Eigne Matrix Class Library

Dependents:   Eigen_test Odometry_test AttitudeEstimation_usingTicker MPU9250_Quaternion_Binary_Serial ... more

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers Redux.h Source File

Redux.h

00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
00006 //
00007 // This Source Code Form is subject to the terms of the Mozilla
00008 // Public License v. 2.0. If a copy of the MPL was not distributed
00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00010 
00011 #ifndef EIGEN_REDUX_H
00012 #define EIGEN_REDUX_H
00013 
00014 namespace Eigen { 
00015 
00016 namespace internal {
00017 
00018 // TODO
00019 //  * implement other kind of vectorization
00020 //  * factorize code
00021 
00022 /***************************************************************************
00023 * Part 1 : the logic deciding a strategy for vectorization and unrolling
00024 ***************************************************************************/
00025 
00026 template<typename Func, typename Derived>
00027 struct redux_traits
00028 {
00029 public:
00030   enum {
00031     PacketSize = packet_traits<typename Derived::Scalar>::size,
00032     InnerMaxSize = int(Derived::IsRowMajor)
00033                  ? Derived::MaxColsAtCompileTime
00034                  : Derived::MaxRowsAtCompileTime
00035   };
00036 
00037   enum {
00038     MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit)
00039                   && (functor_traits<Func>::PacketAccess),
00040     MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit),
00041     MaySliceVectorize  = MightVectorize && int(InnerMaxSize)>=3*PacketSize
00042   };
00043 
00044 public:
00045   enum {
00046     Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
00047               : int(MaySliceVectorize)  ? int(SliceVectorizedTraversal)
00048                                         : int(DefaultTraversal)
00049   };
00050 
00051 public:
00052   enum {
00053     Cost = (  Derived::SizeAtCompileTime == Dynamic
00054            || Derived::CoeffReadCost == Dynamic
00055            || (Derived::SizeAtCompileTime!=1 && functor_traits<Func>::Cost == Dynamic)
00056            ) ? Dynamic
00057            : Derived::SizeAtCompileTime * Derived::CoeffReadCost
00058                + (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost,
00059     UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize))
00060   };
00061 
00062 public:
00063   enum {
00064     Unrolling = Cost != Dynamic && Cost <= UnrollingLimit
00065               ? CompleteUnrolling
00066               : NoUnrolling
00067   };
00068 };
00069 
00070 /***************************************************************************
00071 * Part 2 : unrollers
00072 ***************************************************************************/
00073 
00074 /*** no vectorization ***/
00075 
00076 template<typename Func, typename Derived, int Start, int Length>
00077 struct redux_novec_unroller
00078 {
00079   enum {
00080     HalfLength = Length/2
00081   };
00082 
00083   typedef typename Derived::Scalar Scalar;
00084 
00085   static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
00086   {
00087     return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
00088                 redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
00089   }
00090 };
00091 
00092 template<typename Func, typename Derived, int Start>
00093 struct redux_novec_unroller<Func, Derived, Start, 1>
00094 {
00095   enum {
00096     outer = Start / Derived::InnerSizeAtCompileTime,
00097     inner = Start % Derived::InnerSizeAtCompileTime
00098   };
00099 
00100   typedef typename Derived::Scalar Scalar;
00101 
00102   static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&)
00103   {
00104     return mat.coeffByOuterInner(outer, inner);
00105   }
00106 };
00107 
00108 // This is actually dead code and will never be called. It is required
00109 // to prevent false warnings regarding failed inlining though
00110 // for 0 length run() will never be called at all.
00111 template<typename Func, typename Derived, int Start>
00112 struct redux_novec_unroller<Func, Derived, Start, 0>
00113 {
00114   typedef typename Derived::Scalar Scalar;
00115   static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); }
00116 };
00117 
00118 /*** vectorization ***/
00119 
00120 template<typename Func, typename Derived, int Start, int Length>
00121 struct redux_vec_unroller
00122 {
00123   enum {
00124     PacketSize = packet_traits<typename Derived::Scalar>::size,
00125     HalfLength = Length/2
00126   };
00127 
00128   typedef typename Derived::Scalar Scalar;
00129   typedef typename packet_traits<Scalar>::type PacketScalar;
00130 
00131   static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func)
00132   {
00133     return func.packetOp(
00134             redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
00135             redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
00136   }
00137 };
00138 
00139 template<typename Func, typename Derived, int Start>
00140 struct redux_vec_unroller<Func, Derived, Start, 1>
00141 {
00142   enum {
00143     index = Start * packet_traits<typename Derived::Scalar>::size,
00144     outer = index / int(Derived::InnerSizeAtCompileTime),
00145     inner = index % int(Derived::InnerSizeAtCompileTime),
00146     alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
00147   };
00148 
00149   typedef typename Derived::Scalar Scalar;
00150   typedef typename packet_traits<Scalar>::type PacketScalar;
00151 
00152   static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&)
00153   {
00154     return mat.template packetByOuterInner<alignment>(outer, inner);
00155   }
00156 };
00157 
00158 /***************************************************************************
00159 * Part 3 : implementation of all cases
00160 ***************************************************************************/
00161 
00162 template<typename Func, typename Derived,
00163          int Traversal = redux_traits<Func, Derived>::Traversal,
00164          int Unrolling = redux_traits<Func, Derived>::Unrolling
00165 >
00166 struct redux_impl;
00167 
00168 template<typename Func, typename Derived>
00169 struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
00170 {
00171   typedef typename Derived::Scalar Scalar;
00172   typedef typename Derived::Index Index;
00173   static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
00174   {
00175     eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
00176     Scalar res;
00177     res = mat.coeffByOuterInner(0, 0);
00178     for(Index i = 1; i < mat.innerSize(); ++i)
00179       res = func(res, mat.coeffByOuterInner(0, i));
00180     for(Index i = 1; i < mat.outerSize(); ++i)
00181       for(Index j = 0; j < mat.innerSize(); ++j)
00182         res = func(res, mat.coeffByOuterInner(i, j));
00183     return res;
00184   }
00185 };
00186 
00187 template<typename Func, typename Derived>
00188 struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling>
00189   : public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
00190 {};
00191 
00192 template<typename Func, typename Derived>
00193 struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
00194 {
00195   typedef typename Derived::Scalar Scalar;
00196   typedef typename packet_traits<Scalar>::type PacketScalar;
00197   typedef typename Derived::Index Index;
00198 
00199   static Scalar run(const Derived& mat, const Func& func)
00200   {
00201     const Index size = mat.size();
00202     eigen_assert(size && "you are using an empty matrix");
00203     const Index packetSize = packet_traits<Scalar>::size;
00204     const Index alignedStart = internal::first_aligned(mat);
00205     enum {
00206       alignment = bool(Derived::Flags & DirectAccessBit) || bool(Derived::Flags & AlignedBit)
00207                 ? Aligned : Unaligned
00208     };
00209     const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize);
00210     const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize);
00211     const Index alignedEnd2 = alignedStart + alignedSize2;
00212     const Index alignedEnd  = alignedStart + alignedSize;
00213     Scalar res;
00214     if(alignedSize)
00215     {
00216       PacketScalar packet_res0 = mat.template packet<alignment>(alignedStart);
00217       if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop
00218       {
00219         PacketScalar packet_res1 = mat.template packet<alignment>(alignedStart+packetSize);
00220         for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize)
00221         {
00222           packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(index));
00223           packet_res1 = func.packetOp(packet_res1, mat.template packet<alignment>(index+packetSize));
00224         }
00225 
00226         packet_res0 = func.packetOp(packet_res0,packet_res1);
00227         if(alignedEnd>alignedEnd2)
00228           packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(alignedEnd2));
00229       }
00230       res = func.predux(packet_res0);
00231 
00232       for(Index index = 0; index < alignedStart; ++index)
00233         res = func(res,mat.coeff(index));
00234 
00235       for(Index index = alignedEnd; index < size; ++index)
00236         res = func(res,mat.coeff(index));
00237     }
00238     else // too small to vectorize anything.
00239          // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
00240     {
00241       res = mat.coeff(0);
00242       for(Index index = 1; index < size; ++index)
00243         res = func(res,mat.coeff(index));
00244     }
00245 
00246     return res;
00247   }
00248 };
00249 
00250 // NOTE: for SliceVectorizedTraversal we simply bypass unrolling
00251 template<typename Func, typename Derived, int Unrolling>
00252 struct redux_impl<Func, Derived, SliceVectorizedTraversal, Unrolling>
00253 {
00254   typedef typename Derived::Scalar Scalar;
00255   typedef typename packet_traits<Scalar>::type PacketScalar;
00256   typedef typename Derived::Index Index;
00257 
00258   static Scalar run(const Derived& mat, const Func& func)
00259   {
00260     eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
00261     const Index innerSize = mat.innerSize();
00262     const Index outerSize = mat.outerSize();
00263     enum {
00264       packetSize = packet_traits<Scalar>::size
00265     };
00266     const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize;
00267     Scalar res;
00268     if(packetedInnerSize)
00269     {
00270       PacketScalar packet_res = mat.template packet<Unaligned>(0,0);
00271       for(Index j=0; j<outerSize; ++j)
00272         for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize))
00273           packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned>(j,i));
00274 
00275       res = func.predux(packet_res);
00276       for(Index j=0; j<outerSize; ++j)
00277         for(Index i=packetedInnerSize; i<innerSize; ++i)
00278           res = func(res, mat.coeffByOuterInner(j,i));
00279     }
00280     else // too small to vectorize anything.
00281          // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
00282     {
00283       res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func);
00284     }
00285 
00286     return res;
00287   }
00288 };
00289 
00290 template<typename Func, typename Derived>
00291 struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
00292 {
00293   typedef typename Derived::Scalar Scalar;
00294   typedef typename packet_traits<Scalar>::type PacketScalar;
00295   enum {
00296     PacketSize = packet_traits<Scalar>::size,
00297     Size = Derived::SizeAtCompileTime,
00298     VectorizedSize = (Size / PacketSize) * PacketSize
00299   };
00300   static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
00301   {
00302     eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
00303     Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
00304     if (VectorizedSize != Size)
00305       res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func));
00306     return res;
00307   }
00308 };
00309 
00310 } // end namespace internal
00311 
00312 /***************************************************************************
00313 * Part 4 : public API
00314 ***************************************************************************/
00315 
00316 
00317 /** \returns the result of a full redux operation on the whole matrix or vector using \a func
00318   *
00319   * The template parameter \a BinaryOp is the type of the functor \a func which must be
00320   * an associative operator. Both current STL and TR1 functor styles are handled.
00321   *
00322   * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
00323   */
00324 template<typename Derived>
00325 template<typename Func>
00326 EIGEN_STRONG_INLINE typename internal::result_of<Func(typename internal::traits<Derived>::Scalar)>::type
00327 DenseBase<Derived>::redux(const Func& func) const
00328 {
00329   typedef typename internal::remove_all<typename Derived::Nested>::type ThisNested;
00330   return internal::redux_impl<Func, ThisNested>
00331             ::run(derived(), func);
00332 }
00333 
00334 /** \returns the minimum of all coefficients of \c *this.
00335   * \warning the result is undefined if \c *this contains NaN.
00336   */
00337 template<typename Derived>
00338 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
00339 DenseBase<Derived>::minCoeff() const
00340 {
00341   return this->redux(Eigen::internal::scalar_min_op<Scalar>());
00342 }
00343 
00344 /** \returns the maximum of all coefficients of \c *this.
00345   * \warning the result is undefined if \c *this contains NaN.
00346   */
00347 template<typename Derived>
00348 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
00349 DenseBase<Derived>::maxCoeff() const
00350 {
00351   return this->redux(Eigen::internal::scalar_max_op<Scalar>());
00352 }
00353 
00354 /** \returns the sum of all coefficients of *this
00355   *
00356   * \sa trace(), prod(), mean()
00357   */
00358 template<typename Derived>
00359 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
00360 DenseBase<Derived>::sum() const
00361 {
00362   if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
00363     return Scalar(0);
00364   return this->redux(Eigen::internal::scalar_sum_op<Scalar>());
00365 }
00366 
00367 /** \returns the mean of all coefficients of *this
00368 *
00369 * \sa trace(), prod(), sum()
00370 */
00371 template<typename Derived>
00372 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
00373 DenseBase<Derived>::mean() const
00374 {
00375   return Scalar(this->redux(Eigen::internal::scalar_sum_op<Scalar>())) / Scalar(this->size());
00376 }
00377 
00378 /** \returns the product of all coefficients of *this
00379   *
00380   * Example: \include MatrixBase_prod.cpp
00381   * Output: \verbinclude MatrixBase_prod.out
00382   *
00383   * \sa sum(), mean(), trace()
00384   */
00385 template<typename Derived>
00386 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
00387 DenseBase<Derived>::prod() const
00388 {
00389   if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
00390     return Scalar(1);
00391   return this->redux(Eigen::internal::scalar_product_op<Scalar>());
00392 }
00393 
00394 /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
00395   *
00396   * \c *this can be any matrix, not necessarily square.
00397   *
00398   * \sa diagonal(), sum()
00399   */
00400 template<typename Derived>
00401 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
00402 MatrixBase<Derived>::trace() const
00403 {
00404   return derived().diagonal ().sum();
00405 }
00406 
00407 } // end namespace Eigen
00408 
00409 #endif // EIGEN_REDUX_H