You are viewing an older revision! See the latest version
FIR Filter
FIR Filter Design with Python¶
In this paragraph we see how to design a FIR filter using SciPy, NumPy and MatplotLib.
You can install SciPy, NumPy and MatplotLib as normal Python libraries, otherwise you can simply install the Enthought Python distribution.
The Enthought Python distribution is packaging for you a Python interpreter and all the above libraries in a single convenient installer: http://enthought.com/products/epd_free.php
Python FIR Filter Design
from numpy import sin, arange, pi from scipy.signal import lfilter, firwin from pylab import figure, plot, grid, show #------------------------------------------------ # Create a signal for demonstration. #------------------------------------------------ # 320 samples of (1000Hz + 15000 Hz) at 48 kHz sample_rate = 48000. nsamples = 320 F_1KHz = 1000. A_1KHz = 1.0 F_15KHz = 15000. A_15KHz = 0.5 t = arange(nsamples) / sample_rate signal = A_1KHz * sin(2*pi*F_1KHz*t) + A_15KHz*sin(2*pi*F_15KHz*t) #------------------------------------------------ # Create a FIR filter and apply it to signal. #------------------------------------------------ # The Nyquist rate of the signal. nyq_rate = sample_rate / 2. # The cutoff frequency of the filter: 6KHz cutoff_hz = 6000.0 # Length of the filter (number of coefficients, i.e. the filter order + 1) numtaps = 29 # Use firwin to create a lowpass FIR filter fir_coeff = firwin(numtaps, cutoff_hz/nyq_rate) # Use lfilter to filter the signal with the FIR filter filtered_signal = lfilter(fir_coeff, 1.0, signal) #------------------------------------------------ # Plot the original and filtered signals. #------------------------------------------------ # The first N-1 samples are "corrupted" by the initial conditions warmup = numtaps - 1 # The phase delay of the filtered signal delay = (warmup / 2) / sample_rate figure(1) # Plot the original signal plot(t, signal) # Plot the filtered signal, shifted to compensate for the phase delay plot(t-delay, filtered_signal, 'r-') # Plot just the "good" part of the filtered signal. The first N-1 # samples are "corrupted" by the initial conditions. plot(t[warmup:]-delay, filtered_signal[warmup:], 'g', linewidth=4) grid(True) show() #------------------------------------------------ # Print values #------------------------------------------------ def print_values(label, values): var = "float32_t %s[%d]" % (label, len(values)) print "%-30s = {%s}" % (var, ', '.join(["%+.10f" % x for x in values])) print_values('signal', signal) print_values('fir_coeff', fir_coeff) print_values('filtered_signal', filtered_signal)
coefficients
float32_t fir_coeff[29] = {-0.0018225230, -0.0015879294, +0.0000000000, +0.0036977508, +0.0080754303, +0.0085302217, -0.0000000000, -0.0173976984, -0.0341458607, -0.0333591565, +0.0000000000, +0.0676308395, +0.1522061835, +0.2229246956, +0.2504960933, +0.2229246956, +0.1522061835, +0.0676308395, +0.0000000000, -0.0333591565, -0.0341458607, -0.0173976984, -0.0000000000, +0.0085302217, +0.0080754303, +0.0036977508, +0.0000000000, -0.0015879294, -0.0018225230}
CMSIS DSP API¶
[Not found]
mbed DSP API¶
[Not found]