2月25日
Dependencies: uw_28015 mbed ros_lib_kinetic move4wheel2 EC CruizCore_R6093U CruizCore_R1370P
Revision 0:44f9a43e4ab2, committed 2020-02-25
- Comitter:
- yuki0701
- Date:
- Tue Feb 25 01:20:43 2020 +0000
- Commit message:
- a;
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CruizCore_R1370P.lib Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,1 @@ +http://os.mbed.com/teams/ROBOSTEP_LIBRARY/code/CruizCore_R1370P/#b034f6d0b378
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CruizCore_R6093U.lib Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,1 @@ +https://os.mbed.com/teams/2019-11/code/CruizCore_R6093U/#56f68dbbd195
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/EC.lib Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,1 @@ +https://os.mbed.com/teams/2019-11/code/EC/#bb5068ea1444
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/can/can.cpp Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,86 @@ +#include "mbed.h" +#include "PathFollowing.h" +#include "movement.h" +#include "manual.h" +#include "can.h" + +CAN can1(p30,p29); +Ticker can_ticker; //can用ticker + +DigitalOut cansend_led(LED1); //cansend -> on +DigitalOut canread_led(LED2); //canread -> on + +int t1_r=0, T1=0; //動作番号(受け取った値、送信する値(int型)) +int k = 0; + +void can_readsend() +{ + CANMessage msg; + if(can1.read(msg)) { + //printf(" CAN success\n\r"); + if(msg.id == 2) { + t1_r = msg.data[0]; + //printf("main T1 = %d t1_r = %d\n\r",T1,t1_r); + } + + } else { + canread_led = 0; + //printf("fale\n\r"); + } + /* if(k > 100){ + printf("T1 in can_read = %d\n\r",T1); + k = 0; + } + k++;*/ + can_num[0] = T1; //動作番号(id節約のため、can_ashileddata[]と一緒に送る) + //can_num[0] = 1; + + can_ashileddata2[0] = m1 >> 8; + can_ashileddata2[1] = m1 &255; + + can_ashileddata2[2] = m2 >> 8; + can_ashileddata2[3] = m2 &255; + + can_ashileddata2[4] = m3 >> 8; + can_ashileddata2[5] = m3 &255; + + can_ashileddata2[6] = m4 >> 8; + can_ashileddata2[7] = m4 &255; + + + if(can1.write(CANMessage(1,can_num,1))) { + cansend_led = 1; + } + + if(can1.write(CANMessage(4,can_ashileddata2,8))) { //IDを4にして送信 + //printf("success : %d \n\r",m1); + cansend_led = 1; + } + + if(t1_r > T1) { + T1 = t1_r; + } + +} + +void can_start() +{ + + while(1) { + + CANMessage msg; + +// debug_printf("wait\n\r"); + printf("wait\n\r"); + wait(0.1); + if(can1.read(msg)) { + break; + } + } +} + +void UserLoopSetting_can() +{ + can1.frequency(1000000); + can_ticker.attach(&can_readsend,0.01); //遅かったら早める +} \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/can/can.h Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,13 @@ +#ifndef HARUROBO2019_CAN +#define HARUROBO2019_CAN + +extern int T1; +extern int t1_r; + +void can_readsend(); + +void can_start(); + +void UserLoopSetting_can(); + +#endif \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.cpp Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,68 @@ +#include "EC.h" +#include "R1370P.h" +#include "move4wheel.h" +#include "mbed.h" +#include "math.h" +#include "PathFollowing.h" +#include "movement.h" +#include "manual.h" +#include "can.h" + +#include <ros.h> +#include <geometry_msgs/Point.h> +#include <geometry_msgs/Pose.h> + +ros::NodeHandle nh; +geometry_msgs::Point posi_xyr; +geometry_msgs::Quaternion usw_4info; + +ros::Publisher pub_xyr("/mbed_main1",&posi_xyr); +ros::Publisher pub_usw("/mbed_main2",&usw_4info); + +Ticker cm_pc; +#define PI 3.141592 + +void cm_to_pc(){ + + copy_xyr_usw(); + + posi_xyr.x = info_x; + posi_xyr.y = info_y; + posi_xyr.z = info_r; + + usw_4info.x = usw_data1; + usw_4info.y = usw_data2; + usw_4info.z = usw_data3; + usw_4info.w = usw_data4; + + pub_xyr.publish(&posi_xyr); + pub_usw.publish(&usw_4info); +} + + +//-----mbed led------------------//点灯条件-----------------------//参照場所------------------------------// +//DigitalOut cansend_led(LED1); //cansend -> on //can.cpp +//DigitalOut canread_led(LED2); //canread -> on //can.cpp +//DigitalOut debug_led(LED3); //maxon debug programme -> on //maxonsetting.cpp + +//////////////////////////////////////////////////////////////以下main文///////////////////////////////////////////////////////////////// + +int main() +{ + nh.getHardware()->setBaud(115200); + nh.initNode(); + nh.advertise(pub_xyr); + nh.advertise(pub_usw); + + cm_pc.attach(&cm_to_pc,0.01); + + UserLoopSetting_sensor(); + + while(1) { + + nh.spinOnce(); + wait(0.01); + + } + +} \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/manual/manual.cpp Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,68 @@ +#include "EC.h" +#include "R1370P.h" +#include "move4wheel.h" +#include "mbed.h" +#include "math.h" +#include "PathFollowing.h" +#include "movement.h" +#include "manual.h" +#include "can.h" + +#define PI 3.141592 + +int id1_value[7]= {0}; + +//-----手動用の変数宣言--------------------------------------------------------------------------// +int stick_theta; //ジョイスティックの角度 +int manual_xout,manual_yout; //フィールド座標系のx,y方向の速度 +int manual_realxout,manual_realyout; //機体座標系のx,y方向の速度 +int manual_rout; //旋回速度 + +void CalManualOut(int v,int r_out) //vはθ方向の速度、r_outは旋回速度(正の値) +//PS3ジョイスティックの x=127.5 かつ y>127.5 の直線を0°としてθをとる +{ + stick_theta = (short)((id1_value[1]<<8) | id1_value[2]); + //debug_printf("stick = %d\n\r",stick_theta); + + //ジョイスティック方向の速度をフィールド座標系の速度に変換 + manual_xout = v * sin(PI*stick_theta/180); + manual_yout = -v * cos(PI*stick_theta/180); + + //フィールド座標系の速度を機体座標系の速度に変換 + manual_realxout = manual_xout * cos(PI*now_angle/180) + manual_yout * sin(PI*now_angle/180); + manual_realyout = -manual_xout * sin(PI*now_angle/180) + manual_yout * cos(PI*now_angle/180); + + if(id1_value[4] == 1) { //旋回速度を代入 + manual_rout = 0; + } else if(id1_value[4] == 2) { + manual_rout = r_out; + } else if(id1_value[4] == 3) { + manual_rout = -r_out; + } + + +} + +void ManualOut(int slow_v, int slow_r, int fast_v, int fast_r) +{ + + calc_gyro(); + + if(id1_value[3]==1) { //BOTTONR1押したら減速 + CalManualOut(slow_v,slow_r); + } else { + CalManualOut(fast_v,fast_r); + } + + if(id1_value[5] == 1) { //ニュートラルポジションなら出力0 + output(0,0,0,0); + base(manual_rout,manual_rout,manual_rout,manual_rout,4095); + } else { + CalMotorOut(manual_realxout,manual_realyout,0); + base(GetMotorOut(0)+manual_rout,GetMotorOut(1)+manual_rout,GetMotorOut(2)+manual_rout,GetMotorOut(3)+manual_rout,4095); + } + + //MaxonControl(m1,m2,m3,m4); +// debug_printf("m1=%d m2=%d m3=%d m4=%d now_angle=%f\n\r",m1,m2,m3,m4,now_angle); + printf("m1=%d m2=%d m3=%d m4=%d now_angle=%f\n\r",m1,m2,m3,m4,now_angle); +} \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/manual/manual.h Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,10 @@ +#ifndef HARUROBO2019_MANUAL +#define HARUROBO2019_MANUAL + +extern int id1_value[7]; + +void CalManualOut(int v,int r_out); + +void ManualOut(int slow_v, int slow_r, int fast_v, int fast_r); + +#endif \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed.bld Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,1 @@ +https://os.mbed.com/users/mbed_official/code/mbed/builds/3a7713b1edbc \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/move4wheel.lib Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,1 @@ +https://os.mbed.com/teams/F3RC4/code/move4wheel2/#fefdbba20795
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/movement/movement.cpp Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,940 @@ +#include "EC.h" +#include "R1370P.h" +#include "move4wheel.h" +#include "mbed.h" +#include "math.h" +#include "PathFollowing.h" +#include "movement.h" +#include "manual.h" +#include "can.h" +#include "R6093U.h" +#include "uw.h" + +#define PI 3.141592 + +char can_ashileddata[2]= {0}; +char can_ashileddata2[8]= {0}; +char can_num[1]= {0}; +double info_x, info_y, info_r; + +//char can_ashileddata3[2]= {0}; +//char can_ashileddata4[2]= {0}; +//char can_ashileddata5[2]= {0}; + +int can_ashileddata0_0,can_ashileddata0_1,can_ashileddata0_2,can_ashileddata0_3; + +Ec EC2(p16,p15,NC,2048,0.05); +Ec EC1(p18,p17,NC,2048,0.05); + + +Uw uw1(p28); +Uw uw4(p27); + + +Ticker ec_ticker; //ec角速度計算用ticker +Ticker uw_ticker; //uw値取得用ticker + +//R1370P gyro(p9,p10); + +R6093U gyro(p9,p10); + +double new_dist1=0,new_dist2=0; +double old_dist1=0,old_dist2=0; +double d_dist1=0,d_dist2=0; //座標計算用関数 +double d_x,d_y; +//現在地X,y座標、現在角度については、PathFollowingでnow_x,now_y,now_angleを定義済 +double start_x=0,start_y=0; //スタート位置 +double x_out,y_out,r_out; //出力値 + +int16_t m1=0, m2=0, m3=0, m4=0; //int16bit = int2byte + +double xy_type,pm_typeX,pm_typeY,x_base,y_base; + +int flag; +double angle_base = 0; + +int RL_mode; + +int uw_flag1 = 0,uw_flag2 = 0,uw_flag3 = 0,uw_flag4 = 0; + +///////////////////機体情報をメンバとする構造体"robo_data"と構造体型変数info(←この変数に各センサーにより求めた機体情報(機体位置/機体角度)を格納する)の宣言///////////////// + +/*「info.(機体情報の種類).(使用センサーの種類)」に各情報を格納する + *状況に応じて、どのセンサーにより算出した情報を信用するかを選択し、その都度now_angle,now_x,now_yに代入する。(何種類かのセンサーの情報を混ぜて使用することも可能) + *(ex) + *info.nowX.enc → エンコーダにより算出した機体位置のx座標 + *info.nowY.usw → 超音波センサーにより求めた機体位置のy座標 +*/ + +typedef struct { //使用センサーの種類 + double usw; //超音波センサー + double enc; //エンコーダ + double gyro; //ジャイロ + //double line;//ラインセンサー +} robo_sensor; + +typedef struct { //機体情報の種類 + robo_sensor angle; //←機体角度は超音波センサーやラインセンサーからも算出可能なので一応格納先を用意したが、ジャイロの値を完全に信用してもいいかも + robo_sensor nowX; + robo_sensor nowY; +} robo_data; + +robo_data info= {{0,0,0},{0,0,0},{0,0,0}}; //全てのデータを0に初期化 + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +void UserLoopSetting_sensor() +{ + + gyro.initialize(); + ec_ticker.attach(&calOmega,0.02); //0.05秒間隔で角速度を計算 + uw_ticker.attach(&cal_uw,0.05); + EC1.setDiameter_mm(70); + EC2.setDiameter_mm(70); //測定輪半径//後で測定 + //info.nowX.enc = 457; //初期位置の設定 + //info.nowY.enc = 457; + info.nowX.enc = 0; //初期位置の設定 + info.nowY.enc = 0; + angle_base = -90; +} + +void UserLoopSetting_enc_right() +{ + info.nowX.enc = 3112; //エンコーダの初期位置の設定(右側フィールド) + info.nowY.enc = 3500; + RL_mode = 0; +} + +void UserLoopSetting_enc_left() +{ + info.nowX.enc = -3112; //エンコーダの初期位置の設定(左側フィールド) + info.nowY.enc = 3500; + RL_mode = 1; +} + +void calOmega() //角速度計算関数 +{ + EC1.CalOmega(); + EC2.CalOmega(); + calc_xy_enc(); + + //usw_data1 = 10 * uw1.get_dist(); + ////usw_data2 = 10 * uw2.get_dist(); + //usw_data3 = 10 * uw3.get_dist(); + ////usw_data4 = 10 * uw4.get_dist(); +} + +void cal_uw() //uw値取得用 +{ + if(uw_flag1 == 1) { + usw_data1 = 10 * uw1.get_dist(); + //printf("uw1 = %f\n\r",usw_data1); + } + if(uw_flag2 == 1) { + //usw_data2 = 10 * uw2.get_dist(); + } + if(uw_flag3 == 1) { + //usw_data3 = 10 * uw3.get_dist(); + } + if(uw_flag4 == 1) { + usw_data4 = 10 * uw4.get_dist(); + //printf("uw4 = %f\n\r",usw_data4); + } +} + +void output(double FL,double BL,double BR,double FR) +{ + m1=FL; + m2=BL; + m3=BR; + m4=FR; +} + +void base(double FL,double BL,double BR,double FR,double Max) +//いろんな加算をしても最大OR最小がMaxになるような補正//絶対値が一番でかいやつで除算 +//DCモーターならMax=1、マクソンは-4095~4095だからMax=4095にする +{ + if(fabs(FL)>=Max||fabs(BL)>=Max||fabs(BR)>=Max||fabs(FR)>=Max) { + + if (fabs(FL)>=fabs(BL)&&fabs(FL)>=fabs(BR)&&fabs(FL)>=fabs(FR))output(Max*FL/fabs(FL),Max*BL/fabs(FL),Max*BR/fabs(FL),Max*FR/fabs(FL)); + else if(fabs(BL)>=fabs(FL)&&fabs(BL)>=fabs(BR)&&fabs(BL)>=fabs(FR))output(Max*FL/fabs(BL),Max*BL/fabs(BL),Max*BR/fabs(BL),Max*FR/fabs(BL)); + else if(fabs(BR)>=fabs(FL)&&fabs(BR)>=fabs(BL)&&fabs(BR)>=fabs(FR))output(Max*FL/fabs(BR),Max*BL/fabs(BR),Max*BR/fabs(BR),Max*FR/fabs(BR)); + else output(Max*FL/fabs(FR),Max*BL/fabs(FR),Max*BR/fabs(FR),Max*FR/fabs(FR)); + } else { + output(FL,BL,BR,FR); + } +} + +void ashi_led() +{ + if(now_angle > -1 && now_angle < 1) { + can_ashileddata0_0 = 1; + } else { + can_ashileddata0_0 = 0; + } + + if(now_angle > 350) { + can_ashileddata0_1 = 1; + } else { + can_ashileddata0_1 = 0; + } + + if(RL_mode == 0) { + if(now_x > 3110 && now_x < 3114) { + can_ashileddata0_2 = 1; + } else { + can_ashileddata0_2 = 0; + } + + if(now_y > 3498 && now_y < 3502) { + can_ashileddata0_3 = 1; + } else { + can_ashileddata0_3 = 0; + } + } else if(RL_mode == 1) { + if(now_x > -3114 && now_x < -3110) { + can_ashileddata0_2 = 1; + } else { + can_ashileddata0_2 = 0; + } + + if(now_y > 3498 && now_y < 3502) { + can_ashileddata0_3 = 1; + } else { + can_ashileddata0_3 = 0; + } + } + + can_ashileddata[0] = (can_ashileddata0_0<<7 | can_ashileddata0_1<<6 | can_ashileddata0_2<<5 | can_ashileddata0_3<<4); +} + +void calc_gyro() +{ + //now_angle=gyro.getAngle(); //ジャイロの値読み込み + now_angle = -gyro.getZ_Angle() + angle_base; +} + +void print_gyro() +{ + while(1) { + //printf("now_gyro = %f\n\r",-gyro.getAngle()); + } + +} + +void calc_xy_enc() //エンコーダ&ジャイロによる座標計算 +{ + old_angle=now_angle; + //now_angle=gyro.getAngle(); //ジャイロの値読み込み + now_angle = -gyro.getZ_Angle() + angle_base; + adj_angle=(now_angle+old_angle)/2; + + new_dist1=EC1.getDistance_mm(); + new_dist2=EC2.getDistance_mm(); + d_dist1=new_dist1-old_dist1; + d_dist2=new_dist2-old_dist2; + old_dist1=new_dist1; + old_dist2=new_dist2; //微小時間当たりのエンコーダ読み込み + + d_x=d_dist2*sin(adj_angle*PI/180)-d_dist1*cos(adj_angle*PI/180); + d_y=d_dist2*cos(adj_angle*PI/180)+d_dist1*sin(adj_angle*PI/180); //微小時間毎の座標変化 + info.nowX.enc = info.nowX.enc + d_x; + info.nowY.enc = info.nowY.enc - d_y; //微小時間毎に座標に加算 +} + + +void set_cond(int t, int px, double bx, int py, double by) //超音波センサーを使用するときの条件設定関数 +{ +//引数の詳細は関数"calc_xy_usw"参照 + + xy_type = t; + + pm_typeX = px; + x_base = bx; + + pm_typeY = py; + y_base = by; +} + +void calc_xy_usw(double tgt_angle) //超音波センサーによる座標計算(機体が旋回する場合はこの方法による座標計算は出来ない) +{ +//tgt_angle:機体の目標角度(運動初期角度と同じ/今大会では0,90,180のみ) +//xy_type:(0:Y軸平行の壁を読む/1:X軸平行の壁を読む/2:X,Y軸平行の壁を共に読む) +//pm_typeX,pm_typeY:(0:各軸正方向側の壁を読む/1:各軸負方向側の壁を読む) +//x_base,y_base:超音波センサーで読む壁の座標(y軸並行の壁のx座標/x軸平行の壁のy座標) + + double R1=414.5,R2=414.5,R3=414.5,R4=414.5; //機体の中心から各超音波センサーが付いている面までの距離 + double D1=-237.5,D2=237.5,D3=237.5,D4=-237.5; //各超音波センサーが付いている面の中心から各超音波センサーまでの距離(時計回りを正とする) + +// now_angle=gyro.getAngle(); //ジャイロの値読み込み + now_angle = -gyro.getZ_Angle() + angle_base ; + + if(tgt_angle > -45 && tgt_angle < 45) { + if((xy_type==0 || xy_type==2) && pm_typeX==0) { + + info.nowX.usw = x_base - (usw_data4 + R4*cos(now_angle*PI/180) + D4*sin(now_angle*PI/180)); + uw_flag4 = 1; + + } else if((xy_type==0 || xy_type==2) && pm_typeX==1) { + + info.nowX.usw = x_base + (usw_data3 + R3*cos(now_angle*PI/180) + D3*sin(now_angle*PI/180)); + uw_flag3 = 1; + + } + if((xy_type==1 || xy_type==2) && pm_typeY==0) { + + info.nowY.usw = y_base - (usw_data2 + R2*cos(now_angle*PI/180) + D2*sin(now_angle*PI/180)); + uw_flag2 = 1; + + } else if((xy_type==1 || xy_type==2) && pm_typeY==1) { + + info.nowY.usw = y_base + (usw_data1 + R1*cos(now_angle*PI/180) + D1*sin(now_angle*PI/180)); + uw_flag1 = 1; + + } + + } else if(tgt_angle > 45 && tgt_angle < 135) { + if((xy_type==0 || xy_type==2) && pm_typeX==0) { + + info.nowX.usw = x_base - (usw_data1 + R1*cos((now_angle-tgt_angle)*PI/180) + D1*sin((now_angle-tgt_angle)*PI/180)); + uw_flag1 = 1; + + } else if((xy_type==0 || xy_type==2) && pm_typeX==1) { + + info.nowX.usw = x_base + (usw_data2 + R2*cos((now_angle-tgt_angle)*PI/180) + D2*sin((now_angle-tgt_angle)*PI/180)); + uw_flag2 = 1; + + } + if((xy_type==1 || xy_type==2) && pm_typeY==0) { + + info.nowY.usw = y_base - (usw_data4 + R4*cos((now_angle-tgt_angle)*PI/180) + D4*sin((now_angle-tgt_angle)*PI/180)); + uw_flag4 = 1; + + } else if((xy_type==1 || xy_type==2) && pm_typeY==1) { + + info.nowY.usw = y_base + (usw_data3 + R3*cos((now_angle-tgt_angle)*PI/180) + D3*sin((now_angle-tgt_angle)*PI/180)); + uw_flag3 = 1; + + } + + } else if((tgt_angle > 135 && tgt_angle < 225) || (tgt_angle > -225 && tgt_angle < -135)) { + if((xy_type==0 || xy_type==2) && pm_typeX==0) { + + info.nowX.usw = x_base - (usw_data3 + R3*cos((now_angle-tgt_angle)*PI/180) + D3*sin((now_angle-tgt_angle)*PI/180)); + uw_flag3 = 1; + + } else if((xy_type==0 || xy_type==2) && pm_typeX==1) { + + info.nowX.usw = x_base + (usw_data4 + R4*cos((now_angle-tgt_angle)*PI/180) + D4*sin((now_angle-tgt_angle)*PI/180)); + uw_flag4 = 1; + + } + if((xy_type==1 || xy_type==2) && pm_typeY==0) { + + info.nowY.usw = y_base - (usw_data1+ R1*cos((now_angle-tgt_angle)*PI/180) + D1*sin((now_angle-tgt_angle)*PI/180)); + uw_flag1 = 1; + + } else if((xy_type==1 || xy_type==2) && pm_typeY==1) { + + info.nowY.usw = y_base + (usw_data2 + R2*cos((now_angle-tgt_angle)*PI/180) + D2*sin((now_angle-tgt_angle)*PI/180)); + uw_flag2 = 1; + + } + } else if(tgt_angle > -135 && tgt_angle < -45) { + if((xy_type==0 || xy_type==2) && pm_typeX==0) { + + info.nowX.usw = x_base - (usw_data2 + R2*cos((now_angle-tgt_angle)*PI/180) + D2*sin((now_angle-tgt_angle)*PI/180)); + uw_flag2 = 1; + + } else if((xy_type==0 || xy_type==2) && pm_typeX==1) { + + info.nowX.usw = x_base + (usw_data1 + R1*cos((now_angle-tgt_angle)*PI/180) + D1*sin((now_angle-tgt_angle)*PI/180)); + uw_flag1 = 1; + + } + if((xy_type==1 || xy_type==2) && pm_typeY==0) { + + info.nowY.usw = y_base - (usw_data3 + R3*cos((now_angle-tgt_angle)*PI/180) + D3*sin((now_angle-tgt_angle)*PI/180)); + uw_flag3 = 1; + + } else if((xy_type==1 || xy_type==2) && pm_typeY==1) { + + info.nowY.usw = y_base + (usw_data4 + R4*cos((now_angle-tgt_angle)*PI/180) + D4*sin((now_angle-tgt_angle)*PI/180)); + uw_flag4 = 1; + + } + } +} + +void uwflag_reset() +{ + uw_flag1 = 0; + uw_flag2 = 0; + uw_flag3 = 0; + uw_flag4 = 0; +} + +void uwflag_change(int u1,int u2, int u3, int u4) +{ + uw_flag1 = u1; + uw_flag2 = u2; + uw_flag3 = u3; + uw_flag4 = u4; +} + + +void calc_xy(double target_angle, double u,double v) +{ +//エンコーダにより求めた機体の座標と超音波センサーにより求めた機体の座標を(エンコーダ : 超音波 = u : 1-u / v : 1-v)の割合で混ぜて now_x,now_y に代入する + + calc_xy_enc(); + //usw_data1 = 10 * uw1.get_dist(); + ///usw_data2 = 10 * uw2.get_dist(); + //usw_data3 = 10 * uw3.get_dist(); + ///usw_data4 = 10 * uw4.get_dist(); + + //printf("uw2 = %f, uw4 = %f\n\r",usw_data2,usw_data4); + + if(u != 1 || v != 1) { + calc_xy_usw(target_angle); //エンコーダの値しか使用しない場合は超音波センサーによる座標計算は行わずに計算量を減らす。 + } + + now_x = u * info.nowX.enc + (1-u) * info.nowX.usw; + now_y = v * info.nowY.enc + (1-v) * info.nowY.usw; + + /*if(now_x >-1 && now_x <1 && now_y >-1 && now_y <1){ //スタート時の0合わせ用 + ec_led = 1; + }else{ + ec_led = 0; + } + + if(now_angle >-0.5 && now_angle <0.5){ + gyro_led = 1; + }else{ + gyro_led = 0; + }*/ +} + +void copy_xyr_usw(){ + calc_xy_enc(); + now_angle = -gyro.getZ_Angle() + angle_base; + + info_x = info.nowX.enc; + info_y = info.nowY.enc; + info_r = now_angle; + + usw_data1 = 10 * uw1.get_dist(); + usw_data2 = 2000; //10 * uw2.get_dist(); + usw_data3 = 3000; //10 * uw3.get_dist(); + usw_data4 = 10 * uw4.get_dist(); +} + +void enc_correction(int x_select,int y_select) //エンコーダの座標を超音波センサの座標で上書き +{ +//x_select,y_select → (0:上書きしない/1:上書きする) + + if(x_select == 1) { + info.nowX.enc = info.nowX.usw; + } + if(y_select == 1) { + info.nowY.enc = info.nowY.usw; + } + +} + +void enc_correction2(int x_plot1, int y_plot2) //引数の座標でエンコーダの座標を修正 +{ + info.nowX.enc = x_plot1; + info.nowY.enc = y_plot2; +} + +//ここからそれぞれのプログラム///////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//now_x(現在のx座標),now_y(現在のy座標),now_angle(機体角度(ラジアンではない)(0~360や-180~180とは限らない))(反時計回りが正) +//ジャイロの出力は角度だが三角関数はラジアンとして計算する +//通常の移動+座標のずれ補正+機体の角度補正(+必要に応じさらに別補正) +//ジャイロの仕様上、角度補正をするときに計算式内で角度はそのままよりsinをとったほうがいいかもね + +void purecurve(int type,double u,double v, //正面を変えずに円弧or楕円を描いて曲がる + double point_x1,double point_y1, + double point_x2,double point_y2, + int theta, + double speed, + double q_p,double q_d, + double r_p,double r_d, + double r_out_max, + double target_angle, double v_base, double q_out_max) +//type:動きの種類(8パターン) point_x1,point_y1=出発地点の座標 point_x2,point_x2=目標地点の座標 theta=plotの間隔(0~90°) speed=速度 +{ + //-----PathFollowingのパラメーター設定-----// + q_setPDparam(q_p,q_d); //ベクトルABに垂直な方向の誤差を埋めるPD制御のパラメータ設定関数 + r_setPDparam(r_p,r_d); //機体角度と目標角度の誤差を埋めるPD制御のパラメータ設定関数 + set_r_out(r_out_max); //旋回時の最大出力値設定関数 + set_q_out(q_out_max); + set_target_angle(target_angle); //機体目標角度設定関数 + + int s; + int t = 0; + double X,Y;//X=楕円の中心座標、Y=楕円の中心座標 + double a,b; //a=楕円のx軸方向の幅の半分,b=楕円のy軸方向の幅の半分 + double plotx[(90/theta)+1]; //楕円にとるplotのx座標 + double ploty[(90/theta)+1]; + + double x_out,y_out,r_out; + + a=fabs(point_x1-point_x2); + b=fabs(point_y1-point_y2); + + switch(type) { + + case 1://→↑移動 + X=point_x1; + Y=point_y2; + + for(s=0; s<((90/theta)+1); s++) { + plotx[s] = X + a * cos(-PI/2 + s * (PI*theta/180)); + ploty[s] = Y + b * sin(-PI/2 + s * (PI*theta/180)); + //debug_printf("plotx[%d]=%f ploty[%d]=%f\n\r",s,plotx[s],s,ploty[s]); + } + break; + + case 2://↑→移動 + X=point_x2; + Y=point_y1; + + for(s=0; s<((90/theta)+1); s++) { + plotx[s] = X + a * cos(PI - s * (PI*theta/180)); + ploty[s] = Y + b * sin(PI - s * (PI*theta/180)); + //debug_printf("plotx[%d]=%f ploty[%d]=%f\n\r",s,plotx[s],s,ploty[s]); + } + break; + + case 3://↑←移動 + X=point_x2; + Y=point_y1; + + for(s=0; s<((90/theta)+1); s++) { + plotx[s] = X + a * cos(s * (PI*theta/180)); + ploty[s] = Y + b * sin(s * (PI*theta/180)); + //debug_printf("plotx[%d]=%f ploty[%d]=%f\n\r",s,plotx[s],s,ploty[s]); + } + break; + + case 4://←↑移動 + X=point_x1; + Y=point_y2; + + for(s=0; s<((90/theta)+1); s++) { + plotx[s] = X + a * cos(-PI/2 - s * (PI*theta/180)); + ploty[s] = Y + b * sin(-PI/2 - s * (PI*theta/180)); + //debug_printf("plotx[%d]=%f ploty[%d]=%f\n\r",s,plotx[s],s,ploty[s]); + } + break; + + case 5://←↓移動 + X=point_x1; + Y=point_y2; + + for(s=0; s<((90/theta)+1); s++) { + plotx[s] = X + a * cos(PI/2 + s * (PI*theta/180)); + ploty[s] = Y + b * sin(PI/2 + s * (PI*theta/180)); + //debug_printf("plotx[%d]=%f ploty[%d]=%f\n\r",s,plotx[s],s,ploty[s]); + } + break; + + case 6://↓←移動 + X=point_x2; + Y=point_y1; + + for(s=0; s<((90/theta)+1); s++) { + plotx[s] = X + a * cos(-s * (PI*theta/180)); + ploty[s] = Y + b * sin(-s * (PI*theta/180)); + //debug_printf("plotx[%d]=%f ploty[%d]=%f\n\r",s,plotx[s],s,ploty[s]); + } + break; + + case 7://↓→移動 + X=point_x2; + Y=point_y1; + + for(s=0; s<((90/theta)+1); s++) { + plotx[s] = X + a * cos(PI + s * (PI*theta/180)); + ploty[s] = Y + b * sin(PI + s * (PI*theta/180)); + //debug_printf("plotx[%d]=%f ploty[%d]=%f\n\r",s,plotx[s],s,ploty[s]); + } + break; + + case 8://→↓移動 + X=point_x1; + Y=point_y2; + + for(s=0; s<((90/theta)+1); s++) { + plotx[s] = X + a * cos(PI/2 - s * (PI*theta/180)); + ploty[s] = Y + b * sin(PI/2 - s * (PI*theta/180)); + //debug_printf("plotx[%d]=%f ploty[%d]=%f\n\r",s,plotx[s],s,ploty[s]); + } + break; + } + + while(1) { + + if(id1_value[0] != 1)break; + if(id1_value[6] != flag)break; + + calc_xy(target_angle,u,v); + + XYRmotorout(plotx[t],ploty[t],plotx[t+1],ploty[t+1],&x_out,&y_out,&r_out,speed,speed); + CalMotorOut(x_out,y_out,r_out); + //debug_printf("t=%d now_x=%f now_y=%f x_out=%f y_out=%f\n\r",t,now_x,now_y,x_out,y_out); + + base(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3),v_base); //m1~m4に代入 + //debug_printf("t=%d (0)=%f (1)=%f (2)=%f (3)=%f\n\r",t,GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3)); + + if(((plotx[t+1] - now_x)*(plotx[t+1] - plotx[t]) + (ploty[t+1] - now_y)*(ploty[t+1] - ploty[t])) < 0)t++; + +// MaxonControl(m1,m2,m3,m4); //出力 +// debug_printf("t=%d m1=%d m2=%d m3=%d m4=%d x=%f y=%f angle=%f\n\r",t,m1,m2,m3,m4,now_x,now_y,now_angle); + + if(t == (90/theta))break; + } +} + +void gogo_straight(double u,double v, //直線運動プログラム + double x1_point,double y1_point, + double x2_point,double y2_point, + double speed1,double speed2, + double q_p,double q_d, + double r_p,double r_d, + double r_out_max, + double target_angle,double v_base, double q_out_max) +//引数:出発地点の座標(x,y)、目標地点の座標(x,y)、初速度(speed1)、目標速度(speed2)//speed1=speed2 のとき等速運動 +{ + //-----PathFollowingのパラメーター設定-----// + q_setPDparam(q_p,q_d); //ベクトルABに垂直な方向の誤差を埋めるPD制御のパラメータ設定関数 + r_setPDparam(r_p,r_d); //機体角度と目標角度の誤差を埋めるPD制御のパラメータ設定関数 + set_r_out(r_out_max); //旋回時の最大出力値設定関数 + set_q_out(q_out_max); + set_target_angle(target_angle); //機体目標角度設定関数 + + while (1) { + + if(id1_value[0] != 1)break; + if(id1_value[6] != flag)break; + + calc_xy(target_angle,u,v); + + XYRmotorout(x1_point,y1_point,x2_point,y2_point,&x_out,&y_out,&r_out,speed1,speed2); + //printf("n_x = %f, n_y = %f,n_angle = %f, t_x = %f, t_y = %f, t_angle = %f, x_out=%lf, y_out=%lf, r_out=%lf\n\r",now_x,now_y,now_angle,x2_point,y2_point,target_angle,x_out, y_out,r_out); + + CalMotorOut(x_out,y_out,r_out); + //printf("out1=%lf, out2=%lf, out3=%lf, out4=%lf\n",GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3)); + + base(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3),v_base); + //printf("m1=%d, m2=%d, m3=%d, m4=%d\r\n",m_1,m_2,m_3,m_4); + +// MaxonControl(m1,m2,m3,m4); +// debug_printf("m1=%d m2=%d m3=%d m4=%d x=%f y=%f angle=%f\n\r",m1,m2,m3,m4,now_x,now_y,now_angle); + printf("m1=%d m2=%d m3=%d m4=%d x=%f y=%f angle=%f\n\r",m1,m2,m3,m4,now_x,now_y,now_angle); + //printf("usw2 = %f usw4 = %f x=%f y=%f angle=%f\n\r",usw_data2,usw_data4,now_x,now_y,now_angle); + + if(((x2_point - now_x)*(x2_point - x1_point) + (y2_point - now_y)*(y2_point - y1_point)) < 0)break; + } +} + + + +double spline_base(int i, int k, double t, int nv[]) //スプライン基底関数を求める関数 +{ + // i:0~(制御点の個数-1) + // k:スプライト曲線の次元 + // t:0~(ノットベクトルの最大値) + // nv[]:ノットベクトル + double w1 = 0.0, w2 = 0.0; + if (k == 1) { + if (t > nv[i] && t <= nv[i + 1]) + return 1.0; + else + return 0.0; + } else { + if ((nv[i + k] - nv[i + 1]) != 0) { + w1 = ((nv[i + k] - t) / (nv[i + k] - nv[i + 1])) * spline_base(i + 1, k - 1, t, nv); + //printf("%f\n\r",w1); + } + if ((nv[i + k - 1] - nv[i]) != 0) { + w2 = ((t - nv[i]) / (nv[i + k - 1] - nv[i])) * spline_base(i, k - 1, t, nv); + //printf("%f\n\r",w2); + } + return (w1 + w2); + } +} + + +void spline_move(double u, double v, + double st_x,double st_y,double end_x,double end_y, + double cont1_x,double cont1_y,double cont2_x,double cont2_y, + double st_speed, double end_speed, + double q_p,double q_d, + double r_p,double r_d, + double r_out_max, + double target_angle, double v_base, double q_out_max, int num) +{ + double dx, dy, dr; + int nt[] = {0, 0, 0, 1, 2, 2, 2}; //ノットベクトル + //dr = (end_angle - st_angle) / num; + int ds = (end_speed - st_speed) / num; + + //-----PathFollowingのパラメーター設定-----// + q_setPDparam(q_p,q_d); //ベクトルABに垂直な方向の誤差を埋めるPD制御のパラメータ設定関数 + r_setPDparam(r_p,r_d); //機体角度と目標角度の誤差を埋めるPD制御のパラメータ設定関数 + set_r_out(r_out_max); //旋回時の最大出力値設定関数 + set_q_out(q_out_max); + set_target_angle(target_angle); //機体目標角度設定関数 + + double plotx[num + 1]; //楕円にとるplotのx座標 + double ploty[num + 1]; + double value_t; + int i, j; + int t = 0; + // for(i = 0; i < 7; i++){ + // printf("not_V = %d\n\r",nt[i]); + // } + for (i = 0; i < num + 1; i++) { + plotx[i] = 0.0; + ploty[i] = 0.0; + } + printf("{\n"); + for (i = 0; i < num + 1; i++) { + value_t = (double)2 * i / num; + for (j = 0; j < 4; j++) { + if (j == 0) { + plotx[i] += st_x * spline_base(j, 3, value_t, nt); + ploty[i] += st_y * spline_base(j, 3, value_t, nt); + } else if (j == 1) { + plotx[i] += cont1_x * spline_base(j, 3, value_t, nt); + ploty[i] += cont1_y * spline_base(j, 3, value_t, nt); + } else if (j == 2) { + plotx[i] += cont2_x * spline_base(j, 3, value_t, nt); + ploty[i] += cont2_y * spline_base(j, 3, value_t, nt); + } else if (j == 3) { + plotx[i] += end_x * spline_base(j, 3, value_t, nt); + ploty[i] += end_y * spline_base(j, 3, value_t, nt); + } + } + //printf("plot_x = %f, plot_y = %f\n\r", plotx[i], ploty[i]); + } + while(1) { + + if(id1_value[0] != 1)break; + if(id1_value[6] != flag)break; + + calc_xy(target_angle,u,v); + + XYRmotorout(plotx[t],ploty[t],plotx[t+1],ploty[t+1],&x_out,&y_out,&r_out,st_speed+ds*t,st_speed+ds*(t+1)); + CalMotorOut(x_out,y_out,r_out); + //debug_printf("t=%d now_x=%f now_y=%f x_out=%f y_out=%f\n\r",t,now_x,now_y,x_out,y_out); + + base(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3),v_base); //m1~m4に代入 + //debug_printf("t=%d (0)=%f (1)=%f (2)=%f (3)=%f\n\r",t,GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3)); + + if(((plotx[t+1] - now_x)*(plotx[t+1] - plotx[t]) + (ploty[t+1] - now_y)*(ploty[t+1] - ploty[t])) < 0)t++; + +// MaxonControl(m1,m2,m3,m4); //出力 +// debug_printf("t=%d m1=%d m2=%d m3=%d m4=%d x=%f y=%f angle=%f\n\r",t,m1,m2,m3,m4,now_x,now_y,now_angle); + printf("m1=%d m2=%d m3=%d m4=%d x=%f y=%f angle=%f\n\r",m1,m2,m3,m4,now_x,now_y,now_angle); + + if(t == num)break; + } + +} + + + + +/*void pos_correction(double tgt_x, double tgt_y, double tgt_angle, double u, double v) //位置補正(使用前にMaxonControl(0,0,0,0)を入れる) +{ + + double r, R=10; // r:一回補正が入るごとの機体の位置と目標位置の距離(ズレ) R:補正終了とみなす目標位置からの機体の位置のズレ + double out; + + calc_xy(tgt_angle, u, v); + + while(1) { //機体の位置を目標領域(目標座標+許容誤差)に収める + gogo_straight(u,v,now_x,now_y,tgt_x,tgt_y,200,50,5,0.1,10,0.1,500,tgt_angle); + MaxonControl(0,0,0,0); + + calc_xy(tgt_angle, u, v); + + r=hypot(now_x - tgt_x, now_y - tgt_y); + + if(r < R) break; + if(id1_value[0] != 1)break; + } + + while(1) { + + calc_gyro(); + + out = 10 * (tgt_angle - now_angle); + + if(out > 300) { //0~179°のときは時計回りに回転 + MaxonControl(300,300,300,300); + } else if(out < -300) { + MaxonControl(-300,-300,-300,-300); + } else if(out <= 300 && out > -300) { + MaxonControl(out,out,out,out); + } + + if(tgt_angle - 0.5 < now_angle && now_angle < tgt_angle + 0.5) break; //目標角度からの許容誤差内に機体の角度が収まった時、補正終了 + if(id1_value[0] != 1)break; + } + MaxonControl(0,0,0,0); +}*/ + +void pos_correction(double tgt_x, double tgt_y, double tgt_angle, double u, double v, double v_base) //改良版 位置補正(使用前にMaxonControl(0,0,0,0)を入れる) +{ +//距離に比例させて補正初速度を増加させる。(最大速度を設定しそれ以上は出ないようにする) + + double first_speed, first_speed50 = 10, last_speed = 10, Max_speed = 500, speed5 = 20; + double r, R=25; // r:一回補正が入るごとの機体の位置と目標位置の距離(ズレ) R:補正終了とみなす目標位置からの機体の位置のズレ + double out; + + calc_xy(tgt_angle, u, v); + + //r = hypot(now_x - tgt_x, now_y - tgt_y); + + while(1) { //機体の位置を目標領域(目標座標+許容誤差)に収める + //printf("col\n\n\n"); + if(id1_value[0] != 1)break; + if(id1_value[6] != flag)break; + + //first_speed = first_speed50 * r / 50; + + /*if(first_speed > Max_speed){ + gogo_straight(u,v,now_x,now_y,tgt_x,tgt_y,Max_speed,Max_speed,5,0.1,10,0.1,500,tgt_angle, v_base); + }else{ + gogo_straight(u,v,now_x,now_y,tgt_x,tgt_y,first_speed,last_speed,5,0.1,10,0.1,500,tgt_angle); + }*/ + + //gogo_straight(u,v,now_x,now_y,tgt_x,tgt_y,first_speed50,last_speed,5,0.1,10,0.1,500,tgt_angle); + + int diff_sm = hypot(now_x-tgt_x,now_y-tgt_y); + + int f_speed = diff_sm / 5 * (speed5 - last_speed); + gogo_straight(u,v,now_x,now_y,tgt_x,tgt_y,f_speed,last_speed,0.5,0.05,5,0.05,20,tgt_angle, v_base, 70); + //gogo_straight(1,1,0,0,200,0,50,500,5,0.1,10,0.1,50,0); + //gogo_straight(u,v,now_x,now_y,0,100,first_speed50,last_speed,5,0.1,10,0.1,500,tgt_angle); + +// MaxonControl(0,0,0,0); + m1 = 0; + m2 = 0; + m3 = 0; + m4 = 0; + + calc_xy(tgt_angle, u, v); + + r=hypot(now_x - tgt_x, now_y - tgt_y); + + if(r < R) break; + } + + while(1) { + + if(id1_value[0] != 1)break; + if(id1_value[6] != flag)break; + + //calc_gyro(); +// now_angle=gyro.getAngle(); + now_angle = -gyro.getZ_Angle() + angle_base; + if(tgt_angle - 1 < now_angle && now_angle < tgt_angle + 1) break; //目標角度からの許容誤差内に機体の角度が収まった時、補正終了 + else if(now_angle > tgt_angle + 1)out = 5 * (tgt_angle - now_angle + 1); + else if(tgt_angle - 1 > now_angle)out = 5 * (tgt_angle - now_angle - 1); + + printf("angle = %f out = %f\n\r",now_angle,out); + + if(out > 100) { //0~179°のときは時計回りに回転 + // MaxonControl(-300,-300,-300,-300); + m1 = -100; + m2 = -100; + m3 = -100; + m4 = -100; + + } else if(out < -100) { + // MaxonControl(300,300,300,300); + m1 = 100; + m2 = 100; + m3 = 100; + m4 = 100; + } else if(out <= 100 && out > -100) { + // MaxonControl(-out,-out,-out,-out); + m1 = -out; + m2 = -out; + m3 = -out; + m4 = -out; + } + +/* if(out > 100) { //0~179°のときは時計回りに回転 +// MaxonControl(-300,-300,-300,-300); + m1 = 9900; + m2 = 9900; + m3 = 9900; + m4 = 9900; + + } else if(out < -100) { +// MaxonControl(300,300,300,300); + m1 = 10100; + m2 = 10100; + m3 = 10100; + m4 = 10100; + } else if(out <= 100 && out > -100) { +// MaxonControl(-out,-out,-out,-out); + m1 = -out + 10000; + m2 = -out + 10000; + m3 = -out + 10000; + m4 = -out + 10000; + }*/ + + } +// MaxonControl(0,0,0,0); + m1 = 0; + m2 = 0; + m3 = 0; + m4 = 0; +} + +void mt_stop() +{ + m1 = 0; + m2 = 0; + m3 = 0; + m4 = 0; + printf("motor stop\n\r"); +} + +void mt_check(double out, int dr) +{ + // dr→ 1:x+ 2:x- 3:y+ 4:y- + while(1) { + if(dr == 1) { + m1 = out; + m2 = -out; + m3 = -out; + m4 = out; + } else if(dr == 2) { + m1 = -out; + m2 = out; + m3 = out; + m4 = -out; + } else if(dr == 3) { + m1 = out; + m2 = out; + m3 = -out; + m4 = -out; + } else if(dr == 4) { + m1 = -out; + m2 = -out; + m3 = out; + m4 = out; + } + + printf("motor check out = %f\n\r",out); + } +} \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/movement/movement.h Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,88 @@ +#ifndef HARUROBO2019_MOVEMENT +#define HARUROBO2019_MOVEMENT + +extern char can_ashileddata[2]; +extern char can_ashileddata2[8]; +extern char can_num[1]; +extern double info_x, info_y, info_r; +//extern char can_ashileddata3[2]; +//extern char can_ashileddata4[2]; +//extern char can_ashileddata5[2]; + +void print_gyro(); + +extern int16_t m1,m2,m3,m4; + +extern int flag; + +void UserLoopSetting_sensor(); + +void UserLoopSetting_enc_right(); + +void UserLoopSetting_enc_left(); + +void calOmega(); + +void cal_uw(); + +void output(double FL,double BL,double BR,double FR); + +void base(double FL,double BL,double BR,double FR,double Max); + +void ashi_led(); + +void calc_gyro(); + +void calc_xy_enc(); + +void set_cond(int t, int px, double bx, int py, double by); + +void calc_xy_usw(double tgt_angle); + +void uwflag_reset(); + +void uwflag_change(int u1,int u2, int u3, int u4); + +void calc_xy(double tgt_angle, double u, double v); + +void copy_xyr_usw(); + +void enc_correction(int x_select,int y_select); + +void enc_correction2(int x_plot1, int y_plot2); + +void purecurve(int type,double u, double v, //正面を変えずに円弧or楕円を描いて曲がる + double point_x1,double point_y1, + double point_x2,double point_y2, + int theta, + double speed, + double q_p,double q_d, + double r_p,double r_d, + double r_out_max, + double target_angle, double v_base, double q_out_max); + +void gogo_straight(double u, double v, double x1_point,double y1_point, //直線運動プログラム + double x2_point,double y2_point, + double speed1,double speed2, + double q_p,double q_d, + double r_p,double r_d, + double r_out_max, + double target_angle, double v_base, double q_out_max); + +double spline_base(int i, int k, double t, int nv[]); + +void spline_move(double u, double v, + double st_x,double st_y,double end_x,double end_y, + double cont1_x,double cont1_y,double cont2_x,double cont2_y, + double st_speed, double end_speed, + double q_p,double q_d, + double r_p,double r_d, + double r_out_max, + double target_angle, double v_base, double q_out_max, int num); + +void pos_correction(double tgt_x, double tgt_y, double tgt_angle, double u, double v, double v_base); + +void mt_stop(); + +void mt_check(double out, int dr); +#endif \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pathfollowing/PathFollowing.cpp Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,154 @@ +#include "PathFollowing.h" +#include "mbed.h" +#include "math.h" + +double p_out,r_out_max, q_out_max; +double Kvq_p,Kvq_d,Kvr_p,Kvr_d; +double diff_old,diffangle,diffangle_old; +double out_dutyQ,out_dutyR; +double now_angle,target_angle,old_angle,adj_angle; +double now_timeQ,old_timeQ,now_timeR,old_timeR; +double now_x, now_y; +double diff_st,diff_tgt,diff_st_tgt,p_param; +double usw_data1,usw_data2,usw_data3,usw_data4; + +Timer timer; + +//初期座標:A, 目標座標:B、機体位置:C、点Cから直線ABに下ろした垂線の足:H +void XYRmotorout(double plot_x1, double plot_y1, double plot_x2, double plot_y2, double *ad_x_out, double *ad_y_out, double *ad_r_out, double speed1, double speed2 ) //プログラム使用時、now_x,now_yはグローバル変数として定義する必要あり +//plot_x1,plot_y1:出発地点の座標 +//plot_x2,plot_y2:目標地点の座標 +//speed1:初期速度 +//speed2:目標速度 +{ + double Vector_P[2] = {(plot_x2 - plot_x1), (plot_y2 - plot_y1)}; //ベクトルAB + double A_Vector_P = hypot(Vector_P[0], Vector_P[1]); //ベクトルABの大きさ(hypot(a,b)で√(a^2+b^2)を計算できる <math.h>)) + double UnitVector_P[2] = {Vector_P[0]/A_Vector_P, Vector_P[1]/A_Vector_P}; //ベクトルABの単位ベクトル + double UnitVector_Q[2] = {UnitVector_P[1], -UnitVector_P[0]}; //ベクトルCHの単位ベクトル + double Vector_R[2] = {(now_x - plot_x1), (now_y - plot_y1)}; //ベクトルAC + double diff = UnitVector_P[0]*Vector_R[1] - UnitVector_P[1]*Vector_R[0]; //機体位置と直線ABの距離(外積を用いて計算) + + //double VectorOut_P[2]= {0}; //ベクトルABに平行方向の出力をx軸方向、y軸方向の出力に分解 + +///////////////////<XYRmotorout関数内>以下、ベクトルABに垂直な方向の誤差を埋めるPD制御(ベクトルABに垂直方向の出力を求め、x軸方向、y軸方向の出力に分解)////////////////////// + + timer.start(); + now_timeQ=timer.read(); + out_dutyQ=Kvq_p*diff+Kvq_d*(diff-diff_old)/(now_timeQ-old_timeQ); //ベクトルABに垂直方向の出力を決定 + diff_old=diff; + + if(out_dutyQ>q_out_max)out_dutyQ=q_out_max; + if(out_dutyQ<-q_out_max)out_dutyQ=-q_out_max; + + old_timeQ=now_timeQ; + + double VectorOut_Q[2] = {out_dutyQ*UnitVector_Q[0], out_dutyQ*UnitVector_Q[1]}; //ベクトルABに垂直方向の出力をx軸方向、y軸方向の出力に分解 + +///////////////////////////////<XYRmotorout関数内>以下、機体角度と目標角度の誤差を埋めるPD制御(旋回のための出力値を決定)////////////////////////////////// + + now_timeR=timer.read(); + diffangle=target_angle-now_angle; + out_dutyR=-(Kvr_p*diffangle+Kvr_d*(diffangle-diffangle_old)/(now_timeR-old_timeR)); + diffangle_old=diffangle; + + if(out_dutyR>r_out_max)out_dutyR=r_out_max; + if(out_dutyR<-r_out_max)out_dutyR=-r_out_max; + + old_timeR=now_timeR; + +//////////////////////////<XYRmotorout関数内>以下、x軸方向、y軸方向、旋回の出力をそれぞれad_x_out,ad_y_out,ad_r_outの指すアドレスに書き込む///////////////////////////// +////////////////////////////////////////////その際、x軸方向、y軸方向の出力はフィールドの座標系から機体の座標系に変換する。/////////////////////////////////////////////// + + diff_st = hypot(now_x-plot_x1,now_y-plot_y1); //出発座標と機体の位置の距離 + diff_tgt = hypot(now_x - plot_x2, now_y - plot_y2); //機体の位置と目標座標の距離 + diff_st_tgt = hypot(plot_x1-plot_x2,plot_y1-plot_y2); //出発座標と目標座標の距離 + + if(speed1 == speed2) { //等速移動 + + double VectorOut_P[2] = {speed1*UnitVector_P[0], speed1*UnitVector_P[1]}; + + *ad_x_out = (VectorOut_P[0]+VectorOut_Q[0])*cos(-now_angle*3.141592/180)-(VectorOut_P[1]+VectorOut_Q[1])*sin(-now_angle*3.141592/180); + *ad_y_out = (VectorOut_P[0]+VectorOut_Q[0])*sin(-now_angle*3.141592/180)+(VectorOut_P[1]+VectorOut_Q[1])*cos(-now_angle*3.141592/180); + *ad_r_out = out_dutyR; + + } else if(speed2 == 0) { //減速移動(目標速度が0)→ベクトルABに垂直な方向の出力にもP制御をかける。 + + double VectorOut_P[2] = {speed1*UnitVector_P[0], speed1*UnitVector_P[1]}; + + if(diff_tgt > diff_st_tgt) { + diff_tgt = diff_st_tgt; + } + + p_param=(diff_tgt/diff_st_tgt); + + *ad_x_out = p_param*((VectorOut_P[0]+VectorOut_Q[0])*cos(-now_angle*3.141592/180)-(VectorOut_P[1]+VectorOut_Q[1])*sin(-now_angle*3.141592/180)); + *ad_y_out = p_param*((VectorOut_P[0]+VectorOut_Q[0])*sin(-now_angle*3.141592/180)+(VectorOut_P[1]+VectorOut_Q[1])*cos(-now_angle*3.141592/180)); + *ad_r_out = out_dutyR; + + } else if(speed1 > speed2) { //減速移動(目標速度が0でない) + + if(diff_tgt > diff_st_tgt) { + diff_tgt = diff_st_tgt; + } + + p_param=(diff_tgt/diff_st_tgt); + + double speed3 = speed2 + (speed1-speed2)*p_param; + + double VectorOut_P[2] = {speed3*UnitVector_P[0], speed3*UnitVector_P[1]}; + + *ad_x_out = (VectorOut_P[0]+VectorOut_Q[0])*cos(-now_angle*3.141592/180)-(VectorOut_P[1]+VectorOut_Q[1])*sin(-now_angle*3.141592/180); + *ad_y_out = (VectorOut_P[0]+VectorOut_Q[0])*sin(-now_angle*3.141592/180)+(VectorOut_P[1]+VectorOut_Q[1])*cos(-now_angle*3.141592/180); + *ad_r_out = out_dutyR; + + } else if(speed1 < speed2) { //加速移動(speed1) + + if(diff_st > diff_st_tgt) { + diff_st = diff_st_tgt; + } + + p_param=(diff_st/diff_st_tgt); + + double speed4 = speed1 + (speed2-speed1)*p_param; + + double VectorOut_P[2] = {speed4*UnitVector_P[0], speed4*UnitVector_P[1]}; + + *ad_x_out = (VectorOut_P[0]+VectorOut_Q[0])*cos(-now_angle*3.141592/180)-(VectorOut_P[1]+VectorOut_Q[1])*sin(-now_angle*3.141592/180); + *ad_y_out = (VectorOut_P[0]+VectorOut_Q[0])*sin(-now_angle*3.141592/180)+(VectorOut_P[1]+VectorOut_Q[1])*cos(-now_angle*3.141592/180); + *ad_r_out = out_dutyR; + } +} + +////////////////////////////////////////////////////////////<XYRmotorout関数は以上>//////////////////////////////////////////////////////////////// + + +/*void set_p_out(double p) //ベクトルABに平行方向の出力値設定関数 +{ + p_out = p; +}*/ + +void q_setPDparam(double q_p,double q_d) //ベクトルABに垂直な方向の誤差を埋めるPD制御のパラメータ設定関数 +{ + Kvq_p=q_p; + Kvq_d=q_d; +} + +void r_setPDparam(double r_p,double r_d) //機体角度と目標角度の誤差を埋めるPD制御のパラメータ設定関数 +{ + Kvr_p=r_p; + Kvr_d=r_d; +} + +void set_r_out(double r) //旋回時の最大出力値設定関数 +{ + r_out_max = r; +} + +void set_q_out(double q){ + q_out_max = q; +} + +void set_target_angle(double t) //機体の目標角度設定関数 +{ + target_angle = t; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pathfollowing/PathFollowing.h Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,36 @@ +#ifndef HARUROBO2019_PATHFOLLOWING +#define HARUROBO2019_PATHFOLLOWING + +extern double now_x,now_y,now_angle,old_angle,adj_angle; //main.cppにこれらの値の読み込みを書くこと +extern double now_timeQ,now_timeR; +extern double usw_data1,usw_data2,usw_data3,usw_data4; + +void XYRmotorout(double plot_x1, double plot_y1, double plot_x2, double plot_y2, double *ad_x_out, double *ad_y_out, double *ad_r_out,double speed1,double speed2); +//出発地点、目標地点の座標から機体のx軸方向、y軸方向、旋回の出力を算出する関数 +/* + *1.main分内でx_out,y_out,r_outをdouble型で定義 + *2.XYRmotorout関数使用時は、num番目のx、y座標、num+1番目のx,y座標に加え、 + x_out,y_out,r_outのアドレス(&x_out,&y_out,&r_out)を渡す→(XYRmotorout(座標×4つ,&x_out,&y_out,&r_out)) +*/ + +//次の関数のパラメーターを定義すること + +//void set_p_out(double p); +//ベクトルABに平行方向の出力値設定関数 + +void q_setPDparam(double q_p,double q_d); +//ベクトルABに垂直な方向の誤差を埋めるPD制御のパラメータ設定関数 + +void r_setPDparam(double r_p,double r_d); +//機体角度と目標角度の誤差を埋めるPD制御のパラメータ設定関数 + +void set_r_out(double r); +//旋回時の最大出力値設定関数 + +void set_q_out(double q); +//経路に垂直な方向の出力の最大値設定関数 + +void set_target_angle(double t); +//機体目標角度設定関数 + +#endif \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ros_lib_kinetic.lib Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,1 @@ +https://os.mbed.com/users/garyservin/code/ros_lib_kinetic/#a849bf78d77f
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/uw_28015.lib Tue Feb 25 01:20:43 2020 +0000 @@ -0,0 +1,1 @@ +https://os.mbed.com/users/yuki0701/code/uw_28015/#c5ad8660c8fd