You are viewing an older revision! See the latest version
OBDII Can Bus
Assembled OBDII CAN Bus Scanner

There are several breakout board options for this library:
- http://www.skpang.co.uk/catalog/canbus-breakout-board-p-754.html
- http://www.skpang.co.uk/catalog/mbed-canbus-demo-board-p-741.html
These breakout boards utilize a DB9 to OBDII cable available from SKPang:
- http://www.skpang.co.uk/catalog/obdii-to-db9f-odii-cable-18m-p-654.html
- http://www.sparkfun.com/products/10087
main.cpp
/*
mbed Can-Bus demo
This program is to demonstrate the CAN-bus capability of the mbed module.
http://www.skpang.co.uk/catalog/product_info.php?products_id=741
v1.0 July 2010
********************************************************************************
WARNING: Use at your own risk, sadly this software comes with no guarantees.
This software is provided 'free' and in good faith, but the author does not
accept liability for any damage arising from its use.
********************************************************************************
*/
#include "mbed.h"
#include "ecu_reader.h"
#include "globals.h"
/*
Create ecu_reader objects
for different CAN bus speeds
*/
ecu_reader obdii1(CANSPEED_125);
ecu_reader obdii2(CANSPEED_250);
ecu_reader obdii3(CANSPEED_500);
int main() {
char buffer[20];
pc.printf("\n\rCAN-bus demo CANSPEED_500...\n\r");
while (1) {
if (obdii3.request(ENGINE_RPM, buffer) == 1) // Get engine rpm and display on USB port
pc.printf("%s\n\r", buffer);
else
pc.printf("Engine Request failed\n\r");
wait(1);
}
/*
while(1)
{ // Main CAN loop
led2 = 1;
wait(.5);
led2 = 0;
wait(.5);
if(obdii3.request(ENGINE_RPM, buffer) == 1) // Get engine rpm and display on USB port
pc.printf("%s\n\r", buffer);
else
pc.printf("Engine Request failed\n\r");
if(obdii3.request(ENGINE_COOLANT_TEMP, buffer) == 1)
pc.printf("%s\n\r", buffer);
else
pc.printf("Engine Coolant Temp failed\n\r");
if(obdii3.request(VEHICLE_SPEED, buffer) == 1)
pc.printf("%s\n\r", buffer);
else
pc.printf("Vehicle Speed failed\n\r");
if(obdii3.request(THROTTLE,buffer) == 1)
pc.printf("%s\n\r", buffer);
else
pc.printf("Throttle failed\n\r");
if(obdii3.request(MAF_SENSOR,buffer) == 1)
pc.printf("%s\n\r", buffer);
else
pc.printf("Maf sensor failed\n\r");
if(obdii3.request(O2_VOLTAGE,buffer) == 1)
pc.printf("%s\n\r", buffer);
else
pc.printf("O2 Voltage failed\n\r");
}*/
}
ecu_reader.cpp
#include "mbed.h"
#include "ecu_reader.h"
#include "globals.h"
#include "TextLCD.h"
TextLCD lcd(p18, p19, p20, p17, p16, p15, p14); // rs, rw, e, d0, d1, d2, d3
// Use a timer to see if things take too long
Timer CANTimer;
namespace mbed {
ecu_reader::ecu_reader(int can_speed) {
can2.frequency(can_speed);
}
#define TIMEOUT 200
unsigned char ecu_reader::request(unsigned char pid, char *buffer, char *buffer2, char *buffer3, char *buffer4) {
led1 = 1;
char can_msg[8];
float engine_data;
can_msg[0] = 0x02;
can_msg[1] = 0x01;
can_msg[2] = pid;
can_msg[3] = 0;
can_msg[4] = 0;
can_msg[5] = 0;
can_msg[6] = 0;
can_msg[7] = 0;
if (can2.write(CANMessage(PID_REQUEST, can_msg, 8))) {
pc.printf("*********Request write passed*********\n\r");
} else {
pc.printf("*********Request write failed*********\n\r");
}
led1 = 0;
CANTimer.reset();
CANTimer.start();
while (CANTimer.read_ms() < TIMEOUT) {
pc.printf("CANTimer.read_ms(): %dms ", CANTimer.read_ms());
if (can2.read(can_MsgRx)) {
lcd.printf("Message read!\n");
pc.printf("Message read\n\r");
//print message id
pc.printf("can_MsgRx.id: %x\n\r\n\r", can_MsgRx.id);
//print length of message
pc.printf("Hex: can_MsgRx.len: %x\n\r", can_MsgRx.len);
//print data[2] and PID
pc.printf("can_MsgRx.data[2]: %x, pid: %x\n\r", can_MsgRx.data[2], pid);
for (int i = 0; i < (int)can_MsgRx.len; i++) {
//debug output of data
pc.printf("Unsigned hex: can_MsgRx.data[%d]: %x\n\r", i, can_MsgRx.data[i]);
//other debug output
pc.printf("Character (casted): can_MsgRx.data[%d]: %c\n\r", i, (char)can_MsgRx.data[i]);
pc.printf("Integer (casted): can_MsgRx.data[%d]: %d\n\r", i, (int)can_MsgRx.data[i]);
pc.printf("Unsigned decimal integer (casted): can_MsgRx.data[%d]: %u\n\r", i, (unsigned int)can_MsgRx.data[i]);
//debug output of data (uncasted)
pc.printf("Character (uncasted): can_MsgRx.data[%d]: %c\n\r", i, can_MsgRx.data[i]);
pc.printf("Integer (uncasted): can_MsgRx.data[%d]: %d\n\r", i, can_MsgRx.data[i]);
pc.printf("Unsigned decimal integer (uncasted): can_MsgRx.data[%d]: %u\n\r", i, can_MsgRx.data[i]);
pc.printf("Character (uncasted): can_MsgRx.data[%d]: %c\n\r", i, can_MsgRx.data[i]);
pc.printf("Unsighed Octal: can_MsgRx.data[%d]: %o\n\r", i, can_MsgRx.data[i]);
pc.printf("String of characters: can_MsgRx.data[%d]: %s\n\r", i, can_MsgRx.data[i]);
}
if ((can_MsgRx.id == PID_REPLY) && (can_MsgRx.data[2] == pid)) {
pc.printf("Valid OBD-II PID\n\r");
/* Details from http://en.wikipedia.org/wiki/OBD-II_PIDs */
switch (can_MsgRx.data[2]) { /* Details from http://en.wikipedia.org/wiki/OBD-II_PIDs */
case PID_0_20: // PID 0-20 Supported
PID020 = ((can_MsgRx.data[3] << 24) | (can_MsgRx.data[4] << 16) | (can_MsgRx.data[5] << 8) | (can_MsgRx.data[6]));
break;
case STATUS_DTC: { // bit encoded
if (can_MsgRx.data[4] & 0x04) { //Compression Ignition (Diesel)
if (can_MsgRx.data[3] & 0x80) { //MIL Light on
engine_data = (can_MsgRx.data[3] - 128);
sprintf(buffer,"MIL ON, %d DTCs", (int) engine_data);
} else { //MIL Light off
engine_data = (can_MsgRx.data[3]);
sprintf(buffer,"MIL OFF, %d DTCs", (int) engine_data);
}
// Diesel C and D bytes (can_MsgRx.data[5] and can_MsgRx.data[6])
// Test available Test incomplete
// Catalyst C0 D0
// Heated Catalyst C1 D1
// Evap System C2 D2
// Secondary Air C3 D3
// A/C Refrigerant C4 D4
// O2 Sensor C5 D5
// O2 Sensor Heater C6 D6
// EGR System C7 D7
} else { //Spark Ignition (Gasoline)
if (can_MsgRx.data[3] & 0x80) { //MIL Light on
engine_data = (can_MsgRx.data[3] - 128);
sprintf(buffer,"MIL ON, %d DTCs", (int) engine_data);
} else { //MIL Light off
engine_data = (can_MsgRx.data[3]);
sprintf(buffer,"MIL OFF, %d DTCs", (int) engine_data);
}
// Gasoline C and D bytes (can_MsgRx.data[5] and can_MsgRx.data[6])
// Test available Test incomplete
// NMHC Catalyst C0 D0
// NOx/SCR Monitoring C1 D1
// Boost Pressure C3 D3
// Exhaust Gas Sensor C5 D5
// Particulate Filter C6 D6
// EGR and/or VVT/VTEC C7 D7
}
// Common Tests between Gas and Diesel Engines, byte B (can_MsgRx.data[4])
// Test available Test incomplete
// Misfire B0 B4
// Fuel System B1 B5
// Components B2 B6
break;
}
case FREEZE_DTC: // Locks in Diagnostic trouble Codes
break;
case FUEL_SYS_STATUS: // bit encoded
//This tells us the warmup status of the engine. Only 1 bit should be set
engine_data = can_MsgRx.data[3];
if (((int) engine_data) & 0x01) { // Open loop - Engine warmup
sprintf(buffer,"Open Loop - Warmup");
}
if (((int) engine_data) & 0x02) { // Closed Loop - O2 Sensor feedback
sprintf(buffer,"Closed Loop - Normal");
}
if (((int) engine_data) & 0x04) { // Open loop,
sprintf(buffer,"Open Loop-Load/Decel");
}
if (((int) engine_data) & 0x08) { // Open loop - system failure
sprintf(buffer,"Open Loop - FAILURE");
}
if (((int) engine_data) & 0x10) { // Closed Loop - O2 Sensor feedback failure
sprintf(buffer,"Closed Loop - O2Fail");
}
if ((((int) engine_data) & 0x20) | (((int) engine_data) & 0x40) | (((int) engine_data) & 0x80)) { //These shouldnt be on, assume Proprietary status
sprintf(buffer,"Unsupported Status");
}
break;
case ENGINE_LOAD: // A*100/255
engine_data = (can_MsgRx.data[3]*100)/255;
sprintf(buffer,"%d %% ",(int) engine_data);
break;
case ENGINE_COOLANT_TEMP: // A-40 [degree C]
engine_data = can_MsgRx.data[3] - 40;
sprintf(buffer,"%d degC ",(int) engine_data);
break;
case ST_FUEL_TRIM_1: // (A-128)*100/128
engine_data = ((can_MsgRx.data[3]-128)*(100/128));
sprintf(buffer,"%d %% ", (int) engine_data);
break;
case LT_FUEL_TRIM_1: // (A-128)*100/128
engine_data = ((can_MsgRx.data[3]-128)*(100/128));
sprintf(buffer,"%d %% ", (int) engine_data);
break;
case ST_FUEL_TRIM_2: // (A-128)*100/128
engine_data = ((can_MsgRx.data[3]-128)*(100/128));
sprintf(buffer,"%d %% ", (int) engine_data);
break;
case LT_FUEL_TRIM_2: // (A-128)*100/128
engine_data = ((can_MsgRx.data[3]-128)*(100/128));
sprintf(buffer,"%d %% ", (int) engine_data);
break;
case FUEL_PRESSURE: // A*3
engine_data = (can_MsgRx.data[3]*3);
sprintf(buffer,"%d kPa",(int) engine_data);
break;
case INTAKE_PRESSURE: // A
engine_data = can_MsgRx.data[3];
sprintf(buffer,"%d kPa",(int) engine_data);
break;
case ENGINE_RPM: // ((A*256)+B)/4 [RPM]
engine_data = ((can_MsgRx.data[3]*256) + can_MsgRx.data[4])/4;
sprintf(buffer,"%d rpm ",(int) engine_data);
break;
case VEHICLE_SPEED: // A [km]
engine_data = can_MsgRx.data[3];
sprintf(buffer,"%d km ",(int) engine_data);
break;
case TIMING_ADVANCE: // A/2 - 64
engine_data = (can_MsgRx.data[3]/2) - 64;
sprintf(buffer,"%d Deg",(int) engine_data);
break;
case INTAKE_TEMP: // A - 40
engine_data = (can_MsgRx.data[3] - 40);
sprintf(buffer,"%d DegC",(int) engine_data);
break;
case MAF_SENSOR: // ((256*A)+B) / 100 [g/s]
engine_data = ((can_MsgRx.data[3]*256) + can_MsgRx.data[4])/100;
sprintf(buffer,"%d g/s",(int) engine_data);
break;
case THROTTLE: // A*100/255
engine_data = (can_MsgRx.data[3]*100)/255;
sprintf(buffer,"%d %% ",(int) engine_data);
break;
case COMMANDED_SEC_AIR: // bit encoded
engine_data = can_MsgRx.data[3];
if (((int) engine_data) & 0x01) { //Upstream of Catalytic Converter
sprintf(buffer,"Upstream of Cat.");
}
if (((int) engine_data) & 0x02) { //Downstream of Catalytic Converter
sprintf(buffer,"Downstream of Cat.");
}
if (((int) engine_data) & 0x04) { //From outside atmosphere or off
sprintf(buffer,"Off");
}
break;
case O2_SENS_PRES: { // A [A0..A3] == Bank 1, [A4..A7] == Bank 2
engine_data = (can_MsgRx.data[3]); //Check # of O2 sensors present by masking individual bits and counting
int o2pres = 0;
if (((int) engine_data) & 0x01) { // Bank 1 Sensor 1
o2pres++;
}
if (((int) engine_data) & 0x02) { // Bank 1 Sensor 2
o2pres++;
}
if (((int) engine_data) & 0x04) { // Bank 1 Sensor 3
o2pres++;
}
if (((int) engine_data) & 0x08) { // Bank 1 Sensor 4
o2pres++;
}
if (((int) engine_data) & 0x10) { // Bank 2 Sensor 1
o2pres++;
}
if (((int) engine_data) & 0x20) { // Bank 2 Sensor 2
o2pres++;
}
if (((int) engine_data) & 0x40) { // Bank 2 Sensor 3
o2pres++;
}
if (((int) engine_data) & 0x80) { // Bank 2 Sensor 4
o2pres++;
}
sprintf(buffer,"%d Present",(int) o2pres);
break;
}
case O2_B1S1_VOLTAGE: // A/200, (B-128) * 100/128
engine_data = (can_MsgRx.data[3]/200);
sprintf(buffer,"%d V ",(int) engine_data); //Raw O2 Voltage
if (can_MsgRx.data[4] & 0xFF) {
sprintf(buffer,"Not Present");
} else {
engine_data = ((can_MsgRx.data[4]-128)*(100/128));
sprintf(buffer2,"%d %% ",(int) engine_data); //Calculated lean/rich
}
break;
case O2_B1S2_VOLTAGE: //
engine_data = (can_MsgRx.data[3]/200);
sprintf(buffer,"%d V ",(int) engine_data);
if (can_MsgRx.data[4] & 0xFF) {
sprintf(buffer,"Not Present");
} else {
engine_data = ((can_MsgRx.data[4]-128)*(100/128));
sprintf(buffer2,"%d %% ",(int) engine_data);
}
break;
case O2_B1S3_VOLTAGE: //
engine_data = (can_MsgRx.data[3]/200);
sprintf(buffer,"%d V ",(int) engine_data);
if (can_MsgRx.data[4] & 0xFF) {
sprintf(buffer,"Not Present");
} else {
engine_data = ((can_MsgRx.data[4]-128)*(100/128));
sprintf(buffer2,"%d %% ",(int) engine_data);
}
break;
case O2_B1S4_VOLTAGE: //
engine_data = (can_MsgRx.data[3]/200);
sprintf(buffer,"%d V ",(int) engine_data);
if (can_MsgRx.data[4] & 0xFF) {
sprintf(buffer,"Not Present");
} else {
engine_data = ((can_MsgRx.data[4]-128)*(100/128));
sprintf(buffer2,"%d %% ",(int) engine_data);
}
break;
case O2_B2S1_VOLTAGE: //
engine_data = (can_MsgRx.data[3]/200);
sprintf(buffer,"%d V ",(int) engine_data);
if (can_MsgRx.data[4] & 0xFF) {
sprintf(buffer,"Not Present");
} else {
engine_data = ((can_MsgRx.data[4]-128)*(100/128));
sprintf(buffer2,"%d %% ",(int) engine_data);
}
break;
case O2_B2S2_VOLTAGE: //
engine_data = (can_MsgRx.data[3]/200);
sprintf(buffer,"%d V ",(int) engine_data);
if (can_MsgRx.data[4] & 0xFF) {
sprintf(buffer,"Not Present");
} else {
engine_data = ((can_MsgRx.data[4]-128)*(100/128));
sprintf(buffer2,"%d %% ",(int) engine_data);
}
break;
case O2_B2S3_VOLTAGE: { //
engine_data = (can_MsgRx.data[3]/200);
sprintf(buffer,"%d V ",(int) engine_data);
if (can_MsgRx.data[4] & 0xFF) {
sprintf(buffer,"Not Present");
} else {
engine_data = ((can_MsgRx.data[4]-128)*(100/128));
sprintf(buffer2,"%d %% ",(int) engine_data);
}
break;
}
case O2_B2S4_VOLTAGE: { //
engine_data = (can_MsgRx.data[3]/200);
sprintf(buffer,"%d V ",(int) engine_data);
if (can_MsgRx.data[4] & 0xFF) {
sprintf(buffer,"Not Present");
} else {
engine_data = ((can_MsgRx.data[4]-128)*(100/128));
sprintf(buffer2,"%d %% ",(int) engine_data);
}
break;
}
case OBDII_STANDARDS: { //bit encoded NOT DONE
engine_data = can_MsgRx.data[3];
if (((int) engine_data) & 0x0D) { //JOBD, EOBD, and OBD II
sprintf(buffer,"JOBD,EOBD,OBDII");
}
if (((int) engine_data) & 0x0C) { //JOBD and EOBD
sprintf(buffer,"JOBD,EOBD");
}
if (((int) engine_data) & 0x0B) { //JOBD and OBDII
sprintf(buffer,"JOBD,OBDII");
}
if (((int) engine_data) & 0x0A) { //JOBD
sprintf(buffer,"JOBD");
}
if (((int) engine_data) & 0x09) { //EOBD, OBD, and OBD II
sprintf(buffer,"EOBD,OBDI,OBDII");
}
if (((int) engine_data) & 0x08) { //EOBD and OBD
sprintf(buffer,"EOBD,OBDI");
}
if (((int) engine_data) & 0x07) { //EOBD and OBDII
sprintf(buffer,"EOBD,OBDII");
}
if (((int) engine_data) & 0x06) { //EOBD
sprintf(buffer,"EOBD");
}
if (((int) engine_data) & 0x05) { //Not meant to comply with any OBD standard
sprintf(buffer,"No Compliance");
}
if (((int) engine_data) & 0x04) { //OBDI
sprintf(buffer,"OBDI");
}
if (((int) engine_data) & 0x03) { //OBD and OBDII
sprintf(buffer,"OBDI,OBDII");
}
if (((int) engine_data) & 0x02) { //OBD and defined by the EPA
sprintf(buffer,"OBD");
}
if (((int) engine_data) & 0x01) { //OBD-II as defined by CARB
sprintf(buffer,"OBDII");
}
sprintf(buffer,"ERROR");
break;
}
case O2_SENS_PRES_ALT: { //*******************
engine_data = (can_MsgRx.data[3]); //Check # of O2 sensors present by masking individual bits and counting
int o2presalt = 0;
if (((int) engine_data) & 0x01) { // Bank 1 Sensor 1
o2presalt++;
}
if (((int) engine_data) & 0x02) { // Bank 1 Sensor 2
o2presalt++;
}
if (((int) engine_data) & 0x04) { // Bank 2 Sensor 1
o2presalt++;
}
if (((int) engine_data) & 0x08) { // Bank 2 Sensor 2
o2presalt++;
}
if (((int) engine_data) & 0x10) { // Bank 3 Sensor 1
o2presalt++;
}
if (((int) engine_data) & 0x20) { // Bank 3 Sensor 2
o2presalt++;
}
if (((int) engine_data) & 0x40) { // Bank 4 Sensor 1
o2presalt++;
}
if (((int) engine_data) & 0x80) { // Bank 4 Sensor 2
o2presalt++;
}
sprintf(buffer,"%d Present",(int) o2presalt);
break;
}
case AUX_IN_STATUS: { // A (A0 == PTO Active)
engine_data = can_MsgRx.data[3];
if (((int) engine_data) & 0x01) {
sprintf(buffer,"PTO Active");
} else {
sprintf(buffer,"PTO Inactive");
}
break;
}
case ENGINE_RUNTIME: // (A*256)+B
engine_data = (can_MsgRx.data[3]*256)+(can_MsgRx.data[4]);
sprintf(buffer,"%d Sec",(int) engine_data);
break;
case PID_21_40: // bit encoded NOT DONE
PID2140 = ((can_MsgRx.data[3] << 24) | (can_MsgRx.data[4] << 16) | (can_MsgRx.data[5] << 8) | (can_MsgRx.data[6]));
break;
case DIST_TRAVELED_MIL: // (A*256) + B
engine_data = ((can_MsgRx.data[3] * 256) + can_MsgRx.data[4]);
sprintf(buffer,"%d km",(int) engine_data);
break;
case FUEL_RAIL_PRESSURE: // ((A*256)+B)*0.079
engine_data = ((can_MsgRx.data[3] * 256)+can_MsgRx.data[4])*0.079;
sprintf(buffer,"%d kPa",(int) engine_data);
break;
case FUEL_RAIL_PRES_ALT: // ((A*256)+B)*0.079
engine_data = ((can_MsgRx.data[3] * 256) + can_MsgRx.data[4])*10;
sprintf(buffer,"%d kPa",(int) engine_data);
break;
case O2S1_WR_LAMBDA_V: // ((A*256)+B)*2/65535 [ratio], ((C*256)+D)*8/65535 [V]
engine_data = ((((can_MsgRx.data[3]*256)+can_MsgRx.data[4])*2)/65535);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])*8)/65535);
sprintf(buffer2,"%d V",(int) engine_data);
break;
case O2S2_WR_LAMBDA_V: //
engine_data = ((((can_MsgRx.data[3]*256)+can_MsgRx.data[4])*2)/65535);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])*8)/65535);
sprintf(buffer2,"%d V",(int) engine_data);
break;
case O2S3_WR_LAMBDA_V: //
engine_data = ((((can_MsgRx.data[3]*256)+can_MsgRx.data[4])*2)/65535);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])*8)/65535);
sprintf(buffer2,"%d V",(int) engine_data);
break;
case O2S4_WR_LAMBDA_V: //
engine_data = ((((can_MsgRx.data[3]*256)+can_MsgRx.data[4])*2)/65535);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])*8)/65535);
sprintf(buffer2,"%d V",(int) engine_data);
break;
case O2S5_WR_LAMBDA_V: //
engine_data = ((((can_MsgRx.data[3]*256)+can_MsgRx.data[4])*2)/65535);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])*8)/65535);
sprintf(buffer2,"%d V",(int) engine_data);
break;
case O2S6_WR_LAMBDA_V: //
engine_data = ((((can_MsgRx.data[3]*256)+can_MsgRx.data[4])*2)/65535);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])*8)/65535);
sprintf(buffer2,"%d V",(int) engine_data);
break;
case O2S7_WR_LAMBDA_V: //
engine_data = ((((can_MsgRx.data[3]*256)+can_MsgRx.data[4])*2)/65535);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])*8)/65535);
sprintf(buffer2,"%d V",(int) engine_data);
break;
case O2S8_WR_LAMBDA_V: //
engine_data = ((((can_MsgRx.data[3]*256)+can_MsgRx.data[4])*2)/65535);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])*8)/65535);
sprintf(buffer2,"%d V",(int) engine_data);
break;
case COMMANDED_EGR: // 100*A/255
engine_data = (can_MsgRx.data[3]*100/255);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case EGR_ERROR: // (A-128)*100/128
engine_data = ((can_MsgRx.data[3]-128)*(100/128));
sprintf(buffer,"%d %%",(int) engine_data);
break;
case COMMANDED_EVAP_P: // 100*A/255 [%]
engine_data = ((can_MsgRx.data[3]*100)/255);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case FUEL_LEVEL: //100*A/255
engine_data = ((100*can_MsgRx.data[3])/255);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case WARMUPS_SINCE_CLR: //A
engine_data = (can_MsgRx.data[3]);
sprintf(buffer,"%d Warmups",(int) engine_data);
break;
case DIST_SINCE_CLR: //A*256+B [km]
engine_data = ((can_MsgRx.data[3]*256)+can_MsgRx.data[4]);
sprintf(buffer,"%d km",(int) engine_data);
break;
case EVAP_PRESSURE: //((A*256)+B)/4
engine_data = (((can_MsgRx.data[3]*256)+can_MsgRx.data[4])/4);
sprintf(buffer,"%d Pa",(int) engine_data); //Yes it's in pascals
break;
case BAROMETRIC_PRESSURE: //A
engine_data = can_MsgRx.data[3];
sprintf(buffer,"%d kPa",(int) engine_data);
break;
case O2S1_WR_LAMBDA_I: //((A*256)+B)/32,768 [Ratio], ((C*256)+D)/256 - 128 [mA]
engine_data = (((can_MsgRx.data[3]*256)+can_MsgRx.data[4])/32768);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])/256)-128);
sprintf(buffer2,"%d mA",(int) engine_data);
break;
case O2S2_WR_LAMBDA_I:
engine_data = (((can_MsgRx.data[3]*256)+can_MsgRx.data[4])/32768);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])/256)-128);
sprintf(buffer2,"%d mA",(int) engine_data);
break;
case O2S3_WR_LAMBDA_I:
engine_data = (((can_MsgRx.data[3]*256)+can_MsgRx.data[4])/32768);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])/256)-128);
sprintf(buffer2,"%d mA",(int) engine_data);
break;
case O2S4_WR_LAMBDA_I:
engine_data = (((can_MsgRx.data[3]*256)+can_MsgRx.data[4])/32768);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])/256)-128);
sprintf(buffer2,"%d mA",(int) engine_data);
break;
case O2S5_WR_LAMBDA_I:
engine_data = (((can_MsgRx.data[3]*256)+can_MsgRx.data[4])/32768);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])/256)-128);
sprintf(buffer2,"%d mA",(int) engine_data);
break;
case O2S6_WR_LAMBDA_I:
engine_data = (((can_MsgRx.data[3]*256)+can_MsgRx.data[4])/32768);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])/256)-128);
sprintf(buffer2,"%d mA",(int) engine_data);
break;
case O2S7_WR_LAMBDA_I:
engine_data = (((can_MsgRx.data[3]*256)+can_MsgRx.data[4])/32768);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])/256)-128);
sprintf(buffer2,"%d mA",(int) engine_data);
break;
case O2S8_WR_LAMBDA_I:
engine_data = (((can_MsgRx.data[3]*256)+can_MsgRx.data[4])/32768);
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = ((((can_MsgRx.data[5]*256)+can_MsgRx.data[6])/256)-128);
sprintf(buffer2,"%d mA",(int) engine_data);
break;
case CAT_TEMP_B1S1: //((A*256)+B)/10 - 40 [DegC]
engine_data = ((((can_MsgRx.data[3]*256)+can_MsgRx.data[4])/10)-40);
sprintf(buffer,"%d DegC",(int) engine_data);
break;
case CAT_TEMP_B1S2:
engine_data = ((((can_MsgRx.data[3]*256)+can_MsgRx.data[4])/10)-40);
sprintf(buffer,"%d DegC",(int) engine_data);
break;
case CAT_TEMP_B2S1:
engine_data = ((((can_MsgRx.data[3]*256)+can_MsgRx.data[4])/10)-40);
sprintf(buffer,"%d DegC",(int) engine_data);
break;
case CAT_TEMP_B2S2:
engine_data = ((((can_MsgRx.data[3]*256)+can_MsgRx.data[4])/10)-40);
sprintf(buffer,"%d DegC",(int) engine_data);
break;
case PID_41_60: //bit encoded NOT DONE
PID4160 = ((can_MsgRx.data[3] << 24) | (can_MsgRx.data[4] << 16) | (can_MsgRx.data[5] << 8) | (can_MsgRx.data[6]));
break;
case MONITOR_STATUS: // bit encoded
//LUT: (Uses multiple bytes) A7..0 always 0
// Test enabled Test Incomplete
// Misfire B0 B4
// Fuel System B1 B5
// Components B2 B6
// Reserved B3 B7
// Catalyst C0 D0
// Heated Catalyst C1 D1
// Evap System C2 D2
// Sec. Ait system C3 D3
// A/C Refrigerant C4 D4
// O2 Sensor C5 D5
// O2 Sensor Heater C6 D6
// EGR System C7 D7
break;
case ECU_VOLTAGE: //((A*256)+B)/1000 [V]
engine_data = (((can_MsgRx.data[3]*256)+can_MsgRx.data[4])/1000);
sprintf(buffer,"%d V",(int) engine_data);
break;
case ABSOLUTE_LOAD: //((A*256)+B)*100/255 [%]
engine_data = ((((can_MsgRx.data[3]*256)+can_MsgRx.data[4])*100)/255);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case COMMANDED_EQUIV_R: //((A*256)+B)/32768 [Ratio]
engine_data = (((can_MsgRx.data[3]*256)+can_MsgRx.data[4])/32768);
sprintf(buffer,"Ratio %d",(int) engine_data);
break;
case REL_THROTTLE_POS: // A*100/255 [%]
engine_data = ((can_MsgRx.data[3]*100)/255);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case AMB_AIR_TEMP: // A-40 [DegC]
engine_data = (can_MsgRx.data[3]-40);
sprintf(buffer,"%d DegC",(int) engine_data);
break;
case ABS_THROTTLE_POS_B: // A*100/255 [%]
engine_data = ((can_MsgRx.data[3]*100)/255);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case ABS_THROTTLE_POS_C: // A*100/255 [%]
engine_data = ((can_MsgRx.data[3]*100)/255);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case ACCEL_POS_D: // A*100/255 [%]
engine_data = ((can_MsgRx.data[3]*100)/255);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case ACCEL_POS_E: // A*100/255 [%]
engine_data = ((can_MsgRx.data[3]*100)/255);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case ACCEL_POS_F: // A*100/255 [%]
engine_data = ((can_MsgRx.data[3]*100)/255);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case COMMANDED_THROTTLE: //A*100/255 [%]
engine_data = ((can_MsgRx.data[3]*100)/255);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case TIME_RUN_WITH_MIL: //(A*256)+B [minutes]
engine_data = ((can_MsgRx.data[3]*256)/(can_MsgRx.data[4]));
sprintf(buffer,"%d Mins",(int) engine_data);
break;
case TIME_SINCE_CLR: //(A*256)+B [minutes]
engine_data = ((can_MsgRx.data[3]*256)/(can_MsgRx.data[4]));
sprintf(buffer,"%d Mins",(int) engine_data);
break;
case MAX_R_O2_VI_PRES: //A,B,C,D*10 [Ratio,V,mA,kPa]
engine_data = can_MsgRx.data[3];
sprintf(buffer,"Ratio: %d",(int) engine_data);
engine_data = can_MsgRx.data[4];
sprintf(buffer,"%d V",(int) engine_data);
engine_data = can_MsgRx.data[5];
sprintf(buffer,"%d mA",(int) engine_data);
engine_data = (can_MsgRx.data[6]*10);
sprintf(buffer,"%d kPa",(int) engine_data);
break;
case MAX_AIRFLOW_MAF: //A*10 [g/s]
engine_data = (can_MsgRx.data[3]*10);
sprintf(buffer,"%d g/s",(int) engine_data);
break;
case FUEL_TYPE: // USE LUT NOT DONE
break;
case ETHANOL_PERCENT: //A*100/255 [%]
engine_data = ((can_MsgRx.data[3]*100)/255);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case ABS_EVAP_SYS_PRES: //1/200 per bit [kPa] ----NOT DONE----
break;
case EVAP_SYS_PRES: // (A*256)+B - 32768 [Pa]
engine_data = ((can_MsgRx.data[3]*256)+can_MsgRx.data[4]-32768);
sprintf(buffer,"%d Pa",(int) engine_data);
break;
case ST_O2_TRIM_B1B3: // ((A-128)*100/128 (B-128)*100/128 [%]
engine_data = ((can_MsgRx.data[3]-128)*(100/128));
sprintf(buffer,"%d %%",(int) engine_data);
engine_data = ((can_MsgRx.data[4]-128)*(100/128));
sprintf(buffer,"%d %%",(int) engine_data);
break;
case LT_O2_TRIM_B1B3:
engine_data = ((can_MsgRx.data[3]-128)*(100/128));
sprintf(buffer,"%d %%",(int) engine_data);
engine_data = ((can_MsgRx.data[4]-128)*(100/128));
sprintf(buffer,"%d %%",(int) engine_data);
break;
case ST_02_TRIM_B2B4:
engine_data = ((can_MsgRx.data[3]-128)*(100/128));
sprintf(buffer,"%d %%",(int) engine_data);
engine_data = ((can_MsgRx.data[4]-128)*(100/128));
sprintf(buffer,"%d %%",(int) engine_data);
break;
case LT_O2_TRIM_B2B4:
engine_data = ((can_MsgRx.data[3]-128)*(100/128));
sprintf(buffer,"%d %%",(int) engine_data);
engine_data = ((can_MsgRx.data[4]-128)*(100/128));
sprintf(buffer,"%d %%",(int) engine_data);
break;
case ABS_FUEL_RAIL_PRES: //((A*256)+B)*10 [kPa]
engine_data = (((can_MsgRx.data[3]*256)+can_MsgRx.data[4])*10);
sprintf(buffer,"%d kPa",(int) engine_data);
break;
case REL_ACCEL_POS: //A*100/255 [%]
engine_data = ((can_MsgRx.data[3]*100)/255);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case HYBRID_BATT_PCT: //A*100/255 [%]
engine_data = ((can_MsgRx.data[3]*100)/255);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case ENGINE_OIL_TEMP: //A-40 [DegC]
engine_data = (can_MsgRx.data[3]-40);
sprintf(buffer,"%d DegC",(int) engine_data);
break;
case FUEL_TIMING: //(38655-((A*256)+B))/128
engine_data = ((38655 - ((can_MsgRx.data[3]*256)+can_MsgRx.data[4]))/128);
sprintf(buffer,"%d Deg",(int) engine_data);
break;
case FUEL_RATE: //((A*256)+B)*0.05
engine_data = (((can_MsgRx.data[3]*256)+can_MsgRx.data[4])*0.05);
sprintf(buffer,"%d L/m",(int) engine_data);
break;
case EMISSIONS_STANDARD: //bit encoded ----NOT DONE----
break;
case DEMANDED_TORQUE: //A-125 [%]
engine_data = (can_MsgRx.data[3]-125);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case ACTUAL_TORQUE: //A-125 [%]
engine_data = (can_MsgRx.data[3]-125);
sprintf(buffer,"%d %%",(int) engine_data);
break;
case REFERENCE_TORQUE: //A*256+b [Nm]
engine_data = ((can_MsgRx.data[3]*256)+can_MsgRx.data[4]);
sprintf(buffer,"%d Nm",(int) engine_data);
break;
case ENGINE_PCT_TORQUE: //A-125 idle, B-125 pt 1, C-125, D-125
engine_data = (can_MsgRx.data[3]);
sprintf(buffer,"%d %% - Idle",(int) engine_data);
engine_data = (can_MsgRx.data[4]);
sprintf(buffer2,"%d %% - Point 1",(int) engine_data);
engine_data = (can_MsgRx.data[5]);
sprintf(buffer3,"%d %% - Point 2",(int) engine_data);
engine_data = (can_MsgRx.data[6]);
sprintf(buffer4,"%d %% - Point 3",(int) engine_data);
break;
case AUX_IO_SUPPORTED: //Bit encoded ----NOT DONE----
break;
case P_MAF_SENSOR:
sprintf(buffer,"Not supported");
break;
case P_ENGINE_COOLANT_T:
sprintf(buffer,"Not supported");
break;
case P_INTAKE_TEMP:
sprintf(buffer,"Not supported");
break;
case P_COMMANDED_EGR:
sprintf(buffer,"Not supported");
break;
case P_COMMANDED_INTAKE:
sprintf(buffer,"Not supported");
break;
case P_EGR_TEMP:
sprintf(buffer,"Not supported");
break;
case P_COMMANDED_THROT:
sprintf(buffer,"Not supported");
break;
case P_FUEL_PRESSURE:
sprintf(buffer,"Not supported");
break;
case P_FUEL_INJ_PRES:
sprintf(buffer,"Not supported");
break;
case P_TURBO_PRESSURE:
sprintf(buffer,"Not supported");
break;
case P_BOOST_PRES_CONT:
sprintf(buffer,"Not supported");
break;
case P_VGT_CONTROL:
sprintf(buffer,"Not supported");
break;
case P_WASTEGATE_CONT:
sprintf(buffer,"Not supported");
break;
case P_EXHAUST_PRESSURE:
sprintf(buffer,"Not supported");
break;
case P_TURBO_RPM:
sprintf(buffer,"Not supported");
break;
case P_TURBO_TEMP1:
sprintf(buffer,"Not supported");
break;
case P_TURBO_TEMP2:
sprintf(buffer,"Not supported");
break;
case P_CACT:
sprintf(buffer,"Not supported");
break;
case P_EGT_B1:
sprintf(buffer,"Not supported");
break;
case P_EGT_B2:
sprintf(buffer,"Not supported");
break;
case P_DPF1:
sprintf(buffer,"Not supported");
break;
case P_DPF2:
sprintf(buffer,"Not supported");
break;
case P_DPF_TEMP:
sprintf(buffer,"Not supported");
break;
case P_NOX_NTE_STATUS:
sprintf(buffer,"Not supported");
break;
case P_PM_NTE_STATUS:
sprintf(buffer,"Not supported");
break;
case P_ENGINE_RUNTUME:
sprintf(buffer,"Not supported");
break;
case P_ENGINE_AECD_1:
sprintf(buffer,"Not supported");
break;
case P_ENGINE_AECD_2:
sprintf(buffer,"Not supported");
break;
case P_NOX_SENSOR:
sprintf(buffer,"Not supported");
break;
case P_MANIFOLD_TEMP:
sprintf(buffer,"Not supported");
break;
case P_NOX_SYSTEM:
sprintf(buffer,"Not supported");
break;
case P_PM_SENSOR:
sprintf(buffer,"Not supported");
break;
case P_IN_MANIF_TEMP:
sprintf(buffer,"Not supported");
break;
}
return 1;
}
}
}
pc.printf("CANBus Timeout -- ");
return 0;
}
}