 358 //
mjr 47:df7a88cd249c 359 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 6:cc35eb643e8f 363 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 364 //
mjr 6:cc35eb643e8f 365 #define JOYMAX 4096
mjr 6:cc35eb643e8f 366
mjr 9:fd65b0a94720 367
mjr 17:ab3cec0c8bf4 368 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 369 //
mjr 40:cc0d9814522b 370 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 371 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 372 //
mjr 35:e959ffba78fd 373
mjr 35:e959ffba78fd 374 // unsigned 16-bit integer
mjr 35:e959ffba78fd 375 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 376 {
mjr 35:e959ffba78fd 377 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 378 }
mjr 40:cc0d9814522b 379 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 380 {
mjr 40:cc0d9814522b 381 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 382 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 383 }
mjr 35:e959ffba78fd 384
mjr 35:e959ffba78fd 385 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 386 {
mjr 35:e959ffba78fd 387 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 388 }
mjr 40:cc0d9814522b 389 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 390 {
mjr 40:cc0d9814522b 391 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 392 }
mjr 35:e959ffba78fd 393
mjr 35:e959ffba78fd 394 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 395 {
mjr 35:e959ffba78fd 396 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 397 }
mjr 40:cc0d9814522b 398 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 399 {
mjr 40:cc0d9814522b 400 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 401 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 402 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 403 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 404 }
mjr 35:e959ffba78fd 405
mjr 35:e959ffba78fd 406 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 407 {
mjr 35:e959ffba78fd 408 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 409 }
mjr 35:e959ffba78fd 410
mjr 53:9b2611964afc 411 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 412 //
mjr 53:9b2611964afc 413 // The internal mbed PinName format is
mjr 53:9b2611964afc 414 //
mjr 53:9b2611964afc 415 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 416 //
mjr 53:9b2611964afc 417 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 418 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 419 //
mjr 53:9b2611964afc 420 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 421 // pin name fits in 8 bits:
mjr 53:9b2611964afc 422 //
mjr 53:9b2611964afc 423 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 424 //
mjr 53:9b2611964afc 425 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 426 //
mjr 53:9b2611964afc 427 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 428 //
mjr 53:9b2611964afc 429 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 430 {
mjr 53:9b2611964afc 431 if (c == 0xFF)
mjr 53:9b2611964afc 432 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 433 else
mjr 53:9b2611964afc 434 return PinName(
mjr 53:9b2611964afc 435 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 436 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 437 }
mjr 40:cc0d9814522b 438 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 439 {
mjr 53:9b2611964afc 440 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 441 }
mjr 35:e959ffba78fd 442
mjr 35:e959ffba78fd 443
mjr 35:e959ffba78fd 444 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 445 //
mjr 38:091e511ce8a0 446 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 447 //
mjr 38:091e511ce8a0 448 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 449 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 450 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 451 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 452 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 453 // SPI capability.
mjr 38:091e511ce8a0 454 //
mjr 38:091e511ce8a0 455 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 456
mjr 73:4e8ce0b18915 457 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 458 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 459 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 460 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 461
mjr 38:091e511ce8a0 462 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 463 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 464 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 465 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 466 {
mjr 73:4e8ce0b18915 467 // remember the new state
mjr 73:4e8ce0b18915 468 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 469
mjr 73:4e8ce0b18915 470 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 471 // applying it to the blue LED
mjr 73:4e8ce0b18915 472 if (diagLEDState == 0)
mjr 77:0b96f6867312 473 {
mjr 77:0b96f6867312 474 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 475 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 476 }
mjr 73:4e8ce0b18915 477
mjr 73:4e8ce0b18915 478 // set the new state
mjr 38:091e511ce8a0 479 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 480 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 481 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 482 }
mjr 38:091e511ce8a0 483
mjr 73:4e8ce0b18915 484 // update the LEDs with the current state
mjr 73:4e8ce0b18915 485 void diagLED(void)
mjr 73:4e8ce0b18915 486 {
mjr 73:4e8ce0b18915 487 diagLED(
mjr 73:4e8ce0b18915 488 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 489 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 490 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 491 }
mjr 73:4e8ce0b18915 492
mjr 38:091e511ce8a0 493 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 494 // an on-board LED segment
mjr 38:091e511ce8a0 495 struct LedSeg
mjr 38:091e511ce8a0 496 {
mjr 38:091e511ce8a0 497 bool r, g, b;
mjr 38:091e511ce8a0 498 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 499
mjr 38:091e511ce8a0 500 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 501 {
mjr 38:091e511ce8a0 502 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 503 // our on-board LED segments
mjr 38:091e511ce8a0 504 int t = pc.typ;
mjr 38:091e511ce8a0 505 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 506 {
mjr 38:091e511ce8a0 507 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 508 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 509 if (pin == LED1)
mjr 38:091e511ce8a0 510 r = true;
mjr 38:091e511ce8a0 511 else if (pin == LED2)
mjr 38:091e511ce8a0 512 g = true;
mjr 38:091e511ce8a0 513 else if (pin == LED3)
mjr 38:091e511ce8a0 514 b = true;
mjr 38:091e511ce8a0 515 }
mjr 38:091e511ce8a0 516 }
mjr 38:091e511ce8a0 517 };
mjr 38:091e511ce8a0 518
mjr 38:091e511ce8a0 519 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 520 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 521 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 522 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 523 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 524 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 525 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 526 {
mjr 38:091e511ce8a0 527 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 528 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 529 LedSeg l;
mjr 38:091e511ce8a0 530 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 531 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 532
mjr 38:091e511ce8a0 533 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 534 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 535 // LedWiz use.
mjr 38:091e511ce8a0 536 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 537 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 538 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 539 }
mjr 38:091e511ce8a0 540
mjr 38:091e511ce8a0 541
mjr 38:091e511ce8a0 542 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 543 //
mjr 76:7f5912b6340e 544 // LedWiz emulation
mjr 76:7f5912b6340e 545 //
mjr 76:7f5912b6340e 546
mjr 76:7f5912b6340e 547 // LedWiz output states.
mjr 76:7f5912b6340e 548 //
mjr 76:7f5912b6340e 549 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 550 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 551 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 552 // The two axes are independent.
mjr 76:7f5912b6340e 553 //
mjr 76:7f5912b6340e 554 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 555 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 556 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 557 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 558 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 559 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 560 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 561 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 562
mjr 76:7f5912b6340e 563 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 564 static uint8_t *wizOn;
mjr 76:7f5912b6340e 565
mjr 76:7f5912b6340e 566 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 567 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 568 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 569 //
mjr 76:7f5912b6340e 570 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 571 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 572 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 573 // 130 = flash on / off
mjr 76:7f5912b6340e 574 // 131 = on / ramp down
mjr 76:7f5912b6340e 575 // 132 = ramp up / on
mjr 5:a70c0bce770d 576 //
mjr 76:7f5912b6340e 577 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 578 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 579 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 580 static uint8_t *wizVal;
mjr 76:7f5912b6340e 581
mjr 76:7f5912b6340e 582 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 583 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 584 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 585 // by the extended protocol:
mjr 76:7f5912b6340e 586 //
mjr 76:7f5912b6340e 587 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 588 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 589 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 590 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 591 // if the brightness is non-zero.
mjr 76:7f5912b6340e 592 //
mjr 76:7f5912b6340e 593 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 594 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 595 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 596 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 597 // 0..255 range.
mjr 26:cb71c4af2912 598 //
mjr 76:7f5912b6340e 599 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 600 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 601 // level.
mjr 26:cb71c4af2912 602 //
mjr 76:7f5912b6340e 603 static uint8_t *outLevel;
mjr 76:7f5912b6340e 604
mjr 76:7f5912b6340e 605
mjr 76:7f5912b6340e 606 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 607 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 608 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 609 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 610 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 611 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 612 //
mjr 76:7f5912b6340e 613 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 614 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 615 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 616 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 617 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 618 // at the maximum size.
mjr 76:7f5912b6340e 619 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 620 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 621
mjr 26:cb71c4af2912 622 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 623 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 624 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 625 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 626 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 627
mjr 76:7f5912b6340e 628
mjr 76:7f5912b6340e 629 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 630 //
mjr 76:7f5912b6340e 631 // Output Ports
mjr 76:7f5912b6340e 632 //
mjr 76:7f5912b6340e 633 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 634 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 635 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 636 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 637 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 638 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 639 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 640 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 641 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 642 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 643 // you have to ration pins among features.
mjr 76:7f5912b6340e 644 //
mjr 76:7f5912b6340e 645 // To overcome some of these limitations, we also provide two types of
mjr 76:7f5912b6340e 646 // peripheral controllers that allow adding many more outputs, using only
mjr 76:7f5912b6340e 647 // a small number of GPIO pins to interface with the peripherals. First,
mjr 76:7f5912b6340e 648 // we support TLC5940 PWM controller chips. Each TLC5940 provides 16 ports
mjr 76:7f5912b6340e 649 // with full PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 76:7f5912b6340e 650 // chip only requires 5 GPIO pins for the interface, no matter how many
mjr 76:7f5912b6340e 651 // chips are in the chain, so it effectively converts 5 GPIO pins into
mjr 76:7f5912b6340e 652 // almost any number of PWM outputs. Second, we support 74HC595 chips.
mjr 76:7f5912b6340e 653 // These provide only digital outputs, but like the TLC5940 they can be
mjr 76:7f5912b6340e 654 // daisy-chained to provide almost unlimited outputs with a few GPIO pins
mjr 76:7f5912b6340e 655 // to control the whole chain.
mjr 76:7f5912b6340e 656 //
mjr 76:7f5912b6340e 657 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 658 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 659 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 660 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 661 //
mjr 76:7f5912b6340e 662 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 663 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 664 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 665 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 666 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 667 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 668 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 669 // of physical devices they're connected to.
mjr 76:7f5912b6340e 670
mjr 76:7f5912b6340e 671
mjr 26:cb71c4af2912 672 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 673 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 674 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 675 class LwOut
mjr 6:cc35eb643e8f 676 {
mjr 6:cc35eb643e8f 677 public:
mjr 40:cc0d9814522b 678 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 679 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 680 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 681 };
mjr 26:cb71c4af2912 682
mjr 35:e959ffba78fd 683 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 684 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 685 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 686 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 687 // numbering.
mjr 35:e959ffba78fd 688 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 689 {
mjr 33:d832bcab089e 690 public:
mjr 35:e959ffba78fd 691 LwVirtualOut() { }
mjr 40:cc0d9814522b 692 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 693 };
mjr 26:cb71c4af2912 694
mjr 34:6b981a2afab7 695 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 696 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 697 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 698 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 699 {
mjr 34:6b981a2afab7 700 public:
mjr 34:6b981a2afab7 701 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 702 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 703
mjr 34:6b981a2afab7 704 private:
mjr 53:9b2611964afc 705 // underlying physical output
mjr 34:6b981a2afab7 706 LwOut *out;
mjr 34:6b981a2afab7 707 };
mjr 34:6b981a2afab7 708
mjr 53:9b2611964afc 709 // Global ZB Launch Ball state
mjr 53:9b2611964afc 710 bool zbLaunchOn = false;
mjr 53:9b2611964afc 711
mjr 53:9b2611964afc 712 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 713 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 714 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 715 {
mjr 53:9b2611964afc 716 public:
mjr 53:9b2611964afc 717 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 718 virtual void set(uint8_t val)
mjr 53:9b2611964afc 719 {
mjr 53:9b2611964afc 720 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 721 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 722
mjr 53:9b2611964afc 723 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 724 out->set(val);
mjr 53:9b2611964afc 725 }
mjr 53:9b2611964afc 726
mjr 53:9b2611964afc 727 private:
mjr 53:9b2611964afc 728 // underlying physical or virtual output
mjr 53:9b2611964afc 729 LwOut *out;
mjr 53:9b2611964afc 730 };
mjr 53:9b2611964afc 731
mjr 53:9b2611964afc 732
mjr 40:cc0d9814522b 733 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 734 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 735 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 736 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 737 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 738 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 739 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 740 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 741 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 742 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 743 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 744 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 745 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 746 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 747 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 748 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 749 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 750 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 751 };
mjr 40:cc0d9814522b 752
mjr 40:cc0d9814522b 753 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 754 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 755 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 756 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 757 {
mjr 40:cc0d9814522b 758 public:
mjr 40:cc0d9814522b 759 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 760 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 761
mjr 40:cc0d9814522b 762 private:
mjr 40:cc0d9814522b 763 LwOut *out;
mjr 40:cc0d9814522b 764 };
mjr 40:cc0d9814522b 765
mjr 77:0b96f6867312 766 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 767 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 768 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 769 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 770
mjr 40:cc0d9814522b 771 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 772 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 773 // mode is engaged.
mjr 40:cc0d9814522b 774 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 775 {
mjr 40:cc0d9814522b 776 public:
mjr 40:cc0d9814522b 777 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 778 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 779
mjr 53:9b2611964afc 780 private:
mjr 53:9b2611964afc 781 LwOut *out;
mjr 53:9b2611964afc 782 };
mjr 53:9b2611964afc 783
mjr 53:9b2611964afc 784 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 785 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 786 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 787 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 788 {
mjr 53:9b2611964afc 789 public:
mjr 53:9b2611964afc 790 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 791 virtual void set(uint8_t)
mjr 53:9b2611964afc 792 {
mjr 53:9b2611964afc 793 // ignore the host value and simply show the current
mjr 53:9b2611964afc 794 // night mode setting
mjr 53:9b2611964afc 795 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 796 }
mjr 40:cc0d9814522b 797
mjr 40:cc0d9814522b 798 private:
mjr 40:cc0d9814522b 799 LwOut *out;
mjr 40:cc0d9814522b 800 };
mjr 40:cc0d9814522b 801
mjr 26:cb71c4af2912 802
mjr 35:e959ffba78fd 803 //
mjr 35:e959ffba78fd 804 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 805 // assignments set in config.h.
mjr 33:d832bcab089e 806 //
mjr 35:e959ffba78fd 807 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 808 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 809 {
mjr 35:e959ffba78fd 810 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 811 {
mjr 53:9b2611964afc 812 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 813 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 814 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 815 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 816 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 817 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 818 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 819 }
mjr 35:e959ffba78fd 820 }
mjr 26:cb71c4af2912 821
mjr 40:cc0d9814522b 822 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 823 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 824 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 825 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 826 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 827 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 828 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 829 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 830 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 831 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 832 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 833 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 834 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 835 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 836 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 837 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 838 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 839 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 840 };
mjr 40:cc0d9814522b 841
mjr 40:cc0d9814522b 842 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 843 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 844 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 845 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 846 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 847 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 848 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 849 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 850 // are always 8 bits.
mjr 40:cc0d9814522b 851 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 852 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 853 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 854 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 855 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 856 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 857 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 858 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 859 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 860 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 861 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 862 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 863 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 864 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 865 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 866 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 867 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 868 };
mjr 40:cc0d9814522b 869
mjr 26:cb71c4af2912 870 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 871 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 872 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 873 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 874 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 875 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 876 {
mjr 26:cb71c4af2912 877 public:
mjr 60:f38da020aa13 878 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 879 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 880 {
mjr 26:cb71c4af2912 881 if (val != prv)
mjr 40:cc0d9814522b 882 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 883 }
mjr 60:f38da020aa13 884 uint8_t idx;
mjr 40:cc0d9814522b 885 uint8_t prv;
mjr 26:cb71c4af2912 886 };
mjr 26:cb71c4af2912 887
mjr 40:cc0d9814522b 888 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 889 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 890 {
mjr 40:cc0d9814522b 891 public:
mjr 60:f38da020aa13 892 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 893 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 894 {
mjr 40:cc0d9814522b 895 if (val != prv)
mjr 40:cc0d9814522b 896 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 897 }
mjr 60:f38da020aa13 898 uint8_t idx;
mjr 40:cc0d9814522b 899 uint8_t prv;
mjr 40:cc0d9814522b 900 };
mjr 40:cc0d9814522b 901
mjr 40:cc0d9814522b 902
mjr 33:d832bcab089e 903
mjr 34:6b981a2afab7 904 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 905 // config.h.
mjr 35:e959ffba78fd 906 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 907
mjr 35:e959ffba78fd 908 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 909 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 910 {
mjr 35:e959ffba78fd 911 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 912 {
mjr 53:9b2611964afc 913 hc595 = new HC595(
mjr 53:9b2611964afc 914 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 915 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 916 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 917 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 918 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 919 hc595->init();
mjr 35:e959ffba78fd 920 hc595->update();
mjr 35:e959ffba78fd 921 }
mjr 35:e959ffba78fd 922 }
mjr 34:6b981a2afab7 923
mjr 34:6b981a2afab7 924 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 925 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 926 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 927 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 928 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 929 class Lw595Out: public LwOut
mjr 33:d832bcab089e 930 {
mjr 33:d832bcab089e 931 public:
mjr 60:f38da020aa13 932 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 933 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 934 {
mjr 34:6b981a2afab7 935 if (val != prv)
mjr 40:cc0d9814522b 936 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 937 }
mjr 60:f38da020aa13 938 uint8_t idx;
mjr 40:cc0d9814522b 939 uint8_t prv;
mjr 33:d832bcab089e 940 };
mjr 33:d832bcab089e 941
mjr 26:cb71c4af2912 942
mjr 40:cc0d9814522b 943
mjr 64:ef7ca92dff36 944 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 945 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 946 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 947 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 948 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 949 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 950 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 951 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 952 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 953 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 954 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 955 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 956 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 957 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 958 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 959 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 960 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 961 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 962 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 963 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 964 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 965 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 966 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 967 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 968 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 969 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 970 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 971 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 972 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 973 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 974 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 975 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 976 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 977 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 978 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 979 };
mjr 26:cb71c4af2912 980
mjr 64:ef7ca92dff36 981
mjr 64:ef7ca92dff36 982 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 983 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 984 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 985 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 986 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 987 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 988 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 989 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 990 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 991 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 992 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 993 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 994 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 995 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 996 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 997 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 998 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 999 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1000 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1001 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1002 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1003 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1004 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1005 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1006 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1007 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1008 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1009 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1010 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1011 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1012 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1013 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1014 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1015 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1016 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1017 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1018 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1019 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1020 };
mjr 64:ef7ca92dff36 1021
mjr 77:0b96f6867312 1022 // Polled-update PWM output list
mjr 74:822a92bc11d2 1023 //
mjr 77:0b96f6867312 1024 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1025 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1026 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1027 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1028 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1029 //
mjr 77:0b96f6867312 1030 // Our solution is to simply repeat all PWM updates periodically. If a write
mjr 77:0b96f6867312 1031 // is lost on one cycle, it'll eventually be applied on a subseuqent periodic
mjr 77:0b96f6867312 1032 // update. For low overhead, we do these repeat updates periodically during
mjr 77:0b96f6867312 1033 // the main loop.
mjr 74:822a92bc11d2 1034 //
mjr 77:0b96f6867312 1035 // The mbed library has its own solution to this bug, but it creates a
mjr 77:0b96f6867312 1036 // separate problem of its own. The mbed solution is to write the value
mjr 77:0b96f6867312 1037 // register immediately, and then also reset the "count" register in the
mjr 77:0b96f6867312 1038 // TPM unit containing the output. The count reset truncates the current
mjr 77:0b96f6867312 1039 // PWM cycle, which avoids the hardware problem with more than one write per
mjr 77:0b96f6867312 1040 // cycle. The problem is that the truncated cycle causes visible flicker if
mjr 77:0b96f6867312 1041 // the output is connected to an LED. This is particularly noticeable during
mjr 77:0b96f6867312 1042 // fades, when we're updating the value register repeatedly and rapidly: an
mjr 77:0b96f6867312 1043 // attempt to fade from fully on to fully off causes rapid fluttering and
mjr 77:0b96f6867312 1044 // flashing rather than a smooth brightness fade.
mjr 74:822a92bc11d2 1045 //
mjr 77:0b96f6867312 1046 // The hardware bug is a case of good intentions gone bad. The hardware is
mjr 77:0b96f6867312 1047 // *supposed* to make it easy for software to avoid glitching during PWM
mjr 77:0b96f6867312 1048 // updates, by providing a staging register in front of the real value
mjr 77:0b96f6867312 1049 // register. The software actually writes to the staging register, which
mjr 77:0b96f6867312 1050 // holds updates until the end of the cycle, at which point the hardware
mjr 77:0b96f6867312 1051 // automatically moves the value from the staging register into the real
mjr 77:0b96f6867312 1052 // register. This ensures that the real register is always updated exactly
mjr 77:0b96f6867312 1053 // at a cycle boundary, which in turn ensures that there's no flicker when
mjr 77:0b96f6867312 1054 // values are updated. A great design - except that it doesn't quite work.
mjr 77:0b96f6867312 1055 // The problem is that the staging register actually seems to be implemented
mjr 77:0b96f6867312 1056 // as a one-element FIFO in "stop when full" mode. That is, when you write
mjr 77:0b96f6867312 1057 // the FIFO, it becomes full. When the cycle ends and the hardware reads it
mjr 77:0b96f6867312 1058 // to move the staged value into the real register, the FIFO becomes empty.
mjr 77:0b96f6867312 1059 // But if you try to write the FIFO twice before the hardware reads it and
mjr 77:0b96f6867312 1060 // empties it, the second write fails, leaving the first value in the queue.
mjr 77:0b96f6867312 1061 // There doesn't seem to be any way to clear the FIFO from software, so you
mjr 77:0b96f6867312 1062 // just have to wait for the cycle to end before writing another update.
mjr 77:0b96f6867312 1063 // That more or less defeats the purpose of the staging register, whose whole
mjr 77:0b96f6867312 1064 // point is to free software from worrying about timing considerations with
mjr 77:0b96f6867312 1065 // updates. It frees us of the need to align our timing on cycle boundaries,
mjr 77:0b96f6867312 1066 // but it leaves us with the need to limit writes to once per cycle.
mjr 74:822a92bc11d2 1067 //
mjr 77:0b96f6867312 1068 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1069 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1070 // of polled items.
mjr 74:822a92bc11d2 1071 static int numPolledPwm;
mjr 74:822a92bc11d2 1072 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1073
mjr 74:822a92bc11d2 1074 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1075 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1076 {
mjr 6:cc35eb643e8f 1077 public:
mjr 43:7a6364d82a41 1078 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1079 {
mjr 77:0b96f6867312 1080 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1081 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1082 polledPwm[numPolledPwm++] = this;
mjr 77:0b96f6867312 1083
mjr 77:0b96f6867312 1084 // set the initial value
mjr 77:0b96f6867312 1085 set(initVal);
mjr 43:7a6364d82a41 1086 }
mjr 74:822a92bc11d2 1087
mjr 40:cc0d9814522b 1088 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1089 {
mjr 77:0b96f6867312 1090 // save the new value
mjr 74:822a92bc11d2 1091 this->val = val;
mjr 77:0b96f6867312 1092
mjr 77:0b96f6867312 1093 // commit it to the hardware
mjr 77:0b96f6867312 1094 commit();
mjr 13:72dda449c3c0 1095 }
mjr 74:822a92bc11d2 1096
mjr 74:822a92bc11d2 1097 // handle periodic update polling
mjr 74:822a92bc11d2 1098 void poll()
mjr 74:822a92bc11d2 1099 {
mjr 77:0b96f6867312 1100 commit();
mjr 74:822a92bc11d2 1101 }
mjr 74:822a92bc11d2 1102
mjr 74:822a92bc11d2 1103 protected:
mjr 77:0b96f6867312 1104 virtual void commit()
mjr 74:822a92bc11d2 1105 {
mjr 74:822a92bc11d2 1106 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1107 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1108 }
mjr 74:822a92bc11d2 1109
mjr 77:0b96f6867312 1110 NewPwmOut p;
mjr 77:0b96f6867312 1111 uint8_t val;
mjr 6:cc35eb643e8f 1112 };
mjr 26:cb71c4af2912 1113
mjr 74:822a92bc11d2 1114 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1115 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1116 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1117 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1118 {
mjr 64:ef7ca92dff36 1119 public:
mjr 64:ef7ca92dff36 1120 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1121 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1122 {
mjr 64:ef7ca92dff36 1123 }
mjr 74:822a92bc11d2 1124
mjr 74:822a92bc11d2 1125 protected:
mjr 77:0b96f6867312 1126 virtual void commit()
mjr 64:ef7ca92dff36 1127 {
mjr 74:822a92bc11d2 1128 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1129 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1130 }
mjr 64:ef7ca92dff36 1131 };
mjr 64:ef7ca92dff36 1132
mjr 74:822a92bc11d2 1133 // poll the PWM outputs
mjr 74:822a92bc11d2 1134 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1135 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1136 void pollPwmUpdates()
mjr 74:822a92bc11d2 1137 {
mjr 74:822a92bc11d2 1138 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1139 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1140 {
mjr 74:822a92bc11d2 1141 // time the run for statistics collection
mjr 74:822a92bc11d2 1142 IF_DIAG(
mjr 74:822a92bc11d2 1143 Timer t;
mjr 74:822a92bc11d2 1144 t.start();
mjr 74:822a92bc11d2 1145 )
mjr 74:822a92bc11d2 1146
mjr 74:822a92bc11d2 1147 // poll each output
mjr 74:822a92bc11d2 1148 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1149 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1150
mjr 74:822a92bc11d2 1151 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1152 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1153
mjr 74:822a92bc11d2 1154 // collect statistics
mjr 74:822a92bc11d2 1155 IF_DIAG(
mjr 76:7f5912b6340e 1156 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1157 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1158 )
mjr 74:822a92bc11d2 1159 }
mjr 74:822a92bc11d2 1160 }
mjr 64:ef7ca92dff36 1161
mjr 26:cb71c4af2912 1162 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1163 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1164 {
mjr 6:cc35eb643e8f 1165 public:
mjr 43:7a6364d82a41 1166 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1167 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1168 {
mjr 13:72dda449c3c0 1169 if (val != prv)
mjr 40:cc0d9814522b 1170 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1171 }
mjr 6:cc35eb643e8f 1172 DigitalOut p;
mjr 40:cc0d9814522b 1173 uint8_t prv;
mjr 6:cc35eb643e8f 1174 };
mjr 26:cb71c4af2912 1175
mjr 29:582472d0bc57 1176 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1177 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1178 // port n (0-based).
mjr 35:e959ffba78fd 1179 //
mjr 35:e959ffba78fd 1180 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1181 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1182 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1183 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1184 // 74HC595 ports).
mjr 33:d832bcab089e 1185 static int numOutputs;
mjr 33:d832bcab089e 1186 static LwOut **lwPin;
mjr 33:d832bcab089e 1187
mjr 38:091e511ce8a0 1188 // create a single output pin
mjr 53:9b2611964afc 1189 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1190 {
mjr 38:091e511ce8a0 1191 // get this item's values
mjr 38:091e511ce8a0 1192 int typ = pc.typ;
mjr 38:091e511ce8a0 1193 int pin = pc.pin;
mjr 38:091e511ce8a0 1194 int flags = pc.flags;
mjr 40:cc0d9814522b 1195 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1196 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1197 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1198
mjr 38:091e511ce8a0 1199 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1200 LwOut *lwp;
mjr 38:091e511ce8a0 1201 switch (typ)
mjr 38:091e511ce8a0 1202 {
mjr 38:091e511ce8a0 1203 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1204 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1205 if (pin != 0)
mjr 64:ef7ca92dff36 1206 {
mjr 64:ef7ca92dff36 1207 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1208 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1209 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1210 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1211 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1212 {
mjr 64:ef7ca92dff36 1213 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1214 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1215
mjr 64:ef7ca92dff36 1216 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1217 gamma = false;
mjr 64:ef7ca92dff36 1218 }
mjr 64:ef7ca92dff36 1219 else
mjr 64:ef7ca92dff36 1220 {
mjr 64:ef7ca92dff36 1221 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1222 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1223 }
mjr 64:ef7ca92dff36 1224 }
mjr 48:058ace2aed1d 1225 else
mjr 48:058ace2aed1d 1226 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1227 break;
mjr 38:091e511ce8a0 1228
mjr 38:091e511ce8a0 1229 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1230 // Digital GPIO port
mjr 48:058ace2aed1d 1231 if (pin != 0)
mjr 48:058ace2aed1d 1232 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1233 else
mjr 48:058ace2aed1d 1234 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1235 break;
mjr 38:091e511ce8a0 1236
mjr 38:091e511ce8a0 1237 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1238 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1239 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1240 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1241 {
mjr 40:cc0d9814522b 1242 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1243 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1244 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1245 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1246 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1247 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1248 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1249 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1250 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1251 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1252 // for this unlikely case.
mjr 40:cc0d9814522b 1253 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1254 {
mjr 40:cc0d9814522b 1255 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1256 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1257
mjr 40:cc0d9814522b 1258 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1259 gamma = false;
mjr 40:cc0d9814522b 1260 }
mjr 40:cc0d9814522b 1261 else
mjr 40:cc0d9814522b 1262 {
mjr 40:cc0d9814522b 1263 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1264 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1265 }
mjr 40:cc0d9814522b 1266 }
mjr 38:091e511ce8a0 1267 else
mjr 40:cc0d9814522b 1268 {
mjr 40:cc0d9814522b 1269 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1270 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1271 }
mjr 38:091e511ce8a0 1272 break;
mjr 38:091e511ce8a0 1273
mjr 38:091e511ce8a0 1274 case PortType74HC595:
mjr 38:091e511ce8a0 1275 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 1276 // output number, create a virtual port)
mjr 38:091e511ce8a0 1277 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1278 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1279 else
mjr 38:091e511ce8a0 1280 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1281 break;
mjr 38:091e511ce8a0 1282
mjr 38:091e511ce8a0 1283 case PortTypeVirtual:
mjr 43:7a6364d82a41 1284 case PortTypeDisabled:
mjr 38:091e511ce8a0 1285 default:
mjr 38:091e511ce8a0 1286 // virtual or unknown
mjr 38:091e511ce8a0 1287 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1288 break;
mjr 38:091e511ce8a0 1289 }
mjr 38:091e511ce8a0 1290
mjr 40:cc0d9814522b 1291 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1292 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1293 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1294 if (activeLow)
mjr 38:091e511ce8a0 1295 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1296
mjr 40:cc0d9814522b 1297 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1298 // needs to be
mjr 40:cc0d9814522b 1299 if (noisy)
mjr 40:cc0d9814522b 1300 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1301
mjr 40:cc0d9814522b 1302 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1303 if (gamma)
mjr 40:cc0d9814522b 1304 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1305
mjr 53:9b2611964afc 1306 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1307 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1308 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1309 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1310 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1311
mjr 53:9b2611964afc 1312 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1313 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1314 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1315
mjr 38:091e511ce8a0 1316 // turn it off initially
mjr 38:091e511ce8a0 1317 lwp->set(0);
mjr 38:091e511ce8a0 1318
mjr 38:091e511ce8a0 1319 // return the pin
mjr 38:091e511ce8a0 1320 return lwp;
mjr 38:091e511ce8a0 1321 }
mjr 38:091e511ce8a0 1322
mjr 6:cc35eb643e8f 1323 // initialize the output pin array
mjr 35:e959ffba78fd 1324 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1325 {
mjr 35:e959ffba78fd 1326 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1327 // total number of ports.
mjr 35:e959ffba78fd 1328 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1329 int i;
mjr 35:e959ffba78fd 1330 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1331 {
mjr 35:e959ffba78fd 1332 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1333 {
mjr 35:e959ffba78fd 1334 numOutputs = i;
mjr 34:6b981a2afab7 1335 break;
mjr 34:6b981a2afab7 1336 }
mjr 33:d832bcab089e 1337 }
mjr 33:d832bcab089e 1338
mjr 73:4e8ce0b18915 1339 // allocate the pin array
mjr 73:4e8ce0b18915 1340 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1341
mjr 73:4e8ce0b18915 1342 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1343 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1344
mjr 73:4e8ce0b18915 1345 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1346 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1347 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1348
mjr 73:4e8ce0b18915 1349 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1350 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1351 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1352
mjr 73:4e8ce0b18915 1353 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1354 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1355 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1356
mjr 35:e959ffba78fd 1357 // create the pin interface object for each port
mjr 35:e959ffba78fd 1358 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1359 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1360 }
mjr 6:cc35eb643e8f 1361
mjr 76:7f5912b6340e 1362 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1363 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1364 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1365 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1366 // equivalent to 48.
mjr 40:cc0d9814522b 1367 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1368 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1369 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1370 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1371 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1372 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1373 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1374 255, 255
mjr 40:cc0d9814522b 1375 };
mjr 40:cc0d9814522b 1376
mjr 76:7f5912b6340e 1377 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1378 // level (1..48)
mjr 76:7f5912b6340e 1379 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1380 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1381 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1382 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1383 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1384 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1385 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1386 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1387 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1388 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1389 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1390 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1391 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1392 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1393 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1394 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1395 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1396 };
mjr 76:7f5912b6340e 1397
mjr 74:822a92bc11d2 1398 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1399 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1400 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1401 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1402 //
mjr 74:822a92bc11d2 1403 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1404 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1405 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1406 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1407 //
mjr 74:822a92bc11d2 1408 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1409 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1410 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1411 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1412 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1413 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1414 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1415 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1416 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1417 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1418 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1419 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1420 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1421 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1422 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1423 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1424 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1425 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1426 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1427 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1428
mjr 74:822a92bc11d2 1429 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1430 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1431 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1432 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1433 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1434 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1435 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1436 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1437 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1438 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1439 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1440 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1441 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1442 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1443 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1444 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1445 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1446
mjr 74:822a92bc11d2 1447 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1448 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1449 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1450 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1451 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1452 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1453 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1454 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1455 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1456 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1457 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1458 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1459 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1460 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1461 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1462 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1463 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1464
mjr 74:822a92bc11d2 1465 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1466 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1467 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1468 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1469 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1470 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1471 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1472 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1473 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1474 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1475 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1476 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1477 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1478 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1479 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1480 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1481 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1482 };
mjr 74:822a92bc11d2 1483
mjr 74:822a92bc11d2 1484 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1485 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1486 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1487
mjr 76:7f5912b6340e 1488 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1489 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1490
mjr 76:7f5912b6340e 1491 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1492 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1493 // outputs on each cycle.
mjr 29:582472d0bc57 1494 static void wizPulse()
mjr 29:582472d0bc57 1495 {
mjr 76:7f5912b6340e 1496 // current bank
mjr 76:7f5912b6340e 1497 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1498
mjr 76:7f5912b6340e 1499 // start a timer for statistics collection
mjr 76:7f5912b6340e 1500 IF_DIAG(
mjr 76:7f5912b6340e 1501 Timer t;
mjr 76:7f5912b6340e 1502 t.start();
mjr 76:7f5912b6340e 1503 )
mjr 76:7f5912b6340e 1504
mjr 76:7f5912b6340e 1505 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1506 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1507 //
mjr 76:7f5912b6340e 1508 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1509 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1510 //
mjr 76:7f5912b6340e 1511 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1512 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1513 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1514 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1515 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1516 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1517 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1518 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1519 // current cycle.
mjr 76:7f5912b6340e 1520 //
mjr 76:7f5912b6340e 1521 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1522 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1523 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1524 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1525 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1526 //
mjr 76:7f5912b6340e 1527 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1528 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1529 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1530 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1531 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1532 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1533 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1534 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1535 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1536 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1537 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1538 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1539 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1540 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1541 // bit counts.
mjr 76:7f5912b6340e 1542 //
mjr 76:7f5912b6340e 1543 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1544 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1545 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1546 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1547 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1548 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1549 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1550 // one division for another!
mjr 76:7f5912b6340e 1551 //
mjr 76:7f5912b6340e 1552 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1553 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1554 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1555 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1556 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1557 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1558 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1559 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1560 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1561 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1562 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1563 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1564 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1565 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1566 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1567 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1568 // remainder calculation anyway.
mjr 76:7f5912b6340e 1569 //
mjr 76:7f5912b6340e 1570 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1571 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1572 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1573 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1574 //
mjr 76:7f5912b6340e 1575 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1576 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1577 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1578 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1579 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1580 // the result, since we started with 32.
mjr 76:7f5912b6340e 1581 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1582 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1583 };
mjr 76:7f5912b6340e 1584 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1585
mjr 76:7f5912b6340e 1586 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1587 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1588 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1589 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1590 toPort = numOutputs;
mjr 76:7f5912b6340e 1591
mjr 76:7f5912b6340e 1592 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1593 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1594 {
mjr 76:7f5912b6340e 1595 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1596 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1597 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1598 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1599 if (wizOn[i])
mjr 29:582472d0bc57 1600 {
mjr 76:7f5912b6340e 1601 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 1602 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 1603 {
mjr 76:7f5912b6340e 1604 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 1605 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 1606 }
mjr 29:582472d0bc57 1607 }
mjr 76:7f5912b6340e 1608 }
mjr 76:7f5912b6340e 1609
mjr 34:6b981a2afab7 1610 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1611 if (hc595 != 0)
mjr 35:e959ffba78fd 1612 hc595->update();
mjr 76:7f5912b6340e 1613
mjr 76:7f5912b6340e 1614 // switch to the next bank
mjr 76:7f5912b6340e 1615 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 1616 wizPulseBank = 0;
mjr 76:7f5912b6340e 1617
mjr 76:7f5912b6340e 1618 // collect timing statistics
mjr 76:7f5912b6340e 1619 IF_DIAG(
mjr 76:7f5912b6340e 1620 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 1621 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 1622 )
mjr 1:d913e0afb2ac 1623 }
mjr 38:091e511ce8a0 1624
mjr 76:7f5912b6340e 1625 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 1626 static void updateLwPort(int port)
mjr 38:091e511ce8a0 1627 {
mjr 76:7f5912b6340e 1628 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 1629 if (wizOn[port])
mjr 76:7f5912b6340e 1630 {
mjr 76:7f5912b6340e 1631 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 1632 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 1633 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 1634 // it on the next cycle.
mjr 76:7f5912b6340e 1635 int val = wizVal[port];
mjr 76:7f5912b6340e 1636 if (val <= 49)
mjr 76:7f5912b6340e 1637 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 1638 }
mjr 76:7f5912b6340e 1639 else
mjr 76:7f5912b6340e 1640 {
mjr 76:7f5912b6340e 1641 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 1642 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 1643 }
mjr 73:4e8ce0b18915 1644 }
mjr 73:4e8ce0b18915 1645
mjr 73:4e8ce0b18915 1646 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 1647 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 1648 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 1649 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 1650 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 1651 //
mjr 73:4e8ce0b18915 1652 void allOutputsOff()
mjr 73:4e8ce0b18915 1653 {
mjr 73:4e8ce0b18915 1654 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 1655 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 1656 {
mjr 73:4e8ce0b18915 1657 outLevel[i] = 0;
mjr 73:4e8ce0b18915 1658 wizOn[i] = 0;
mjr 73:4e8ce0b18915 1659 wizVal[i] = 48;
mjr 73:4e8ce0b18915 1660 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 1661 }
mjr 73:4e8ce0b18915 1662
mjr 73:4e8ce0b18915 1663 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 1664 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1665 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 1666
mjr 73:4e8ce0b18915 1667 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 1668 if (hc595 != 0)
mjr 38:091e511ce8a0 1669 hc595->update();
mjr 38:091e511ce8a0 1670 }
mjr 38:091e511ce8a0 1671
mjr 74:822a92bc11d2 1672 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 1673 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 1674 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 1675 // address any port group.
mjr 74:822a92bc11d2 1676 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 1677 {
mjr 76:7f5912b6340e 1678 // update all on/off states in the group
mjr 74:822a92bc11d2 1679 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 1680 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 1681 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 1682 {
mjr 74:822a92bc11d2 1683 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 1684 if (bit == 0x100) {
mjr 74:822a92bc11d2 1685 bit = 1;
mjr 74:822a92bc11d2 1686 ++imsg;
mjr 74:822a92bc11d2 1687 }
mjr 74:822a92bc11d2 1688
mjr 74:822a92bc11d2 1689 // set the on/off state
mjr 76:7f5912b6340e 1690 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 1691
mjr 76:7f5912b6340e 1692 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 1693 updateLwPort(port);
mjr 74:822a92bc11d2 1694 }
mjr 74:822a92bc11d2 1695
mjr 74:822a92bc11d2 1696 // set the flash speed for the port group
mjr 74:822a92bc11d2 1697 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 1698 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 1699
mjr 76:7f5912b6340e 1700 // update 74HC959 outputs
mjr 76:7f5912b6340e 1701 if (hc595 != 0)
mjr 76:7f5912b6340e 1702 hc595->update();
mjr 74:822a92bc11d2 1703 }
mjr 74:822a92bc11d2 1704
mjr 74:822a92bc11d2 1705 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 1706 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 1707 {
mjr 74:822a92bc11d2 1708 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 1709 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 1710 {
mjr 74:822a92bc11d2 1711 // get the value
mjr 74:822a92bc11d2 1712 uint8_t v = data[i];
mjr 74:822a92bc11d2 1713
mjr 74:822a92bc11d2 1714 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 1715 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 1716 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 1717 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 1718 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 1719 // as such.
mjr 74:822a92bc11d2 1720 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 1721 v = 48;
mjr 74:822a92bc11d2 1722
mjr 74:822a92bc11d2 1723 // store it
mjr 76:7f5912b6340e 1724 wizVal[port] = v;
mjr 76:7f5912b6340e 1725
mjr 76:7f5912b6340e 1726 // update the port
mjr 76:7f5912b6340e 1727 updateLwPort(port);
mjr 74:822a92bc11d2 1728 }
mjr 74:822a92bc11d2 1729
mjr 76:7f5912b6340e 1730 // update 74HC595 outputs
mjr 76:7f5912b6340e 1731 if (hc595 != 0)
mjr 76:7f5912b6340e 1732 hc595->update();
mjr 74:822a92bc11d2 1733 }
mjr 74:822a92bc11d2 1734
mjr 77:0b96f6867312 1735 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 1736 //
mjr 77:0b96f6867312 1737 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 1738 //
mjr 77:0b96f6867312 1739
mjr 77:0b96f6867312 1740 // receiver
mjr 77:0b96f6867312 1741 IRReceiver *ir_rx;
mjr 77:0b96f6867312 1742
mjr 77:0b96f6867312 1743 // transmitter
mjr 77:0b96f6867312 1744 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 1745
mjr 77:0b96f6867312 1746 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 1747 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 1748 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 1749 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 1750 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 1751 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 1752 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 1753 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 1754 // configuration slot n
mjr 77:0b96f6867312 1755 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 1756
mjr 78:1e00b3fa11af 1757 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 1758 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 1759 // protocol.
mjr 78:1e00b3fa11af 1760 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 1761
mjr 78:1e00b3fa11af 1762 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 1763 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 1764 // while waiting for the rest.
mjr 78:1e00b3fa11af 1765 static struct
mjr 78:1e00b3fa11af 1766 {
mjr 78:1e00b3fa11af 1767 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 1768 uint64_t code; // code
mjr 78:1e00b3fa11af 1769 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 1770 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 1771 } IRAdHocCmd;
mjr 78:1e00b3fa11af 1772
mjr 77:0b96f6867312 1773
mjr 77:0b96f6867312 1774 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 1775 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 1776 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 1777 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 1778 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 1779 // amount of time.
mjr 77:0b96f6867312 1780 Timer IRTimer;
mjr 77:0b96f6867312 1781
mjr 77:0b96f6867312 1782 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 1783 // The states are:
mjr 77:0b96f6867312 1784 //
mjr 77:0b96f6867312 1785 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 1786 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 1787 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 1788 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 1789 //
mjr 77:0b96f6867312 1790 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 1791 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 1792 // received within a reasonable time.
mjr 77:0b96f6867312 1793 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 1794
mjr 77:0b96f6867312 1795 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 1796 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 1797 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 1798 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 1799 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 1800 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 1801 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 1802 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 1803 IRCommand learnedIRCode;
mjr 77:0b96f6867312 1804
mjr 78:1e00b3fa11af 1805 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 1806 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 1807 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 1808 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 1809 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 1810 // index; 0 represents no command.
mjr 77:0b96f6867312 1811 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 1812
mjr 77:0b96f6867312 1813 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 1814 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 1815 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 1816 // command we received.
mjr 77:0b96f6867312 1817 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 1818
mjr 77:0b96f6867312 1819 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 1820 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 1821 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 1822 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 1823 // distinct key press.
mjr 77:0b96f6867312 1824 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 1825
mjr 78:1e00b3fa11af 1826
mjr 77:0b96f6867312 1827 // initialize
mjr 77:0b96f6867312 1828 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 1829 {
mjr 77:0b96f6867312 1830 PinName pin;
mjr 77:0b96f6867312 1831
mjr 77:0b96f6867312 1832 // start the IR timer
mjr 77:0b96f6867312 1833 IRTimer.start();
mjr 77:0b96f6867312 1834
mjr 77:0b96f6867312 1835 // if there's a transmitter, set it up
mjr 77:0b96f6867312 1836 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 1837 {
mjr 77:0b96f6867312 1838 // no virtual buttons yet
mjr 77:0b96f6867312 1839 int nVirtualButtons = 0;
mjr 77:0b96f6867312 1840 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 1841
mjr 77:0b96f6867312 1842 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 1843 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1844 {
mjr 77:0b96f6867312 1845 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 1846 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 1847 }
mjr 77:0b96f6867312 1848
mjr 77:0b96f6867312 1849 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 1850 // real button inputs
mjr 77:0b96f6867312 1851 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 1852 {
mjr 77:0b96f6867312 1853 // get the button
mjr 77:0b96f6867312 1854 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 1855
mjr 77:0b96f6867312 1856 // check the unshifted button
mjr 77:0b96f6867312 1857 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 1858 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1859 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1860 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1861
mjr 77:0b96f6867312 1862 // check the shifted button
mjr 77:0b96f6867312 1863 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 1864 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1865 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1866 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1867 }
mjr 77:0b96f6867312 1868
mjr 77:0b96f6867312 1869 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 1870 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 1871 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 1872
mjr 77:0b96f6867312 1873 // create the transmitter
mjr 77:0b96f6867312 1874 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 1875
mjr 77:0b96f6867312 1876 // program the commands into the virtual button slots
mjr 77:0b96f6867312 1877 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1878 {
mjr 77:0b96f6867312 1879 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 1880 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 1881 if (vb != 0xFF)
mjr 77:0b96f6867312 1882 {
mjr 77:0b96f6867312 1883 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1884 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 1885 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 1886 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 1887 }
mjr 77:0b96f6867312 1888 }
mjr 77:0b96f6867312 1889 }
mjr 77:0b96f6867312 1890
mjr 77:0b96f6867312 1891 // if there's a receiver, set it up
mjr 77:0b96f6867312 1892 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 1893 {
mjr 77:0b96f6867312 1894 // create the receiver
mjr 77:0b96f6867312 1895 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 1896
mjr 77:0b96f6867312 1897 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 1898 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 1899 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 1900
mjr 77:0b96f6867312 1901 // enable it
mjr 77:0b96f6867312 1902 ir_rx->enable();
mjr 77:0b96f6867312 1903
mjr 77:0b96f6867312 1904 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 1905 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 1906 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 1907 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1908 {
mjr 77:0b96f6867312 1909 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1910 if (cb.protocol != 0
mjr 77:0b96f6867312 1911 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 1912 {
mjr 77:0b96f6867312 1913 kbKeys = true;
mjr 77:0b96f6867312 1914 break;
mjr 77:0b96f6867312 1915 }
mjr 77:0b96f6867312 1916 }
mjr 77:0b96f6867312 1917 }
mjr 77:0b96f6867312 1918 }
mjr 77:0b96f6867312 1919
mjr 77:0b96f6867312 1920 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 1921 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 1922 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 1923 {
mjr 77:0b96f6867312 1924 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 1925 if (ir_tx != 0)
mjr 77:0b96f6867312 1926 {
mjr 77:0b96f6867312 1927 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 1928 int slot = cmd - 1;
mjr 77:0b96f6867312 1929
mjr 77:0b96f6867312 1930 // press or release the virtual button
mjr 77:0b96f6867312 1931 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 1932 }
mjr 77:0b96f6867312 1933 }
mjr 77:0b96f6867312 1934
mjr 78:1e00b3fa11af 1935 // Process IR input and output
mjr 77:0b96f6867312 1936 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 1937 {
mjr 78:1e00b3fa11af 1938 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 1939 if (ir_tx != 0)
mjr 77:0b96f6867312 1940 {
mjr 78:1e00b3fa11af 1941 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 1942 // is ready to send, send it.
mjr 78:1e00b3fa11af 1943 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 1944 {
mjr 78:1e00b3fa11af 1945 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 1946 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 1947 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 1948 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 1949
mjr 78:1e00b3fa11af 1950 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 1951 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 1952 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 1953
mjr 78:1e00b3fa11af 1954 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 1955 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 1956 }
mjr 77:0b96f6867312 1957 }
mjr 78:1e00b3fa11af 1958
mjr 78:1e00b3fa11af 1959 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 1960 if (ir_rx != 0)
mjr 77:0b96f6867312 1961 {
mjr 78:1e00b3fa11af 1962 // Time out any received command
mjr 78:1e00b3fa11af 1963 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 1964 {
mjr 80:94dc2946871b 1965 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 1966 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 1967 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 1968 if (t > 200000)
mjr 78:1e00b3fa11af 1969 IRCommandIn = 0;
mjr 80:94dc2946871b 1970 else if (t > 50000)
mjr 78:1e00b3fa11af 1971 IRKeyGap = false;
mjr 78:1e00b3fa11af 1972 }
mjr 78:1e00b3fa11af 1973
mjr 78:1e00b3fa11af 1974 // Check if we're in learning mode
mjr 78:1e00b3fa11af 1975 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 1976 {
mjr 78:1e00b3fa11af 1977 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 1978 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 1979 // limit.
mjr 78:1e00b3fa11af 1980 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 1981 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 1982 int n;
mjr 78:1e00b3fa11af 1983 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 1984
mjr 78:1e00b3fa11af 1985 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 1986 if (n != 0)
mjr 78:1e00b3fa11af 1987 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 1988
mjr 78:1e00b3fa11af 1989 // check for a command
mjr 78:1e00b3fa11af 1990 IRCommand c;
mjr 78:1e00b3fa11af 1991 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 1992 {
mjr 78:1e00b3fa11af 1993 // check the current learning state
mjr 78:1e00b3fa11af 1994 switch (IRLearningMode)
mjr 78:1e00b3fa11af 1995 {
mjr 78:1e00b3fa11af 1996 case 1:
mjr 78:1e00b3fa11af 1997 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 1998 // This is it.
mjr 78:1e00b3fa11af 1999 learnedIRCode = c;
mjr 78:1e00b3fa11af 2000
mjr 78:1e00b3fa11af 2001 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2002 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2003 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2004 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2005 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2006 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2007 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2008 break;
mjr 78:1e00b3fa11af 2009
mjr 78:1e00b3fa11af 2010 case 2:
mjr 78:1e00b3fa11af 2011 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2012 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2013 //
mjr 78:1e00b3fa11af 2014 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2015 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2016 //
mjr 78:1e00b3fa11af 2017 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2018 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2019 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2020 // them.
mjr 78:1e00b3fa11af 2021 //
mjr 78:1e00b3fa11af 2022 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2023 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2024 // over.
mjr 78:1e00b3fa11af 2025 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2026 && c.hasDittos
mjr 78:1e00b3fa11af 2027 && c.ditto)
mjr 78:1e00b3fa11af 2028 {
mjr 78:1e00b3fa11af 2029 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2030 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2031 }
mjr 78:1e00b3fa11af 2032 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2033 && c.hasDittos
mjr 78:1e00b3fa11af 2034 && !c.ditto
mjr 78:1e00b3fa11af 2035 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2036 {
mjr 78:1e00b3fa11af 2037 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2038 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2039 // protocol supports them
mjr 78:1e00b3fa11af 2040 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2041 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2042 }
mjr 78:1e00b3fa11af 2043 else
mjr 78:1e00b3fa11af 2044 {
mjr 78:1e00b3fa11af 2045 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2046 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2047 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2048 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2049 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2050 }
mjr 78:1e00b3fa11af 2051 break;
mjr 78:1e00b3fa11af 2052 }
mjr 77:0b96f6867312 2053
mjr 78:1e00b3fa11af 2054 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2055 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2056 // learning mode.
mjr 78:1e00b3fa11af 2057 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2058 {
mjr 78:1e00b3fa11af 2059 // figure the flags:
mjr 78:1e00b3fa11af 2060 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2061 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2062 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2063 flags |= 0x02;
mjr 78:1e00b3fa11af 2064
mjr 78:1e00b3fa11af 2065 // report the code
mjr 78:1e00b3fa11af 2066 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2067
mjr 78:1e00b3fa11af 2068 // exit learning mode
mjr 78:1e00b3fa11af 2069 IRLearningMode = 0;
mjr 77:0b96f6867312 2070 }
mjr 77:0b96f6867312 2071 }
mjr 77:0b96f6867312 2072
mjr 78:1e00b3fa11af 2073 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2074 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2075 {
mjr 78:1e00b3fa11af 2076 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2077 // zero data elements
mjr 78:1e00b3fa11af 2078 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2079
mjr 78:1e00b3fa11af 2080
mjr 78:1e00b3fa11af 2081 // cancel learning mode
mjr 77:0b96f6867312 2082 IRLearningMode = 0;
mjr 77:0b96f6867312 2083 }
mjr 77:0b96f6867312 2084 }
mjr 78:1e00b3fa11af 2085 else
mjr 77:0b96f6867312 2086 {
mjr 78:1e00b3fa11af 2087 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2088 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2089 ir_rx->process();
mjr 78:1e00b3fa11af 2090
mjr 78:1e00b3fa11af 2091 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2092 // have been read.
mjr 78:1e00b3fa11af 2093 IRCommand c;
mjr 78:1e00b3fa11af 2094 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2095 {
mjr 78:1e00b3fa11af 2096 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2097 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2098 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2099 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2100 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2101 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2102 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2103 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2104 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2105 //
mjr 78:1e00b3fa11af 2106 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2107 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2108 // command.
mjr 78:1e00b3fa11af 2109 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2110 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2111 {
mjr 78:1e00b3fa11af 2112 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2113 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2114 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2115 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2116 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2117 if (c.ditto)
mjr 78:1e00b3fa11af 2118 {
mjr 78:1e00b3fa11af 2119 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2120 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2121 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2122 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2123 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2124 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2125 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2126 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2127 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2128 }
mjr 78:1e00b3fa11af 2129 else
mjr 78:1e00b3fa11af 2130 {
mjr 78:1e00b3fa11af 2131 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2132 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2133 // prior command.
mjr 78:1e00b3fa11af 2134 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2135 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2136 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2137
mjr 78:1e00b3fa11af 2138 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2139 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2140 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2141 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2142 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2143 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2144 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2145 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2146 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2147 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2148 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2149 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2150 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2151 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2152 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2153 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2154 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2155 autoRepeat =
mjr 78:1e00b3fa11af 2156 repeat
mjr 78:1e00b3fa11af 2157 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2158 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2159 }
mjr 78:1e00b3fa11af 2160 }
mjr 78:1e00b3fa11af 2161
mjr 78:1e00b3fa11af 2162 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2163 if (repeat)
mjr 78:1e00b3fa11af 2164 {
mjr 78:1e00b3fa11af 2165 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2166 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2167 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2168 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2169 // key press event.
mjr 78:1e00b3fa11af 2170 if (!autoRepeat)
mjr 78:1e00b3fa11af 2171 IRKeyGap = true;
mjr 78:1e00b3fa11af 2172
mjr 78:1e00b3fa11af 2173 // restart the key-up timer
mjr 78:1e00b3fa11af 2174 IRTimer.reset();
mjr 78:1e00b3fa11af 2175 }
mjr 78:1e00b3fa11af 2176 else if (c.ditto)
mjr 78:1e00b3fa11af 2177 {
mjr 78:1e00b3fa11af 2178 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2179 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2180 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2181 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2182 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2183 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2184 // a full command for a new key press.
mjr 78:1e00b3fa11af 2185 IRCommandIn = 0;
mjr 77:0b96f6867312 2186 }
mjr 77:0b96f6867312 2187 else
mjr 77:0b96f6867312 2188 {
mjr 78:1e00b3fa11af 2189 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2190 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2191 // the new command).
mjr 78:1e00b3fa11af 2192 IRCommandIn = 0;
mjr 77:0b96f6867312 2193
mjr 78:1e00b3fa11af 2194 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2195 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2196 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2197 {
mjr 78:1e00b3fa11af 2198 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2199 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2200 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2201 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2202 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2203 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2204 {
mjr 78:1e00b3fa11af 2205 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2206 // remember the starting time.
mjr 78:1e00b3fa11af 2207 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2208 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2209 IRTimer.reset();
mjr 78:1e00b3fa11af 2210
mjr 78:1e00b3fa11af 2211 // no need to keep searching
mjr 78:1e00b3fa11af 2212 break;
mjr 78:1e00b3fa11af 2213 }
mjr 77:0b96f6867312 2214 }
mjr 77:0b96f6867312 2215 }
mjr 77:0b96f6867312 2216 }
mjr 77:0b96f6867312 2217 }
mjr 77:0b96f6867312 2218 }
mjr 77:0b96f6867312 2219 }
mjr 77:0b96f6867312 2220
mjr 74:822a92bc11d2 2221
mjr 11:bd9da7088e6e 2222 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2223 //
mjr 11:bd9da7088e6e 2224 // Button input
mjr 11:bd9da7088e6e 2225 //
mjr 11:bd9da7088e6e 2226
mjr 18:5e890ebd0023 2227 // button state
mjr 18:5e890ebd0023 2228 struct ButtonState
mjr 18:5e890ebd0023 2229 {
mjr 38:091e511ce8a0 2230 ButtonState()
mjr 38:091e511ce8a0 2231 {
mjr 53:9b2611964afc 2232 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2233 virtState = 0;
mjr 53:9b2611964afc 2234 dbState = 0;
mjr 38:091e511ce8a0 2235 pulseState = 0;
mjr 53:9b2611964afc 2236 pulseTime = 0;
mjr 38:091e511ce8a0 2237 }
mjr 35:e959ffba78fd 2238
mjr 53:9b2611964afc 2239 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2240 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2241 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2242 //
mjr 53:9b2611964afc 2243 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2244 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2245 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2246 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2247 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2248 void virtPress(bool on)
mjr 53:9b2611964afc 2249 {
mjr 53:9b2611964afc 2250 // Increment or decrement the current state
mjr 53:9b2611964afc 2251 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2252 }
mjr 53:9b2611964afc 2253
mjr 53:9b2611964afc 2254 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2255 TinyDigitalIn di;
mjr 38:091e511ce8a0 2256
mjr 65:739875521aae 2257 // Time of last pulse state transition.
mjr 65:739875521aae 2258 //
mjr 65:739875521aae 2259 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2260 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2261 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2262 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2263 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2264 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2265 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2266 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2267 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2268 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2269 // This software system can't be fooled that way.)
mjr 65:739875521aae 2270 uint32_t pulseTime;
mjr 18:5e890ebd0023 2271
mjr 65:739875521aae 2272 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2273 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2274 uint8_t cfgIndex;
mjr 53:9b2611964afc 2275
mjr 53:9b2611964afc 2276 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2277 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2278 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2279 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2280 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2281 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2282 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2283 // and physical source states.
mjr 53:9b2611964afc 2284 uint8_t virtState;
mjr 38:091e511ce8a0 2285
mjr 38:091e511ce8a0 2286 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2287 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2288 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2289 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2290 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2291 uint8_t dbState;
mjr 38:091e511ce8a0 2292
mjr 65:739875521aae 2293 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2294 uint8_t physState : 1;
mjr 65:739875521aae 2295
mjr 65:739875521aae 2296 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2297 uint8_t logState : 1;
mjr 65:739875521aae 2298
mjr 79:682ae3171a08 2299 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 2300 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 2301 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 2302 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 2303 uint8_t prevLogState : 1;
mjr 65:739875521aae 2304
mjr 65:739875521aae 2305 // Pulse state
mjr 65:739875521aae 2306 //
mjr 65:739875521aae 2307 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2308 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2309 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2310 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2311 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2312 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2313 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2314 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2315 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2316 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2317 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 2318 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 2319 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2320 //
mjr 38:091e511ce8a0 2321 // Pulse state:
mjr 38:091e511ce8a0 2322 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2323 // 1 -> off
mjr 38:091e511ce8a0 2324 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2325 // 3 -> on
mjr 38:091e511ce8a0 2326 // 4 -> transitioning on-off
mjr 65:739875521aae 2327 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2328
mjr 65:739875521aae 2329 } __attribute__((packed));
mjr 65:739875521aae 2330
mjr 65:739875521aae 2331 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2332 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2333 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2334
mjr 66:2e3583fbd2f4 2335 // Shift button state
mjr 66:2e3583fbd2f4 2336 struct
mjr 66:2e3583fbd2f4 2337 {
mjr 66:2e3583fbd2f4 2338 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 2339 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 2340 // 0 = not shifted
mjr 66:2e3583fbd2f4 2341 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2342 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 2343 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 2344 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 2345 }
mjr 66:2e3583fbd2f4 2346 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2347
mjr 38:091e511ce8a0 2348 // Button data
mjr 38:091e511ce8a0 2349 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2350
mjr 38:091e511ce8a0 2351 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2352 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2353 // modifier keys.
mjr 38:091e511ce8a0 2354 struct
mjr 38:091e511ce8a0 2355 {
mjr 38:091e511ce8a0 2356 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2357 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2358 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2359 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2360 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2361
mjr 38:091e511ce8a0 2362 // Media key state
mjr 38:091e511ce8a0 2363 struct
mjr 38:091e511ce8a0 2364 {
mjr 38:091e511ce8a0 2365 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2366 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2367 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2368
mjr 79:682ae3171a08 2369 // button scan interrupt timer
mjr 79:682ae3171a08 2370 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 2371
mjr 38:091e511ce8a0 2372 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2373 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2374 void scanButtons()
mjr 38:091e511ce8a0 2375 {
mjr 79:682ae3171a08 2376 // schedule the next interrupt
mjr 79:682ae3171a08 2377 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 2378
mjr 38:091e511ce8a0 2379 // scan all button input pins
mjr 73:4e8ce0b18915 2380 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2381 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2382 {
mjr 73:4e8ce0b18915 2383 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2384 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2385 bs->dbState = db;
mjr 73:4e8ce0b18915 2386
mjr 73:4e8ce0b18915 2387 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2388 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2389 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2390 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2391 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2392 db &= stable;
mjr 73:4e8ce0b18915 2393 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2394 bs->physState = !db;
mjr 38:091e511ce8a0 2395 }
mjr 38:091e511ce8a0 2396 }
mjr 38:091e511ce8a0 2397
mjr 38:091e511ce8a0 2398 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2399 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2400 // in the physical button state.
mjr 38:091e511ce8a0 2401 Timer buttonTimer;
mjr 12:669df364a565 2402
mjr 65:739875521aae 2403 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2404 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2405 {
mjr 65:739875521aae 2406 // count it
mjr 65:739875521aae 2407 ++nButtons;
mjr 65:739875521aae 2408
mjr 67:c39e66c4e000 2409 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2410 // keyboard interface
mjr 72:884207c0aab0 2411 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2412 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2413 kbKeys = true;
mjr 65:739875521aae 2414 }
mjr 65:739875521aae 2415
mjr 11:bd9da7088e6e 2416 // initialize the button inputs
mjr 35:e959ffba78fd 2417 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2418 {
mjr 66:2e3583fbd2f4 2419 // presume no shift key
mjr 66:2e3583fbd2f4 2420 shiftButton.index = -1;
mjr 66:2e3583fbd2f4 2421
mjr 65:739875521aae 2422 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2423 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2424 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2425 nButtons = 0;
mjr 65:739875521aae 2426 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2427 {
mjr 65:739875521aae 2428 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2429 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2430 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2431 }
mjr 65:739875521aae 2432
mjr 65:739875521aae 2433 // Count virtual buttons
mjr 65:739875521aae 2434
mjr 65:739875521aae 2435 // ZB Launch
mjr 65:739875521aae 2436 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2437 {
mjr 65:739875521aae 2438 // valid - remember the live button index
mjr 65:739875521aae 2439 zblButtonIndex = nButtons;
mjr 65:739875521aae 2440
mjr 65:739875521aae 2441 // count it
mjr 72:884207c0aab0 2442 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2443 }
mjr 65:739875521aae 2444
mjr 65:739875521aae 2445 // Allocate the live button slots
mjr 65:739875521aae 2446 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2447
mjr 65:739875521aae 2448 // Configure the physical inputs
mjr 65:739875521aae 2449 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2450 {
mjr 65:739875521aae 2451 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2452 if (pin != NC)
mjr 65:739875521aae 2453 {
mjr 65:739875521aae 2454 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2455 bs->cfgIndex = i;
mjr 65:739875521aae 2456
mjr 65:739875521aae 2457 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2458 bs->di.assignPin(pin);
mjr 65:739875521aae 2459
mjr 65:739875521aae 2460 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2461 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2462 bs->pulseState = 1;
mjr 65:739875521aae 2463
mjr 66:2e3583fbd2f4 2464 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2465 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2466 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2467 // config slots are left unused.
mjr 78:1e00b3fa11af 2468 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 2469 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2470
mjr 65:739875521aae 2471 // advance to the next button
mjr 65:739875521aae 2472 ++bs;
mjr 65:739875521aae 2473 }
mjr 65:739875521aae 2474 }
mjr 65:739875521aae 2475
mjr 53:9b2611964afc 2476 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2477 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2478 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2479 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2480
mjr 53:9b2611964afc 2481 // ZB Launch Ball button
mjr 65:739875521aae 2482 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2483 {
mjr 65:739875521aae 2484 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2485 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2486 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2487 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2488 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2489 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2490 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2491 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2492
mjr 66:2e3583fbd2f4 2493 // advance to the next button
mjr 65:739875521aae 2494 ++bs;
mjr 11:bd9da7088e6e 2495 }
mjr 12:669df364a565 2496
mjr 38:091e511ce8a0 2497 // start the button scan thread
mjr 79:682ae3171a08 2498 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2499
mjr 38:091e511ce8a0 2500 // start the button state transition timer
mjr 12:669df364a565 2501 buttonTimer.start();
mjr 11:bd9da7088e6e 2502 }
mjr 11:bd9da7088e6e 2503
mjr 67:c39e66c4e000 2504 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 2505 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 2506 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 2507 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 2508 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 2509 //
mjr 67:c39e66c4e000 2510 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 2511 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 2512 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 2513 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 2514 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 2515 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 2516 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 2517 //
mjr 67:c39e66c4e000 2518 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 2519 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 2520 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 2521 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 2522 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 2523 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 2524 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 2525 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 2526 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 2527 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 2528 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 2529 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 2530 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 2531 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 2532 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 2533 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 2534 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 2535 };
mjr 77:0b96f6867312 2536
mjr 77:0b96f6867312 2537 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 2538 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 2539 // states of the button iputs.
mjr 77:0b96f6867312 2540 struct KeyState
mjr 77:0b96f6867312 2541 {
mjr 77:0b96f6867312 2542 KeyState()
mjr 77:0b96f6867312 2543 {
mjr 77:0b96f6867312 2544 // zero all members
mjr 77:0b96f6867312 2545 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 2546 }
mjr 77:0b96f6867312 2547
mjr 77:0b96f6867312 2548 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 2549 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 2550 uint8_t mediakeys;
mjr 77:0b96f6867312 2551
mjr 77:0b96f6867312 2552 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 2553 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 2554 // USBJoystick.cpp).
mjr 77:0b96f6867312 2555 uint8_t modkeys;
mjr 77:0b96f6867312 2556
mjr 77:0b96f6867312 2557 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 2558 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 2559 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 2560 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 2561 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 2562 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 2563 uint8_t keys[7];
mjr 77:0b96f6867312 2564
mjr 77:0b96f6867312 2565 // number of valid entries in keys[] array
mjr 77:0b96f6867312 2566 int nkeys;
mjr 77:0b96f6867312 2567
mjr 77:0b96f6867312 2568 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 2569 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 2570 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 2571 uint32_t js;
mjr 77:0b96f6867312 2572
mjr 77:0b96f6867312 2573
mjr 77:0b96f6867312 2574 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 2575 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 2576 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 2577 {
mjr 77:0b96f6867312 2578 // add the key according to the type
mjr 77:0b96f6867312 2579 switch (typ)
mjr 77:0b96f6867312 2580 {
mjr 77:0b96f6867312 2581 case BtnTypeJoystick:
mjr 77:0b96f6867312 2582 // joystick button
mjr 77:0b96f6867312 2583 js |= (1 << (val - 1));
mjr 77:0b96f6867312 2584 break;
mjr 77:0b96f6867312 2585
mjr 77:0b96f6867312 2586 case BtnTypeKey:
mjr 77:0b96f6867312 2587 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 2588 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 2589 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 2590 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 2591 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 2592 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 2593 // explicitly using media keys if desired.
mjr 77:0b96f6867312 2594 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 2595 {
mjr 77:0b96f6867312 2596 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 2597 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 2598 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 2599 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 2600 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 2601 }
mjr 77:0b96f6867312 2602 else
mjr 77:0b96f6867312 2603 {
mjr 77:0b96f6867312 2604 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 2605 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 2606 // apply, add the key to the key array.
mjr 77:0b96f6867312 2607 if (nkeys < 7)
mjr 77:0b96f6867312 2608 {
mjr 77:0b96f6867312 2609 bool found = false;
mjr 77:0b96f6867312 2610 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 2611 {
mjr 77:0b96f6867312 2612 if (keys[i] == val)
mjr 77:0b96f6867312 2613 {
mjr 77:0b96f6867312 2614 found = true;
mjr 77:0b96f6867312 2615 break;
mjr 77:0b96f6867312 2616 }
mjr 77:0b96f6867312 2617 }
mjr 77:0b96f6867312 2618 if (!found)
mjr 77:0b96f6867312 2619 keys[nkeys++] = val;
mjr 77:0b96f6867312 2620 }
mjr 77:0b96f6867312 2621 }
mjr 77:0b96f6867312 2622 break;
mjr 77:0b96f6867312 2623
mjr 77:0b96f6867312 2624 case BtnTypeMedia:
mjr 77:0b96f6867312 2625 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 2626 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 2627 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 2628 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 2629 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 2630 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 2631 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 2632 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 2633 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 2634 break;
mjr 77:0b96f6867312 2635 }
mjr 77:0b96f6867312 2636 }
mjr 77:0b96f6867312 2637 };
mjr 67:c39e66c4e000 2638
mjr 67:c39e66c4e000 2639
mjr 38:091e511ce8a0 2640 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 2641 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 2642 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 2643 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 2644 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 2645 {
mjr 77:0b96f6867312 2646 // key state
mjr 77:0b96f6867312 2647 KeyState ks;
mjr 38:091e511ce8a0 2648
mjr 38:091e511ce8a0 2649 // calculate the time since the last run
mjr 53:9b2611964afc 2650 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 2651 buttonTimer.reset();
mjr 66:2e3583fbd2f4 2652
mjr 66:2e3583fbd2f4 2653 // check the shift button state
mjr 66:2e3583fbd2f4 2654 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 2655 {
mjr 78:1e00b3fa11af 2656 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 2657 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 2658
mjr 78:1e00b3fa11af 2659 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 2660 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 2661 {
mjr 66:2e3583fbd2f4 2662 case 0:
mjr 78:1e00b3fa11af 2663 default:
mjr 78:1e00b3fa11af 2664 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 2665 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 2666 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 2667 switch (shiftButton.state)
mjr 78:1e00b3fa11af 2668 {
mjr 78:1e00b3fa11af 2669 case 0:
mjr 78:1e00b3fa11af 2670 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 2671 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 2672 if (sbs->physState)
mjr 78:1e00b3fa11af 2673 shiftButton.state = 1;
mjr 78:1e00b3fa11af 2674 break;
mjr 78:1e00b3fa11af 2675
mjr 78:1e00b3fa11af 2676 case 1:
mjr 78:1e00b3fa11af 2677 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 2678 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 2679 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 2680 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 2681 // pulse event.
mjr 78:1e00b3fa11af 2682 if (!sbs->physState)
mjr 78:1e00b3fa11af 2683 {
mjr 78:1e00b3fa11af 2684 shiftButton.state = 3;
mjr 78:1e00b3fa11af 2685 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 2686 }
mjr 78:1e00b3fa11af 2687 break;
mjr 78:1e00b3fa11af 2688
mjr 78:1e00b3fa11af 2689 case 2:
mjr 78:1e00b3fa11af 2690 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 2691 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 2692 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 2693 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 2694 // suppressed.
mjr 78:1e00b3fa11af 2695 if (!sbs->physState)
mjr 78:1e00b3fa11af 2696 shiftButton.state = 0;
mjr 78:1e00b3fa11af 2697 break;
mjr 78:1e00b3fa11af 2698
mjr 78:1e00b3fa11af 2699 case 3:
mjr 78:1e00b3fa11af 2700 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 2701 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 2702 // has expired.
mjr 78:1e00b3fa11af 2703 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 2704 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 2705 else
mjr 78:1e00b3fa11af 2706 shiftButton.state = 0;
mjr 78:1e00b3fa11af 2707 break;
mjr 78:1e00b3fa11af 2708 }
mjr 66:2e3583fbd2f4 2709 break;
mjr 66:2e3583fbd2f4 2710
mjr 66:2e3583fbd2f4 2711 case 1:
mjr 78:1e00b3fa11af 2712 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 2713 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 2714 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 2715 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 2716 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 2717 break;
mjr 66:2e3583fbd2f4 2718 }
mjr 66:2e3583fbd2f4 2719 }
mjr 38:091e511ce8a0 2720
mjr 11:bd9da7088e6e 2721 // scan the button list
mjr 18:5e890ebd0023 2722 ButtonState *bs = buttonState;
mjr 65:739875521aae 2723 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 2724 {
mjr 77:0b96f6867312 2725 // get the config entry for the button
mjr 77:0b96f6867312 2726 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 2727
mjr 66:2e3583fbd2f4 2728 // Check the button type:
mjr 66:2e3583fbd2f4 2729 // - shift button
mjr 66:2e3583fbd2f4 2730 // - pulsed button
mjr 66:2e3583fbd2f4 2731 // - regular button
mjr 66:2e3583fbd2f4 2732 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 2733 {
mjr 78:1e00b3fa11af 2734 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 2735 // depends on the mode.
mjr 78:1e00b3fa11af 2736 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 2737 {
mjr 78:1e00b3fa11af 2738 case 0:
mjr 78:1e00b3fa11af 2739 default:
mjr 78:1e00b3fa11af 2740 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 2741 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 2742 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 2743 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 2744 break;
mjr 78:1e00b3fa11af 2745
mjr 78:1e00b3fa11af 2746 case 1:
mjr 78:1e00b3fa11af 2747 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 2748 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 2749 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 2750 break;
mjr 66:2e3583fbd2f4 2751 }
mjr 66:2e3583fbd2f4 2752 }
mjr 66:2e3583fbd2f4 2753 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 2754 {
mjr 38:091e511ce8a0 2755 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 2756 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 2757 {
mjr 53:9b2611964afc 2758 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 2759 bs->pulseTime -= dt;
mjr 53:9b2611964afc 2760 }
mjr 53:9b2611964afc 2761 else
mjr 53:9b2611964afc 2762 {
mjr 53:9b2611964afc 2763 // pulse time expired - check for a state change
mjr 53:9b2611964afc 2764 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 2765 switch (bs->pulseState)
mjr 18:5e890ebd0023 2766 {
mjr 38:091e511ce8a0 2767 case 1:
mjr 38:091e511ce8a0 2768 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 2769 if (bs->physState)
mjr 53:9b2611964afc 2770 {
mjr 38:091e511ce8a0 2771 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2772 bs->pulseState = 2;
mjr 53:9b2611964afc 2773 bs->logState = 1;
mjr 38:091e511ce8a0 2774 }
mjr 38:091e511ce8a0 2775 break;
mjr 18:5e890ebd0023 2776
mjr 38:091e511ce8a0 2777 case 2:
mjr 38:091e511ce8a0 2778 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 2779 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 2780 // change in state in the logical button
mjr 38:091e511ce8a0 2781 bs->pulseState = 3;
mjr 38:091e511ce8a0 2782 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2783 bs->logState = 0;
mjr 38:091e511ce8a0 2784 break;
mjr 38:091e511ce8a0 2785
mjr 38:091e511ce8a0 2786 case 3:
mjr 38:091e511ce8a0 2787 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 2788 if (!bs->physState)
mjr 53:9b2611964afc 2789 {
mjr 38:091e511ce8a0 2790 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2791 bs->pulseState = 4;
mjr 53:9b2611964afc 2792 bs->logState = 1;
mjr 38:091e511ce8a0 2793 }
mjr 38:091e511ce8a0 2794 break;
mjr 38:091e511ce8a0 2795
mjr 38:091e511ce8a0 2796 case 4:
mjr 38:091e511ce8a0 2797 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 2798 bs->pulseState = 1;
mjr 38:091e511ce8a0 2799 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2800 bs->logState = 0;
mjr 38:091e511ce8a0 2801 break;
mjr 18:5e890ebd0023 2802 }
mjr 18:5e890ebd0023 2803 }
mjr 38:091e511ce8a0 2804 }
mjr 38:091e511ce8a0 2805 else
mjr 38:091e511ce8a0 2806 {
mjr 38:091e511ce8a0 2807 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 2808 bs->logState = bs->physState;
mjr 38:091e511ce8a0 2809 }
mjr 77:0b96f6867312 2810
mjr 77:0b96f6867312 2811 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 2812 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 2813 //
mjr 78:1e00b3fa11af 2814 // - the shift button is down, AND
mjr 78:1e00b3fa11af 2815 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 2816 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 2817 //
mjr 78:1e00b3fa11af 2818 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 2819 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 2820 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 2821 //
mjr 78:1e00b3fa11af 2822 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 2823 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 2824 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 2825 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 2826 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 2827 bool useShift =
mjr 77:0b96f6867312 2828 (shiftButton.state != 0
mjr 78:1e00b3fa11af 2829 && shiftButton.index != i
mjr 77:0b96f6867312 2830 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 2831 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 2832 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 2833
mjr 77:0b96f6867312 2834 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 2835 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 2836 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 2837 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 2838 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 2839 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 2840 shiftButton.state = 2;
mjr 35:e959ffba78fd 2841
mjr 38:091e511ce8a0 2842 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 2843 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 2844 {
mjr 77:0b96f6867312 2845 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 2846 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 2847 {
mjr 77:0b96f6867312 2848 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 2849 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 2850 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 2851 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 2852 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 2853 // the night mode state.
mjr 77:0b96f6867312 2854 //
mjr 77:0b96f6867312 2855 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 2856 // mode. Shifting only works for toggle mode.
mjr 53:9b2611964afc 2857 if (cfg.nightMode.flags & 0x01)
mjr 53:9b2611964afc 2858 {
mjr 77:0b96f6867312 2859 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 2860 // current switch state.
mjr 53:9b2611964afc 2861 setNightMode(bs->logState);
mjr 53:9b2611964afc 2862 }
mjr 83:ea44e193fd55 2863 else if (bs->logState)
mjr 53:9b2611964afc 2864 {
mjr 77:0b96f6867312 2865 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 2866 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 2867 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 2868 // OFF to ON.
mjr 66:2e3583fbd2f4 2869 //
mjr 77:0b96f6867312 2870 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 2871 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 2872 // button.
mjr 77:0b96f6867312 2873 bool pressed;
mjr 66:2e3583fbd2f4 2874 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 2875 {
mjr 77:0b96f6867312 2876 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 2877 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 2878 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 2879 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 2880 }
mjr 77:0b96f6867312 2881 else
mjr 77:0b96f6867312 2882 {
mjr 77:0b96f6867312 2883 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 2884 // regular unshifted button. The button press only
mjr 77:0b96f6867312 2885 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 2886 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 2887 }
mjr 66:2e3583fbd2f4 2888
mjr 66:2e3583fbd2f4 2889 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 2890 // toggle night mode
mjr 66:2e3583fbd2f4 2891 if (pressed)
mjr 53:9b2611964afc 2892 toggleNightMode();
mjr 53:9b2611964afc 2893 }
mjr 35:e959ffba78fd 2894 }
mjr 38:091e511ce8a0 2895
mjr 77:0b96f6867312 2896 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 2897 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 2898 if (irc != 0)
mjr 77:0b96f6867312 2899 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 2900
mjr 38:091e511ce8a0 2901 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 2902 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 2903 }
mjr 38:091e511ce8a0 2904
mjr 53:9b2611964afc 2905 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 2906 // key state list
mjr 53:9b2611964afc 2907 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 2908 {
mjr 70:9f58735a1732 2909 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 2910 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 2911 uint8_t typ, val;
mjr 77:0b96f6867312 2912 if (useShift)
mjr 66:2e3583fbd2f4 2913 {
mjr 77:0b96f6867312 2914 typ = bc->typ2;
mjr 77:0b96f6867312 2915 val = bc->val2;
mjr 66:2e3583fbd2f4 2916 }
mjr 77:0b96f6867312 2917 else
mjr 77:0b96f6867312 2918 {
mjr 77:0b96f6867312 2919 typ = bc->typ;
mjr 77:0b96f6867312 2920 val = bc->val;
mjr 77:0b96f6867312 2921 }
mjr 77:0b96f6867312 2922
mjr 70:9f58735a1732 2923 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 2924 // the keyboard or joystick event.
mjr 77:0b96f6867312 2925 ks.addKey(typ, val);
mjr 18:5e890ebd0023 2926 }
mjr 11:bd9da7088e6e 2927 }
mjr 77:0b96f6867312 2928
mjr 77:0b96f6867312 2929 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 2930 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 2931 // the IR key.
mjr 77:0b96f6867312 2932 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 2933 {
mjr 77:0b96f6867312 2934 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 2935 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 2936 }
mjr 77:0b96f6867312 2937
mjr 77:0b96f6867312 2938 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 2939 // key state variables to reflect the new state.
mjr 77:0b96f6867312 2940
mjr 77:0b96f6867312 2941 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 2942 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 2943 jsButtons = ks.js;
mjr 77:0b96f6867312 2944
mjr 77:0b96f6867312 2945 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 2946 // something changes)
mjr 77:0b96f6867312 2947 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 2948 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 2949 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 2950 {
mjr 35:e959ffba78fd 2951 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 2952 kbState.changed = true;
mjr 77:0b96f6867312 2953 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 2954 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 2955 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 2956 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 2957 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 2958 }
mjr 35:e959ffba78fd 2959 else {
mjr 35:e959ffba78fd 2960 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 2961 kbState.nkeys = 6;
mjr 35:e959ffba78fd 2962 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 2963 }
mjr 35:e959ffba78fd 2964 }
mjr 35:e959ffba78fd 2965
mjr 77:0b96f6867312 2966 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 2967 // something changes)
mjr 77:0b96f6867312 2968 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 2969 {
mjr 77:0b96f6867312 2970 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 2971 mediaState.changed = true;
mjr 77:0b96f6867312 2972 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 2973 }
mjr 11:bd9da7088e6e 2974 }
mjr 11:bd9da7088e6e 2975
mjr 73:4e8ce0b18915 2976 // Send a button status report
mjr 73:4e8ce0b18915 2977 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 2978 {
mjr 73:4e8ce0b18915 2979 // start with all buttons off
mjr 73:4e8ce0b18915 2980 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 2981 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 2982
mjr 73:4e8ce0b18915 2983 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 2984 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 2985 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 2986 {
mjr 73:4e8ce0b18915 2987 // get the physical state
mjr 73:4e8ce0b18915 2988 int b = bs->physState;
mjr 73:4e8ce0b18915 2989
mjr 73:4e8ce0b18915 2990 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 2991 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 2992 int si = idx / 8;
mjr 73:4e8ce0b18915 2993 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 2994 state[si] |= b << shift;
mjr 73:4e8ce0b18915 2995 }
mjr 73:4e8ce0b18915 2996
mjr 73:4e8ce0b18915 2997 // send the report
mjr 73:4e8ce0b18915 2998 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 2999 }
mjr 73:4e8ce0b18915 3000
mjr 5:a70c0bce770d 3001 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3002 //
mjr 5:a70c0bce770d 3003 // Customization joystick subbclass
mjr 5:a70c0bce770d 3004 //
mjr 5:a70c0bce770d 3005
mjr 5:a70c0bce770d 3006 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3007 {
mjr 5:a70c0bce770d 3008 public:
mjr 35:e959ffba78fd 3009 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 3010 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 3011 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 3012 {
mjr 54:fd77a6b2f76c 3013 sleeping_ = false;
mjr 54:fd77a6b2f76c 3014 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3015 timer_.start();
mjr 54:fd77a6b2f76c 3016 }
mjr 54:fd77a6b2f76c 3017
mjr 54:fd77a6b2f76c 3018 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3019 void diagFlash()
mjr 54:fd77a6b2f76c 3020 {
mjr 54:fd77a6b2f76c 3021 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3022 {
mjr 54:fd77a6b2f76c 3023 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3024 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3025 {
mjr 54:fd77a6b2f76c 3026 // short red flash
mjr 54:fd77a6b2f76c 3027 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3028 wait_us(50000);
mjr 54:fd77a6b2f76c 3029 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3030 wait_us(50000);
mjr 54:fd77a6b2f76c 3031 }
mjr 54:fd77a6b2f76c 3032 }
mjr 5:a70c0bce770d 3033 }
mjr 5:a70c0bce770d 3034
mjr 5:a70c0bce770d 3035 // are we connected?
mjr 5:a70c0bce770d 3036 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3037
mjr 54:fd77a6b2f76c 3038 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3039 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3040 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3041 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3042 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3043
mjr 54:fd77a6b2f76c 3044 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3045 //
mjr 54:fd77a6b2f76c 3046 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3047 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3048 // other way.
mjr 54:fd77a6b2f76c 3049 //
mjr 54:fd77a6b2f76c 3050 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3051 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3052 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3053 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3054 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3055 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3056 //
mjr 54:fd77a6b2f76c 3057 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3058 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3059 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3060 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3061 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3062 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3063 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3064 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3065 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3066 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3067 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3068 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3069 // is effectively dead.
mjr 54:fd77a6b2f76c 3070 //
mjr 54:fd77a6b2f76c 3071 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3072 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3073 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3074 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3075 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3076 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3077 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3078 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3079 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3080 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3081 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3082 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3083 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3084 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3085 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3086 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3087 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3088 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3089 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3090 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3091 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3092 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3093 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3094 // a disconnect.
mjr 54:fd77a6b2f76c 3095 //
mjr 54:fd77a6b2f76c 3096 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3097 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3098 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3099 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3100 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3101 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3102 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3103 //
mjr 54:fd77a6b2f76c 3104 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3105 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3106 //
mjr 54:fd77a6b2f76c 3107 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3108 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3109 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3110 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3111 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3112 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3113 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3114 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3115 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3116 // reliable in practice.
mjr 54:fd77a6b2f76c 3117 //
mjr 54:fd77a6b2f76c 3118 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3119 //
mjr 54:fd77a6b2f76c 3120 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3121 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3122 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3123 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3124 // return.
mjr 54:fd77a6b2f76c 3125 //
mjr 54:fd77a6b2f76c 3126 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3127 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3128 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3129 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3130 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3131 //
mjr 54:fd77a6b2f76c 3132 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3133 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3134 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3135 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3136 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3137 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3138 //
mjr 54:fd77a6b2f76c 3139 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3140 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3141 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3142 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3143 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3144 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3145 // freezes over.
mjr 54:fd77a6b2f76c 3146 //
mjr 54:fd77a6b2f76c 3147 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3148 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3149 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3150 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3151 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3152 void recoverConnection()
mjr 54:fd77a6b2f76c 3153 {
mjr 54:fd77a6b2f76c 3154 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3155 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3156 {
mjr 54:fd77a6b2f76c 3157 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3158 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3159 {
mjr 54:fd77a6b2f76c 3160 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3161 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3162 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3163 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3164 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3165 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3166 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3167 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3168 __disable_irq();
mjr 54:fd77a6b2f76c 3169 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3170 {
mjr 54:fd77a6b2f76c 3171 connect(false);
mjr 54:fd77a6b2f76c 3172 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3173 done = true;
mjr 54:fd77a6b2f76c 3174 }
mjr 54:fd77a6b2f76c 3175 __enable_irq();
mjr 54:fd77a6b2f76c 3176 }
mjr 54:fd77a6b2f76c 3177 }
mjr 54:fd77a6b2f76c 3178 }
mjr 5:a70c0bce770d 3179
mjr 5:a70c0bce770d 3180 protected:
mjr 54:fd77a6b2f76c 3181 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3182 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3183 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3184 //
mjr 54:fd77a6b2f76c 3185 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3186 //
mjr 54:fd77a6b2f76c 3187 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3188 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3189 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3190 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3191 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3192 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3193 {
mjr 54:fd77a6b2f76c 3194 // note the new state
mjr 54:fd77a6b2f76c 3195 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 3196
mjr 54:fd77a6b2f76c 3197 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 3198 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 3199 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 3200 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 3201 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 3202 {
mjr 54:fd77a6b2f76c 3203 disconnect();
mjr 54:fd77a6b2f76c 3204 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 3205 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 3206 }
mjr 54:fd77a6b2f76c 3207 }
mjr 54:fd77a6b2f76c 3208
mjr 54:fd77a6b2f76c 3209 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 3210 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 3211
mjr 54:fd77a6b2f76c 3212 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 3213 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 3214
mjr 54:fd77a6b2f76c 3215 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 3216 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 3217
mjr 54:fd77a6b2f76c 3218 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 3219 Timer timer_;
mjr 5:a70c0bce770d 3220 };
mjr 5:a70c0bce770d 3221
mjr 5:a70c0bce770d 3222 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3223 //
mjr 5:a70c0bce770d 3224 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 3225 //
mjr 5:a70c0bce770d 3226
mjr 5:a70c0bce770d 3227 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 3228 //
mjr 5:a70c0bce770d 3229 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 3230 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 3231 // automatic calibration.
mjr 5:a70c0bce770d 3232 //
mjr 77:0b96f6867312 3233 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 3234 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 3235 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 3236 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 3237 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 3238 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 3239 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 3240 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 3241 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 3242 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 3243 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 3244 //
mjr 77:0b96f6867312 3245 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 3246 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 3247 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 3248 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 3249 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 3250 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 3251 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 3252 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 3253 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 3254 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 3255 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 3256 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 3257 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 3258 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 3259 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 3260 // rather than change it across the board.
mjr 5:a70c0bce770d 3261 //
mjr 6:cc35eb643e8f 3262 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 3263 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 3264 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 3265 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 3266 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 3267 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 3268 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 3269 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 3270 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 3271 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 3272 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 3273 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 3274 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 3275 // of nudging, say).
mjr 5:a70c0bce770d 3276 //
mjr 5:a70c0bce770d 3277
mjr 17:ab3cec0c8bf4 3278 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 3279 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 3280
mjr 17:ab3cec0c8bf4 3281 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 3282 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 3283 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 3284
mjr 17:ab3cec0c8bf4 3285 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 3286 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 3287 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 3288 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 3289
mjr 17:ab3cec0c8bf4 3290
mjr 6:cc35eb643e8f 3291 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 3292 struct AccHist
mjr 5:a70c0bce770d 3293 {
mjr 77:0b96f6867312 3294 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3295 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 3296 {
mjr 6:cc35eb643e8f 3297 // save the raw position
mjr 6:cc35eb643e8f 3298 this->x = x;
mjr 6:cc35eb643e8f 3299 this->y = y;
mjr 77:0b96f6867312 3300 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 3301 }
mjr 6:cc35eb643e8f 3302
mjr 6:cc35eb643e8f 3303 // reading for this entry
mjr 77:0b96f6867312 3304 int x, y;
mjr 77:0b96f6867312 3305
mjr 77:0b96f6867312 3306 // (distance from previous entry) squared
mjr 77:0b96f6867312 3307 int dsq;
mjr 5:a70c0bce770d 3308
mjr 6:cc35eb643e8f 3309 // total and count of samples averaged over this period
mjr 77:0b96f6867312 3310 int xtot, ytot;
mjr 6:cc35eb643e8f 3311 int cnt;
mjr 6:cc35eb643e8f 3312
mjr 77:0b96f6867312 3313 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3314 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 3315 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 3316 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 3317
mjr 77:0b96f6867312 3318 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 3319 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 3320 };
mjr 5:a70c0bce770d 3321
mjr 5:a70c0bce770d 3322 // accelerometer wrapper class
mjr 3:3514575d4f86 3323 class Accel
mjr 3:3514575d4f86 3324 {
mjr 3:3514575d4f86 3325 public:
mjr 78:1e00b3fa11af 3326 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 3327 int range, int autoCenterMode)
mjr 77:0b96f6867312 3328 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 3329 {
mjr 5:a70c0bce770d 3330 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 3331 irqPin_ = irqPin;
mjr 77:0b96f6867312 3332
mjr 77:0b96f6867312 3333 // remember the range
mjr 77:0b96f6867312 3334 range_ = range;
mjr 78:1e00b3fa11af 3335
mjr 78:1e00b3fa11af 3336 // set the auto-centering mode
mjr 78:1e00b3fa11af 3337 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 3338
mjr 78:1e00b3fa11af 3339 // no manual centering request has been received
mjr 78:1e00b3fa11af 3340 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 3341
mjr 5:a70c0bce770d 3342 // reset and initialize
mjr 5:a70c0bce770d 3343 reset();
mjr 5:a70c0bce770d 3344 }
mjr 5:a70c0bce770d 3345
mjr 78:1e00b3fa11af 3346 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 3347 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 3348 // as soon as we have enough data.
mjr 78:1e00b3fa11af 3349 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 3350
mjr 78:1e00b3fa11af 3351 // set the auto-centering mode
mjr 78:1e00b3fa11af 3352 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 3353 {
mjr 78:1e00b3fa11af 3354 // remember the mode
mjr 78:1e00b3fa11af 3355 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 3356
mjr 78:1e00b3fa11af 3357 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 3358 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 3359 if (mode == 0)
mjr 78:1e00b3fa11af 3360 {
mjr 78:1e00b3fa11af 3361 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 3362 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 3363 }
mjr 78:1e00b3fa11af 3364 else if (mode <= 60)
mjr 78:1e00b3fa11af 3365 {
mjr 78:1e00b3fa11af 3366 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 3367 // interval is 1/5 of this
mjr 78:1e00b3fa11af 3368 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 3369 }
mjr 78:1e00b3fa11af 3370 else
mjr 78:1e00b3fa11af 3371 {
mjr 78:1e00b3fa11af 3372 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 3373 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 3374 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 3375 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 3376 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 3377 // includes recent data.
mjr 78:1e00b3fa11af 3378 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 3379 }
mjr 78:1e00b3fa11af 3380 }
mjr 78:1e00b3fa11af 3381
mjr 5:a70c0bce770d 3382 void reset()
mjr 5:a70c0bce770d 3383 {
mjr 6:cc35eb643e8f 3384 // clear the center point
mjr 77:0b96f6867312 3385 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 3386
mjr 77:0b96f6867312 3387 // start the auto-centering timer
mjr 5:a70c0bce770d 3388 tCenter_.start();
mjr 5:a70c0bce770d 3389 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 3390
mjr 5:a70c0bce770d 3391 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 3392 mma_.init();
mjr 77:0b96f6867312 3393
mjr 77:0b96f6867312 3394 // set the range
mjr 77:0b96f6867312 3395 mma_.setRange(
mjr 77:0b96f6867312 3396 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 3397 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 3398 2);
mjr 6:cc35eb643e8f 3399
mjr 77:0b96f6867312 3400 // set the average accumulators to zero
mjr 77:0b96f6867312 3401 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3402 nSum_ = 0;
mjr 3:3514575d4f86 3403
mjr 3:3514575d4f86 3404 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 3405 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 3406 }
mjr 3:3514575d4f86 3407
mjr 77:0b96f6867312 3408 void poll()
mjr 76:7f5912b6340e 3409 {
mjr 77:0b96f6867312 3410 // read samples until we clear the FIFO
mjr 77:0b96f6867312 3411 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 3412 {
mjr 77:0b96f6867312 3413 int x, y, z;
mjr 77:0b96f6867312 3414 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 3415
mjr 77:0b96f6867312 3416 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 3417 xSum_ += (x - cx_);
mjr 77:0b96f6867312 3418 ySum_ += (y - cy_);
mjr 77:0b96f6867312 3419 ++nSum_;
mjr 77:0b96f6867312 3420
mjr 77:0b96f6867312 3421 // store the updates
mjr 77:0b96f6867312 3422 ax_ = x;
mjr 77:0b96f6867312 3423 ay_ = y;
mjr 77:0b96f6867312 3424 az_ = z;
mjr 77:0b96f6867312 3425 }
mjr 76:7f5912b6340e 3426 }
mjr 77:0b96f6867312 3427
mjr 9:fd65b0a94720 3428 void get(int &x, int &y)
mjr 3:3514575d4f86 3429 {
mjr 77:0b96f6867312 3430 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 3431 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 3432 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 3433 int nSum = nSum_;
mjr 6:cc35eb643e8f 3434
mjr 77:0b96f6867312 3435 // reset the average accumulators for the next run
mjr 77:0b96f6867312 3436 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3437 nSum_ = 0;
mjr 77:0b96f6867312 3438
mjr 77:0b96f6867312 3439 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 3440 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3441 p->addAvg(ax, ay);
mjr 77:0b96f6867312 3442
mjr 78:1e00b3fa11af 3443 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 3444 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 3445 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 3446 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 3447 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 3448 {
mjr 77:0b96f6867312 3449 // add the latest raw sample to the history list
mjr 77:0b96f6867312 3450 AccHist *prv = p;
mjr 77:0b96f6867312 3451 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 3452 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3453 iAccPrv_ = 0;
mjr 77:0b96f6867312 3454 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3455 p->set(ax, ay, prv);
mjr 77:0b96f6867312 3456
mjr 78:1e00b3fa11af 3457 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 3458 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3459 {
mjr 78:1e00b3fa11af 3460 // Center if:
mjr 78:1e00b3fa11af 3461 //
mjr 78:1e00b3fa11af 3462 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 3463 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 3464 //
mjr 78:1e00b3fa11af 3465 // - A manual centering request is pending
mjr 78:1e00b3fa11af 3466 //
mjr 77:0b96f6867312 3467 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 3468 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 3469 if (manualCenterRequest_
mjr 78:1e00b3fa11af 3470 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 3471 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 3472 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 3473 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 3474 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 3475 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 3476 {
mjr 77:0b96f6867312 3477 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 3478 // the samples over the rest period
mjr 77:0b96f6867312 3479 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 3480 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 3481
mjr 78:1e00b3fa11af 3482 // clear any pending manual centering request
mjr 78:1e00b3fa11af 3483 manualCenterRequest_ = false;
mjr 77:0b96f6867312 3484 }
mjr 77:0b96f6867312 3485 }
mjr 77:0b96f6867312 3486 else
mjr 77:0b96f6867312 3487 {
mjr 77:0b96f6867312 3488 // not enough samples yet; just up the count
mjr 77:0b96f6867312 3489 ++nAccPrv_;
mjr 77:0b96f6867312 3490 }
mjr 6:cc35eb643e8f 3491
mjr 77:0b96f6867312 3492 // clear the new item's running totals
mjr 77:0b96f6867312 3493 p->clearAvg();
mjr 5:a70c0bce770d 3494
mjr 77:0b96f6867312 3495 // reset the timer
mjr 77:0b96f6867312 3496 tCenter_.reset();
mjr 77:0b96f6867312 3497 }
mjr 5:a70c0bce770d 3498
mjr 77:0b96f6867312 3499 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 3500 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 3501 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 3502
mjr 6:cc35eb643e8f 3503 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 3504 if (x != 0 || y != 0)
mjr 77:0b96f6867312 3505 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 3506 #endif
mjr 77:0b96f6867312 3507 }
mjr 29:582472d0bc57 3508
mjr 3:3514575d4f86 3509 private:
mjr 6:cc35eb643e8f 3510 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 3511 int rawToReport(int v)
mjr 5:a70c0bce770d 3512 {
mjr 77:0b96f6867312 3513 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 3514 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 3515 // so their scale is 2^13.
mjr 77:0b96f6867312 3516 //
mjr 77:0b96f6867312 3517 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 3518 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 3519 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 3520 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 3521 int i = v*JOYMAX;
mjr 77:0b96f6867312 3522 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 3523
mjr 6:cc35eb643e8f 3524 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 3525 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 3526 static const int filter[] = {
mjr 6:cc35eb643e8f 3527 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 3528 0,
mjr 6:cc35eb643e8f 3529 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 3530 };
mjr 6:cc35eb643e8f 3531 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 3532 }
mjr 5:a70c0bce770d 3533
mjr 3:3514575d4f86 3534 // underlying accelerometer object
mjr 3:3514575d4f86 3535 MMA8451Q mma_;
mjr 3:3514575d4f86 3536
mjr 77:0b96f6867312 3537 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 3538 // scale -8192..+8191
mjr 77:0b96f6867312 3539 int ax_, ay_, az_;
mjr 77:0b96f6867312 3540
mjr 77:0b96f6867312 3541 // running sum of readings since last get()
mjr 77:0b96f6867312 3542 int xSum_, ySum_;
mjr 77:0b96f6867312 3543
mjr 77:0b96f6867312 3544 // number of readings since last get()
mjr 77:0b96f6867312 3545 int nSum_;
mjr 6:cc35eb643e8f 3546
mjr 6:cc35eb643e8f 3547 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 3548 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 3549 // at rest.
mjr 77:0b96f6867312 3550 int cx_, cy_;
mjr 77:0b96f6867312 3551
mjr 77:0b96f6867312 3552 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 3553 uint8_t range_;
mjr 78:1e00b3fa11af 3554
mjr 78:1e00b3fa11af 3555 // auto-center mode:
mjr 78:1e00b3fa11af 3556 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 3557 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 3558 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 3559 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 3560
mjr 78:1e00b3fa11af 3561 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 3562 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 3563
mjr 78:1e00b3fa11af 3564 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 3565 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 3566
mjr 77:0b96f6867312 3567 // atuo-centering timer
mjr 5:a70c0bce770d 3568 Timer tCenter_;
mjr 6:cc35eb643e8f 3569
mjr 6:cc35eb643e8f 3570 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 3571 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 3572 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 3573 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 3574 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 3575 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 3576 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 3577 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 3578 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 3579 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 3580 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 3581 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 3582 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 3583 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 3584 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 3585
mjr 5:a70c0bce770d 3586 // interurupt pin name
mjr 5:a70c0bce770d 3587 PinName irqPin_;
mjr 3:3514575d4f86 3588 };
mjr 3:3514575d4f86 3589
mjr 5:a70c0bce770d 3590 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3591 //
mjr 14:df700b22ca08 3592 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 3593 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 3594 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 3595 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 3596 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 3597 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 3598 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 3599 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 3600 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 3601 //
mjr 14:df700b22ca08 3602 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 3603 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 3604 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 3605 //
mjr 5:a70c0bce770d 3606 void clear_i2c()
mjr 5:a70c0bce770d 3607 {
mjr 38:091e511ce8a0 3608 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 3609 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 3610 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 3611
mjr 5:a70c0bce770d 3612 // clock the SCL 9 times
mjr 5:a70c0bce770d 3613 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 3614 {
mjr 5:a70c0bce770d 3615 scl = 1;
mjr 5:a70c0bce770d 3616 wait_us(20);
mjr 5:a70c0bce770d 3617 scl = 0;
mjr 5:a70c0bce770d 3618 wait_us(20);
mjr 5:a70c0bce770d 3619 }
mjr 5:a70c0bce770d 3620 }
mjr 76:7f5912b6340e 3621
mjr 76:7f5912b6340e 3622
mjr 14:df700b22ca08 3623 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 3624 //
mjr 33:d832bcab089e 3625 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 3626 // for a given interval before allowing an update.
mjr 33:d832bcab089e 3627 //
mjr 33:d832bcab089e 3628 class Debouncer
mjr 33:d832bcab089e 3629 {
mjr 33:d832bcab089e 3630 public:
mjr 33:d832bcab089e 3631 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 3632 {
mjr 33:d832bcab089e 3633 t.start();
mjr 33:d832bcab089e 3634 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 3635 this->tmin = tmin;
mjr 33:d832bcab089e 3636 }
mjr 33:d832bcab089e 3637
mjr 33:d832bcab089e 3638 // Get the current stable value
mjr 33:d832bcab089e 3639 bool val() const { return stable; }
mjr 33:d832bcab089e 3640
mjr 33:d832bcab089e 3641 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 3642 // input device.
mjr 33:d832bcab089e 3643 void sampleIn(bool val)
mjr 33:d832bcab089e 3644 {
mjr 33:d832bcab089e 3645 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 3646 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 3647 // on the sample reader.
mjr 33:d832bcab089e 3648 if (val != prv)
mjr 33:d832bcab089e 3649 {
mjr 33:d832bcab089e 3650 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 3651 t.reset();
mjr 33:d832bcab089e 3652
mjr 33:d832bcab089e 3653 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 3654 prv = val;
mjr 33:d832bcab089e 3655 }
mjr 33:d832bcab089e 3656 else if (val != stable)
mjr 33:d832bcab089e 3657 {
mjr 33:d832bcab089e 3658 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 3659 // and different from the stable value. This means that
mjr 33:d832bcab089e 3660 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 3661 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 3662 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 3663 if (t.read() > tmin)
mjr 33:d832bcab089e 3664 stable = val;
mjr 33:d832bcab089e 3665 }
mjr 33:d832bcab089e 3666 }
mjr 33:d832bcab089e 3667
mjr 33:d832bcab089e 3668 private:
mjr 33:d832bcab089e 3669 // current stable value
mjr 33:d832bcab089e 3670 bool stable;
mjr 33:d832bcab089e 3671
mjr 33:d832bcab089e 3672 // last raw sample value
mjr 33:d832bcab089e 3673 bool prv;
mjr 33:d832bcab089e 3674
mjr 33:d832bcab089e 3675 // elapsed time since last raw input change
mjr 33:d832bcab089e 3676 Timer t;
mjr 33:d832bcab089e 3677
mjr 33:d832bcab089e 3678 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 3679 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 3680 float tmin;
mjr 33:d832bcab089e 3681 };
mjr 33:d832bcab089e 3682
mjr 33:d832bcab089e 3683
mjr 33:d832bcab089e 3684 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 3685 //
mjr 33:d832bcab089e 3686 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 3687 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 3688 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 3689 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 3690 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 3691 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 3692 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 3693 //
mjr 33:d832bcab089e 3694 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 3695 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 3696 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 3697 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 3698 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 3699 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 3700 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 3701 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 3702 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 3703 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 3704 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 3705 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 3706 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 3707 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 3708 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 3709 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 3710 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 3711 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 3712 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 3713 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 3714 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 3715 //
mjr 40:cc0d9814522b 3716 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 3717 // of tricky but likely scenarios:
mjr 33:d832bcab089e 3718 //
mjr 33:d832bcab089e 3719 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 3720 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 3721 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 3722 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 3723 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 3724 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 3725 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 3726 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 3727 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 3728 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 3729 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 3730 //
mjr 33:d832bcab089e 3731 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 3732 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 3733 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 3734 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 3735 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 3736 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 3737 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 3738 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 3739 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 3740 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 3741 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 3742 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 3743 // first check.
mjr 33:d832bcab089e 3744 //
mjr 33:d832bcab089e 3745 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 3746 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 3747 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 3748 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 3749 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 3750 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 3751 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 3752 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 3753 //
mjr 33:d832bcab089e 3754
mjr 77:0b96f6867312 3755 // Current PSU2 power state:
mjr 33:d832bcab089e 3756 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 3757 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 3758 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 3759 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 3760 // 5 -> TV relay on
mjr 77:0b96f6867312 3761 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 3762 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 3763
mjr 73:4e8ce0b18915 3764 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 3765 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 3766 // separate state for each:
mjr 73:4e8ce0b18915 3767 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 3768 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 3769 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 3770 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 3771 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 3772
mjr 79:682ae3171a08 3773 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 3774 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 3775
mjr 77:0b96f6867312 3776 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 3777 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 3778 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 3779 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 3780 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 3781 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 3782 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 3783 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 3784 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 3785 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 3786 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 3787
mjr 77:0b96f6867312 3788 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 3789 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 3790
mjr 35:e959ffba78fd 3791 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 3792 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 3793 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 3794
mjr 73:4e8ce0b18915 3795 // Apply the current TV relay state
mjr 73:4e8ce0b18915 3796 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 3797 {
mjr 73:4e8ce0b18915 3798 // update the state
mjr 73:4e8ce0b18915 3799 if (state)
mjr 73:4e8ce0b18915 3800 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 3801 else
mjr 73:4e8ce0b18915 3802 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 3803
mjr 73:4e8ce0b18915 3804 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 3805 if (tv_relay != 0)
mjr 73:4e8ce0b18915 3806 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 3807 }
mjr 35:e959ffba78fd 3808
mjr 77:0b96f6867312 3809 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 3810 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 3811 // functions.
mjr 77:0b96f6867312 3812 Timer powerStatusTimer;
mjr 77:0b96f6867312 3813 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 3814 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 3815 {
mjr 79:682ae3171a08 3816 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 3817 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 3818 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 3819 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 3820 {
mjr 79:682ae3171a08 3821 // turn off the relay and disable the timer
mjr 79:682ae3171a08 3822 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 3823 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 3824 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 3825 }
mjr 79:682ae3171a08 3826
mjr 77:0b96f6867312 3827 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 3828 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 3829 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 3830 // skip this whole routine.
mjr 77:0b96f6867312 3831 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 3832 return;
mjr 77:0b96f6867312 3833
mjr 77:0b96f6867312 3834 // reset the update timer for next time
mjr 77:0b96f6867312 3835 powerStatusTimer.reset();
mjr 77:0b96f6867312 3836
mjr 77:0b96f6867312 3837 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 3838 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 3839 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 3840 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 3841 static Timer tv_timer;
mjr 35:e959ffba78fd 3842
mjr 33:d832bcab089e 3843 // Check our internal state
mjr 33:d832bcab089e 3844 switch (psu2_state)
mjr 33:d832bcab089e 3845 {
mjr 33:d832bcab089e 3846 case 1:
mjr 33:d832bcab089e 3847 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 3848 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 3849 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 3850 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 3851 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 3852 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 3853 {
mjr 33:d832bcab089e 3854 // switch to OFF state
mjr 33:d832bcab089e 3855 psu2_state = 2;
mjr 33:d832bcab089e 3856
mjr 33:d832bcab089e 3857 // try setting the latch
mjr 35:e959ffba78fd 3858 psu2_status_set->write(1);
mjr 33:d832bcab089e 3859 }
mjr 77:0b96f6867312 3860 powerTimerDiagState = 0;
mjr 33:d832bcab089e 3861 break;
mjr 33:d832bcab089e 3862
mjr 33:d832bcab089e 3863 case 2:
mjr 33:d832bcab089e 3864 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 3865 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 3866 psu2_status_set->write(0);
mjr 33:d832bcab089e 3867 psu2_state = 3;
mjr 77:0b96f6867312 3868 powerTimerDiagState = 0;
mjr 33:d832bcab089e 3869 break;
mjr 33:d832bcab089e 3870
mjr 33:d832bcab089e 3871 case 3:
mjr 33:d832bcab089e 3872 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 3873 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 3874 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 3875 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 3876 if (psu2_status_sense->read())
mjr 33:d832bcab089e 3877 {
mjr 33:d832bcab089e 3878 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 3879 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 3880 tv_timer.reset();
mjr 33:d832bcab089e 3881 tv_timer.start();
mjr 33:d832bcab089e 3882 psu2_state = 4;
mjr 73:4e8ce0b18915 3883
mjr 73:4e8ce0b18915 3884 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 3885 powerTimerDiagState = 2;
mjr 33:d832bcab089e 3886 }
mjr 33:d832bcab089e 3887 else
mjr 33:d832bcab089e 3888 {
mjr 33:d832bcab089e 3889 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 3890 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 3891 // was turned on since the last check.
mjr 35:e959ffba78fd 3892 psu2_status_set->write(1);
mjr 33:d832bcab089e 3893 psu2_state = 2;
mjr 33:d832bcab089e 3894 }
mjr 33:d832bcab089e 3895 break;
mjr 33:d832bcab089e 3896
mjr 33:d832bcab089e 3897 case 4:
mjr 77:0b96f6867312 3898 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 3899 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 3900 // off again before the countdown finished.
mjr 77:0b96f6867312 3901 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 3902 {
mjr 77:0b96f6867312 3903 // power is off - start a new check cycle
mjr 77:0b96f6867312 3904 psu2_status_set->write(1);
mjr 77:0b96f6867312 3905 psu2_state = 2;
mjr 77:0b96f6867312 3906 break;
mjr 77:0b96f6867312 3907 }
mjr 77:0b96f6867312 3908
mjr 77:0b96f6867312 3909 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 3910 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 3911
mjr 77:0b96f6867312 3912 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 3913 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 3914 {
mjr 33:d832bcab089e 3915 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 3916 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 3917 psu2_state = 5;
mjr 77:0b96f6867312 3918
mjr 77:0b96f6867312 3919 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 3920 powerTimerDiagState = 2;
mjr 33:d832bcab089e 3921 }
mjr 33:d832bcab089e 3922 break;
mjr 33:d832bcab089e 3923
mjr 33:d832bcab089e 3924 case 5:
mjr 33:d832bcab089e 3925 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 3926 // it's now time to turn it off.
mjr 73:4e8ce0b18915 3927 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 3928
mjr 77:0b96f6867312 3929 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 3930 psu2_state = 6;
mjr 77:0b96f6867312 3931 tvon_ir_state = 0;
mjr 77:0b96f6867312 3932
mjr 77:0b96f6867312 3933 // diagnostic LEDs off for now
mjr 77:0b96f6867312 3934 powerTimerDiagState = 0;
mjr 77:0b96f6867312 3935 break;
mjr 77:0b96f6867312 3936
mjr 77:0b96f6867312 3937 case 6:
mjr 77:0b96f6867312 3938 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 3939 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 3940 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 3941 psu2_state = 1;
mjr 77:0b96f6867312 3942 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 3943
mjr 77:0b96f6867312 3944 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 3945 if (ir_tx != 0)
mjr 77:0b96f6867312 3946 {
mjr 77:0b96f6867312 3947 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 3948 if (ir_tx->isSending())
mjr 77:0b96f6867312 3949 {
mjr 77:0b96f6867312 3950 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 3951 // state 6.
mjr 77:0b96f6867312 3952 psu2_state = 6;
mjr 77:0b96f6867312 3953 powerTimerDiagState = 4;
mjr 77:0b96f6867312 3954 break;
mjr 77:0b96f6867312 3955 }
mjr 77:0b96f6867312 3956
mjr 77:0b96f6867312 3957 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 3958 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 3959 // number.
mjr 77:0b96f6867312 3960 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 3961 {
mjr 77:0b96f6867312 3962 // is this a TV ON command?
mjr 77:0b96f6867312 3963 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 3964 {
mjr 77:0b96f6867312 3965 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 3966 // looking for.
mjr 77:0b96f6867312 3967 if (n == tvon_ir_state)
mjr 77:0b96f6867312 3968 {
mjr 77:0b96f6867312 3969 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 3970 // pushing its virtual button.
mjr 77:0b96f6867312 3971 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 3972 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 3973
mjr 77:0b96f6867312 3974 // Pushing the button starts transmission, and once
mjr 77:0b96f6867312 3975 // started, the transmission will run to completion
mjr 77:0b96f6867312 3976 // even if the button is no longer pushed. So we
mjr 77:0b96f6867312 3977 // can immediately un-push the button, since we only
mjr 77:0b96f6867312 3978 // need to send the code once.
mjr 77:0b96f6867312 3979 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 3980
mjr 77:0b96f6867312 3981 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 3982 // await the end of this transmission and move on to
mjr 77:0b96f6867312 3983 // the next one.
mjr 77:0b96f6867312 3984 psu2_state = 6;
mjr 77:0b96f6867312 3985 tvon_ir_state++;
mjr 77:0b96f6867312 3986 break;
mjr 77:0b96f6867312 3987 }
mjr 77:0b96f6867312 3988
mjr 77:0b96f6867312 3989 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 3990 ++n;
mjr 77:0b96f6867312 3991 }
mjr 77:0b96f6867312 3992 }
mjr 77:0b96f6867312 3993 }
mjr 33:d832bcab089e 3994 break;
mjr 33:d832bcab089e 3995 }
mjr 77:0b96f6867312 3996
mjr 77:0b96f6867312 3997 // update the diagnostic LEDs
mjr 77:0b96f6867312 3998 diagLED();
mjr 33:d832bcab089e 3999 }
mjr 33:d832bcab089e 4000
mjr 77:0b96f6867312 4001 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4002 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4003 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4004 // are configured as NC.
mjr 77:0b96f6867312 4005 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4006 {
mjr 55:4db125cd11a0 4007 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4008 // time is nonzero
mjr 77:0b96f6867312 4009 powerStatusTimer.reset();
mjr 77:0b96f6867312 4010 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4011 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4012 {
mjr 77:0b96f6867312 4013 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4014 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4015 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4016
mjr 77:0b96f6867312 4017 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4018 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4019 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4020
mjr 77:0b96f6867312 4021 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4022 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4023 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4024 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4025
mjr 77:0b96f6867312 4026 // Start the TV timer
mjr 77:0b96f6867312 4027 powerStatusTimer.start();
mjr 35:e959ffba78fd 4028 }
mjr 35:e959ffba78fd 4029 }
mjr 35:e959ffba78fd 4030
mjr 73:4e8ce0b18915 4031 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4032 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4033 //
mjr 73:4e8ce0b18915 4034 // Mode:
mjr 73:4e8ce0b18915 4035 // 0 = turn relay off
mjr 73:4e8ce0b18915 4036 // 1 = turn relay on
mjr 73:4e8ce0b18915 4037 // 2 = pulse relay
mjr 73:4e8ce0b18915 4038 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4039 {
mjr 73:4e8ce0b18915 4040 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4041 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4042 return;
mjr 73:4e8ce0b18915 4043
mjr 73:4e8ce0b18915 4044 switch (mode)
mjr 73:4e8ce0b18915 4045 {
mjr 73:4e8ce0b18915 4046 case 0:
mjr 73:4e8ce0b18915 4047 // relay off
mjr 73:4e8ce0b18915 4048 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4049 break;
mjr 73:4e8ce0b18915 4050
mjr 73:4e8ce0b18915 4051 case 1:
mjr 73:4e8ce0b18915 4052 // relay on
mjr 73:4e8ce0b18915 4053 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4054 break;
mjr 73:4e8ce0b18915 4055
mjr 73:4e8ce0b18915 4056 case 2:
mjr 79:682ae3171a08 4057 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 4058 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 4059 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4060 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 4061 break;
mjr 73:4e8ce0b18915 4062 }
mjr 73:4e8ce0b18915 4063 }
mjr 73:4e8ce0b18915 4064
mjr 73:4e8ce0b18915 4065
mjr 35:e959ffba78fd 4066 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4067 //
mjr 35:e959ffba78fd 4068 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4069 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4070 //
mjr 35:e959ffba78fd 4071 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4072 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4073 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4074 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4075 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4076 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4077 //
mjr 35:e959ffba78fd 4078 NVM nvm;
mjr 35:e959ffba78fd 4079
mjr 77:0b96f6867312 4080 // Flag: configuration save requested. The USB command message handler
mjr 77:0b96f6867312 4081 // sets this flag when a command is sent requesting the save. We don't
mjr 77:0b96f6867312 4082 // do the save inline in the command handler, but handle it on the next
mjr 77:0b96f6867312 4083 // main loop iteration.
mjr 77:0b96f6867312 4084 const uint8_t SAVE_CONFIG_ONLY = 1;
mjr 77:0b96f6867312 4085 const uint8_t SAVE_CONFIG_AND_REBOOT = 2;
mjr 77:0b96f6867312 4086 uint8_t saveConfigPending = 0;
mjr 77:0b96f6867312 4087
mjr 77:0b96f6867312 4088 // If saveConfigPending == SAVE_CONFIG_AND_REBOOT, this specifies the
mjr 77:0b96f6867312 4089 // delay time in seconds before rebooting.
mjr 77:0b96f6867312 4090 uint8_t saveConfigRebootTime;
mjr 77:0b96f6867312 4091
mjr 79:682ae3171a08 4092 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 4093 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 4094
mjr 35:e959ffba78fd 4095 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4096 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4097
mjr 35:e959ffba78fd 4098 // flash memory controller interface
mjr 35:e959ffba78fd 4099 FreescaleIAP iap;
mjr 35:e959ffba78fd 4100
mjr 79:682ae3171a08 4101 // figure the flash address for the config data
mjr 79:682ae3171a08 4102 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 4103 {
mjr 79:682ae3171a08 4104 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 4105 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 4106
mjr 79:682ae3171a08 4107 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 4108 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 4109
mjr 79:682ae3171a08 4110 // locate it at the top of memory
mjr 79:682ae3171a08 4111 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 4112
mjr 79:682ae3171a08 4113 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 4114 return (const NVM *)addr;
mjr 35:e959ffba78fd 4115 }
mjr 35:e959ffba78fd 4116
mjr 76:7f5912b6340e 4117 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4118 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4119 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4120 // in either case.
mjr 76:7f5912b6340e 4121 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4122 {
mjr 35:e959ffba78fd 4123 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4124 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4125 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4126 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4127 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4128 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4129 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4130 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4131 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4132 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4133 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4134 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4135 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4136 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4137 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4138 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4139
mjr 35:e959ffba78fd 4140 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 4141 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4142
mjr 35:e959ffba78fd 4143 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4144 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4145 if (nvm_valid)
mjr 35:e959ffba78fd 4146 {
mjr 35:e959ffba78fd 4147 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4148 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4149 }
mjr 35:e959ffba78fd 4150 else
mjr 35:e959ffba78fd 4151 {
mjr 76:7f5912b6340e 4152 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4153 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4154 }
mjr 76:7f5912b6340e 4155
mjr 76:7f5912b6340e 4156 // tell the caller what happened
mjr 76:7f5912b6340e 4157 return nvm_valid;
mjr 35:e959ffba78fd 4158 }
mjr 35:e959ffba78fd 4159
mjr 79:682ae3171a08 4160 // save the config - returns true on success, false on failure
mjr 79:682ae3171a08 4161 bool saveConfigToFlash()
mjr 33:d832bcab089e 4162 {
mjr 76:7f5912b6340e 4163 // make sure the plunger sensor isn't busy
mjr 76:7f5912b6340e 4164 waitPlungerIdle();
mjr 76:7f5912b6340e 4165
mjr 76:7f5912b6340e 4166 // get the config block location in the flash memory
mjr 77:0b96f6867312 4167 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 4168
mjr 79:682ae3171a08 4169 // save the data
mjr 79:682ae3171a08 4170 return nvm.save(iap, addr);
mjr 76:7f5912b6340e 4171 }
mjr 76:7f5912b6340e 4172
mjr 76:7f5912b6340e 4173 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 4174 //
mjr 76:7f5912b6340e 4175 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 4176 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 4177 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 4178 // downloading it to the device.
mjr 76:7f5912b6340e 4179 //
mjr 76:7f5912b6340e 4180 // Ideally, we'd use the host-loaded memory for all configuration updates,
mjr 76:7f5912b6340e 4181 // because the KL25Z doesn't seem to be 100% reliable writing flash itself.
mjr 76:7f5912b6340e 4182 // There seems to be a chance of memory bus contention while a write is in
mjr 76:7f5912b6340e 4183 // progress, which can either corrupt the write or cause the CPU to lock up
mjr 76:7f5912b6340e 4184 // before the write is completed. It seems more reliable to program the
mjr 76:7f5912b6340e 4185 // flash externally, via the OpenSDA connection. Unfortunately, none of
mjr 76:7f5912b6340e 4186 // the available OpenSDA versions are capable of programming specific flash
mjr 76:7f5912b6340e 4187 // sectors; they always erase the entire flash memory space. We *could*
mjr 76:7f5912b6340e 4188 // make the Windows config program simply re-download the entire firmware
mjr 76:7f5912b6340e 4189 // for every configuration update, but I'd rather not because of the extra
mjr 76:7f5912b6340e 4190 // wear this would put on the flash. So, as a compromise, we'll use the
mjr 76:7f5912b6340e 4191 // host-loaded config whenever the user explicitly updates the firmware,
mjr 76:7f5912b6340e 4192 // but we'll use the on-board writer when only making a config change.
mjr 76:7f5912b6340e 4193 //
mjr 76:7f5912b6340e 4194 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 4195 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 4196 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 4197 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 4198 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 4199 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 4200 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 4201 //
mjr 76:7f5912b6340e 4202 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 4203 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 4204 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 4205 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 4206 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 4207 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 4208 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 4209 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 4210 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 4211 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 4212
mjr 76:7f5912b6340e 4213 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 4214 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 4215 {
mjr 76:7f5912b6340e 4216 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 4217 // 32-byte signature header
mjr 76:7f5912b6340e 4218 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 4219 };
mjr 76:7f5912b6340e 4220
mjr 76:7f5912b6340e 4221 // forward reference to config var store function
mjr 76:7f5912b6340e 4222 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 4223
mjr 76:7f5912b6340e 4224 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 4225 // configuration object.
mjr 76:7f5912b6340e 4226 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 4227 {
mjr 76:7f5912b6340e 4228 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 4229 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 4230 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 4231 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 4232 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 4233 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 4234 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 4235 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 4236 {
mjr 76:7f5912b6340e 4237 // load this variable
mjr 76:7f5912b6340e 4238 configVarSet(p);
mjr 76:7f5912b6340e 4239 }
mjr 35:e959ffba78fd 4240 }
mjr 35:e959ffba78fd 4241
mjr 35:e959ffba78fd 4242 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4243 //
mjr 55:4db125cd11a0 4244 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 4245 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 4246 //
mjr 55:4db125cd11a0 4247 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 4248 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 4249 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 4250
mjr 55:4db125cd11a0 4251
mjr 55:4db125cd11a0 4252
mjr 55:4db125cd11a0 4253 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 4254 //
mjr 40:cc0d9814522b 4255 // Night mode setting updates
mjr 40:cc0d9814522b 4256 //
mjr 38:091e511ce8a0 4257
mjr 38:091e511ce8a0 4258 // Turn night mode on or off
mjr 38:091e511ce8a0 4259 static void setNightMode(bool on)
mjr 38:091e511ce8a0 4260 {
mjr 77:0b96f6867312 4261 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 4262 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 4263 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 4264 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 4265
mjr 40:cc0d9814522b 4266 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 4267 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 4268 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 4269 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 4270
mjr 76:7f5912b6340e 4271 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 4272 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 4273 // mode change.
mjr 76:7f5912b6340e 4274 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 4275 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 4276
mjr 76:7f5912b6340e 4277 // update 74HC595 outputs
mjr 76:7f5912b6340e 4278 if (hc595 != 0)
mjr 76:7f5912b6340e 4279 hc595->update();
mjr 38:091e511ce8a0 4280 }
mjr 38:091e511ce8a0 4281
mjr 38:091e511ce8a0 4282 // Toggle night mode
mjr 38:091e511ce8a0 4283 static void toggleNightMode()
mjr 38:091e511ce8a0 4284 {
mjr 53:9b2611964afc 4285 setNightMode(!nightMode);
mjr 38:091e511ce8a0 4286 }
mjr 38:091e511ce8a0 4287
mjr 38:091e511ce8a0 4288
mjr 38:091e511ce8a0 4289 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 4290 //
mjr 35:e959ffba78fd 4291 // Plunger Sensor
mjr 35:e959ffba78fd 4292 //
mjr 35:e959ffba78fd 4293
mjr 35:e959ffba78fd 4294 // the plunger sensor interface object
mjr 35:e959ffba78fd 4295 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 4296
mjr 76:7f5912b6340e 4297 // wait for the plunger sensor to complete any outstanding read
mjr 76:7f5912b6340e 4298 static void waitPlungerIdle(void)
mjr 76:7f5912b6340e 4299 {
mjr 76:7f5912b6340e 4300 while (!plungerSensor->ready()) { }
mjr 76:7f5912b6340e 4301 }
mjr 76:7f5912b6340e 4302
mjr 35:e959ffba78fd 4303 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 4304 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 4305 void createPlunger()
mjr 35:e959ffba78fd 4306 {
mjr 35:e959ffba78fd 4307 // create the new sensor object according to the type
mjr 35:e959ffba78fd 4308 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 4309 {
mjr 35:e959ffba78fd 4310 case PlungerType_TSL1410RS:
mjr 69:cc5039284fac 4311 // TSL1410R, serial mode (all pixels read in one file)
mjr 35:e959ffba78fd 4312 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4313 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 4314 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4315 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 4316 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 4317 NC);
mjr 35:e959ffba78fd 4318 break;
mjr 35:e959ffba78fd 4319
mjr 35:e959ffba78fd 4320 case PlungerType_TSL1410RP:
mjr 69:cc5039284fac 4321 // TSL1410R, parallel mode (each half-sensor's pixels read separately)
mjr 35:e959ffba78fd 4322 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 4323 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 4324 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4325 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 4326 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 4327 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 4328 break;
mjr 35:e959ffba78fd 4329
mjr 69:cc5039284fac 4330 case PlungerType_TSL1412SS:
mjr 69:cc5039284fac 4331 // TSL1412S, serial mode
mjr 35:e959ffba78fd 4332 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 4333 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 4334 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4335 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 4336 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 4337 NC);
mjr 35:e959ffba78fd 4338 break;
mjr 35:e959ffba78fd 4339
mjr 69:cc5039284fac 4340 case PlungerType_TSL1412SP:
mjr 69:cc5039284fac 4341 // TSL1412S, parallel mode
mjr 35:e959ffba78fd 4342 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 4343 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 4344 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4345 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 4346 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 4347 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 4348 break;
mjr 35:e959ffba78fd 4349
mjr 35:e959ffba78fd 4350 case PlungerType_Pot:
mjr 35:e959ffba78fd 4351 // pins are: AO
mjr 53:9b2611964afc 4352 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 4353 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 4354 break;
mjr 35:e959ffba78fd 4355
mjr 35:e959ffba78fd 4356 case PlungerType_None:
mjr 35:e959ffba78fd 4357 default:
mjr 35:e959ffba78fd 4358 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 4359 break;
mjr 35:e959ffba78fd 4360 }
mjr 33:d832bcab089e 4361 }
mjr 33:d832bcab089e 4362
mjr 52:8298b2a73eb2 4363 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 4364 bool plungerCalMode;
mjr 52:8298b2a73eb2 4365
mjr 48:058ace2aed1d 4366 // Plunger reader
mjr 51:57eb311faafa 4367 //
mjr 51:57eb311faafa 4368 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 4369 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 4370 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 4371 //
mjr 51:57eb311faafa 4372 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 4373 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 4374 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 4375 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 4376 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 4377 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 4378 // firing motion.
mjr 51:57eb311faafa 4379 //
mjr 51:57eb311faafa 4380 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 4381 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 4382 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 4383 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 4384 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 4385 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 4386 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 4387 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 4388 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 4389 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 4390 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 4391 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 4392 // a classic digital aliasing effect.
mjr 51:57eb311faafa 4393 //
mjr 51:57eb311faafa 4394 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 4395 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 4396 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 4397 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 4398 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 4399 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 4400 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 4401 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 4402 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 4403 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 4404 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 4405 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 4406 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 4407 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 4408 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 4409 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 4410 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 4411 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 4412 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 4413 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 4414 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 4415 //
mjr 48:058ace2aed1d 4416 class PlungerReader
mjr 48:058ace2aed1d 4417 {
mjr 48:058ace2aed1d 4418 public:
mjr 48:058ace2aed1d 4419 PlungerReader()
mjr 48:058ace2aed1d 4420 {
mjr 48:058ace2aed1d 4421 // not in a firing event yet
mjr 48:058ace2aed1d 4422 firing = 0;
mjr 48:058ace2aed1d 4423
mjr 48:058ace2aed1d 4424 // no history yet
mjr 48:058ace2aed1d 4425 histIdx = 0;
mjr 55:4db125cd11a0 4426
mjr 55:4db125cd11a0 4427 // initialize the filter
mjr 55:4db125cd11a0 4428 initFilter();
mjr 48:058ace2aed1d 4429 }
mjr 76:7f5912b6340e 4430
mjr 48:058ace2aed1d 4431 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 4432 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 4433 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 4434 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 4435 void read()
mjr 48:058ace2aed1d 4436 {
mjr 76:7f5912b6340e 4437 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 4438 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 4439 return;
mjr 76:7f5912b6340e 4440
mjr 48:058ace2aed1d 4441 // Read a sample from the sensor
mjr 48:058ace2aed1d 4442 PlungerReading r;
mjr 48:058ace2aed1d 4443 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 4444 {
mjr 69:cc5039284fac 4445 // filter the raw sensor reading
mjr 69:cc5039284fac 4446 applyPreFilter(r);
mjr 69:cc5039284fac 4447
mjr 51:57eb311faafa 4448 // Pull the previous reading from the history
mjr 50:40015764bbe6 4449 const PlungerReading &prv = nthHist(0);
mjr 48:058ace2aed1d 4450
mjr 69:cc5039284fac 4451 // If the new reading is within 1ms of the previous reading,
mjr 48:058ace2aed1d 4452 // ignore it. We require a minimum time between samples to
mjr 48:058ace2aed1d 4453 // ensure that we have a usable amount of precision in the
mjr 48:058ace2aed1d 4454 // denominator (the time interval) for calculating the plunger
mjr 69:cc5039284fac 4455 // velocity. The CCD sensor hardware takes about 2.5ms to
mjr 69:cc5039284fac 4456 // read, so it will never be affected by this, but other sensor
mjr 69:cc5039284fac 4457 // types don't all have the same hardware cycle time, so we need
mjr 69:cc5039284fac 4458 // to throttle them artificially. E.g., the potentiometer only
mjr 69:cc5039284fac 4459 // needs one ADC sample per reading, which only takes about 15us.
mjr 69:cc5039284fac 4460 // We don't need to check which sensor type we have here; we
mjr 69:cc5039284fac 4461 // just ignore readings until the minimum interval has passed,
mjr 69:cc5039284fac 4462 // so if the sensor is already slower than this, we'll end up
mjr 69:cc5039284fac 4463 // using all of its readings.
mjr 69:cc5039284fac 4464 if (uint32_t(r.t - prv.t) < 1000UL)
mjr 48:058ace2aed1d 4465 return;
mjr 53:9b2611964afc 4466
mjr 53:9b2611964afc 4467 // check for calibration mode
mjr 53:9b2611964afc 4468 if (plungerCalMode)
mjr 53:9b2611964afc 4469 {
mjr 53:9b2611964afc 4470 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 4471 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 4472 // expand the envelope to include this new value.
mjr 53:9b2611964afc 4473 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 4474 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 4475 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 4476 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 4477
mjr 76:7f5912b6340e 4478 // update our cached calibration data
mjr 76:7f5912b6340e 4479 onUpdateCal();
mjr 50:40015764bbe6 4480
mjr 53:9b2611964afc 4481 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 4482 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 4483 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 4484 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 4485 if (calState == 0)
mjr 53:9b2611964afc 4486 {
mjr 53:9b2611964afc 4487 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 4488 {
mjr 53:9b2611964afc 4489 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 4490 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 4491 {
mjr 53:9b2611964afc 4492 // we've been at rest long enough - count it
mjr 53:9b2611964afc 4493 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 4494 calZeroPosN += 1;
mjr 53:9b2611964afc 4495
mjr 53:9b2611964afc 4496 // update the zero position from the new average
mjr 53:9b2611964afc 4497 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 4498 onUpdateCal();
mjr 53:9b2611964afc 4499
mjr 53:9b2611964afc 4500 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 4501 calState = 1;
mjr 53:9b2611964afc 4502 }
mjr 53:9b2611964afc 4503 }
mjr 53:9b2611964afc 4504 else
mjr 53:9b2611964afc 4505 {
mjr 53:9b2611964afc 4506 // we're not close to the last position - start again here
mjr 53:9b2611964afc 4507 calZeroStart = r;
mjr 53:9b2611964afc 4508 }
mjr 53:9b2611964afc 4509 }
mjr 53:9b2611964afc 4510
mjr 53:9b2611964afc 4511 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 4512 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 4513 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 4514 r.pos = int(
mjr 53:9b2611964afc 4515 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 4516 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 4517 }
mjr 53:9b2611964afc 4518 else
mjr 53:9b2611964afc 4519 {
mjr 53:9b2611964afc 4520 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 4521 // rescale to the joystick range.
mjr 76:7f5912b6340e 4522 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 4523
mjr 53:9b2611964afc 4524 // limit the result to the valid joystick range
mjr 53:9b2611964afc 4525 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 4526 r.pos = JOYMAX;
mjr 53:9b2611964afc 4527 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 4528 r.pos = -JOYMAX;
mjr 53:9b2611964afc 4529 }
mjr 50:40015764bbe6 4530
mjr 50:40015764bbe6 4531 // Calculate the velocity from the second-to-last reading
mjr 50:40015764bbe6 4532 // to here, in joystick distance units per microsecond.
mjr 50:40015764bbe6 4533 // Note that we use the second-to-last reading rather than
mjr 50:40015764bbe6 4534 // the very last reading to give ourselves a little longer
mjr 50:40015764bbe6 4535 // time base. The time base is so short between consecutive
mjr 50:40015764bbe6 4536 // readings that the error bars in the position would be too
mjr 50:40015764bbe6 4537 // large.
mjr 50:40015764bbe6 4538 //
mjr 50:40015764bbe6 4539 // For reference, the physical plunger velocity ranges up
mjr 50:40015764bbe6 4540 // to about 100,000 joystick distance units/sec. This is
mjr 50:40015764bbe6 4541 // based on empirical measurements. The typical time for
mjr 50:40015764bbe6 4542 // a real plunger to travel the full distance when released
mjr 50:40015764bbe6 4543 // from full retraction is about 85ms, so the average velocity
mjr 50:40015764bbe6 4544 // covering this distance is about 56,000 units/sec. The
mjr 50:40015764bbe6 4545 // peak is probably about twice that. In real-world units,
mjr 50:40015764bbe6 4546 // this translates to an average speed of about .75 m/s and
mjr 50:40015764bbe6 4547 // a peak of about 1.5 m/s.
mjr 50:40015764bbe6 4548 //
mjr 50:40015764bbe6 4549 // Note that we actually calculate the value here in units
mjr 50:40015764bbe6 4550 // per *microsecond* - the discussion above is in terms of
mjr 50:40015764bbe6 4551 // units/sec because that's more on a human scale. Our
mjr 50:40015764bbe6 4552 // choice of internal units here really isn't important,
mjr 50:40015764bbe6 4553 // since we only use the velocity for comparison purposes,
mjr 50:40015764bbe6 4554 // to detect acceleration trends. We therefore save ourselves
mjr 50:40015764bbe6 4555 // a little CPU time by using the natural units of our inputs.
mjr 76:7f5912b6340e 4556 //
mjr 76:7f5912b6340e 4557 // We don't care about the absolute velocity; this is a purely
mjr 76:7f5912b6340e 4558 // relative calculation. So to speed things up, calculate it
mjr 76:7f5912b6340e 4559 // in the integer domain, using a fixed-point representation
mjr 76:7f5912b6340e 4560 // with a 64K scale. In other words, with the stored values
mjr 76:7f5912b6340e 4561 // shifted left 16 bits from the actual values: the value 1
mjr 76:7f5912b6340e 4562 // is stored as 1<<16. The position readings are in the range
mjr 76:7f5912b6340e 4563 // -JOYMAX..JOYMAX, which fits in 16 bits, and the time
mjr 76:7f5912b6340e 4564 // differences will generally be on the scale of a few
mjr 76:7f5912b6340e 4565 // milliseconds = thousands of microseconds. So the velocity
mjr 76:7f5912b6340e 4566 // figures will fit nicely into a 32-bit fixed point value with
mjr 76:7f5912b6340e 4567 // a 64K scale factor.
mjr 51:57eb311faafa 4568 const PlungerReading &prv2 = nthHist(1);
mjr 76:7f5912b6340e 4569 int v = ((r.pos - prv2.pos) << 16)/(r.t - prv2.t);
mjr 50:40015764bbe6 4570
mjr 50:40015764bbe6 4571 // presume we'll report the latest instantaneous reading
mjr 50:40015764bbe6 4572 z = r.pos;
mjr 48:058ace2aed1d 4573
mjr 50:40015764bbe6 4574 // Check firing events
mjr 50:40015764bbe6 4575 switch (firing)
mjr 50:40015764bbe6 4576 {
mjr 50:40015764bbe6 4577 case 0:
mjr 50:40015764bbe6 4578 // Default state - not in a firing event.
mjr 50:40015764bbe6 4579
mjr 50:40015764bbe6 4580 // If we have forward motion from a position that's retracted
mjr 50:40015764bbe6 4581 // beyond a threshold, enter phase 1. If we're not pulled back
mjr 50:40015764bbe6 4582 // far enough, don't bother with this, as a release wouldn't
mjr 50:40015764bbe6 4583 // be strong enough to require the synthetic firing treatment.
mjr 50:40015764bbe6 4584 if (v < 0 && r.pos > JOYMAX/6)
mjr 50:40015764bbe6 4585 {
mjr 53:9b2611964afc 4586 // enter firing phase 1
mjr 50:40015764bbe6 4587 firingMode(1);
mjr 50:40015764bbe6 4588
mjr 53:9b2611964afc 4589 // if in calibration state 1 (at rest), switch to state 2 (not
mjr 53:9b2611964afc 4590 // at rest)
mjr 53:9b2611964afc 4591 if (calState == 1)
mjr 53:9b2611964afc 4592 calState = 2;
mjr 53:9b2611964afc 4593
mjr 50:40015764bbe6 4594 // we don't have a freeze position yet, but note the start time
mjr 50:40015764bbe6 4595 f1.pos = 0;
mjr 50:40015764bbe6 4596 f1.t = r.t;
mjr 50:40015764bbe6 4597
mjr 50:40015764bbe6 4598 // Figure the barrel spring "bounce" position in case we complete
mjr 50:40015764bbe6 4599 // the firing event. This is the amount that the forward momentum
mjr 50:40015764bbe6 4600 // of the plunger will compress the barrel spring at the peak of
mjr 50:40015764bbe6 4601 // the forward travel during the release. Assume that this is
mjr 50:40015764bbe6 4602 // linearly proportional to the starting retraction distance.
mjr 50:40015764bbe6 4603 // The barrel spring is about 1/6 the length of the main spring,
mjr 50:40015764bbe6 4604 // so figure it compresses by 1/6 the distance. (This is overly
mjr 53:9b2611964afc 4605 // simplistic and not very accurate, but it seems to give good
mjr 50:40015764bbe6 4606 // visual results, and that's all it's for.)
mjr 50:40015764bbe6 4607 f2.pos = -r.pos/6;
mjr 50:40015764bbe6 4608 }
mjr 50:40015764bbe6 4609 break;
mjr 50:40015764bbe6 4610
mjr 50:40015764bbe6 4611 case 1:
mjr 50:40015764bbe6 4612 // Phase 1 - acceleration. If we cross the zero point, trigger
mjr 50:40015764bbe6 4613 // the firing event. Otherwise, continue monitoring as long as we
mjr 50:40015764bbe6 4614 // see acceleration in the forward direction.
mjr 50:40015764bbe6 4615 if (r.pos <= 0)
mjr 50:40015764bbe6 4616 {
mjr 50:40015764bbe6 4617 // switch to the synthetic firing mode
mjr 50:40015764bbe6 4618 firingMode(2);
mjr 50:40015764bbe6 4619 z = f2.pos;
mjr 50:40015764bbe6 4620
mjr 50:40015764bbe6 4621 // note the start time for the firing phase
mjr 50:40015764bbe6 4622 f2.t = r.t;
mjr 53:9b2611964afc 4623
mjr 53:9b2611964afc 4624 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 4625 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 4626 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 4627 {
mjr 53:9b2611964afc 4628 // collect a new zero point for the average when we
mjr 53:9b2611964afc 4629 // come to rest
mjr 53:9b2611964afc 4630 calState = 0;
mjr 53:9b2611964afc 4631
mjr 53:9b2611964afc 4632 // collect average firing time statistics in millseconds, if
mjr 53:9b2611964afc 4633 // it's in range (20 to 255 ms)
mjr 53:9b2611964afc 4634 int dt = uint32_t(r.t - f1.t)/1000UL;
mjr 53:9b2611964afc 4635 if (dt >= 20 && dt <= 255)
mjr 53:9b2611964afc 4636 {
mjr 53:9b2611964afc 4637 calRlsTimeSum += dt;
mjr 53:9b2611964afc 4638 calRlsTimeN += 1;
mjr 53:9b2611964afc 4639 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 4640 }
mjr 53:9b2611964afc 4641 }
mjr 50:40015764bbe6 4642 }
mjr 50:40015764bbe6 4643 else if (v < vprv2)
mjr 50:40015764bbe6 4644 {
mjr 50:40015764bbe6 4645 // We're still accelerating, and we haven't crossed the zero
mjr 50:40015764bbe6 4646 // point yet - stay in phase 1. (Note that forward motion is
mjr 50:40015764bbe6 4647 // negative velocity, so accelerating means that the new
mjr 50:40015764bbe6 4648 // velocity is more negative than the previous one, which
mjr 50:40015764bbe6 4649 // is to say numerically less than - that's why the test
mjr 50:40015764bbe6 4650 // for acceleration is the seemingly backwards 'v < vprv'.)
mjr 50:40015764bbe6 4651
mjr 50:40015764bbe6 4652 // If we've been accelerating for at least 20ms, we're probably
mjr 50:40015764bbe6 4653 // really doing a release. Jump back to the recent local
mjr 50:40015764bbe6 4654 // maximum where the release *really* started. This is always
mjr 50:40015764bbe6 4655 // a bit before we started seeing sustained accleration, because
mjr 50:40015764bbe6 4656 // the plunger motion for the first few milliseconds is too slow
mjr 50:40015764bbe6 4657 // for our sensor precision to reliably detect acceleration.
mjr 50:40015764bbe6 4658 if (f1.pos != 0)
mjr 50:40015764bbe6 4659 {
mjr 50:40015764bbe6 4660 // we have a reset point - freeze there
mjr 50:40015764bbe6 4661 z = f1.pos;
mjr 50:40015764bbe6 4662 }
mjr 50:40015764bbe6 4663 else if (uint32_t(r.t - f1.t) >= 20000UL)
mjr 50:40015764bbe6 4664 {
mjr 50:40015764bbe6 4665 // it's been long enough - set a reset point.
mjr 50:40015764bbe6 4666 f1.pos = z = histLocalMax(r.t, 50000UL);
mjr 50:40015764bbe6 4667 }
mjr 50:40015764bbe6 4668 }
mjr 50:40015764bbe6 4669 else
mjr 50:40015764bbe6 4670 {
mjr 50:40015764bbe6 4671 // We're not accelerating. Cancel the firing event.
mjr 50:40015764bbe6 4672 firingMode(0);
mjr 53:9b2611964afc 4673 calState = 1;
mjr 50:40015764bbe6 4674 }
mjr 50:40015764bbe6 4675 break;
mjr 50:40015764bbe6 4676
mjr 50:40015764bbe6 4677 case 2:
mjr 50:40015764bbe6 4678 // Phase 2 - start of synthetic firing event. Report the fake
mjr 50:40015764bbe6 4679 // bounce for 25ms. VP polls the joystick about every 10ms, so
mjr 50:40015764bbe6 4680 // this should be enough time to guarantee that VP sees this
mjr 50:40015764bbe6 4681 // report at least once.
mjr 50:40015764bbe6 4682 if (uint32_t(r.t - f2.t) < 25000UL)
mjr 50:40015764bbe6 4683 {
mjr 50:40015764bbe6 4684 // report the bounce position
mjr 50:40015764bbe6 4685 z = f2.pos;
mjr 50:40015764bbe6 4686 }
mjr 50:40015764bbe6 4687 else
mjr 50:40015764bbe6 4688 {
mjr 50:40015764bbe6 4689 // it's been long enough - switch to phase 3, where we
mjr 50:40015764bbe6 4690 // report the park position until the real plunger comes
mjr 50:40015764bbe6 4691 // to rest
mjr 50:40015764bbe6 4692 firingMode(3);
mjr 50:40015764bbe6 4693 z = 0;
mjr 50:40015764bbe6 4694
mjr 50:40015764bbe6 4695 // set the start of the "stability window" to the rest position
mjr 50:40015764bbe6 4696 f3s.t = r.t;
mjr 50:40015764bbe6 4697 f3s.pos = 0;
mjr 50:40015764bbe6 4698
mjr 50:40015764bbe6 4699 // set the start of the "retraction window" to the actual position
mjr 50:40015764bbe6 4700 f3r = r;
mjr 50:40015764bbe6 4701 }
mjr 50:40015764bbe6 4702 break;
mjr 50:40015764bbe6 4703
mjr 50:40015764bbe6 4704 case 3:
mjr 50:40015764bbe6 4705 // Phase 3 - in synthetic firing event. Report the park position
mjr 50:40015764bbe6 4706 // until the plunger position stabilizes. Left to its own devices,
mjr 50:40015764bbe6 4707 // the plunger will usualy bounce off the barrel spring several
mjr 50:40015764bbe6 4708 // times before coming to rest, so we'll see oscillating motion
mjr 50:40015764bbe6 4709 // for a second or two. In the simplest case, we can aimply wait
mjr 50:40015764bbe6 4710 // for the plunger to stop moving for a short time. However, the
mjr 50:40015764bbe6 4711 // player might intervene by pulling the plunger back again, so
mjr 50:40015764bbe6 4712 // watch for that motion as well. If we're just bouncing freely,
mjr 50:40015764bbe6 4713 // we'll see the direction change frequently. If the player is
mjr 50:40015764bbe6 4714 // moving the plunger manually, the direction will be constant
mjr 50:40015764bbe6 4715 // for longer.
mjr 50:40015764bbe6 4716 if (v >= 0)
mjr 50:40015764bbe6 4717 {
mjr 50:40015764bbe6 4718 // We're moving back (or standing still). If this has been
mjr 50:40015764bbe6 4719 // going on for a while, the user must have taken control.
mjr 50:40015764bbe6 4720 if (uint32_t(r.t - f3r.t) > 65000UL)
mjr 50:40015764bbe6 4721 {
mjr 50:40015764bbe6 4722 // user has taken control - cancel firing mode
mjr 50:40015764bbe6 4723 firingMode(0);
mjr 50:40015764bbe6 4724 break;
mjr 50:40015764bbe6 4725 }
mjr 50:40015764bbe6 4726 }
mjr 50:40015764bbe6 4727 else
mjr 50:40015764bbe6 4728 {
mjr 50:40015764bbe6 4729 // forward motion - reset retraction window
mjr 50:40015764bbe6 4730 f3r.t = r.t;
mjr 50:40015764bbe6 4731 }
mjr 50:40015764bbe6 4732
mjr 53:9b2611964afc 4733 // Check if we're close to the last starting point. The joystick
mjr 53:9b2611964afc 4734 // positive axis range (0..4096) covers the retraction distance of
mjr 53:9b2611964afc 4735 // about 2.5", so 1" is about 1638 joystick units, hence 1/16" is
mjr 53:9b2611964afc 4736 // about 100 units.
mjr 53:9b2611964afc 4737 if (abs(r.pos - f3s.pos) < 100)
mjr 50:40015764bbe6 4738 {
mjr 53:9b2611964afc 4739 // It's at roughly the same position as the starting point.
mjr 53:9b2611964afc 4740 // Consider it stable if this has been true for 300ms.
mjr 50:40015764bbe6 4741 if (uint32_t(r.t - f3s.t) > 30000UL)
mjr 50:40015764bbe6 4742 {
mjr 50:40015764bbe6 4743 // we're done with the firing event
mjr 50:40015764bbe6 4744 firingMode(0);
mjr 50:40015764bbe6 4745 }
mjr 50:40015764bbe6 4746 else
mjr 50:40015764bbe6 4747 {
mjr 50:40015764bbe6 4748 // it's close to the last position but hasn't been
mjr 50:40015764bbe6 4749 // here long enough; stay in firing mode and continue
mjr 50:40015764bbe6 4750 // to report the park position
mjr 50:40015764bbe6 4751 z = 0;
mjr 50:40015764bbe6 4752 }
mjr 50:40015764bbe6 4753 }
mjr 50:40015764bbe6 4754 else
mjr 50:40015764bbe6 4755 {
mjr 50:40015764bbe6 4756 // It's not close enough to the last starting point, so use
mjr 50:40015764bbe6 4757 // this as a new starting point, and stay in firing mode.
mjr 50:40015764bbe6 4758 f3s = r;
mjr 50:40015764bbe6 4759 z = 0;
mjr 50:40015764bbe6 4760 }
mjr 50:40015764bbe6 4761 break;
mjr 50:40015764bbe6 4762 }
mjr 50:40015764bbe6 4763
mjr 50:40015764bbe6 4764 // save the velocity reading for next time
mjr 50:40015764bbe6 4765 vprv2 = vprv;
mjr 50:40015764bbe6 4766 vprv = v;
mjr 50:40015764bbe6 4767
mjr 50:40015764bbe6 4768 // add the new reading to the history
mjr 76:7f5912b6340e 4769 hist[histIdx] = r;
mjr 76:7f5912b6340e 4770 if (++histIdx > countof(hist))
mjr 76:7f5912b6340e 4771 histIdx = 0;
mjr 58:523fdcffbe6d 4772
mjr 69:cc5039284fac 4773 // apply the post-processing filter
mjr 69:cc5039284fac 4774 zf = applyPostFilter();
mjr 48:058ace2aed1d 4775 }
mjr 48:058ace2aed1d 4776 }
mjr 48:058ace2aed1d 4777
mjr 48:058ace2aed1d 4778 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 4779 int16_t getPosition()
mjr 58:523fdcffbe6d 4780 {
mjr 58:523fdcffbe6d 4781 // return the last filtered reading
mjr 58:523fdcffbe6d 4782 return zf;
mjr 55:4db125cd11a0 4783 }
mjr 58:523fdcffbe6d 4784
mjr 48:058ace2aed1d 4785 // get the timestamp of the current joystick report (microseconds)
mjr 50:40015764bbe6 4786 uint32_t getTimestamp() const { return nthHist(0).t; }
mjr 48:058ace2aed1d 4787
mjr 48:058ace2aed1d 4788 // Set calibration mode on or off
mjr 52:8298b2a73eb2 4789 void setCalMode(bool f)
mjr 48:058ace2aed1d 4790 {
mjr 52:8298b2a73eb2 4791 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 4792 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 4793 {
mjr 52:8298b2a73eb2 4794 // reset the calibration in the configuration
mjr 48:058ace2aed1d 4795 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 4796
mjr 52:8298b2a73eb2 4797 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 4798 calState = 0;
mjr 52:8298b2a73eb2 4799 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 4800 calZeroPosN = 0;
mjr 52:8298b2a73eb2 4801 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 4802 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 4803
mjr 52:8298b2a73eb2 4804 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 4805 PlungerReading r;
mjr 52:8298b2a73eb2 4806 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 4807 {
mjr 52:8298b2a73eb2 4808 // got a reading - use it as the initial zero point
mjr 69:cc5039284fac 4809 applyPreFilter(r);
mjr 52:8298b2a73eb2 4810 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 4811 onUpdateCal();
mjr 52:8298b2a73eb2 4812
mjr 52:8298b2a73eb2 4813 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 4814 calZeroStart = r;
mjr 52:8298b2a73eb2 4815 }
mjr 52:8298b2a73eb2 4816 else
mjr 52:8298b2a73eb2 4817 {
mjr 52:8298b2a73eb2 4818 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 4819 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4820 onUpdateCal();
mjr 52:8298b2a73eb2 4821
mjr 52:8298b2a73eb2 4822 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 4823 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 4824 calZeroStart.t = 0;
mjr 53:9b2611964afc 4825 }
mjr 53:9b2611964afc 4826 }
mjr 53:9b2611964afc 4827 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 4828 {
mjr 53:9b2611964afc 4829 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 4830 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 4831 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 4832 // physically meaningless.
mjr 53:9b2611964afc 4833 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 4834 {
mjr 53:9b2611964afc 4835 // bad settings - reset to defaults
mjr 53:9b2611964afc 4836 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 4837 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4838 onUpdateCal();
mjr 52:8298b2a73eb2 4839 }
mjr 52:8298b2a73eb2 4840 }
mjr 52:8298b2a73eb2 4841
mjr 48:058ace2aed1d 4842 // remember the new mode
mjr 52:8298b2a73eb2 4843 plungerCalMode = f;
mjr 48:058ace2aed1d 4844 }
mjr 48:058ace2aed1d 4845
mjr 76:7f5912b6340e 4846 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 4847 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 4848 // cached inverse is calculated as
mjr 76:7f5912b6340e 4849 //
mjr 76:7f5912b6340e 4850 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 4851 //
mjr 76:7f5912b6340e 4852 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 4853 //
mjr 76:7f5912b6340e 4854 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 4855 //
mjr 76:7f5912b6340e 4856 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 4857 int invCalRange;
mjr 76:7f5912b6340e 4858
mjr 76:7f5912b6340e 4859 // apply the calibration range to a reading
mjr 76:7f5912b6340e 4860 inline int applyCal(int reading)
mjr 76:7f5912b6340e 4861 {
mjr 76:7f5912b6340e 4862 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 4863 }
mjr 76:7f5912b6340e 4864
mjr 76:7f5912b6340e 4865 void onUpdateCal()
mjr 76:7f5912b6340e 4866 {
mjr 76:7f5912b6340e 4867 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 4868 }
mjr 76:7f5912b6340e 4869
mjr 48:058ace2aed1d 4870 // is a firing event in progress?
mjr 53:9b2611964afc 4871 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 4872
mjr 48:058ace2aed1d 4873 private:
mjr 52:8298b2a73eb2 4874
mjr 74:822a92bc11d2 4875 // Plunger data filtering mode: optionally apply filtering to the raw
mjr 74:822a92bc11d2 4876 // plunger sensor readings to try to reduce noise in the signal. This
mjr 74:822a92bc11d2 4877 // is designed for the TSL1410/12 optical sensors, where essentially all
mjr 74:822a92bc11d2 4878 // of the noise in the signal comes from lack of sharpness in the shadow
mjr 74:822a92bc11d2 4879 // edge. When the shadow is blurry, the edge detector has to pick a pixel,
mjr 74:822a92bc11d2 4880 // even though the edge is actually a gradient spanning several pixels.
mjr 74:822a92bc11d2 4881 // The edge detection algorithm decides on the exact pixel, but whatever
mjr 74:822a92bc11d2 4882 // the algorithm, the choice is going to be somewhat arbitrary given that
mjr 74:822a92bc11d2 4883 // there's really no one pixel that's "the edge" when the edge actually
mjr 74:822a92bc11d2 4884 // covers multiple pixels. This can make the choice of pixel sensitive to
mjr 74:822a92bc11d2 4885 // small changes in exposure and pixel respose from frame to frame, which
mjr 74:822a92bc11d2 4886 // means that the reported edge position can move by a pixel or two from
mjr 74:822a92bc11d2 4887 // one frame to the next even when the physical plunger is perfectly still.
mjr 74:822a92bc11d2 4888 // That's the noise we're talking about.
mjr 74:822a92bc11d2 4889 //
mjr 74:822a92bc11d2 4890 // We previously applied a mild hysteresis filter to the signal to try to
mjr 74:822a92bc11d2 4891 // eliminate this noise. The filter tracked the average over the last
mjr 74:822a92bc11d2 4892 // several samples, and rejected readings that wandered within a few
mjr 74:822a92bc11d2 4893 // pixels of the average. If a certain number of readings moved away from
mjr 74:822a92bc11d2 4894 // the average in the same direction, even by small amounts, the filter
mjr 74:822a92bc11d2 4895 // accepted the changes, on the assumption that they represented actual
mjr 74:822a92bc11d2 4896 // slow movement of the plunger. This filter was applied after the firing
mjr 74:822a92bc11d2 4897 // detection.
mjr 74:822a92bc11d2 4898 //
mjr 74:822a92bc11d2 4899 // I also tried a simpler filter that rejected changes that were too fast
mjr 74:822a92bc11d2 4900 // to be physically possible, as well as changes that were very close to
mjr 74:822a92bc11d2 4901 // the last reported position (i.e., simple hysteresis). The "too fast"
mjr 74:822a92bc11d2 4902 // filter was there to reject spurious readings where the edge detector
mjr 74:822a92bc11d2 4903 // mistook a bad pixel value as an edge.
mjr 74:822a92bc11d2 4904 //
mjr 74:822a92bc11d2 4905 // The new "mode 2" edge detector (see ccdSensor.h) seems to do a better
mjr 74:822a92bc11d2 4906 // job of rejecting pixel-level noise by itself than the older "mode 0"
mjr 74:822a92bc11d2 4907 // algorithm did, so I removed the filtering entirely. Any filtering has
mjr 74:822a92bc11d2 4908 // some downsides, so it's better to reduce noise in the underlying signal
mjr 74:822a92bc11d2 4909 // as much as possible first. It seems possible to get a very stable signal
mjr 74:822a92bc11d2 4910 // now with a combination of the mode 2 edge detector and optimizing the
mjr 74:822a92bc11d2 4911 // physical sensor arrangement, especially optimizing the light source to
mjr 74:822a92bc11d2 4912 // cast as sharp as shadow as possible and adjusting the brightness to
mjr 74:822a92bc11d2 4913 // maximize bright/dark contrast in the image.
mjr 74:822a92bc11d2 4914 //
mjr 74:822a92bc11d2 4915 // 0 = No filtering (current default)
mjr 74:822a92bc11d2 4916 // 1 = Filter the data after firing detection using moving average
mjr 74:822a92bc11d2 4917 // hysteresis filter (old version, used in most 2016 releases)
mjr 74:822a92bc11d2 4918 // 2 = Filter the data before firing detection using simple hysteresis
mjr 74:822a92bc11d2 4919 // plus spurious "too fast" motion rejection
mjr 74:822a92bc11d2 4920 //
mjr 73:4e8ce0b18915 4921 #define PLUNGER_FILTERING_MODE 0
mjr 73:4e8ce0b18915 4922
mjr 73:4e8ce0b18915 4923 #if PLUNGER_FILTERING_MODE == 0
mjr 69:cc5039284fac 4924 // Disable all filtering
mjr 74:822a92bc11d2 4925 inline void applyPreFilter(PlungerReading &r) { }
mjr 74:822a92bc11d2 4926 inline int applyPostFilter() { return z; }
mjr 73:4e8ce0b18915 4927 #elif PLUNGER_FILTERING_MODE == 1
mjr 73:4e8ce0b18915 4928 // Apply pre-processing filter. This filter is applied to the raw
mjr 73:4e8ce0b18915 4929 // value coming off the sensor, before calibration or fire-event
mjr 73:4e8ce0b18915 4930 // processing.
mjr 73:4e8ce0b18915 4931 void applyPreFilter(PlungerReading &r)
mjr 73:4e8ce0b18915 4932 {
mjr 73:4e8ce0b18915 4933 }
mjr 73:4e8ce0b18915 4934
mjr 73:4e8ce0b18915 4935 // Figure the next post-processing filtered value. This applies a
mjr 73:4e8ce0b18915 4936 // hysteresis filter to the last raw z value and returns the
mjr 73:4e8ce0b18915 4937 // filtered result.
mjr 73:4e8ce0b18915 4938 int applyPostFilter()
mjr 73:4e8ce0b18915 4939 {
mjr 73:4e8ce0b18915 4940 if (firing <= 1)
mjr 73:4e8ce0b18915 4941 {
mjr 73:4e8ce0b18915 4942 // Filter limit - 5 samples. Once we've been moving
mjr 73:4e8ce0b18915 4943 // in the same direction for this many samples, we'll
mjr 73:4e8ce0b18915 4944 // clear the history and start over.
mjr 73:4e8ce0b18915 4945 const int filterMask = 0x1f;
mjr 73:4e8ce0b18915 4946
mjr 73:4e8ce0b18915 4947 // figure the last average
mjr 73:4e8ce0b18915 4948 int lastAvg = int(filterSum / filterN);
mjr 73:4e8ce0b18915 4949
mjr 73:4e8ce0b18915 4950 // figure the direction of this sample relative to the average,
mjr 73:4e8ce0b18915 4951 // and shift it in to our bit mask of recent direction data
mjr 73:4e8ce0b18915 4952 if (z != lastAvg)
mjr 73:4e8ce0b18915 4953 {
mjr 73:4e8ce0b18915 4954 // shift the new direction bit into the vector
mjr 73:4e8ce0b18915 4955 filterDir <<= 1;
mjr 73:4e8ce0b18915 4956 if (z > lastAvg) filterDir |= 1;
mjr 73:4e8ce0b18915 4957 }
mjr 73:4e8ce0b18915 4958
mjr 73:4e8ce0b18915 4959 // keep only the last N readings, up to the filter limit
mjr 73:4e8ce0b18915 4960 filterDir &= filterMask;
mjr 73:4e8ce0b18915 4961
mjr 73:4e8ce0b18915 4962 // if we've been moving consistently in one direction (all 1's
mjr 73:4e8ce0b18915 4963 // or all 0's in the direction history vector), reset the average
mjr 73:4e8ce0b18915 4964 if (filterDir == 0x00 || filterDir == filterMask)
mjr 73:4e8ce0b18915 4965 {
mjr 73:4e8ce0b18915 4966 // motion away from the average - reset the average
mjr 73:4e8ce0b18915 4967 filterDir = 0x5555;
mjr 73:4e8ce0b18915 4968 filterN = 1;
mjr 73:4e8ce0b18915 4969 filterSum = (lastAvg + z)/2;
mjr 73:4e8ce0b18915 4970 return int16_t(filterSum);
mjr 73:4e8ce0b18915 4971 }
mjr 73:4e8ce0b18915 4972 else
mjr 73:4e8ce0b18915 4973 {
mjr 73:4e8ce0b18915 4974 // we're directionless - return the new average, with the
mjr 73:4e8ce0b18915 4975 // new sample included
mjr 73:4e8ce0b18915 4976 filterSum += z;
mjr 73:4e8ce0b18915 4977 ++filterN;
mjr 73:4e8ce0b18915 4978 return int16_t(filterSum / filterN);
mjr 73:4e8ce0b18915 4979 }
mjr 73:4e8ce0b18915 4980 }
mjr 73:4e8ce0b18915 4981 else
mjr 73:4e8ce0b18915 4982 {
mjr 73:4e8ce0b18915 4983 // firing mode - skip the filter
mjr 73:4e8ce0b18915 4984 filterN = 1;
mjr 73:4e8ce0b18915 4985 filterSum = z;
mjr 73:4e8ce0b18915 4986 filterDir = 0x5555;
mjr 73:4e8ce0b18915 4987 return z;
mjr 73:4e8ce0b18915 4988 }
mjr 73:4e8ce0b18915 4989 }
mjr 73:4e8ce0b18915 4990 #elif PLUNGER_FILTERING_MODE == 2
mjr 69:cc5039284fac 4991 // Apply pre-processing filter. This filter is applied to the raw
mjr 69:cc5039284fac 4992 // value coming off the sensor, before calibration or fire-event
mjr 69:cc5039284fac 4993 // processing.
mjr 69:cc5039284fac 4994 void applyPreFilter(PlungerReading &r)
mjr 69:cc5039284fac 4995 {
mjr 69:cc5039284fac 4996 // get the previous raw reading
mjr 69:cc5039284fac 4997 PlungerReading prv = pre.raw;
mjr 69:cc5039284fac 4998
mjr 69:cc5039284fac 4999 // the new reading is the previous raw reading next time, no
mjr 69:cc5039284fac 5000 // matter how we end up filtering it
mjr 69:cc5039284fac 5001 pre.raw = r;
mjr 69:cc5039284fac 5002
mjr 69:cc5039284fac 5003 // If it's too big an excursion from the previous raw reading,
mjr 69:cc5039284fac 5004 // ignore it and repeat the previous reported reading. This
mjr 69:cc5039284fac 5005 // filters out anomalous spikes where we suddenly jump to a
mjr 69:cc5039284fac 5006 // level that's too far away to be possible. Real plungers
mjr 69:cc5039284fac 5007 // take about 60ms to travel the full distance when released,
mjr 69:cc5039284fac 5008 // so assuming constant acceleration, the maximum realistic
mjr 69:cc5039284fac 5009 // speed is about 2.200 distance units (on our 0..0xffff scale)
mjr 69:cc5039284fac 5010 // per microsecond.
mjr 69:cc5039284fac 5011 //
mjr 69:cc5039284fac 5012 // On the other hand, if the new reading is too *close* to the
mjr 69:cc5039284fac 5013 // previous reading, use the previous reported reading. This
mjr 69:cc5039284fac 5014 // filters out jitter around a stationary position.
mjr 69:cc5039284fac 5015 const float maxDist = 2.184f*uint32_t(r.t - prv.t);
mjr 69:cc5039284fac 5016 const int minDist = 256;
mjr 69:cc5039284fac 5017 const int delta = abs(r.pos - prv.pos);
mjr 69:cc5039284fac 5018 if (maxDist > minDist && delta > maxDist)
mjr 69:cc5039284fac 5019 {
mjr 69:cc5039284fac 5020 // too big an excursion - discard this reading by reporting
mjr 69:cc5039284fac 5021 // the last reported reading instead
mjr 69:cc5039284fac 5022 r.pos = pre.reported;
mjr 69:cc5039284fac 5023 }
mjr 69:cc5039284fac 5024 else if (delta < minDist)
mjr 69:cc5039284fac 5025 {
mjr 69:cc5039284fac 5026 // too close to the prior reading - apply hysteresis
mjr 69:cc5039284fac 5027 r.pos = pre.reported;
mjr 69:cc5039284fac 5028 }
mjr 69:cc5039284fac 5029 else
mjr 69:cc5039284fac 5030 {
mjr 69:cc5039284fac 5031 // the reading is in range - keep it, and remember it as
mjr 69:cc5039284fac 5032 // the last reported reading
mjr 69:cc5039284fac 5033 pre.reported = r.pos;
mjr 69:cc5039284fac 5034 }
mjr 69:cc5039284fac 5035 }
mjr 69:cc5039284fac 5036
mjr 69:cc5039284fac 5037 // pre-filter data
mjr 69:cc5039284fac 5038 struct PreFilterData {
mjr 69:cc5039284fac 5039 PreFilterData()
mjr 69:cc5039284fac 5040 : reported(0)
mjr 69:cc5039284fac 5041 {
mjr 69:cc5039284fac 5042 raw.t = 0;
mjr 69:cc5039284fac 5043 raw.pos = 0;
mjr 69:cc5039284fac 5044 }
mjr 69:cc5039284fac 5045 PlungerReading raw; // previous raw sensor reading
mjr 69:cc5039284fac 5046 int reported; // previous reported reading
mjr 69:cc5039284fac 5047 } pre;
mjr 69:cc5039284fac 5048
mjr 69:cc5039284fac 5049
mjr 69:cc5039284fac 5050 // Apply the post-processing filter. This filter is applied after
mjr 69:cc5039284fac 5051 // the fire-event processing. In the past, this used hysteresis to
mjr 69:cc5039284fac 5052 // try to smooth out jittering readings for a stationary plunger.
mjr 69:cc5039284fac 5053 // We've switched to a different approach that massages the readings
mjr 69:cc5039284fac 5054 // coming off the sensor before
mjr 69:cc5039284fac 5055 int applyPostFilter()
mjr 69:cc5039284fac 5056 {
mjr 69:cc5039284fac 5057 return z;
mjr 69:cc5039284fac 5058 }
mjr 69:cc5039284fac 5059 #endif
mjr 58:523fdcffbe6d 5060
mjr 58:523fdcffbe6d 5061 void initFilter()
mjr 58:523fdcffbe6d 5062 {
mjr 58:523fdcffbe6d 5063 filterSum = 0;
mjr 58:523fdcffbe6d 5064 filterN = 1;
mjr 58:523fdcffbe6d 5065 filterDir = 0x5555;
mjr 58:523fdcffbe6d 5066 }
mjr 58:523fdcffbe6d 5067 int64_t filterSum;
mjr 58:523fdcffbe6d 5068 int64_t filterN;
mjr 58:523fdcffbe6d 5069 uint16_t filterDir;
mjr 58:523fdcffbe6d 5070
mjr 58:523fdcffbe6d 5071
mjr 52:8298b2a73eb2 5072 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 5073 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 5074 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 5075 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5076 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5077 // 1 = at rest
mjr 52:8298b2a73eb2 5078 // 2 = retracting
mjr 52:8298b2a73eb2 5079 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5080 uint8_t calState;
mjr 52:8298b2a73eb2 5081
mjr 52:8298b2a73eb2 5082 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5083 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5084 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5085 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5086 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5087 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5088 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5089 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5090 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5091 long calZeroPosSum;
mjr 52:8298b2a73eb2 5092 int calZeroPosN;
mjr 52:8298b2a73eb2 5093
mjr 52:8298b2a73eb2 5094 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5095 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5096 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5097 int calRlsTimeN;
mjr 52:8298b2a73eb2 5098
mjr 48:058ace2aed1d 5099 // set a firing mode
mjr 48:058ace2aed1d 5100 inline void firingMode(int m)
mjr 48:058ace2aed1d 5101 {
mjr 48:058ace2aed1d 5102 firing = m;
mjr 48:058ace2aed1d 5103 }
mjr 48:058ace2aed1d 5104
mjr 48:058ace2aed1d 5105 // Find the most recent local maximum in the history data, up to
mjr 48:058ace2aed1d 5106 // the given time limit.
mjr 48:058ace2aed1d 5107 int histLocalMax(uint32_t tcur, uint32_t dt)
mjr 48:058ace2aed1d 5108 {
mjr 48:058ace2aed1d 5109 // start with the prior entry
mjr 48:058ace2aed1d 5110 int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1;
mjr 48:058ace2aed1d 5111 int hi = hist[idx].pos;
mjr 48:058ace2aed1d 5112
mjr 48:058ace2aed1d 5113 // scan backwards for a local maximum
mjr 48:058ace2aed1d 5114 for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1)
mjr 48:058ace2aed1d 5115 {
mjr 48:058ace2aed1d 5116 // if this isn't within the time window, stop
mjr 48:058ace2aed1d 5117 if (uint32_t(tcur - hist[idx].t) > dt)
mjr 48:058ace2aed1d 5118 break;
mjr 48:058ace2aed1d 5119
mjr 48:058ace2aed1d 5120 // if this isn't above the current hith, stop
mjr 48:058ace2aed1d 5121 if (hist[idx].pos < hi)
mjr 48:058ace2aed1d 5122 break;
mjr 48:058ace2aed1d 5123
mjr 48:058ace2aed1d 5124 // this is the new high
mjr 48:058ace2aed1d 5125 hi = hist[idx].pos;
mjr 48:058ace2aed1d 5126 }
mjr 48:058ace2aed1d 5127
mjr 48:058ace2aed1d 5128 // return the local maximum
mjr 48:058ace2aed1d 5129 return hi;
mjr 48:058ace2aed1d 5130 }
mjr 48:058ace2aed1d 5131
mjr 50:40015764bbe6 5132 // velocity at previous reading, and the one before that
mjr 76:7f5912b6340e 5133 int vprv, vprv2;
mjr 48:058ace2aed1d 5134
mjr 48:058ace2aed1d 5135 // Circular buffer of recent readings. We keep a short history
mjr 48:058ace2aed1d 5136 // of readings to analyze during firing events. We can only identify
mjr 48:058ace2aed1d 5137 // a firing event once it's somewhat under way, so we need a little
mjr 48:058ace2aed1d 5138 // retrospective information to accurately determine after the fact
mjr 48:058ace2aed1d 5139 // exactly when it started. We throttle our readings to no more
mjr 74:822a92bc11d2 5140 // than one every 1ms, so we have at least N*1ms of history in this
mjr 48:058ace2aed1d 5141 // array.
mjr 74:822a92bc11d2 5142 PlungerReading hist[32];
mjr 48:058ace2aed1d 5143 int histIdx;
mjr 49:37bd97eb7688 5144
mjr 50:40015764bbe6 5145 // get the nth history item (0=last, 1=2nd to last, etc)
mjr 74:822a92bc11d2 5146 inline const PlungerReading &nthHist(int n) const
mjr 50:40015764bbe6 5147 {
mjr 50:40015764bbe6 5148 // histIdx-1 is the last written; go from there
mjr 50:40015764bbe6 5149 n = histIdx - 1 - n;
mjr 50:40015764bbe6 5150
mjr 50:40015764bbe6 5151 // adjust for wrapping
mjr 50:40015764bbe6 5152 if (n < 0)
mjr 50:40015764bbe6 5153 n += countof(hist);
mjr 50:40015764bbe6 5154
mjr 50:40015764bbe6 5155 // return the item
mjr 50:40015764bbe6 5156 return hist[n];
mjr 50:40015764bbe6 5157 }
mjr 48:058ace2aed1d 5158
mjr 48:058ace2aed1d 5159 // Firing event state.
mjr 48:058ace2aed1d 5160 //
mjr 48:058ace2aed1d 5161 // 0 - Default state. We report the real instantaneous plunger
mjr 48:058ace2aed1d 5162 // position to the joystick interface.
mjr 48:058ace2aed1d 5163 //
mjr 53:9b2611964afc 5164 // 1 - Moving forward
mjr 48:058ace2aed1d 5165 //
mjr 53:9b2611964afc 5166 // 2 - Accelerating
mjr 48:058ace2aed1d 5167 //
mjr 53:9b2611964afc 5168 // 3 - Firing. We report the rest position for a minimum interval,
mjr 53:9b2611964afc 5169 // or until the real plunger comes to rest somewhere.
mjr 48:058ace2aed1d 5170 //
mjr 48:058ace2aed1d 5171 int firing;
mjr 48:058ace2aed1d 5172
mjr 51:57eb311faafa 5173 // Position/timestamp at start of firing phase 1. When we see a
mjr 51:57eb311faafa 5174 // sustained forward acceleration, we freeze joystick reports at
mjr 51:57eb311faafa 5175 // the recent local maximum, on the assumption that this was the
mjr 51:57eb311faafa 5176 // start of the release. If this is zero, it means that we're
mjr 51:57eb311faafa 5177 // monitoring accelerating motion but haven't seen it for long
mjr 51:57eb311faafa 5178 // enough yet to be confident that a release is in progress.
mjr 48:058ace2aed1d 5179 PlungerReading f1;
mjr 48:058ace2aed1d 5180
mjr 48:058ace2aed1d 5181 // Position/timestamp at start of firing phase 2. The position is
mjr 48:058ace2aed1d 5182 // the fake "bounce" position we report during this phase, and the
mjr 48:058ace2aed1d 5183 // timestamp tells us when the phase began so that we can end it
mjr 48:058ace2aed1d 5184 // after enough time elapses.
mjr 48:058ace2aed1d 5185 PlungerReading f2;
mjr 48:058ace2aed1d 5186
mjr 48:058ace2aed1d 5187 // Position/timestamp of start of stability window during phase 3.
mjr 48:058ace2aed1d 5188 // We use this to determine when the plunger comes to rest. We set
mjr 51:57eb311faafa 5189 // this at the beginning of phase 3, and then reset it when the
mjr 48:058ace2aed1d 5190 // plunger moves too far from the last position.
mjr 48:058ace2aed1d 5191 PlungerReading f3s;
mjr 48:058ace2aed1d 5192
mjr 48:058ace2aed1d 5193 // Position/timestamp of start of retraction window during phase 3.
mjr 48:058ace2aed1d 5194 // We use this to determine if the user is drawing the plunger back.
mjr 48:058ace2aed1d 5195 // If we see retraction motion for more than about 65ms, we assume
mjr 48:058ace2aed1d 5196 // that the user has taken over, because we should see forward
mjr 48:058ace2aed1d 5197 // motion within this timeframe if the plunger is just bouncing
mjr 48:058ace2aed1d 5198 // freely.
mjr 48:058ace2aed1d 5199 PlungerReading f3r;
mjr 48:058ace2aed1d 5200
mjr 58:523fdcffbe6d 5201 // next raw (unfiltered) Z value to report to the joystick interface
mjr 58:523fdcffbe6d 5202 // (in joystick distance units)
mjr 48:058ace2aed1d 5203 int z;
mjr 48:058ace2aed1d 5204
mjr 58:523fdcffbe6d 5205 // next filtered Z value to report to the joystick interface
mjr 58:523fdcffbe6d 5206 int zf;
mjr 48:058ace2aed1d 5207 };
mjr 48:058ace2aed1d 5208
mjr 48:058ace2aed1d 5209 // plunger reader singleton
mjr 48:058ace2aed1d 5210 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5211
mjr 48:058ace2aed1d 5212 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5213 //
mjr 48:058ace2aed1d 5214 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5215 //
mjr 48:058ace2aed1d 5216 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5217 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5218 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5219 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5220 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5221 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5222 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5223 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5224 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5225 //
mjr 48:058ace2aed1d 5226 // This feature has two configuration components:
mjr 48:058ace2aed1d 5227 //
mjr 48:058ace2aed1d 5228 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5229 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5230 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5231 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5232 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5233 // plunger/launch button connection.
mjr 48:058ace2aed1d 5234 //
mjr 48:058ace2aed1d 5235 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5236 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5237 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5238 // position.
mjr 48:058ace2aed1d 5239 //
mjr 48:058ace2aed1d 5240 class ZBLaunchBall
mjr 48:058ace2aed1d 5241 {
mjr 48:058ace2aed1d 5242 public:
mjr 48:058ace2aed1d 5243 ZBLaunchBall()
mjr 48:058ace2aed1d 5244 {
mjr 48:058ace2aed1d 5245 // start in the default state
mjr 48:058ace2aed1d 5246 lbState = 0;
mjr 53:9b2611964afc 5247 btnState = false;
mjr 48:058ace2aed1d 5248 }
mjr 48:058ace2aed1d 5249
mjr 48:058ace2aed1d 5250 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5251 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5252 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5253 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5254 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5255 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5256 void update()
mjr 48:058ace2aed1d 5257 {
mjr 53:9b2611964afc 5258 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5259 // plunger firing event
mjr 53:9b2611964afc 5260 if (zbLaunchOn)
mjr 48:058ace2aed1d 5261 {
mjr 53:9b2611964afc 5262 // note the new position
mjr 48:058ace2aed1d 5263 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5264
mjr 53:9b2611964afc 5265 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5266 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5267
mjr 53:9b2611964afc 5268 // check the state
mjr 48:058ace2aed1d 5269 switch (lbState)
mjr 48:058ace2aed1d 5270 {
mjr 48:058ace2aed1d 5271 case 0:
mjr 53:9b2611964afc 5272 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5273 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5274 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5275 // the button.
mjr 53:9b2611964afc 5276 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5277 {
mjr 53:9b2611964afc 5278 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5279 lbTimer.reset();
mjr 53:9b2611964afc 5280 lbTimer.start();
mjr 53:9b2611964afc 5281 setButton(true);
mjr 53:9b2611964afc 5282
mjr 53:9b2611964afc 5283 // switch to state 1
mjr 53:9b2611964afc 5284 lbState = 1;
mjr 53:9b2611964afc 5285 }
mjr 48:058ace2aed1d 5286 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5287 {
mjr 53:9b2611964afc 5288 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5289 // button as long as we're pushed forward
mjr 53:9b2611964afc 5290 setButton(true);
mjr 53:9b2611964afc 5291 }
mjr 53:9b2611964afc 5292 else
mjr 53:9b2611964afc 5293 {
mjr 53:9b2611964afc 5294 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5295 setButton(false);
mjr 53:9b2611964afc 5296 }
mjr 48:058ace2aed1d 5297 break;
mjr 48:058ace2aed1d 5298
mjr 48:058ace2aed1d 5299 case 1:
mjr 53:9b2611964afc 5300 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5301 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5302 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5303 {
mjr 53:9b2611964afc 5304 // timer expired - turn off the button
mjr 53:9b2611964afc 5305 setButton(false);
mjr 53:9b2611964afc 5306
mjr 53:9b2611964afc 5307 // switch to state 2
mjr 53:9b2611964afc 5308 lbState = 2;
mjr 53:9b2611964afc 5309 }
mjr 48:058ace2aed1d 5310 break;
mjr 48:058ace2aed1d 5311
mjr 48:058ace2aed1d 5312 case 2:
mjr 53:9b2611964afc 5313 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5314 // plunger launch event to end.
mjr 53:9b2611964afc 5315 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5316 {
mjr 53:9b2611964afc 5317 // firing event done - return to default state
mjr 53:9b2611964afc 5318 lbState = 0;
mjr 53:9b2611964afc 5319 }
mjr 48:058ace2aed1d 5320 break;
mjr 48:058ace2aed1d 5321 }
mjr 53:9b2611964afc 5322 }
mjr 53:9b2611964afc 5323 else
mjr 53:9b2611964afc 5324 {
mjr 53:9b2611964afc 5325 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5326 setButton(false);
mjr 48:058ace2aed1d 5327
mjr 53:9b2611964afc 5328 // return to the default state
mjr 53:9b2611964afc 5329 lbState = 0;
mjr 48:058ace2aed1d 5330 }
mjr 48:058ace2aed1d 5331 }
mjr 53:9b2611964afc 5332
mjr 53:9b2611964afc 5333 // Set the button state
mjr 53:9b2611964afc 5334 void setButton(bool on)
mjr 53:9b2611964afc 5335 {
mjr 53:9b2611964afc 5336 if (btnState != on)
mjr 53:9b2611964afc 5337 {
mjr 53:9b2611964afc 5338 // remember the new state
mjr 53:9b2611964afc 5339 btnState = on;
mjr 53:9b2611964afc 5340
mjr 53:9b2611964afc 5341 // update the virtual button state
mjr 65:739875521aae 5342 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5343 }
mjr 53:9b2611964afc 5344 }
mjr 53:9b2611964afc 5345
mjr 48:058ace2aed1d 5346 private:
mjr 48:058ace2aed1d 5347 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5348 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5349 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5350 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5351 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5352 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5353 //
mjr 48:058ace2aed1d 5354 // States:
mjr 48:058ace2aed1d 5355 // 0 = default
mjr 53:9b2611964afc 5356 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5357 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5358 // firing event to end)
mjr 53:9b2611964afc 5359 uint8_t lbState;
mjr 48:058ace2aed1d 5360
mjr 53:9b2611964afc 5361 // button state
mjr 53:9b2611964afc 5362 bool btnState;
mjr 48:058ace2aed1d 5363
mjr 48:058ace2aed1d 5364 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5365 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5366 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5367 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5368 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5369 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5370 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5371 Timer lbTimer;
mjr 48:058ace2aed1d 5372 };
mjr 48:058ace2aed1d 5373
mjr 35:e959ffba78fd 5374 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5375 //
mjr 35:e959ffba78fd 5376 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5377 //
mjr 54:fd77a6b2f76c 5378 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5379 {
mjr 35:e959ffba78fd 5380 // disconnect from USB
mjr 54:fd77a6b2f76c 5381 if (disconnect)
mjr 54:fd77a6b2f76c 5382 js.disconnect();
mjr 35:e959ffba78fd 5383
mjr 35:e959ffba78fd 5384 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5385 wait_us(pause_us);
mjr 35:e959ffba78fd 5386
mjr 35:e959ffba78fd 5387 // reset the device
mjr 35:e959ffba78fd 5388 NVIC_SystemReset();
mjr 35:e959ffba78fd 5389 while (true) { }
mjr 35:e959ffba78fd 5390 }
mjr 35:e959ffba78fd 5391
mjr 35:e959ffba78fd 5392 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5393 //
mjr 35:e959ffba78fd 5394 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5395 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5396 //
mjr 35:e959ffba78fd 5397 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5398 {
mjr 35:e959ffba78fd 5399 int tmp;
mjr 78:1e00b3fa11af 5400 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 5401 {
mjr 35:e959ffba78fd 5402 case OrientationFront:
mjr 35:e959ffba78fd 5403 tmp = x;
mjr 35:e959ffba78fd 5404 x = y;
mjr 35:e959ffba78fd 5405 y = tmp;
mjr 35:e959ffba78fd 5406 break;
mjr 35:e959ffba78fd 5407
mjr 35:e959ffba78fd 5408 case OrientationLeft:
mjr 35:e959ffba78fd 5409 x = -x;
mjr 35:e959ffba78fd 5410 break;
mjr 35:e959ffba78fd 5411
mjr 35:e959ffba78fd 5412 case OrientationRight:
mjr 35:e959ffba78fd 5413 y = -y;
mjr 35:e959ffba78fd 5414 break;
mjr 35:e959ffba78fd 5415
mjr 35:e959ffba78fd 5416 case OrientationRear:
mjr 35:e959ffba78fd 5417 tmp = -x;
mjr 35:e959ffba78fd 5418 x = -y;
mjr 35:e959ffba78fd 5419 y = tmp;
mjr 35:e959ffba78fd 5420 break;
mjr 35:e959ffba78fd 5421 }
mjr 35:e959ffba78fd 5422 }
mjr 35:e959ffba78fd 5423
mjr 35:e959ffba78fd 5424 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5425 //
mjr 35:e959ffba78fd 5426 // Calibration button state:
mjr 35:e959ffba78fd 5427 // 0 = not pushed
mjr 35:e959ffba78fd 5428 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 5429 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 5430 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 5431 int calBtnState = 0;
mjr 35:e959ffba78fd 5432
mjr 35:e959ffba78fd 5433 // calibration button debounce timer
mjr 35:e959ffba78fd 5434 Timer calBtnTimer;
mjr 35:e959ffba78fd 5435
mjr 35:e959ffba78fd 5436 // calibration button light state
mjr 35:e959ffba78fd 5437 int calBtnLit = false;
mjr 35:e959ffba78fd 5438
mjr 35:e959ffba78fd 5439
mjr 35:e959ffba78fd 5440 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5441 //
mjr 40:cc0d9814522b 5442 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 5443 //
mjr 40:cc0d9814522b 5444
mjr 40:cc0d9814522b 5445 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 5446 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 5447 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 5448 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 5449 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 5450 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 5451 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5452 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5453 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 5454 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 5455 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 5456
mjr 40:cc0d9814522b 5457 // redefine everything for the SET messages
mjr 40:cc0d9814522b 5458 #undef if_msg_valid
mjr 40:cc0d9814522b 5459 #undef v_byte
mjr 40:cc0d9814522b 5460 #undef v_ui16
mjr 77:0b96f6867312 5461 #undef v_ui32
mjr 40:cc0d9814522b 5462 #undef v_pin
mjr 53:9b2611964afc 5463 #undef v_byte_ro
mjr 74:822a92bc11d2 5464 #undef v_ui32_ro
mjr 74:822a92bc11d2 5465 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 5466 #undef v_func
mjr 38:091e511ce8a0 5467
mjr 40:cc0d9814522b 5468 // Handle GET messages - read variable values and return in USB message daa
mjr 40:cc0d9814522b 5469 #define if_msg_valid(test)
mjr 53:9b2611964afc 5470 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 5471 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 5472 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 5473 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 5474 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 5475 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 5476 #define VAR_MODE_SET 0 // we're in GET mode
mjr 76:7f5912b6340e 5477 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 5478 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 5479
mjr 35:e959ffba78fd 5480
mjr 35:e959ffba78fd 5481 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5482 //
mjr 35:e959ffba78fd 5483 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 5484 // LedWiz protocol.
mjr 33:d832bcab089e 5485 //
mjr 78:1e00b3fa11af 5486 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 5487 {
mjr 38:091e511ce8a0 5488 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 5489 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 5490 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 5491 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 5492 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 5493 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 5494 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 5495 // So our full protocol is as follows:
mjr 38:091e511ce8a0 5496 //
mjr 38:091e511ce8a0 5497 // first byte =
mjr 74:822a92bc11d2 5498 // 0-48 -> PBA
mjr 74:822a92bc11d2 5499 // 64 -> SBA
mjr 38:091e511ce8a0 5500 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 5501 // 129-132 -> PBA
mjr 38:091e511ce8a0 5502 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 5503 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 5504 // other -> reserved for future use
mjr 38:091e511ce8a0 5505 //
mjr 39:b3815a1c3802 5506 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 5507 if (data[0] == 64)
mjr 35:e959ffba78fd 5508 {
mjr 74:822a92bc11d2 5509 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 5510 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 5511 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 5512 sba_sbx(0, data);
mjr 74:822a92bc11d2 5513
mjr 74:822a92bc11d2 5514 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 5515 pbaIdx = 0;
mjr 38:091e511ce8a0 5516 }
mjr 38:091e511ce8a0 5517 else if (data[0] == 65)
mjr 38:091e511ce8a0 5518 {
mjr 38:091e511ce8a0 5519 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 5520 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 5521 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 5522 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 5523 // message type.
mjr 39:b3815a1c3802 5524 switch (data[1])
mjr 38:091e511ce8a0 5525 {
mjr 39:b3815a1c3802 5526 case 0:
mjr 39:b3815a1c3802 5527 // No Op
mjr 39:b3815a1c3802 5528 break;
mjr 39:b3815a1c3802 5529
mjr 39:b3815a1c3802 5530 case 1:
mjr 38:091e511ce8a0 5531 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 5532 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 5533 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 5534 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 5535 {
mjr 39:b3815a1c3802 5536
mjr 39:b3815a1c3802 5537 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 5538 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 5539 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 5540
mjr 39:b3815a1c3802 5541 // we'll need a reset if the LedWiz unit number is changing
mjr 39:b3815a1c3802 5542 bool needReset = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 5543
mjr 39:b3815a1c3802 5544 // set the configuration parameters from the message
mjr 39:b3815a1c3802 5545 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 5546 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 5547
mjr 77:0b96f6867312 5548 // set the flag to do the save
mjr 77:0b96f6867312 5549 saveConfigPending = needReset ? SAVE_CONFIG_AND_REBOOT : SAVE_CONFIG_ONLY;
mjr 77:0b96f6867312 5550 saveConfigRebootTime = 0;
mjr 39:b3815a1c3802 5551 }
mjr 39:b3815a1c3802 5552 break;
mjr 38:091e511ce8a0 5553
mjr 39:b3815a1c3802 5554 case 2:
mjr 38:091e511ce8a0 5555 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 5556 // (No parameters)
mjr 38:091e511ce8a0 5557
mjr 38:091e511ce8a0 5558 // enter calibration mode
mjr 38:091e511ce8a0 5559 calBtnState = 3;
mjr 52:8298b2a73eb2 5560 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 5561 calBtnTimer.reset();
mjr 39:b3815a1c3802 5562 break;
mjr 39:b3815a1c3802 5563
mjr 39:b3815a1c3802 5564 case 3:
mjr 52:8298b2a73eb2 5565 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 5566 // data[2] = flag bits
mjr 53:9b2611964afc 5567 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 5568 reportPlungerStat = true;
mjr 53:9b2611964afc 5569 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 5570 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 5571
mjr 38:091e511ce8a0 5572 // show purple until we finish sending the report
mjr 38:091e511ce8a0 5573 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 5574 break;
mjr 39:b3815a1c3802 5575
mjr 39:b3815a1c3802 5576 case 4:
mjr 38:091e511ce8a0 5577 // 4 = hardware configuration query
mjr 38:091e511ce8a0 5578 // (No parameters)
mjr 38:091e511ce8a0 5579 js.reportConfig(
mjr 38:091e511ce8a0 5580 numOutputs,
mjr 38:091e511ce8a0 5581 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 5582 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 5583 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 5584 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 5585 true, // we support the new accelerometer settings
mjr 79:682ae3171a08 5586 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 5587 break;
mjr 39:b3815a1c3802 5588
mjr 39:b3815a1c3802 5589 case 5:
mjr 38:091e511ce8a0 5590 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 5591 allOutputsOff();
mjr 39:b3815a1c3802 5592 break;
mjr 39:b3815a1c3802 5593
mjr 39:b3815a1c3802 5594 case 6:
mjr 77:0b96f6867312 5595 // 6 = Save configuration to flash. Reboot after the delay
mjr 77:0b96f6867312 5596 // time in seconds given in data[2].
mjr 77:0b96f6867312 5597 saveConfigPending = SAVE_CONFIG_AND_REBOOT;
mjr 77:0b96f6867312 5598 saveConfigRebootTime = data[2];
mjr 39:b3815a1c3802 5599 break;
mjr 40:cc0d9814522b 5600
mjr 40:cc0d9814522b 5601 case 7:
mjr 40:cc0d9814522b 5602 // 7 = Device ID report
mjr 53:9b2611964afc 5603 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 5604 js.reportID(data[2]);
mjr 40:cc0d9814522b 5605 break;
mjr 40:cc0d9814522b 5606
mjr 40:cc0d9814522b 5607 case 8:
mjr 40:cc0d9814522b 5608 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 5609 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 5610 setNightMode(data[2]);
mjr 40:cc0d9814522b 5611 break;
mjr 52:8298b2a73eb2 5612
mjr 52:8298b2a73eb2 5613 case 9:
mjr 52:8298b2a73eb2 5614 // 9 = Config variable query.
mjr 52:8298b2a73eb2 5615 // data[2] = config var ID
mjr 52:8298b2a73eb2 5616 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 5617 {
mjr 53:9b2611964afc 5618 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 5619 // the rest of the buffer
mjr 52:8298b2a73eb2 5620 uint8_t reply[8];
mjr 52:8298b2a73eb2 5621 reply[1] = data[2];
mjr 52:8298b2a73eb2 5622 reply[2] = data[3];
mjr 53:9b2611964afc 5623 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 5624
mjr 52:8298b2a73eb2 5625 // query the value
mjr 52:8298b2a73eb2 5626 configVarGet(reply);
mjr 52:8298b2a73eb2 5627
mjr 52:8298b2a73eb2 5628 // send the reply
mjr 52:8298b2a73eb2 5629 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 5630 }
mjr 52:8298b2a73eb2 5631 break;
mjr 53:9b2611964afc 5632
mjr 53:9b2611964afc 5633 case 10:
mjr 53:9b2611964afc 5634 // 10 = Build ID query.
mjr 53:9b2611964afc 5635 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 5636 break;
mjr 73:4e8ce0b18915 5637
mjr 73:4e8ce0b18915 5638 case 11:
mjr 73:4e8ce0b18915 5639 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 5640 // data[2] = operation:
mjr 73:4e8ce0b18915 5641 // 0 = turn relay off
mjr 73:4e8ce0b18915 5642 // 1 = turn relay on
mjr 73:4e8ce0b18915 5643 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 5644 TVRelay(data[2]);
mjr 73:4e8ce0b18915 5645 break;
mjr 73:4e8ce0b18915 5646
mjr 73:4e8ce0b18915 5647 case 12:
mjr 77:0b96f6867312 5648 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 5649 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 5650 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 5651 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 5652 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 5653
mjr 77:0b96f6867312 5654 // enter IR learning mode
mjr 77:0b96f6867312 5655 IRLearningMode = 1;
mjr 77:0b96f6867312 5656
mjr 77:0b96f6867312 5657 // cancel any regular IR input in progress
mjr 77:0b96f6867312 5658 IRCommandIn = 0;
mjr 77:0b96f6867312 5659
mjr 77:0b96f6867312 5660 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 5661 IRTimer.reset();
mjr 73:4e8ce0b18915 5662 break;
mjr 73:4e8ce0b18915 5663
mjr 73:4e8ce0b18915 5664 case 13:
mjr 73:4e8ce0b18915 5665 // 13 = Send button status report
mjr 73:4e8ce0b18915 5666 reportButtonStatus(js);
mjr 73:4e8ce0b18915 5667 break;
mjr 78:1e00b3fa11af 5668
mjr 78:1e00b3fa11af 5669 case 14:
mjr 78:1e00b3fa11af 5670 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 5671 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 5672 break;
mjr 78:1e00b3fa11af 5673
mjr 78:1e00b3fa11af 5674 case 15:
mjr 78:1e00b3fa11af 5675 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 5676 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 5677 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 5678 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 5679 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 5680 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 5681 break;
mjr 78:1e00b3fa11af 5682
mjr 78:1e00b3fa11af 5683 case 16:
mjr 78:1e00b3fa11af 5684 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 5685 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 5686 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 5687 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 5688 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 5689 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 5690 break;
mjr 38:091e511ce8a0 5691 }
mjr 38:091e511ce8a0 5692 }
mjr 38:091e511ce8a0 5693 else if (data[0] == 66)
mjr 38:091e511ce8a0 5694 {
mjr 38:091e511ce8a0 5695 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 5696 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 5697 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 5698 // in a variable-dependent format.
mjr 40:cc0d9814522b 5699 configVarSet(data);
mjr 38:091e511ce8a0 5700 }
mjr 74:822a92bc11d2 5701 else if (data[0] == 67)
mjr 74:822a92bc11d2 5702 {
mjr 74:822a92bc11d2 5703 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 5704 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 5705 // to ports beyond the first 32.
mjr 74:822a92bc11d2 5706 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 5707 }
mjr 74:822a92bc11d2 5708 else if (data[0] == 68)
mjr 74:822a92bc11d2 5709 {
mjr 74:822a92bc11d2 5710 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 5711 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 5712 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 5713
mjr 74:822a92bc11d2 5714 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 5715 int portGroup = data[1];
mjr 74:822a92bc11d2 5716
mjr 74:822a92bc11d2 5717 // unpack the brightness values
mjr 74:822a92bc11d2 5718 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 5719 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 5720 uint8_t bri[8] = {
mjr 74:822a92bc11d2 5721 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 5722 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 5723 };
mjr 74:822a92bc11d2 5724
mjr 74:822a92bc11d2 5725 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 5726 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 5727 {
mjr 74:822a92bc11d2 5728 if (bri[i] >= 60)
mjr 74:822a92bc11d2 5729 bri[i] += 129-60;
mjr 74:822a92bc11d2 5730 }
mjr 74:822a92bc11d2 5731
mjr 74:822a92bc11d2 5732 // Carry out the PBA
mjr 74:822a92bc11d2 5733 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 5734 }
mjr 38:091e511ce8a0 5735 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 5736 {
mjr 38:091e511ce8a0 5737 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 5738 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 5739 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 5740 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 5741 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 5742 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 5743 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 5744 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 5745 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 5746 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 5747 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 5748 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 5749 //
mjr 38:091e511ce8a0 5750 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 5751 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 5752 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 5753 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 5754 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 5755 // address those ports anyway.
mjr 63:5cd1a5f3a41b 5756
mjr 63:5cd1a5f3a41b 5757 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 5758 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 5759 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 5760
mjr 63:5cd1a5f3a41b 5761 // update each port
mjr 38:091e511ce8a0 5762 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 5763 {
mjr 38:091e511ce8a0 5764 // set the brightness level for the output
mjr 40:cc0d9814522b 5765 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 5766 outLevel[i] = b;
mjr 38:091e511ce8a0 5767
mjr 74:822a92bc11d2 5768 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 5769 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 5770 // LedWiz mode on a future update
mjr 76:7f5912b6340e 5771 if (b != 0)
mjr 76:7f5912b6340e 5772 {
mjr 76:7f5912b6340e 5773 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 5774 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 5775 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 5776 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 5777 // forward unchanged.
mjr 76:7f5912b6340e 5778 wizOn[i] = 1;
mjr 76:7f5912b6340e 5779 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 5780 }
mjr 76:7f5912b6340e 5781 else
mjr 76:7f5912b6340e 5782 {
mjr 76:7f5912b6340e 5783 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 5784 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 5785 wizOn[i] = 0;
mjr 76:7f5912b6340e 5786 }
mjr 74:822a92bc11d2 5787
mjr 38:091e511ce8a0 5788 // set the output
mjr 40:cc0d9814522b 5789 lwPin[i]->set(b);
mjr 38:091e511ce8a0 5790 }
mjr 38:091e511ce8a0 5791
mjr 38:091e511ce8a0 5792 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 5793 if (hc595 != 0)
mjr 38:091e511ce8a0 5794 hc595->update();
mjr 38:091e511ce8a0 5795 }
mjr 38:091e511ce8a0 5796 else
mjr 38:091e511ce8a0 5797 {
mjr 74:822a92bc11d2 5798 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 5799 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 5800 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 5801 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 5802 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 5803 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 5804 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 5805 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 5806 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 5807 //
mjr 38:091e511ce8a0 5808 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 5809 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 5810 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 5811 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 5812 // protocol mode.
mjr 38:091e511ce8a0 5813 //
mjr 38:091e511ce8a0 5814 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 5815 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 5816
mjr 74:822a92bc11d2 5817 // carry out the PBA
mjr 74:822a92bc11d2 5818 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 5819
mjr 74:822a92bc11d2 5820 // update the PBX index state for the next message
mjr 74:822a92bc11d2 5821 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 5822 }
mjr 38:091e511ce8a0 5823 }
mjr 35:e959ffba78fd 5824
mjr 38:091e511ce8a0 5825 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5826 //
mjr 5:a70c0bce770d 5827 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 5828 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 5829 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 5830 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 5831 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 5832 // port outputs.
mjr 5:a70c0bce770d 5833 //
mjr 0:5acbbe3f4cf4 5834 int main(void)
mjr 0:5acbbe3f4cf4 5835 {
mjr 60:f38da020aa13 5836 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 5837 printf("\r\nPinscape Controller starting\r\n");
mjr 77:0b96f6867312 5838
mjr 76:7f5912b6340e 5839 // clear the I2C connection
mjr 35:e959ffba78fd 5840 clear_i2c();
mjr 38:091e511ce8a0 5841
mjr 76:7f5912b6340e 5842 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 5843 // configuration data:
mjr 76:7f5912b6340e 5844 //
mjr 76:7f5912b6340e 5845 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 5846 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 5847 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 5848 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 5849 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 5850 // to store user settings updates.
mjr 76:7f5912b6340e 5851 //
mjr 76:7f5912b6340e 5852 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 5853 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 5854 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 5855 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 5856 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 5857 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 5858 // without a separate download of the config data.
mjr 76:7f5912b6340e 5859 //
mjr 76:7f5912b6340e 5860 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 5861 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 5862 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 5863 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 5864 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 5865 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 5866 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 5867 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 5868 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 5869 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 5870 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 5871 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 5872 loadHostLoadedConfig();
mjr 35:e959ffba78fd 5873
mjr 38:091e511ce8a0 5874 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 5875 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 5876
mjr 33:d832bcab089e 5877 // we're not connected/awake yet
mjr 33:d832bcab089e 5878 bool connected = false;
mjr 40:cc0d9814522b 5879 Timer connectChangeTimer;
mjr 33:d832bcab089e 5880
mjr 35:e959ffba78fd 5881 // create the plunger sensor interface
mjr 35:e959ffba78fd 5882 createPlunger();
mjr 76:7f5912b6340e 5883
mjr 76:7f5912b6340e 5884 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 5885 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 5886
mjr 60:f38da020aa13 5887 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 5888 init_tlc5940(cfg);
mjr 34:6b981a2afab7 5889
mjr 60:f38da020aa13 5890 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 5891 init_hc595(cfg);
mjr 6:cc35eb643e8f 5892
mjr 54:fd77a6b2f76c 5893 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 5894 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 5895 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 5896 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 5897 initLwOut(cfg);
mjr 48:058ace2aed1d 5898
mjr 60:f38da020aa13 5899 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 5900 if (tlc5940 != 0)
mjr 35:e959ffba78fd 5901 tlc5940->start();
mjr 77:0b96f6867312 5902
mjr 77:0b96f6867312 5903 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 5904 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 5905 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 5906 // USB keyboard interface.
mjr 77:0b96f6867312 5907 bool kbKeys = false;
mjr 77:0b96f6867312 5908
mjr 77:0b96f6867312 5909 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 5910 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 5911
mjr 77:0b96f6867312 5912 // start the power status time, if applicable
mjr 77:0b96f6867312 5913 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 5914
mjr 35:e959ffba78fd 5915 // initialize the button input ports
mjr 35:e959ffba78fd 5916 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 5917
mjr 60:f38da020aa13 5918 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 5919 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 5920 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 5921 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 5922 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 5923 // to the joystick interface.
mjr 51:57eb311faafa 5924 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 51:57eb311faafa 5925 cfg.joystickEnabled, kbKeys);
mjr 51:57eb311faafa 5926
mjr 60:f38da020aa13 5927 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 5928 // flash pattern while waiting.
mjr 70:9f58735a1732 5929 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 5930 connTimeoutTimer.start();
mjr 70:9f58735a1732 5931 connFlashTimer.start();
mjr 51:57eb311faafa 5932 while (!js.configured())
mjr 51:57eb311faafa 5933 {
mjr 51:57eb311faafa 5934 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 5935 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 5936 {
mjr 51:57eb311faafa 5937 // short yellow flash
mjr 51:57eb311faafa 5938 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 5939 wait_us(50000);
mjr 51:57eb311faafa 5940 diagLED(0, 0, 0);
mjr 51:57eb311faafa 5941
mjr 51:57eb311faafa 5942 // reset the flash timer
mjr 70:9f58735a1732 5943 connFlashTimer.reset();
mjr 51:57eb311faafa 5944 }
mjr 70:9f58735a1732 5945
mjr 77:0b96f6867312 5946 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 5947 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 5948 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 5949 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 70:9f58735a1732 5950 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 5951 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 70:9f58735a1732 5952 reboot(js, false, 0);
mjr 77:0b96f6867312 5953
mjr 77:0b96f6867312 5954 // update the PSU2 power sensing status
mjr 77:0b96f6867312 5955 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 5956 }
mjr 60:f38da020aa13 5957
mjr 60:f38da020aa13 5958 // we're now connected to the host
mjr 54:fd77a6b2f76c 5959 connected = true;
mjr 40:cc0d9814522b 5960
mjr 60:f38da020aa13 5961 // Last report timer for the joytick interface. We use this timer to
mjr 60:f38da020aa13 5962 // throttle the report rate to a pace that's suitable for VP. Without
mjr 60:f38da020aa13 5963 // any artificial delays, we could generate data to send on the joystick
mjr 60:f38da020aa13 5964 // interface on every loop iteration. The loop iteration time depends
mjr 60:f38da020aa13 5965 // on which devices are attached, since most of the work in our main
mjr 60:f38da020aa13 5966 // loop is simply polling our devices. For typical setups, the loop
mjr 60:f38da020aa13 5967 // time ranges from about 0.25ms to 2.5ms; the biggest factor is the
mjr 60:f38da020aa13 5968 // plunger sensor. But VP polls for input about every 10ms, so there's
mjr 60:f38da020aa13 5969 // no benefit in sending data faster than that, and there's some harm,
mjr 60:f38da020aa13 5970 // in that it creates USB overhead (both on the wire and on the host
mjr 60:f38da020aa13 5971 // CPU). We therefore use this timer to pace our reports to roughly
mjr 60:f38da020aa13 5972 // the VP input polling rate. Note that there's no way to actually
mjr 60:f38da020aa13 5973 // synchronize with VP's polling, but there's also no need to, as the
mjr 60:f38da020aa13 5974 // input model is designed to reflect the overall current state at any
mjr 60:f38da020aa13 5975 // given time rather than events or deltas. If VP polls twice between
mjr 60:f38da020aa13 5976 // two updates, it simply sees no state change; if we send two updates
mjr 60:f38da020aa13 5977 // between VP polls, VP simply sees the latest state when it does get
mjr 60:f38da020aa13 5978 // around to polling.
mjr 38:091e511ce8a0 5979 Timer jsReportTimer;
mjr 38:091e511ce8a0 5980 jsReportTimer.start();
mjr 38:091e511ce8a0 5981
mjr 60:f38da020aa13 5982 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 5983 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 5984 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 5985 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 5986 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 5987 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 5988 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 5989 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 5990 Timer jsOKTimer;
mjr 38:091e511ce8a0 5991 jsOKTimer.start();
mjr 35:e959ffba78fd 5992
mjr 55:4db125cd11a0 5993 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 5994 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 5995 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 5996 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 5997 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 5998
mjr 55:4db125cd11a0 5999 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 6000 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 6001 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 6002
mjr 55:4db125cd11a0 6003 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 6004 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 6005 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 6006
mjr 35:e959ffba78fd 6007 // initialize the calibration button
mjr 1:d913e0afb2ac 6008 calBtnTimer.start();
mjr 35:e959ffba78fd 6009 calBtnState = 0;
mjr 1:d913e0afb2ac 6010
mjr 1:d913e0afb2ac 6011 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 6012 Timer hbTimer;
mjr 1:d913e0afb2ac 6013 hbTimer.start();
mjr 1:d913e0afb2ac 6014 int hb = 0;
mjr 5:a70c0bce770d 6015 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 6016
mjr 1:d913e0afb2ac 6017 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 6018 Timer acTimer;
mjr 1:d913e0afb2ac 6019 acTimer.start();
mjr 1:d913e0afb2ac 6020
mjr 0:5acbbe3f4cf4 6021 // create the accelerometer object
mjr 77:0b96f6867312 6022 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 6023 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 6024
mjr 17:ab3cec0c8bf4 6025 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 6026 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 6027 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 6028
mjr 48:058ace2aed1d 6029 // initialize the plunger sensor
mjr 35:e959ffba78fd 6030 plungerSensor->init();
mjr 10:976666ffa4ef 6031
mjr 48:058ace2aed1d 6032 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 6033 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 6034
mjr 54:fd77a6b2f76c 6035 // enable the peripheral chips
mjr 54:fd77a6b2f76c 6036 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6037 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6038 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6039 hc595->enable(true);
mjr 74:822a92bc11d2 6040
mjr 76:7f5912b6340e 6041 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 6042 wizCycleTimer.start();
mjr 74:822a92bc11d2 6043
mjr 74:822a92bc11d2 6044 // start the PWM update polling timer
mjr 74:822a92bc11d2 6045 polledPwmTimer.start();
mjr 43:7a6364d82a41 6046
mjr 77:0b96f6867312 6047 // Timer for configuration change reboots
mjr 77:0b96f6867312 6048 ExtTimer saveConfigRebootTimer;
mjr 77:0b96f6867312 6049
mjr 1:d913e0afb2ac 6050 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 6051 // host requests
mjr 0:5acbbe3f4cf4 6052 for (;;)
mjr 0:5acbbe3f4cf4 6053 {
mjr 74:822a92bc11d2 6054 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 6055 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 74:822a92bc11d2 6056
mjr 48:058ace2aed1d 6057 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 6058 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 6059 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 6060 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 6061 LedWizMsg lwm;
mjr 48:058ace2aed1d 6062 Timer lwt;
mjr 48:058ace2aed1d 6063 lwt.start();
mjr 77:0b96f6867312 6064 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 6065 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 6066 {
mjr 78:1e00b3fa11af 6067 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 6068 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 6069 }
mjr 74:822a92bc11d2 6070
mjr 74:822a92bc11d2 6071 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 6072 IF_DIAG(
mjr 74:822a92bc11d2 6073 if (msgCount != 0)
mjr 74:822a92bc11d2 6074 {
mjr 76:7f5912b6340e 6075 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 6076 mainLoopMsgCount++;
mjr 74:822a92bc11d2 6077 }
mjr 74:822a92bc11d2 6078 )
mjr 74:822a92bc11d2 6079
mjr 77:0b96f6867312 6080 // process IR input
mjr 77:0b96f6867312 6081 process_IR(cfg, js);
mjr 77:0b96f6867312 6082
mjr 77:0b96f6867312 6083 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6084 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 6085
mjr 74:822a92bc11d2 6086 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 6087 wizPulse();
mjr 74:822a92bc11d2 6088
mjr 74:822a92bc11d2 6089 // update PWM outputs
mjr 74:822a92bc11d2 6090 pollPwmUpdates();
mjr 77:0b96f6867312 6091
mjr 77:0b96f6867312 6092 // poll the accelerometer
mjr 77:0b96f6867312 6093 accel.poll();
mjr 55:4db125cd11a0 6094
mjr 76:7f5912b6340e 6095 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 6096 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6097
mjr 55:4db125cd11a0 6098 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 6099 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6100 tlc5940->send();
mjr 1:d913e0afb2ac 6101
mjr 76:7f5912b6340e 6102 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 6103 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 6104
mjr 1:d913e0afb2ac 6105 // check for plunger calibration
mjr 17:ab3cec0c8bf4 6106 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 6107 {
mjr 1:d913e0afb2ac 6108 // check the state
mjr 1:d913e0afb2ac 6109 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6110 {
mjr 1:d913e0afb2ac 6111 case 0:
mjr 1:d913e0afb2ac 6112 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 6113 calBtnTimer.reset();
mjr 1:d913e0afb2ac 6114 calBtnState = 1;
mjr 1:d913e0afb2ac 6115 break;
mjr 1:d913e0afb2ac 6116
mjr 1:d913e0afb2ac 6117 case 1:
mjr 1:d913e0afb2ac 6118 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6119 // passed, start the hold period
mjr 48:058ace2aed1d 6120 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6121 calBtnState = 2;
mjr 1:d913e0afb2ac 6122 break;
mjr 1:d913e0afb2ac 6123
mjr 1:d913e0afb2ac 6124 case 2:
mjr 1:d913e0afb2ac 6125 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6126 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6127 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6128 {
mjr 1:d913e0afb2ac 6129 // enter calibration mode
mjr 1:d913e0afb2ac 6130 calBtnState = 3;
mjr 9:fd65b0a94720 6131 calBtnTimer.reset();
mjr 35:e959ffba78fd 6132
mjr 44:b5ac89b9cd5d 6133 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6134 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6135 }
mjr 1:d913e0afb2ac 6136 break;
mjr 2:c174f9ee414a 6137
mjr 2:c174f9ee414a 6138 case 3:
mjr 9:fd65b0a94720 6139 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6140 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6141 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6142 break;
mjr 0:5acbbe3f4cf4 6143 }
mjr 0:5acbbe3f4cf4 6144 }
mjr 1:d913e0afb2ac 6145 else
mjr 1:d913e0afb2ac 6146 {
mjr 2:c174f9ee414a 6147 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6148 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6149 // and save the results to flash.
mjr 2:c174f9ee414a 6150 //
mjr 2:c174f9ee414a 6151 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6152 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6153 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6154 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6155 {
mjr 2:c174f9ee414a 6156 // exit calibration mode
mjr 1:d913e0afb2ac 6157 calBtnState = 0;
mjr 52:8298b2a73eb2 6158 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6159
mjr 6:cc35eb643e8f 6160 // save the updated configuration
mjr 35:e959ffba78fd 6161 cfg.plunger.cal.calibrated = 1;
mjr 35:e959ffba78fd 6162 saveConfigToFlash();
mjr 2:c174f9ee414a 6163 }
mjr 2:c174f9ee414a 6164 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6165 {
mjr 2:c174f9ee414a 6166 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6167 calBtnState = 0;
mjr 2:c174f9ee414a 6168 }
mjr 1:d913e0afb2ac 6169 }
mjr 1:d913e0afb2ac 6170
mjr 1:d913e0afb2ac 6171 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6172 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6173 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6174 {
mjr 1:d913e0afb2ac 6175 case 2:
mjr 1:d913e0afb2ac 6176 // in the hold period - flash the light
mjr 48:058ace2aed1d 6177 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6178 break;
mjr 1:d913e0afb2ac 6179
mjr 1:d913e0afb2ac 6180 case 3:
mjr 1:d913e0afb2ac 6181 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6182 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6183 break;
mjr 1:d913e0afb2ac 6184
mjr 1:d913e0afb2ac 6185 default:
mjr 1:d913e0afb2ac 6186 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6187 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6188 break;
mjr 1:d913e0afb2ac 6189 }
mjr 3:3514575d4f86 6190
mjr 3:3514575d4f86 6191 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6192 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6193 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6194 {
mjr 1:d913e0afb2ac 6195 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6196 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6197 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6198 calBtnLed->write(1);
mjr 38:091e511ce8a0 6199 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6200 }
mjr 2:c174f9ee414a 6201 else {
mjr 17:ab3cec0c8bf4 6202 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6203 calBtnLed->write(0);
mjr 38:091e511ce8a0 6204 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6205 }
mjr 1:d913e0afb2ac 6206 }
mjr 35:e959ffba78fd 6207
mjr 76:7f5912b6340e 6208 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6209 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6210
mjr 48:058ace2aed1d 6211 // read the plunger sensor
mjr 48:058ace2aed1d 6212 plungerReader.read();
mjr 48:058ace2aed1d 6213
mjr 76:7f5912b6340e 6214 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6215 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6216
mjr 53:9b2611964afc 6217 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6218 zbLaunchBall.update();
mjr 37:ed52738445fc 6219
mjr 76:7f5912b6340e 6220 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6221 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6222
mjr 53:9b2611964afc 6223 // process button updates
mjr 53:9b2611964afc 6224 processButtons(cfg);
mjr 53:9b2611964afc 6225
mjr 76:7f5912b6340e 6226 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6227 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6228
mjr 38:091e511ce8a0 6229 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6230 if (kbState.changed)
mjr 37:ed52738445fc 6231 {
mjr 38:091e511ce8a0 6232 // send a keyboard report
mjr 37:ed52738445fc 6233 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6234 kbState.changed = false;
mjr 37:ed52738445fc 6235 }
mjr 38:091e511ce8a0 6236
mjr 38:091e511ce8a0 6237 // likewise for the media controller
mjr 37:ed52738445fc 6238 if (mediaState.changed)
mjr 37:ed52738445fc 6239 {
mjr 38:091e511ce8a0 6240 // send a media report
mjr 37:ed52738445fc 6241 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6242 mediaState.changed = false;
mjr 37:ed52738445fc 6243 }
mjr 38:091e511ce8a0 6244
mjr 76:7f5912b6340e 6245 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6246 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6247
mjr 38:091e511ce8a0 6248 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6249 bool jsOK = false;
mjr 55:4db125cd11a0 6250
mjr 55:4db125cd11a0 6251 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6252 uint16_t statusFlags =
mjr 77:0b96f6867312 6253 cfg.plunger.enabled // 0x01
mjr 77:0b96f6867312 6254 | nightMode // 0x02
mjr 79:682ae3171a08 6255 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 6256 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 6257 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6258 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6259
mjr 50:40015764bbe6 6260 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6261 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6262 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6263 // More frequent reporting would only add USB I/O overhead.
mjr 50:40015764bbe6 6264 if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 17:ab3cec0c8bf4 6265 {
mjr 17:ab3cec0c8bf4 6266 // read the accelerometer
mjr 17:ab3cec0c8bf4 6267 int xa, ya;
mjr 17:ab3cec0c8bf4 6268 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6269
mjr 17:ab3cec0c8bf4 6270 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 6271 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 6272 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 6273 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 6274 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 6275
mjr 17:ab3cec0c8bf4 6276 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 6277 x = xa;
mjr 17:ab3cec0c8bf4 6278 y = ya;
mjr 17:ab3cec0c8bf4 6279
mjr 48:058ace2aed1d 6280 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6281 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6282 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6283 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6284 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6285 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6286 // regular plunger inputs.
mjr 48:058ace2aed1d 6287 int z = plungerReader.getPosition();
mjr 53:9b2611964afc 6288 int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z);
mjr 35:e959ffba78fd 6289
mjr 35:e959ffba78fd 6290 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 6291 accelRotate(x, y);
mjr 35:e959ffba78fd 6292
mjr 35:e959ffba78fd 6293 // send the joystick report
mjr 53:9b2611964afc 6294 jsOK = js.update(x, y, zrep, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6295
mjr 17:ab3cec0c8bf4 6296 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6297 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6298 }
mjr 21:5048e16cc9ef 6299
mjr 52:8298b2a73eb2 6300 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 6301 if (reportPlungerStat)
mjr 10:976666ffa4ef 6302 {
mjr 17:ab3cec0c8bf4 6303 // send the report
mjr 53:9b2611964afc 6304 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 6305
mjr 10:976666ffa4ef 6306 // we have satisfied this request
mjr 52:8298b2a73eb2 6307 reportPlungerStat = false;
mjr 10:976666ffa4ef 6308 }
mjr 10:976666ffa4ef 6309
mjr 35:e959ffba78fd 6310 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 6311 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 6312 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 6313 {
mjr 55:4db125cd11a0 6314 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 6315 jsReportTimer.reset();
mjr 38:091e511ce8a0 6316 }
mjr 38:091e511ce8a0 6317
mjr 38:091e511ce8a0 6318 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 6319 if (jsOK)
mjr 38:091e511ce8a0 6320 {
mjr 38:091e511ce8a0 6321 jsOKTimer.reset();
mjr 38:091e511ce8a0 6322 jsOKTimer.start();
mjr 21:5048e16cc9ef 6323 }
mjr 21:5048e16cc9ef 6324
mjr 76:7f5912b6340e 6325 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 6326 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6327
mjr 6:cc35eb643e8f 6328 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 6329 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 6330 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 6331 #endif
mjr 6:cc35eb643e8f 6332
mjr 33:d832bcab089e 6333 // check for connection status changes
mjr 54:fd77a6b2f76c 6334 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 6335 if (newConnected != connected)
mjr 33:d832bcab089e 6336 {
mjr 54:fd77a6b2f76c 6337 // give it a moment to stabilize
mjr 40:cc0d9814522b 6338 connectChangeTimer.start();
mjr 55:4db125cd11a0 6339 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 6340 {
mjr 33:d832bcab089e 6341 // note the new status
mjr 33:d832bcab089e 6342 connected = newConnected;
mjr 40:cc0d9814522b 6343
mjr 40:cc0d9814522b 6344 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 6345 connectChangeTimer.stop();
mjr 40:cc0d9814522b 6346 connectChangeTimer.reset();
mjr 33:d832bcab089e 6347
mjr 54:fd77a6b2f76c 6348 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 6349 if (!connected)
mjr 40:cc0d9814522b 6350 {
mjr 54:fd77a6b2f76c 6351 // turn off all outputs
mjr 33:d832bcab089e 6352 allOutputsOff();
mjr 40:cc0d9814522b 6353
mjr 40:cc0d9814522b 6354 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 6355 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 6356 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 6357 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 6358 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 6359 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 6360 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 6361 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 6362 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 6363 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 6364 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 6365 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 6366 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 6367 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 6368 // the power first comes on.
mjr 40:cc0d9814522b 6369 if (tlc5940 != 0)
mjr 40:cc0d9814522b 6370 tlc5940->enable(false);
mjr 40:cc0d9814522b 6371 if (hc595 != 0)
mjr 40:cc0d9814522b 6372 hc595->enable(false);
mjr 40:cc0d9814522b 6373 }
mjr 33:d832bcab089e 6374 }
mjr 33:d832bcab089e 6375 }
mjr 48:058ace2aed1d 6376
mjr 53:9b2611964afc 6377 // if we have a reboot timer pending, check for completion
mjr 77:0b96f6867312 6378 if (saveConfigRebootTimer.isRunning()
mjr 77:0b96f6867312 6379 && saveConfigRebootTimer.read() > saveConfigRebootTime)
mjr 53:9b2611964afc 6380 reboot(js);
mjr 77:0b96f6867312 6381
mjr 77:0b96f6867312 6382 // if a config save is pending, do it now
mjr 77:0b96f6867312 6383 if (saveConfigPending != 0)
mjr 77:0b96f6867312 6384 {
mjr 77:0b96f6867312 6385 // save the configuration
mjr 79:682ae3171a08 6386 if (saveConfigToFlash())
mjr 79:682ae3171a08 6387 saveConfigSucceededFlag = 0x40;
mjr 77:0b96f6867312 6388
mjr 77:0b96f6867312 6389 // if desired, reboot after the specified delay
mjr 77:0b96f6867312 6390 if (saveConfigPending == SAVE_CONFIG_AND_REBOOT)
mjr 77:0b96f6867312 6391 saveConfigRebootTimer.start();
mjr 77:0b96f6867312 6392
mjr 77:0b96f6867312 6393 // the save is no longer pending
mjr 77:0b96f6867312 6394 saveConfigPending = 0;
mjr 77:0b96f6867312 6395 }
mjr 53:9b2611964afc 6396
mjr 48:058ace2aed1d 6397 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 6398 if (!connected)
mjr 48:058ace2aed1d 6399 {
mjr 54:fd77a6b2f76c 6400 // show USB HAL debug events
mjr 54:fd77a6b2f76c 6401 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 6402 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 6403
mjr 54:fd77a6b2f76c 6404 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 6405 js.diagFlash();
mjr 54:fd77a6b2f76c 6406
mjr 54:fd77a6b2f76c 6407 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 6408 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6409
mjr 51:57eb311faafa 6410 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 6411 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 6412 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 6413
mjr 54:fd77a6b2f76c 6414 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 6415 Timer diagTimer;
mjr 54:fd77a6b2f76c 6416 diagTimer.reset();
mjr 54:fd77a6b2f76c 6417 diagTimer.start();
mjr 74:822a92bc11d2 6418
mjr 74:822a92bc11d2 6419 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 6420 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 6421
mjr 54:fd77a6b2f76c 6422 // loop until we get our connection back
mjr 54:fd77a6b2f76c 6423 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 6424 {
mjr 54:fd77a6b2f76c 6425 // try to recover the connection
mjr 54:fd77a6b2f76c 6426 js.recoverConnection();
mjr 54:fd77a6b2f76c 6427
mjr 55:4db125cd11a0 6428 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 6429 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6430 tlc5940->send();
mjr 55:4db125cd11a0 6431
mjr 54:fd77a6b2f76c 6432 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 6433 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6434 {
mjr 54:fd77a6b2f76c 6435 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 6436 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 6437
mjr 54:fd77a6b2f76c 6438 // show diagnostic feedback
mjr 54:fd77a6b2f76c 6439 js.diagFlash();
mjr 51:57eb311faafa 6440
mjr 51:57eb311faafa 6441 // reset the flash timer
mjr 54:fd77a6b2f76c 6442 diagTimer.reset();
mjr 51:57eb311faafa 6443 }
mjr 51:57eb311faafa 6444
mjr 77:0b96f6867312 6445 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 6446 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 6447 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 6448 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 6449 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 6450 // reliable way to get Windows to notice us again after one
mjr 77:0b96f6867312 6451 // of these events and make it reconnect.
mjr 51:57eb311faafa 6452 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 6453 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 6454 reboot(js, false, 0);
mjr 77:0b96f6867312 6455
mjr 77:0b96f6867312 6456 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6457 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 6458 }
mjr 54:fd77a6b2f76c 6459
mjr 74:822a92bc11d2 6460 // resume the main loop timer
mjr 74:822a92bc11d2 6461 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 6462
mjr 54:fd77a6b2f76c 6463 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 6464 connected = true;
mjr 54:fd77a6b2f76c 6465 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 6466
mjr 54:fd77a6b2f76c 6467 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 6468 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6469 {
mjr 55:4db125cd11a0 6470 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6471 tlc5940->update(true);
mjr 54:fd77a6b2f76c 6472 }
mjr 54:fd77a6b2f76c 6473 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6474 {
mjr 55:4db125cd11a0 6475 hc595->enable(true);
mjr 54:fd77a6b2f76c 6476 hc595->update(true);
mjr 51:57eb311faafa 6477 }
mjr 48:058ace2aed1d 6478 }
mjr 43:7a6364d82a41 6479
mjr 6:cc35eb643e8f 6480 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 6481 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 6482 {
mjr 54:fd77a6b2f76c 6483 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 6484 {
mjr 39:b3815a1c3802 6485 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 6486 //
mjr 54:fd77a6b2f76c 6487 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 6488 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 6489 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 6490 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 6491 hb = !hb;
mjr 38:091e511ce8a0 6492 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 6493
mjr 54:fd77a6b2f76c 6494 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 6495 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 6496 // with the USB connection.
mjr 54:fd77a6b2f76c 6497 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 6498 {
mjr 54:fd77a6b2f76c 6499 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 6500 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 6501 // limit, keep running for now, and leave the OK timer running so
mjr 54:fd77a6b2f76c 6502 // that we can continue to monitor this.
mjr 54:fd77a6b2f76c 6503 if (jsOKTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 6504 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 6505 }
mjr 54:fd77a6b2f76c 6506 else
mjr 54:fd77a6b2f76c 6507 {
mjr 54:fd77a6b2f76c 6508 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 6509 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 6510 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 6511 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 6512 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 6513 }
mjr 38:091e511ce8a0 6514 }
mjr 73:4e8ce0b18915 6515 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 6516 {
mjr 73:4e8ce0b18915 6517 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 6518 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 6519 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 6520 }
mjr 35:e959ffba78fd 6521 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 6522 {
mjr 6:cc35eb643e8f 6523 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 6524 hb = !hb;
mjr 38:091e511ce8a0 6525 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 6526 }
mjr 6:cc35eb643e8f 6527 else
mjr 6:cc35eb643e8f 6528 {
mjr 6:cc35eb643e8f 6529 // connected - flash blue/green
mjr 2:c174f9ee414a 6530 hb = !hb;
mjr 38:091e511ce8a0 6531 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 6532 }
mjr 1:d913e0afb2ac 6533
mjr 1:d913e0afb2ac 6534 // reset the heartbeat timer
mjr 1:d913e0afb2ac 6535 hbTimer.reset();
mjr 5:a70c0bce770d 6536 ++hbcnt;
mjr 1:d913e0afb2ac 6537 }
mjr 74:822a92bc11d2 6538
mjr 74:822a92bc11d2 6539 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 6540 IF_DIAG(
mjr 76:7f5912b6340e 6541 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 6542 mainLoopIterCount++;
mjr 74:822a92bc11d2 6543 )
mjr 1:d913e0afb2ac 6544 }
mjr 0:5acbbe3f4cf4 6545 }