Eigne Matrix Class Library

Dependents:   Eigen_test Odometry_test AttitudeEstimation_usingTicker MPU9250_Quaternion_Binary_Serial ... more

Eigen Matrix Class Library for mbed.

Finally, you can use Eigen on your mbed!!!

Revision:
0:13a5d365ba16
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Core/Fuzzy.h	Thu Oct 13 04:07:23 2016 +0000
@@ -0,0 +1,150 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_FUZZY_H
+#define EIGEN_FUZZY_H
+
+namespace Eigen { 
+
+namespace internal
+{
+
+template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
+struct isApprox_selector
+{
+  static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
+  {
+    using std::min;
+    typename internal::nested<Derived,2>::type nested(x);
+    typename internal::nested<OtherDerived,2>::type otherNested(y);
+    return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * (min)(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
+  }
+};
+
+template<typename Derived, typename OtherDerived>
+struct isApprox_selector<Derived, OtherDerived, true>
+{
+  static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar&)
+  {
+    return x.matrix() == y.matrix();
+  }
+};
+
+template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
+struct isMuchSmallerThan_object_selector
+{
+  static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
+  {
+    return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum();
+  }
+};
+
+template<typename Derived, typename OtherDerived>
+struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true>
+{
+  static bool run(const Derived& x, const OtherDerived&, const typename Derived::RealScalar&)
+  {
+    return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
+  }
+};
+
+template<typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
+struct isMuchSmallerThan_scalar_selector
+{
+  static bool run(const Derived& x, const typename Derived::RealScalar& y, const typename Derived::RealScalar& prec)
+  {
+    return x.cwiseAbs2().sum() <= numext::abs2(prec * y);
+  }
+};
+
+template<typename Derived>
+struct isMuchSmallerThan_scalar_selector<Derived, true>
+{
+  static bool run(const Derived& x, const typename Derived::RealScalar&, const typename Derived::RealScalar&)
+  {
+    return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
+  }
+};
+
+} // end namespace internal
+
+
+/** \returns \c true if \c *this is approximately equal to \a other, within the precision
+  * determined by \a prec.
+  *
+  * \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
+  * are considered to be approximately equal within precision \f$ p \f$ if
+  * \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
+  * For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm
+  * L2 norm).
+  *
+  * \note Because of the multiplicativeness of this comparison, one can't use this function
+  * to check whether \c *this is approximately equal to the zero matrix or vector.
+  * Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
+  * or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const
+  * RealScalar&, RealScalar) instead.
+  *
+  * \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const
+  */
+template<typename Derived>
+template<typename OtherDerived>
+bool DenseBase<Derived>::isApprox(
+  const DenseBase<OtherDerived>& other,
+  const RealScalar& prec
+) const
+{
+  return internal::isApprox_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
+}
+
+/** \returns \c true if the norm of \c *this is much smaller than \a other,
+  * within the precision determined by \a prec.
+  *
+  * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
+  * considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
+  * \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
+  *
+  * For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason,
+  * the value of the reference scalar \a other should come from the Hilbert-Schmidt norm
+  * of a reference matrix of same dimensions.
+  *
+  * \sa isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const
+  */
+template<typename Derived>
+bool DenseBase<Derived>::isMuchSmallerThan(
+  const typename NumTraits<Scalar>::Real& other,
+  const RealScalar& prec
+) const
+{
+  return internal::isMuchSmallerThan_scalar_selector<Derived>::run(derived(), other, prec);
+}
+
+/** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
+  * within the precision determined by \a prec.
+  *
+  * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
+  * considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
+  * \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
+  * For matrices, the comparison is done using the Hilbert-Schmidt norm.
+  *
+  * \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
+  */
+template<typename Derived>
+template<typename OtherDerived>
+bool DenseBase<Derived>::isMuchSmallerThan(
+  const DenseBase<OtherDerived>& other,
+  const RealScalar& prec
+) const
+{
+  return internal::isMuchSmallerThan_object_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_FUZZY_H
\ No newline at end of file