Basic program to get the properly-scaled gyro and accelerometer data from a MPU-6050 6-axis motion sensor. Perform sensor fusion using Sebastian Madgwick's open-source IMU fusion filter. Running on the STM32F401 at 84 MHz achieved sensor fusion filter update rates of 5500 Hz. Additional info at https://github.com/kriswiner/MPU-6050.

Dependencies:   mbed

Fork of MPU6050IMU by Kris Winer

Files at this revision

API Documentation at this revision

Comitter:
thanawatinges
Date:
Sat Dec 05 12:01:16 2015 +0000
Parent:
2:e0381ca0edac
Commit message:
IMU

Changed in this revision

N5110.lib Show diff for this revision Revisions of this file
main.cpp Show annotated file Show diff for this revision Revisions of this file
mbed.bld Show annotated file Show diff for this revision Revisions of this file
diff -r e0381ca0edac -r bf3448217248 N5110.lib
--- a/N5110.lib	Sun Jun 29 21:53:23 2014 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-http://mbed.org/users/onehorse/code/MPU60506-axisMotionSensor/#313c258ada8a
diff -r e0381ca0edac -r bf3448217248 main.cpp
--- a/main.cpp	Sun Jun 29 21:53:23 2014 +0000
+++ b/main.cpp	Sat Dec 05 12:01:16 2015 +0000
@@ -1,224 +1,108 @@
-
-/* MPU6050 Basic Example Code
- by: Kris Winer
- date: May 1, 2014
- license: Beerware - Use this code however you'd like. If you 
- find it useful you can buy me a beer some time.
- 
- Demonstrate  MPU-6050 basic functionality including initialization, accelerometer trimming, sleep mode functionality as well as
- parameterizing the register addresses. Added display functions to allow display to on breadboard monitor. 
- No DMP use. We just want to get out the accelerations, temperature, and gyro readings.
- 
- SDA and SCL should have external pull-up resistors (to 3.3V).
- 10k resistors worked for me. They should be on the breakout
- board.
- 
- Hardware setup:
- MPU6050 Breakout --------- Arduino
- 3.3V --------------------- 3.3V
- SDA ----------------------- A4
- SCL ----------------------- A5
- GND ---------------------- GND
- 
-  Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library. 
- Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
- We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
- We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ  to 400000L /twi.h utility file.
- */
- 
 #include "mbed.h"
 #include "MPU6050.h"
-#include "N5110.h"
-
-// Using NOKIA 5110 monochrome 84 x 48 pixel display
-// pin 9 - Serial clock out (SCLK)
-// pin 8 - Serial data out (DIN)
-// pin 7 - Data/Command select (D/C)
-// pin 5 - LCD chip select (CS)
-// pin 6 - LCD reset (RST)
-//Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6);
 
 float sum = 0;
 uint32_t sumCount = 0;
 
-   MPU6050 mpu6050;
-   
-   Timer t;
+MPU6050 mpu6050;
 
-   Serial pc(USBTX, USBRX); // tx, rx
+Timer t;
 
-   //        VCC,   SCE,  RST,  D/C,  MOSI,S CLK, LED
-   N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7);
-        
+Serial pc(USBTX, USBRX); // tx, rx
+
 int main()
 {
-  pc.baud(9600);  
-
-  //Set up I2C
-  i2c.frequency(400000);  // use fast (400 kHz) I2C   
-  
-  t.start();        
-  
-  lcd.init();
-  lcd.setBrightness(0.05);
-  
-    
-  // Read the WHO_AM_I register, this is a good test of communication
-  uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
-  pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
-  
-  if (whoami == 0x68) // WHO_AM_I should always be 0x68
-  {  
-    pc.printf("MPU6050 is online...");
-    wait(1);
-    lcd.clear();
-    lcd.printString("MPU6050 OK", 0, 0);
-
-    
-    mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
-    pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
-    pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
-    pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
-    pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
-    pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
-    pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
-    wait(1);
+    pc.baud(9600);
 
-    if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) 
-    {
-    mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
-    mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
-    mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+    //Set up I2C
+    i2c.frequency(400000);  // use fast (400 kHz) I2C
 
-    lcd.clear();
-    lcd.printString("MPU6050", 0, 0);
-    lcd.printString("pass self test", 0, 1);
-    lcd.printString("initializing", 0, 2);  
-    wait(2);
-       }
-    else
-    {
-    pc.printf("Device did not the pass self-test!\n\r");
- 
-       lcd.clear();
-       lcd.printString("MPU6050", 0, 0);
-       lcd.printString("no pass", 0, 1);
-       lcd.printString("self test", 0, 2);      
-      }
-    }
-    else
-    {
-    pc.printf("Could not connect to MPU6050: \n\r");
-    pc.printf("%#x \n",  whoami);
- 
-    lcd.clear();
-    lcd.printString("MPU6050", 0, 0);
-    lcd.printString("no connection", 0, 1);
-    lcd.printString("0x", 0, 2);  lcd.setXYAddress(20, 2); lcd.printChar(whoami);
- 
-    while(1) ; // Loop forever if communication doesn't happen
-  }
-
+    t.start();
 
 
- while(1) {
-  
-  // If data ready bit set, all data registers have new data
-  if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
-    mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
-    mpu6050.getAres();
-    
-    // Now we'll calculate the accleration value into actual g's
-    ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
-    ay = (float)accelCount[1]*aRes - accelBias[1];   
-    az = (float)accelCount[2]*aRes - accelBias[2];  
-   
-    mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
-    mpu6050.getGres();
- 
-    // Calculate the gyro value into actual degrees per second
-    gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
-    gy = (float)gyroCount[1]*gRes; // - gyroBias[1];  
-    gz = (float)gyroCount[2]*gRes; // - gyroBias[2];   
+    // Read the WHO_AM_I register, this is a good test of communication
+    uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
+    pc.printf("I AM 0x%x\n\r", whoami);
+    pc.printf("I SHOULD BE 0x68\n\r");
+
+    if (whoami == 0x68) { // WHO_AM_I should always be 0x68
+        pc.printf("MPU6050 is online...");
+        wait(1);
+
+        if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {
+            mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
+            mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
+            mpu6050.initMPU6050();
+            pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
 
-    tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
-    temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
-   }  
-   
-    Now = t.read_us();
-    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
-    lastUpdate = Now;
-    
-    sum += deltat;
-    sumCount++;
-    
-    if(lastUpdate - firstUpdate > 10000000.0f) {
-     beta = 0.04;  // decrease filter gain after stabilized
-     zeta = 0.015; // increasey bias drift gain after stabilized
+            wait(2);
+        } else {
+            pc.printf("Device did not the pass self-test!\n\r");
+        }
+    } else {
+        pc.printf("Could not connect to MPU6050: \n\r");
+        pc.printf("%#x \n",  whoami);
+
+        while(1) ; // Loop forever if communication doesn't happen
     }
-    
-   // Pass gyro rate as rad/s
-    mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
+    while(1) {
+
+        // If data ready bit set, all data registers have new data
+        if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
+            mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
+            mpu6050.getAres();
 
-    // Serial print and/or display at 0.5 s rate independent of data rates
-    delt_t = t.read_ms() - count;
-    if (delt_t > 500) { // update LCD once per half-second independent of read rate
+            // Now we'll calculate the accleration value into actual g's
+            ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+            ay = (float)accelCount[1]*aRes - accelBias[1];
+            az = (float)accelCount[2]*aRes - accelBias[2];
 
-    pc.printf("ax = %f", 1000*ax); 
-    pc.printf(" ay = %f", 1000*ay); 
-    pc.printf(" az = %f  mg\n\r", 1000*az); 
+            mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
+            mpu6050.getGres();
 
-    pc.printf("gx = %f", gx); 
-    pc.printf(" gy = %f", gy); 
-    pc.printf(" gz = %f  deg/s\n\r", gz); 
-    
-    pc.printf(" temperature = %f  C\n\r", temperature); 
-    
-    pc.printf("q0 = %f\n\r", q[0]);
-    pc.printf("q1 = %f\n\r", q[1]);
-    pc.printf("q2 = %f\n\r", q[2]);
-    pc.printf("q3 = %f\n\r", q[3]);      
-    
-    lcd.clear();
-    lcd.printString("MPU6050", 0, 0);
-    lcd.printString("x   y   z", 0, 1);
-    lcd.setXYAddress(0, 2); lcd.printChar((char)(1000*ax));
-    lcd.setXYAddress(20, 2); lcd.printChar((char)(1000*ay));
-    lcd.setXYAddress(40, 2); lcd.printChar((char)(1000*az)); lcd.printString("mg", 66, 2);
-    
-    
-  // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
-  // In this coordinate system, the positive z-axis is down toward Earth. 
-  // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
-  // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
-  // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
-  // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
-  // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
-  // applied in the correct order which for this configuration is yaw, pitch, and then roll.
-  // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
-    yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
-    pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
-    roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
-    pitch *= 180.0f / PI;
-    yaw   *= 180.0f / PI; 
-    roll  *= 180.0f / PI;
+            // Calculate the gyro value into actual degrees per second
+            gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
+            gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
+            gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
+
+            tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
+            temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
+        }
+
+        Now = t.read_us();
+        deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+        lastUpdate = Now;
+
+        sum += deltat;
+        sumCount++;
+
+        if(lastUpdate - firstUpdate > 10000000.0f) {
+            beta = 0.04;  // decrease filter gain after stabilized
+            zeta = 0.015; // increasey bias drift gain after stabilized
+        }
 
-//    pc.printf("Yaw, Pitch, Roll: \n\r");
-//    pc.printf("%f", yaw);
-//    pc.printf(", ");
-//    pc.printf("%f", pitch);
-//    pc.printf(", ");
-//    pc.printf("%f\n\r", roll);
-//    pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
+        // Pass gyro rate as rad/s
+        mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
 
-     pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
-     pc.printf("average rate = %f\n\r", (float) sumCount/sum);
- 
-    myled= !myled;
-    count = t.read_ms(); 
-    sum = 0;
-    sumCount = 0; 
-}
-}
- 
- }
\ No newline at end of file
+        // Serial print and/or display at 0.5 s rate independent of data rates
+        delt_t = t.read_ms() - count;
+        if (delt_t > 500) { // update LCD once per half-second independent of read rate
+      
+            yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
+            pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+            roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+            pitch *= 180.0f / PI;
+            yaw   *= 180.0f / PI;
+            roll  *= 180.0f / PI;
+
+            pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
+         //   pc.printf("average rate = %f\n\r", (float) sumCount/sum);
+
+            myled= !myled;
+            count = t.read_ms();
+            sum = 0;
+            sumCount = 0;
+        }
+    }
+
+}
\ No newline at end of file
diff -r e0381ca0edac -r bf3448217248 mbed.bld
--- a/mbed.bld	Sun Jun 29 21:53:23 2014 +0000
+++ b/mbed.bld	Sat Dec 05 12:01:16 2015 +0000
@@ -1,1 +1,1 @@
-http://mbed.org/users/mbed_official/code/mbed/builds/0b3ab51c8877
\ No newline at end of file
+http://mbed.org/users/mbed_official/code/mbed/builds/165afa46840b
\ No newline at end of file