Prototyp V2

Dependencies:   PM2_Libary

Committer:
lupomic
Date:
Tue Apr 19 15:03:27 2022 +0200
Branch:
lupo
Revision:
36:6116ce98080d
Parent:
35:f02adb2c2b8a
Child:
47:8963ca9829b9
distance sensor

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pmic 1:93d997d6b232 1 #include "mbed.h"
pmic 17:c19b471f05cb 2 #include "PM2_Libary.h"
lupomic 33:70ea029a69e8 3 #include <cstdint>
lupomic 35:f02adb2c2b8a 4 #include "mapping.cpp"
lupomic 31:24081337c9ed 5
pmic 24:86f1a63e35a0 6 // logical variable main task
pmic 24:86f1a63e35a0 7 bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task
pmic 17:c19b471f05cb 8
pmic 24:86f1a63e35a0 9 // user button on nucleo board
pmic 24:86f1a63e35a0 10 Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
pmic 24:86f1a63e35a0 11 InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
pmic 24:86f1a63e35a0 12 void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
pmic 24:86f1a63e35a0 13 void user_button_released_fcn();
pmic 6:e1fa1a2d7483 14
pmic 24:86f1a63e35a0 15 // while loop gets executed every main_task_period_ms milliseconds
lupomic 34:9f779e91168e 16 int main_task_period_ms = 30; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
pmic 24:86f1a63e35a0 17 Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
pmic 6:e1fa1a2d7483 18
pmic 24:86f1a63e35a0 19 // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
pmic 24:86f1a63e35a0 20 float ir_distance_mV = 0.0f; // define variable to store measurement
pmic 24:86f1a63e35a0 21 AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
pmic 6:e1fa1a2d7483 22
lupomic 33:70ea029a69e8 23
lupomic 33:70ea029a69e8 24
pmic 24:86f1a63e35a0 25 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
pmic 24:86f1a63e35a0 26 DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors
pmic 17:c19b471f05cb 27
pmic 24:86f1a63e35a0 28 float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors
lupomic 33:70ea029a69e8 29 //motor pin declaration
lupomic 34:9f779e91168e 30 FastPWM pwm_M_right(PB_13);
lupomic 34:9f779e91168e 31 FastPWM pwm_M_left(PA_9);
lupomic 33:70ea029a69e8 32 FastPWM pwm_M_arm(PA_10);
pmic 17:c19b471f05cb 33
lupomic 33:70ea029a69e8 34 //Encoder pin declaration
lupomic 33:70ea029a69e8 35 EncoderCounter encoder_M_right(PA_6, PC_7); //encoder pin decalaration for wheels right side
lupomic 33:70ea029a69e8 36 EncoderCounter encoder_M_left(PB_6, PB_7); //encoder pin decalaration for wheels left side
lupomic 33:70ea029a69e8 37 EncoderCounter encoder_M_arm(PA_0, PA_1); //encoder pin decalaration for arm
pmic 17:c19b471f05cb 38
pmic 30:1e8295770bc1 39 // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
pmic 24:86f1a63e35a0 40 float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
lupomic 33:70ea029a69e8 41 float counts_per_turn_wheels = 2000.0f * 100.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels
lupomic 34:9f779e91168e 42 float counts_per_turn_arm = 2000.0f * 100.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm
pmic 25:ea1d6e27c895 43 float kn = 180.0f / 12.0f; // define motor constant in rpm per V
pmic 30:1e8295770bc1 44 float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1
pmic 30:1e8295770bc1 45 float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1
pmic 6:e1fa1a2d7483 46
lupomic 33:70ea029a69e8 47 //motors for tracks
lupomic 33:70ea029a69e8 48 PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
lupomic 33:70ea029a69e8 49 PositionController positionController_M_left(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_left, encoder_M_left); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
lupomic 33:70ea029a69e8 50 //Arm Motor
lupomic 33:70ea029a69e8 51 PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
pmic 17:c19b471f05cb 52
lupomic 33:70ea029a69e8 53 //float max_speed_rps = 0.5f; not sure if needed // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage
lupomic 33:70ea029a69e8 54 // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
lupomic 33:70ea029a69e8 55 //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
pmic 17:c19b471f05cb 56
pmic 17:c19b471f05cb 57
pmic 24:86f1a63e35a0 58 // LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage)
pmic 25:ea1d6e27c895 59 // LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h"
pmic 20:7e7325edcf5c 60
lupomic 33:70ea029a69e8 61 //Platzhalter Variabeln für die Positionierung
lupomic 34:9f779e91168e 62 float PositionStair = 0.2;
lupomic 34:9f779e91168e 63 float PositionBackOff = -0.5;
lupomic 34:9f779e91168e 64 float degArmStart = 0.5;
lupomic 34:9f779e91168e 65 float degArmLift = -0.5;
lupomic 34:9f779e91168e 66 int ToNextFunction = 0;
lupomic 34:9f779e91168e 67 float max_speed_rps = 0.5f;
lupomic 33:70ea029a69e8 68
lupomic 36:6116ce98080d 69 extern double powerx(double base, double pow2);
lupomic 36:6116ce98080d 70 extern double mapping (float adc_value_mV);
lupomic 36:6116ce98080d 71
lupomic 34:9f779e91168e 72 int StartPosition(float deg){
lupomic 33:70ea029a69e8 73
lupomic 33:70ea029a69e8 74 positionController_M_Arm.setDesiredRotation(deg);
lupomic 33:70ea029a69e8 75
lupomic 33:70ea029a69e8 76 return NULL;
lupomic 33:70ea029a69e8 77 }
lupomic 33:70ea029a69e8 78 //Drives forward into the next step
lupomic 34:9f779e91168e 79 int Drive(float dist){
lupomic 34:9f779e91168e 80
lupomic 34:9f779e91168e 81 float distance;
lupomic 33:70ea029a69e8 82
lupomic 34:9f779e91168e 83 distance=dist;
lupomic 34:9f779e91168e 84
lupomic 33:70ea029a69e8 85
lupomic 34:9f779e91168e 86 positionController_M_right.setDesiredRotation(distance,max_speed_rps);
lupomic 34:9f779e91168e 87 positionController_M_left.setDesiredRotation(distance,max_speed_rps);
lupomic 34:9f779e91168e 88
lupomic 33:70ea029a69e8 89
lupomic 33:70ea029a69e8 90 return 0;
lupomic 33:70ea029a69e8 91 }
lupomic 33:70ea029a69e8 92 //only turns the arm until the robot is on the next step
lupomic 33:70ea029a69e8 93 //not yet clear if the motor controler function drives to a absolute poition or if it drives the given distance relative to the current position
lupomic 34:9f779e91168e 94 int LiftUp(float deg){
lupomic 34:9f779e91168e 95
lupomic 33:70ea029a69e8 96 int8_t i = 0; //prov condition variable
lupomic 33:70ea029a69e8 97
lupomic 33:70ea029a69e8 98 positionController_M_Arm.setDesiredRotation(deg);
lupomic 33:70ea029a69e8 99
lupomic 33:70ea029a69e8 100
lupomic 33:70ea029a69e8 101 return 0;
lupomic 33:70ea029a69e8 102 }
lupomic 33:70ea029a69e8 103
lupomic 33:70ea029a69e8 104
lupomic 36:6116ce98080d 105
lupomic 36:6116ce98080d 106
lupomic 33:70ea029a69e8 107 int main(void)
pmic 23:26b3a25fc637 108 {
pmic 24:86f1a63e35a0 109 // attach button fall and rise functions to user button object
lupomic 33:70ea029a69e8 110 user_button.fall(&user_button_pressed_fcn);
lupomic 34:9f779e91168e 111 user_button.rise(&user_button_released_fcn);
pmic 24:86f1a63e35a0 112
lupomic 36:6116ce98080d 113 printf("Power of%3.3f\n", powerx(2, 2));
pmic 6:e1fa1a2d7483 114
lupomic 33:70ea029a69e8 115 while (true){
lupomic 34:9f779e91168e 116 enable_motors = 1;
lupomic 34:9f779e91168e 117
lupomic 33:70ea029a69e8 118 ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
lupomic 33:70ea029a69e8 119
lupomic 36:6116ce98080d 120
lupomic 35:f02adb2c2b8a 121 printf("test pow function 2 ^ 2 %lf\n",powerx(2,2));
lupomic 35:f02adb2c2b8a 122 printf("test mapping function %f\n", mapping(ir_distance_mV));
pmic 6:e1fa1a2d7483 123
lupomic 36:6116ce98080d 124
lupomic 34:9f779e91168e 125 //printf("IR sensor (mV): %3.3f\n", ir_distance_mV);
lupomic 33:70ea029a69e8 126
pmic 6:e1fa1a2d7483 127
lupomic 33:70ea029a69e8 128 switch (ToNextFunction) {
lupomic 33:70ea029a69e8 129 case 1: StartPosition(degArmStart);
lupomic 34:9f779e91168e 130 printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
lupomic 33:70ea029a69e8 131 // ToNextFunction+=1;
lupomic 33:70ea029a69e8 132 break;
lupomic 33:70ea029a69e8 133 case 2: Drive(PositionStair);
lupomic 34:9f779e91168e 134 printf("Case 2: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n",
lupomic 34:9f779e91168e 135 positionController_M_right.getRotation(),positionController_M_left.getRotation());
lupomic 33:70ea029a69e8 136 // ToNextFunction+=1;
lupomic 33:70ea029a69e8 137 break;
lupomic 34:9f779e91168e 138 case 3: LiftUp(degArmLift);
lupomic 33:70ea029a69e8 139 // ToNextFunction+=1;
lupomic 34:9f779e91168e 140 printf("Case 3: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
lupomic 33:70ea029a69e8 141 break;
lupomic 33:70ea029a69e8 142 case 4: Drive(PositionBackOff);
lupomic 34:9f779e91168e 143 printf("Case 4: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n",
lupomic 35:f02adb2c2b8a 144 positionController_M_right.getRotation(),positionController_M_left.getRotation());
lupomic 33:70ea029a69e8 145 // ToNextFunction+=1;
lupomic 33:70ea029a69e8 146 break;
lupomic 33:70ea029a69e8 147 case 5: LiftUp(degArmStart);
lupomic 34:9f779e91168e 148 printf("Case 5: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
lupomic 33:70ea029a69e8 149 // ToNextFunction = 0;
lupomic 33:70ea029a69e8 150 break;
lupomic 34:9f779e91168e 151 default: ;
lupomic 33:70ea029a69e8 152 }
pmic 6:e1fa1a2d7483 153
lupomic 33:70ea029a69e8 154
lupomic 33:70ea029a69e8 155
lupomic 33:70ea029a69e8 156 }
lupomic 33:70ea029a69e8 157 // read timer and make the main thread sleep for the remaining time span (non blocking)
pmic 24:86f1a63e35a0 158 int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
pmic 24:86f1a63e35a0 159 thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
lupomic 33:70ea029a69e8 160 return 0;
pmic 1:93d997d6b232 161 }
pmic 6:e1fa1a2d7483 162
lupomic 33:70ea029a69e8 163
pmic 24:86f1a63e35a0 164 void user_button_pressed_fcn()
pmic 25:ea1d6e27c895 165 {
pmic 26:28693b369945 166 user_button_timer.start();
pmic 6:e1fa1a2d7483 167 user_button_timer.reset();
pmic 6:e1fa1a2d7483 168 }
pmic 6:e1fa1a2d7483 169
lupomic 33:70ea029a69e8 170 void user_button_released_fcn() {
pmic 24:86f1a63e35a0 171 // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
pmic 24:86f1a63e35a0 172 int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
pmic 6:e1fa1a2d7483 173 user_button_timer.stop();
pmic 24:86f1a63e35a0 174 if (user_button_elapsed_time_ms > 200) {
lupomic 33:70ea029a69e8 175 ToNextFunction += 1;}
lupomic 33:70ea029a69e8 176 }