ported from https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050. Please refer this examples https://developer.mbed.org/users/syundo0730/code/MPU6050_Example/ to run this library in mbed.

Dependencies:   ArduinoSerial I2Cdev

Dependents:   MPU6050_Example

Fork of MPU6050 + MPU9150 by Andreas Kodewitz

Committer:
syundo0730
Date:
Sat Jan 30 17:12:45 2016 +0000
Revision:
6:f38dfe62d74c
Parent:
3:25e1a5a10e53
Child:
7:d5845b617139
added debug print functions

Who changed what in which revision?

UserRevisionLine numberNew contents of line
garfieldsg 0:662207e34fba 1 // I2Cdev library collection - MPU6050 I2C device class
garfieldsg 0:662207e34fba 2 // Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
garfieldsg 0:662207e34fba 3 // 8/24/2011 by Jeff Rowberg <jeff@rowberg.net>
garfieldsg 0:662207e34fba 4 // Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
garfieldsg 0:662207e34fba 5 //
garfieldsg 0:662207e34fba 6 // Changelog:
garfieldsg 0:662207e34fba 7 // ... - ongoing debug release
garfieldsg 0:662207e34fba 8
garfieldsg 0:662207e34fba 9 // NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE
garfieldsg 0:662207e34fba 10 // DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
garfieldsg 0:662207e34fba 11 // YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
garfieldsg 0:662207e34fba 12
garfieldsg 0:662207e34fba 13 /* ============================================
garfieldsg 0:662207e34fba 14 I2Cdev device library code is placed under the MIT license
garfieldsg 0:662207e34fba 15 Copyright (c) 2012 Jeff Rowberg
garfieldsg 0:662207e34fba 16
garfieldsg 0:662207e34fba 17 Permission is hereby granted, free of charge, to any person obtaining a copy
garfieldsg 0:662207e34fba 18 of this software and associated documentation files (the "Software"), to deal
garfieldsg 0:662207e34fba 19 in the Software without restriction, including without limitation the rights
garfieldsg 0:662207e34fba 20 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
garfieldsg 0:662207e34fba 21 copies of the Software, and to permit persons to whom the Software is
garfieldsg 0:662207e34fba 22 furnished to do so, subject to the following conditions:
garfieldsg 0:662207e34fba 23
garfieldsg 0:662207e34fba 24 The above copyright notice and this permission notice shall be included in
garfieldsg 0:662207e34fba 25 all copies or substantial portions of the Software.
garfieldsg 0:662207e34fba 26
garfieldsg 0:662207e34fba 27 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
garfieldsg 0:662207e34fba 28 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
garfieldsg 0:662207e34fba 29 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
garfieldsg 0:662207e34fba 30 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
garfieldsg 0:662207e34fba 31 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
garfieldsg 0:662207e34fba 32 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
garfieldsg 0:662207e34fba 33 THE SOFTWARE.
garfieldsg 0:662207e34fba 34 ===============================================
garfieldsg 0:662207e34fba 35 */
garfieldsg 0:662207e34fba 36
garfieldsg 0:662207e34fba 37 #include "MPU6050.h"
garfieldsg 0:662207e34fba 38
garfieldsg 0:662207e34fba 39 /** Default constructor, uses default I2C address.
garfieldsg 0:662207e34fba 40 * @see MPU6050_DEFAULT_ADDRESS
garfieldsg 0:662207e34fba 41 */
syundo0730 6:f38dfe62d74c 42 MPU6050::MPU6050() {
garfieldsg 0:662207e34fba 43 devAddr = MPU6050_DEFAULT_ADDRESS;
garfieldsg 0:662207e34fba 44 }
garfieldsg 0:662207e34fba 45
garfieldsg 0:662207e34fba 46 /** Specific address constructor.
garfieldsg 0:662207e34fba 47 * @param address I2C address
garfieldsg 0:662207e34fba 48 * @see MPU6050_DEFAULT_ADDRESS
garfieldsg 0:662207e34fba 49 * @see MPU6050_ADDRESS_AD0_LOW
garfieldsg 0:662207e34fba 50 * @see MPU6050_ADDRESS_AD0_HIGH
garfieldsg 0:662207e34fba 51 */
syundo0730 6:f38dfe62d74c 52 MPU6050::MPU6050(uint8_t address) {
garfieldsg 0:662207e34fba 53 devAddr = address;
garfieldsg 0:662207e34fba 54 }
garfieldsg 0:662207e34fba 55
garfieldsg 0:662207e34fba 56 /** Power on and prepare for general usage.
garfieldsg 0:662207e34fba 57 * This will activate the device and take it out of sleep mode (which must be done
garfieldsg 0:662207e34fba 58 * after start-up). This function also sets both the accelerometer and the gyroscope
garfieldsg 0:662207e34fba 59 * to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets
garfieldsg 0:662207e34fba 60 * the clock source to use the X Gyro for reference, which is slightly better than
garfieldsg 0:662207e34fba 61 * the default internal clock source.
garfieldsg 0:662207e34fba 62 */
syundo0730 6:f38dfe62d74c 63 void MPU6050::initialize() {
garfieldsg 0:662207e34fba 64 setClockSource(MPU6050_CLOCK_PLL_XGYRO);
garfieldsg 0:662207e34fba 65 setFullScaleGyroRange(MPU6050_GYRO_FS_250);
garfieldsg 0:662207e34fba 66 setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
garfieldsg 0:662207e34fba 67 setSleepEnabled(false); // thanks to Jack Elston for pointing this one out!
garfieldsg 0:662207e34fba 68 }
garfieldsg 0:662207e34fba 69
garfieldsg 0:662207e34fba 70 /** Verify the I2C connection.
garfieldsg 0:662207e34fba 71 * Make sure the device is connected and responds as expected.
garfieldsg 0:662207e34fba 72 * @return True if connection is valid, false otherwise
garfieldsg 0:662207e34fba 73 */
syundo0730 6:f38dfe62d74c 74 bool MPU6050::testConnection() {
syundo0730 6:f38dfe62d74c 75 return getDeviceID() == 0x34;
garfieldsg 0:662207e34fba 76 }
garfieldsg 0:662207e34fba 77
garfieldsg 0:662207e34fba 78 // AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC)
garfieldsg 0:662207e34fba 79
garfieldsg 0:662207e34fba 80 /** Get the auxiliary I2C supply voltage level.
garfieldsg 0:662207e34fba 81 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
garfieldsg 0:662207e34fba 82 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
garfieldsg 0:662207e34fba 83 * the MPU-6000, which does not have a VLOGIC pin.
garfieldsg 0:662207e34fba 84 * @return I2C supply voltage level (0=VLOGIC, 1=VDD)
garfieldsg 0:662207e34fba 85 */
syundo0730 6:f38dfe62d74c 86 uint8_t MPU6050::getAuxVDDIOLevel() {
syundo0730 6:f38dfe62d74c 87 i2cdev.readBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, buffer);
garfieldsg 0:662207e34fba 88 return buffer[0];
garfieldsg 0:662207e34fba 89 }
garfieldsg 0:662207e34fba 90 /** Set the auxiliary I2C supply voltage level.
garfieldsg 0:662207e34fba 91 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
garfieldsg 0:662207e34fba 92 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
garfieldsg 0:662207e34fba 93 * the MPU-6000, which does not have a VLOGIC pin.
garfieldsg 0:662207e34fba 94 * @param level I2C supply voltage level (0=VLOGIC, 1=VDD)
garfieldsg 0:662207e34fba 95 */
syundo0730 6:f38dfe62d74c 96 void MPU6050::setAuxVDDIOLevel(uint8_t level) {
syundo0730 6:f38dfe62d74c 97 i2cdev.writeBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, level);
garfieldsg 0:662207e34fba 98 }
garfieldsg 0:662207e34fba 99
garfieldsg 0:662207e34fba 100 // SMPLRT_DIV register
garfieldsg 0:662207e34fba 101
garfieldsg 0:662207e34fba 102 /** Get gyroscope output rate divider.
garfieldsg 0:662207e34fba 103 * The sensor register output, FIFO output, DMP sampling, Motion detection, Zero
garfieldsg 0:662207e34fba 104 * Motion detection, and Free Fall detection are all based on the Sample Rate.
garfieldsg 0:662207e34fba 105 * The Sample Rate is generated by dividing the gyroscope output rate by
garfieldsg 0:662207e34fba 106 * SMPLRT_DIV:
garfieldsg 0:662207e34fba 107 *
garfieldsg 0:662207e34fba 108 * Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)
garfieldsg 0:662207e34fba 109 *
garfieldsg 0:662207e34fba 110 * where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or
garfieldsg 0:662207e34fba 111 * 7), and 1kHz when the DLPF is enabled (see Register 26).
garfieldsg 0:662207e34fba 112 *
garfieldsg 0:662207e34fba 113 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
garfieldsg 0:662207e34fba 114 * Rate greater than 1kHz, the same accelerometer sample may be output to the
garfieldsg 0:662207e34fba 115 * FIFO, DMP, and sensor registers more than once.
garfieldsg 0:662207e34fba 116 *
garfieldsg 0:662207e34fba 117 * For a diagram of the gyroscope and accelerometer signal paths, see Section 8
garfieldsg 0:662207e34fba 118 * of the MPU-6000/MPU-6050 Product Specification document.
garfieldsg 0:662207e34fba 119 *
garfieldsg 0:662207e34fba 120 * @return Current sample rate
garfieldsg 0:662207e34fba 121 * @see MPU6050_RA_SMPLRT_DIV
garfieldsg 0:662207e34fba 122 */
syundo0730 6:f38dfe62d74c 123 uint8_t MPU6050::getRate() {
syundo0730 6:f38dfe62d74c 124 i2cdev.readByte(devAddr, MPU6050_RA_SMPLRT_DIV, buffer);
garfieldsg 0:662207e34fba 125 return buffer[0];
garfieldsg 0:662207e34fba 126 }
garfieldsg 0:662207e34fba 127 /** Set gyroscope sample rate divider.
garfieldsg 0:662207e34fba 128 * @param rate New sample rate divider
garfieldsg 0:662207e34fba 129 * @see getRate()
garfieldsg 0:662207e34fba 130 * @see MPU6050_RA_SMPLRT_DIV
garfieldsg 0:662207e34fba 131 */
syundo0730 6:f38dfe62d74c 132 void MPU6050::setRate(uint8_t rate) {
syundo0730 6:f38dfe62d74c 133 i2cdev.writeByte(devAddr, MPU6050_RA_SMPLRT_DIV, rate);
garfieldsg 0:662207e34fba 134 }
garfieldsg 0:662207e34fba 135
garfieldsg 0:662207e34fba 136 // CONFIG register
garfieldsg 0:662207e34fba 137
garfieldsg 0:662207e34fba 138 /** Get external FSYNC configuration.
garfieldsg 0:662207e34fba 139 * Configures the external Frame Synchronization (FSYNC) pin sampling. An
garfieldsg 0:662207e34fba 140 * external signal connected to the FSYNC pin can be sampled by configuring
garfieldsg 0:662207e34fba 141 * EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short
garfieldsg 0:662207e34fba 142 * strobes may be captured. The latched FSYNC signal will be sampled at the
garfieldsg 0:662207e34fba 143 * Sampling Rate, as defined in register 25. After sampling, the latch will
garfieldsg 0:662207e34fba 144 * reset to the current FSYNC signal state.
garfieldsg 0:662207e34fba 145 *
garfieldsg 0:662207e34fba 146 * The sampled value will be reported in place of the least significant bit in
garfieldsg 0:662207e34fba 147 * a sensor data register determined by the value of EXT_SYNC_SET according to
garfieldsg 0:662207e34fba 148 * the following table.
garfieldsg 0:662207e34fba 149 *
garfieldsg 0:662207e34fba 150 * <pre>
garfieldsg 0:662207e34fba 151 * EXT_SYNC_SET | FSYNC Bit Location
garfieldsg 0:662207e34fba 152 * -------------+-------------------
garfieldsg 0:662207e34fba 153 * 0 | Input disabled
garfieldsg 0:662207e34fba 154 * 1 | TEMP_OUT_L[0]
garfieldsg 0:662207e34fba 155 * 2 | GYRO_XOUT_L[0]
garfieldsg 0:662207e34fba 156 * 3 | GYRO_YOUT_L[0]
garfieldsg 0:662207e34fba 157 * 4 | GYRO_ZOUT_L[0]
garfieldsg 0:662207e34fba 158 * 5 | ACCEL_XOUT_L[0]
garfieldsg 0:662207e34fba 159 * 6 | ACCEL_YOUT_L[0]
garfieldsg 0:662207e34fba 160 * 7 | ACCEL_ZOUT_L[0]
garfieldsg 0:662207e34fba 161 * </pre>
garfieldsg 0:662207e34fba 162 *
garfieldsg 0:662207e34fba 163 * @return FSYNC configuration value
garfieldsg 0:662207e34fba 164 */
syundo0730 6:f38dfe62d74c 165 uint8_t MPU6050::getExternalFrameSync() {
syundo0730 6:f38dfe62d74c 166 i2cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, buffer);
garfieldsg 0:662207e34fba 167 return buffer[0];
garfieldsg 0:662207e34fba 168 }
garfieldsg 0:662207e34fba 169 /** Set external FSYNC configuration.
garfieldsg 0:662207e34fba 170 * @see getExternalFrameSync()
garfieldsg 0:662207e34fba 171 * @see MPU6050_RA_CONFIG
garfieldsg 0:662207e34fba 172 * @param sync New FSYNC configuration value
garfieldsg 0:662207e34fba 173 */
syundo0730 6:f38dfe62d74c 174 void MPU6050::setExternalFrameSync(uint8_t sync) {
syundo0730 6:f38dfe62d74c 175 i2cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, sync);
garfieldsg 0:662207e34fba 176 }
garfieldsg 0:662207e34fba 177 /** Get digital low-pass filter configuration.
garfieldsg 0:662207e34fba 178 * The DLPF_CFG parameter sets the digital low pass filter configuration. It
garfieldsg 0:662207e34fba 179 * also determines the internal sampling rate used by the device as shown in
garfieldsg 0:662207e34fba 180 * the table below.
garfieldsg 0:662207e34fba 181 *
garfieldsg 0:662207e34fba 182 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
garfieldsg 0:662207e34fba 183 * Rate greater than 1kHz, the same accelerometer sample may be output to the
garfieldsg 0:662207e34fba 184 * FIFO, DMP, and sensor registers more than once.
garfieldsg 0:662207e34fba 185 *
garfieldsg 0:662207e34fba 186 * <pre>
garfieldsg 0:662207e34fba 187 * | ACCELEROMETER | GYROSCOPE
garfieldsg 0:662207e34fba 188 * DLPF_CFG | Bandwidth | Delay | Bandwidth | Delay | Sample Rate
garfieldsg 0:662207e34fba 189 * ---------+-----------+--------+-----------+--------+-------------
garfieldsg 0:662207e34fba 190 * 0 | 260Hz | 0ms | 256Hz | 0.98ms | 8kHz
garfieldsg 0:662207e34fba 191 * 1 | 184Hz | 2.0ms | 188Hz | 1.9ms | 1kHz
garfieldsg 0:662207e34fba 192 * 2 | 94Hz | 3.0ms | 98Hz | 2.8ms | 1kHz
garfieldsg 0:662207e34fba 193 * 3 | 44Hz | 4.9ms | 42Hz | 4.8ms | 1kHz
garfieldsg 0:662207e34fba 194 * 4 | 21Hz | 8.5ms | 20Hz | 8.3ms | 1kHz
garfieldsg 0:662207e34fba 195 * 5 | 10Hz | 13.8ms | 10Hz | 13.4ms | 1kHz
garfieldsg 0:662207e34fba 196 * 6 | 5Hz | 19.0ms | 5Hz | 18.6ms | 1kHz
garfieldsg 0:662207e34fba 197 * 7 | -- Reserved -- | -- Reserved -- | Reserved
garfieldsg 0:662207e34fba 198 * </pre>
garfieldsg 0:662207e34fba 199 *
garfieldsg 0:662207e34fba 200 * @return DLFP configuration
garfieldsg 0:662207e34fba 201 * @see MPU6050_RA_CONFIG
garfieldsg 0:662207e34fba 202 * @see MPU6050_CFG_DLPF_CFG_BIT
garfieldsg 0:662207e34fba 203 * @see MPU6050_CFG_DLPF_CFG_LENGTH
garfieldsg 0:662207e34fba 204 */
syundo0730 6:f38dfe62d74c 205 uint8_t MPU6050::getDLPFMode() {
syundo0730 6:f38dfe62d74c 206 i2cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, buffer);
garfieldsg 0:662207e34fba 207 return buffer[0];
garfieldsg 0:662207e34fba 208 }
garfieldsg 0:662207e34fba 209 /** Set digital low-pass filter configuration.
garfieldsg 0:662207e34fba 210 * @param mode New DLFP configuration setting
garfieldsg 0:662207e34fba 211 * @see getDLPFBandwidth()
garfieldsg 0:662207e34fba 212 * @see MPU6050_DLPF_BW_256
garfieldsg 0:662207e34fba 213 * @see MPU6050_RA_CONFIG
garfieldsg 0:662207e34fba 214 * @see MPU6050_CFG_DLPF_CFG_BIT
garfieldsg 0:662207e34fba 215 * @see MPU6050_CFG_DLPF_CFG_LENGTH
garfieldsg 0:662207e34fba 216 */
syundo0730 6:f38dfe62d74c 217 void MPU6050::setDLPFMode(uint8_t mode) {
syundo0730 6:f38dfe62d74c 218 i2cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, mode);
garfieldsg 0:662207e34fba 219 }
garfieldsg 0:662207e34fba 220
garfieldsg 0:662207e34fba 221 // GYRO_CONFIG register
garfieldsg 0:662207e34fba 222
garfieldsg 0:662207e34fba 223 /** Get full-scale gyroscope range.
garfieldsg 0:662207e34fba 224 * The FS_SEL parameter allows setting the full-scale range of the gyro sensors,
garfieldsg 0:662207e34fba 225 * as described in the table below.
garfieldsg 0:662207e34fba 226 *
garfieldsg 0:662207e34fba 227 * <pre>
garfieldsg 0:662207e34fba 228 * 0 = +/- 250 degrees/sec
garfieldsg 0:662207e34fba 229 * 1 = +/- 500 degrees/sec
garfieldsg 0:662207e34fba 230 * 2 = +/- 1000 degrees/sec
garfieldsg 0:662207e34fba 231 * 3 = +/- 2000 degrees/sec
garfieldsg 0:662207e34fba 232 * </pre>
garfieldsg 0:662207e34fba 233 *
garfieldsg 0:662207e34fba 234 * @return Current full-scale gyroscope range setting
garfieldsg 0:662207e34fba 235 * @see MPU6050_GYRO_FS_250
garfieldsg 0:662207e34fba 236 * @see MPU6050_RA_GYRO_CONFIG
garfieldsg 0:662207e34fba 237 * @see MPU6050_GCONFIG_FS_SEL_BIT
garfieldsg 0:662207e34fba 238 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
garfieldsg 0:662207e34fba 239 */
syundo0730 6:f38dfe62d74c 240 uint8_t MPU6050::getFullScaleGyroRange() {
syundo0730 6:f38dfe62d74c 241 i2cdev.readBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, buffer);
garfieldsg 0:662207e34fba 242 return buffer[0];
garfieldsg 0:662207e34fba 243 }
garfieldsg 0:662207e34fba 244 /** Set full-scale gyroscope range.
garfieldsg 0:662207e34fba 245 * @param range New full-scale gyroscope range value
garfieldsg 0:662207e34fba 246 * @see getFullScaleRange()
garfieldsg 0:662207e34fba 247 * @see MPU6050_GYRO_FS_250
garfieldsg 0:662207e34fba 248 * @see MPU6050_RA_GYRO_CONFIG
garfieldsg 0:662207e34fba 249 * @see MPU6050_GCONFIG_FS_SEL_BIT
garfieldsg 0:662207e34fba 250 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
garfieldsg 0:662207e34fba 251 */
syundo0730 6:f38dfe62d74c 252 void MPU6050::setFullScaleGyroRange(uint8_t range) {
syundo0730 6:f38dfe62d74c 253 i2cdev.writeBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range);
garfieldsg 0:662207e34fba 254 }
garfieldsg 0:662207e34fba 255
garfieldsg 0:662207e34fba 256 // ACCEL_CONFIG register
garfieldsg 0:662207e34fba 257
garfieldsg 0:662207e34fba 258 /** Get self-test enabled setting for accelerometer X axis.
garfieldsg 0:662207e34fba 259 * @return Self-test enabled value
garfieldsg 0:662207e34fba 260 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 261 */
syundo0730 6:f38dfe62d74c 262 bool MPU6050::getAccelXSelfTest() {
syundo0730 6:f38dfe62d74c 263 i2cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, buffer);
garfieldsg 0:662207e34fba 264 return buffer[0];
garfieldsg 0:662207e34fba 265 }
garfieldsg 0:662207e34fba 266 /** Get self-test enabled setting for accelerometer X axis.
garfieldsg 0:662207e34fba 267 * @param enabled Self-test enabled value
garfieldsg 0:662207e34fba 268 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 269 */
syundo0730 6:f38dfe62d74c 270 void MPU6050::setAccelXSelfTest(bool enabled) {
syundo0730 6:f38dfe62d74c 271 i2cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, enabled);
garfieldsg 0:662207e34fba 272 }
garfieldsg 0:662207e34fba 273 /** Get self-test enabled value for accelerometer Y axis.
garfieldsg 0:662207e34fba 274 * @return Self-test enabled value
garfieldsg 0:662207e34fba 275 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 276 */
syundo0730 6:f38dfe62d74c 277 bool MPU6050::getAccelYSelfTest() {
syundo0730 6:f38dfe62d74c 278 i2cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, buffer);
garfieldsg 0:662207e34fba 279 return buffer[0];
garfieldsg 0:662207e34fba 280 }
garfieldsg 0:662207e34fba 281 /** Get self-test enabled value for accelerometer Y axis.
garfieldsg 0:662207e34fba 282 * @param enabled Self-test enabled value
garfieldsg 0:662207e34fba 283 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 284 */
syundo0730 6:f38dfe62d74c 285 void MPU6050::setAccelYSelfTest(bool enabled) {
syundo0730 6:f38dfe62d74c 286 i2cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, enabled);
garfieldsg 0:662207e34fba 287 }
garfieldsg 0:662207e34fba 288 /** Get self-test enabled value for accelerometer Z axis.
garfieldsg 0:662207e34fba 289 * @return Self-test enabled value
garfieldsg 0:662207e34fba 290 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 291 */
syundo0730 6:f38dfe62d74c 292 bool MPU6050::getAccelZSelfTest() {
syundo0730 6:f38dfe62d74c 293 i2cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, buffer);
garfieldsg 0:662207e34fba 294 return buffer[0];
garfieldsg 0:662207e34fba 295 }
garfieldsg 0:662207e34fba 296 /** Set self-test enabled value for accelerometer Z axis.
garfieldsg 0:662207e34fba 297 * @param enabled Self-test enabled value
garfieldsg 0:662207e34fba 298 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 299 */
syundo0730 6:f38dfe62d74c 300 void MPU6050::setAccelZSelfTest(bool enabled) {
syundo0730 6:f38dfe62d74c 301 i2cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, enabled);
garfieldsg 0:662207e34fba 302 }
garfieldsg 0:662207e34fba 303 /** Get full-scale accelerometer range.
garfieldsg 0:662207e34fba 304 * The FS_SEL parameter allows setting the full-scale range of the accelerometer
garfieldsg 0:662207e34fba 305 * sensors, as described in the table below.
garfieldsg 0:662207e34fba 306 *
garfieldsg 0:662207e34fba 307 * <pre>
garfieldsg 0:662207e34fba 308 * 0 = +/- 2g
garfieldsg 0:662207e34fba 309 * 1 = +/- 4g
garfieldsg 0:662207e34fba 310 * 2 = +/- 8g
garfieldsg 0:662207e34fba 311 * 3 = +/- 16g
garfieldsg 0:662207e34fba 312 * </pre>
garfieldsg 0:662207e34fba 313 *
garfieldsg 0:662207e34fba 314 * @return Current full-scale accelerometer range setting
garfieldsg 0:662207e34fba 315 * @see MPU6050_ACCEL_FS_2
garfieldsg 0:662207e34fba 316 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 317 * @see MPU6050_ACONFIG_AFS_SEL_BIT
garfieldsg 0:662207e34fba 318 * @see MPU6050_ACONFIG_AFS_SEL_LENGTH
garfieldsg 0:662207e34fba 319 */
syundo0730 6:f38dfe62d74c 320 uint8_t MPU6050::getFullScaleAccelRange() {
syundo0730 6:f38dfe62d74c 321 i2cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, buffer);
garfieldsg 0:662207e34fba 322 return buffer[0];
garfieldsg 0:662207e34fba 323 }
garfieldsg 0:662207e34fba 324 /** Set full-scale accelerometer range.
garfieldsg 0:662207e34fba 325 * @param range New full-scale accelerometer range setting
garfieldsg 0:662207e34fba 326 * @see getFullScaleAccelRange()
garfieldsg 0:662207e34fba 327 */
syundo0730 6:f38dfe62d74c 328 void MPU6050::setFullScaleAccelRange(uint8_t range) {
syundo0730 6:f38dfe62d74c 329 i2cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range);
garfieldsg 0:662207e34fba 330 }
garfieldsg 0:662207e34fba 331 /** Get the high-pass filter configuration.
garfieldsg 0:662207e34fba 332 * The DHPF is a filter module in the path leading to motion detectors (Free
garfieldsg 0:662207e34fba 333 * Fall, Motion threshold, and Zero Motion). The high pass filter output is not
garfieldsg 0:662207e34fba 334 * available to the data registers (see Figure in Section 8 of the MPU-6000/
garfieldsg 0:662207e34fba 335 * MPU-6050 Product Specification document).
garfieldsg 0:662207e34fba 336 *
garfieldsg 0:662207e34fba 337 * The high pass filter has three modes:
garfieldsg 0:662207e34fba 338 *
garfieldsg 0:662207e34fba 339 * <pre>
garfieldsg 0:662207e34fba 340 * Reset: The filter output settles to zero within one sample. This
garfieldsg 0:662207e34fba 341 * effectively disables the high pass filter. This mode may be toggled
garfieldsg 0:662207e34fba 342 * to quickly settle the filter.
garfieldsg 0:662207e34fba 343 *
garfieldsg 0:662207e34fba 344 * On: The high pass filter will pass signals above the cut off frequency.
garfieldsg 0:662207e34fba 345 *
garfieldsg 0:662207e34fba 346 * Hold: When triggered, the filter holds the present sample. The filter
garfieldsg 0:662207e34fba 347 * output will be the difference between the input sample and the held
garfieldsg 0:662207e34fba 348 * sample.
garfieldsg 0:662207e34fba 349 * </pre>
garfieldsg 0:662207e34fba 350 *
garfieldsg 0:662207e34fba 351 * <pre>
garfieldsg 0:662207e34fba 352 * ACCEL_HPF | Filter Mode | Cut-off Frequency
garfieldsg 0:662207e34fba 353 * ----------+-------------+------------------
garfieldsg 0:662207e34fba 354 * 0 | Reset | None
garfieldsg 0:662207e34fba 355 * 1 | On | 5Hz
garfieldsg 0:662207e34fba 356 * 2 | On | 2.5Hz
garfieldsg 0:662207e34fba 357 * 3 | On | 1.25Hz
garfieldsg 0:662207e34fba 358 * 4 | On | 0.63Hz
garfieldsg 0:662207e34fba 359 * 7 | Hold | None
garfieldsg 0:662207e34fba 360 * </pre>
garfieldsg 0:662207e34fba 361 *
garfieldsg 0:662207e34fba 362 * @return Current high-pass filter configuration
garfieldsg 0:662207e34fba 363 * @see MPU6050_DHPF_RESET
garfieldsg 0:662207e34fba 364 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 365 */
syundo0730 6:f38dfe62d74c 366 uint8_t MPU6050::getDHPFMode() {
syundo0730 6:f38dfe62d74c 367 i2cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, buffer);
garfieldsg 0:662207e34fba 368 return buffer[0];
garfieldsg 0:662207e34fba 369 }
garfieldsg 0:662207e34fba 370 /** Set the high-pass filter configuration.
garfieldsg 0:662207e34fba 371 * @param bandwidth New high-pass filter configuration
garfieldsg 0:662207e34fba 372 * @see setDHPFMode()
garfieldsg 0:662207e34fba 373 * @see MPU6050_DHPF_RESET
garfieldsg 0:662207e34fba 374 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 375 */
syundo0730 6:f38dfe62d74c 376 void MPU6050::setDHPFMode(uint8_t bandwidth) {
syundo0730 6:f38dfe62d74c 377 i2cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, bandwidth);
garfieldsg 0:662207e34fba 378 }
garfieldsg 0:662207e34fba 379
garfieldsg 0:662207e34fba 380 // FF_THR register
garfieldsg 0:662207e34fba 381
garfieldsg 0:662207e34fba 382 /** Get free-fall event acceleration threshold.
garfieldsg 0:662207e34fba 383 * This register configures the detection threshold for Free Fall event
garfieldsg 0:662207e34fba 384 * detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the
garfieldsg 0:662207e34fba 385 * absolute value of the accelerometer measurements for the three axes are each
garfieldsg 0:662207e34fba 386 * less than the detection threshold. This condition increments the Free Fall
garfieldsg 0:662207e34fba 387 * duration counter (Register 30). The Free Fall interrupt is triggered when the
garfieldsg 0:662207e34fba 388 * Free Fall duration counter reaches the time specified in FF_DUR.
garfieldsg 0:662207e34fba 389 *
garfieldsg 0:662207e34fba 390 * For more details on the Free Fall detection interrupt, see Section 8.2 of the
garfieldsg 0:662207e34fba 391 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
garfieldsg 0:662207e34fba 392 * 58 of this document.
garfieldsg 0:662207e34fba 393 *
garfieldsg 0:662207e34fba 394 * @return Current free-fall acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 395 * @see MPU6050_RA_FF_THR
garfieldsg 0:662207e34fba 396 */
syundo0730 6:f38dfe62d74c 397 uint8_t MPU6050::getFreefallDetectionThreshold() {
syundo0730 6:f38dfe62d74c 398 i2cdev.readByte(devAddr, MPU6050_RA_FF_THR, buffer);
garfieldsg 0:662207e34fba 399 return buffer[0];
garfieldsg 0:662207e34fba 400 }
garfieldsg 0:662207e34fba 401 /** Get free-fall event acceleration threshold.
garfieldsg 0:662207e34fba 402 * @param threshold New free-fall acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 403 * @see getFreefallDetectionThreshold()
garfieldsg 0:662207e34fba 404 * @see MPU6050_RA_FF_THR
garfieldsg 0:662207e34fba 405 */
syundo0730 6:f38dfe62d74c 406 void MPU6050::setFreefallDetectionThreshold(uint8_t threshold) {
syundo0730 6:f38dfe62d74c 407 i2cdev.writeByte(devAddr, MPU6050_RA_FF_THR, threshold);
garfieldsg 0:662207e34fba 408 }
garfieldsg 0:662207e34fba 409
garfieldsg 0:662207e34fba 410 // FF_DUR register
garfieldsg 0:662207e34fba 411
garfieldsg 0:662207e34fba 412 /** Get free-fall event duration threshold.
garfieldsg 0:662207e34fba 413 * This register configures the duration counter threshold for Free Fall event
garfieldsg 0:662207e34fba 414 * detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit
garfieldsg 0:662207e34fba 415 * of 1 LSB = 1 ms.
garfieldsg 0:662207e34fba 416 *
garfieldsg 0:662207e34fba 417 * The Free Fall duration counter increments while the absolute value of the
garfieldsg 0:662207e34fba 418 * accelerometer measurements are each less than the detection threshold
garfieldsg 0:662207e34fba 419 * (Register 29). The Free Fall interrupt is triggered when the Free Fall
garfieldsg 0:662207e34fba 420 * duration counter reaches the time specified in this register.
garfieldsg 0:662207e34fba 421 *
garfieldsg 0:662207e34fba 422 * For more details on the Free Fall detection interrupt, see Section 8.2 of
garfieldsg 0:662207e34fba 423 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
garfieldsg 0:662207e34fba 424 * and 58 of this document.
garfieldsg 0:662207e34fba 425 *
garfieldsg 0:662207e34fba 426 * @return Current free-fall duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 427 * @see MPU6050_RA_FF_DUR
garfieldsg 0:662207e34fba 428 */
syundo0730 6:f38dfe62d74c 429 uint8_t MPU6050::getFreefallDetectionDuration() {
syundo0730 6:f38dfe62d74c 430 i2cdev.readByte(devAddr, MPU6050_RA_FF_DUR, buffer);
garfieldsg 0:662207e34fba 431 return buffer[0];
garfieldsg 0:662207e34fba 432 }
garfieldsg 0:662207e34fba 433 /** Get free-fall event duration threshold.
garfieldsg 0:662207e34fba 434 * @param duration New free-fall duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 435 * @see getFreefallDetectionDuration()
garfieldsg 0:662207e34fba 436 * @see MPU6050_RA_FF_DUR
garfieldsg 0:662207e34fba 437 */
syundo0730 6:f38dfe62d74c 438 void MPU6050::setFreefallDetectionDuration(uint8_t duration) {
syundo0730 6:f38dfe62d74c 439 i2cdev.writeByte(devAddr, MPU6050_RA_FF_DUR, duration);
garfieldsg 0:662207e34fba 440 }
garfieldsg 0:662207e34fba 441
garfieldsg 0:662207e34fba 442 // MOT_THR register
garfieldsg 0:662207e34fba 443
garfieldsg 0:662207e34fba 444 /** Get motion detection event acceleration threshold.
garfieldsg 0:662207e34fba 445 * This register configures the detection threshold for Motion interrupt
garfieldsg 0:662207e34fba 446 * generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the
garfieldsg 0:662207e34fba 447 * absolute value of any of the accelerometer measurements exceeds this Motion
garfieldsg 0:662207e34fba 448 * detection threshold. This condition increments the Motion detection duration
garfieldsg 0:662207e34fba 449 * counter (Register 32). The Motion detection interrupt is triggered when the
garfieldsg 0:662207e34fba 450 * Motion Detection counter reaches the time count specified in MOT_DUR
garfieldsg 0:662207e34fba 451 * (Register 32).
garfieldsg 0:662207e34fba 452 *
garfieldsg 0:662207e34fba 453 * The Motion interrupt will indicate the axis and polarity of detected motion
garfieldsg 0:662207e34fba 454 * in MOT_DETECT_STATUS (Register 97).
garfieldsg 0:662207e34fba 455 *
garfieldsg 0:662207e34fba 456 * For more details on the Motion detection interrupt, see Section 8.3 of the
garfieldsg 0:662207e34fba 457 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
garfieldsg 0:662207e34fba 458 * 58 of this document.
garfieldsg 0:662207e34fba 459 *
garfieldsg 0:662207e34fba 460 * @return Current motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 461 * @see MPU6050_RA_MOT_THR
garfieldsg 0:662207e34fba 462 */
syundo0730 6:f38dfe62d74c 463 uint8_t MPU6050::getMotionDetectionThreshold() {
syundo0730 6:f38dfe62d74c 464 i2cdev.readByte(devAddr, MPU6050_RA_MOT_THR, buffer);
garfieldsg 0:662207e34fba 465 return buffer[0];
garfieldsg 0:662207e34fba 466 }
garfieldsg 0:662207e34fba 467 /** Set free-fall event acceleration threshold.
garfieldsg 0:662207e34fba 468 * @param threshold New motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 469 * @see getMotionDetectionThreshold()
garfieldsg 0:662207e34fba 470 * @see MPU6050_RA_MOT_THR
garfieldsg 0:662207e34fba 471 */
syundo0730 6:f38dfe62d74c 472 void MPU6050::setMotionDetectionThreshold(uint8_t threshold) {
syundo0730 6:f38dfe62d74c 473 i2cdev.writeByte(devAddr, MPU6050_RA_MOT_THR, threshold);
garfieldsg 0:662207e34fba 474 }
garfieldsg 0:662207e34fba 475
garfieldsg 0:662207e34fba 476 // MOT_DUR register
garfieldsg 0:662207e34fba 477
garfieldsg 0:662207e34fba 478 /** Get motion detection event duration threshold.
garfieldsg 0:662207e34fba 479 * This register configures the duration counter threshold for Motion interrupt
garfieldsg 0:662207e34fba 480 * generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit
garfieldsg 0:662207e34fba 481 * of 1LSB = 1ms. The Motion detection duration counter increments when the
garfieldsg 0:662207e34fba 482 * absolute value of any of the accelerometer measurements exceeds the Motion
garfieldsg 0:662207e34fba 483 * detection threshold (Register 31). The Motion detection interrupt is
garfieldsg 0:662207e34fba 484 * triggered when the Motion detection counter reaches the time count specified
garfieldsg 0:662207e34fba 485 * in this register.
garfieldsg 0:662207e34fba 486 *
garfieldsg 0:662207e34fba 487 * For more details on the Motion detection interrupt, see Section 8.3 of the
garfieldsg 0:662207e34fba 488 * MPU-6000/MPU-6050 Product Specification document.
garfieldsg 0:662207e34fba 489 *
garfieldsg 0:662207e34fba 490 * @return Current motion detection duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 491 * @see MPU6050_RA_MOT_DUR
garfieldsg 0:662207e34fba 492 */
syundo0730 6:f38dfe62d74c 493 uint8_t MPU6050::getMotionDetectionDuration() {
syundo0730 6:f38dfe62d74c 494 i2cdev.readByte(devAddr, MPU6050_RA_MOT_DUR, buffer);
garfieldsg 0:662207e34fba 495 return buffer[0];
garfieldsg 0:662207e34fba 496 }
garfieldsg 0:662207e34fba 497 /** Set motion detection event duration threshold.
garfieldsg 0:662207e34fba 498 * @param duration New motion detection duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 499 * @see getMotionDetectionDuration()
garfieldsg 0:662207e34fba 500 * @see MPU6050_RA_MOT_DUR
garfieldsg 0:662207e34fba 501 */
syundo0730 6:f38dfe62d74c 502 void MPU6050::setMotionDetectionDuration(uint8_t duration) {
syundo0730 6:f38dfe62d74c 503 i2cdev.writeByte(devAddr, MPU6050_RA_MOT_DUR, duration);
garfieldsg 0:662207e34fba 504 }
garfieldsg 0:662207e34fba 505
garfieldsg 0:662207e34fba 506 // ZRMOT_THR register
garfieldsg 0:662207e34fba 507
garfieldsg 0:662207e34fba 508 /** Get zero motion detection event acceleration threshold.
garfieldsg 0:662207e34fba 509 * This register configures the detection threshold for Zero Motion interrupt
garfieldsg 0:662207e34fba 510 * generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when
garfieldsg 0:662207e34fba 511 * the absolute value of the accelerometer measurements for the 3 axes are each
garfieldsg 0:662207e34fba 512 * less than the detection threshold. This condition increments the Zero Motion
garfieldsg 0:662207e34fba 513 * duration counter (Register 34). The Zero Motion interrupt is triggered when
garfieldsg 0:662207e34fba 514 * the Zero Motion duration counter reaches the time count specified in
garfieldsg 0:662207e34fba 515 * ZRMOT_DUR (Register 34).
garfieldsg 0:662207e34fba 516 *
garfieldsg 0:662207e34fba 517 * Unlike Free Fall or Motion detection, Zero Motion detection triggers an
garfieldsg 0:662207e34fba 518 * interrupt both when Zero Motion is first detected and when Zero Motion is no
garfieldsg 0:662207e34fba 519 * longer detected.
garfieldsg 0:662207e34fba 520 *
garfieldsg 0:662207e34fba 521 * When a zero motion event is detected, a Zero Motion Status will be indicated
garfieldsg 0:662207e34fba 522 * in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion
garfieldsg 0:662207e34fba 523 * condition is detected, the status bit is set to 1. When a zero-motion-to-
garfieldsg 0:662207e34fba 524 * motion condition is detected, the status bit is set to 0.
garfieldsg 0:662207e34fba 525 *
garfieldsg 0:662207e34fba 526 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
garfieldsg 0:662207e34fba 527 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
garfieldsg 0:662207e34fba 528 * and 58 of this document.
garfieldsg 0:662207e34fba 529 *
garfieldsg 0:662207e34fba 530 * @return Current zero motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 531 * @see MPU6050_RA_ZRMOT_THR
garfieldsg 0:662207e34fba 532 */
syundo0730 6:f38dfe62d74c 533 uint8_t MPU6050::getZeroMotionDetectionThreshold() {
syundo0730 6:f38dfe62d74c 534 i2cdev.readByte(devAddr, MPU6050_RA_ZRMOT_THR, buffer);
garfieldsg 0:662207e34fba 535 return buffer[0];
garfieldsg 0:662207e34fba 536 }
garfieldsg 0:662207e34fba 537 /** Set zero motion detection event acceleration threshold.
garfieldsg 0:662207e34fba 538 * @param threshold New zero motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 539 * @see getZeroMotionDetectionThreshold()
garfieldsg 0:662207e34fba 540 * @see MPU6050_RA_ZRMOT_THR
garfieldsg 0:662207e34fba 541 */
syundo0730 6:f38dfe62d74c 542 void MPU6050::setZeroMotionDetectionThreshold(uint8_t threshold) {
syundo0730 6:f38dfe62d74c 543 i2cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_THR, threshold);
garfieldsg 0:662207e34fba 544 }
garfieldsg 0:662207e34fba 545
garfieldsg 0:662207e34fba 546 // ZRMOT_DUR register
garfieldsg 0:662207e34fba 547
garfieldsg 0:662207e34fba 548 /** Get zero motion detection event duration threshold.
garfieldsg 0:662207e34fba 549 * This register configures the duration counter threshold for Zero Motion
garfieldsg 0:662207e34fba 550 * interrupt generation. The duration counter ticks at 16 Hz, therefore
garfieldsg 0:662207e34fba 551 * ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter
garfieldsg 0:662207e34fba 552 * increments while the absolute value of the accelerometer measurements are
garfieldsg 0:662207e34fba 553 * each less than the detection threshold (Register 33). The Zero Motion
garfieldsg 0:662207e34fba 554 * interrupt is triggered when the Zero Motion duration counter reaches the time
garfieldsg 0:662207e34fba 555 * count specified in this register.
garfieldsg 0:662207e34fba 556 *
garfieldsg 0:662207e34fba 557 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
garfieldsg 0:662207e34fba 558 * the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56
garfieldsg 0:662207e34fba 559 * and 58 of this document.
garfieldsg 0:662207e34fba 560 *
garfieldsg 0:662207e34fba 561 * @return Current zero motion detection duration threshold value (LSB = 64ms)
garfieldsg 0:662207e34fba 562 * @see MPU6050_RA_ZRMOT_DUR
garfieldsg 0:662207e34fba 563 */
syundo0730 6:f38dfe62d74c 564 uint8_t MPU6050::getZeroMotionDetectionDuration() {
syundo0730 6:f38dfe62d74c 565 i2cdev.readByte(devAddr, MPU6050_RA_ZRMOT_DUR, buffer);
garfieldsg 0:662207e34fba 566 return buffer[0];
garfieldsg 0:662207e34fba 567 }
garfieldsg 0:662207e34fba 568 /** Set zero motion detection event duration threshold.
garfieldsg 0:662207e34fba 569 * @param duration New zero motion detection duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 570 * @see getZeroMotionDetectionDuration()
garfieldsg 0:662207e34fba 571 * @see MPU6050_RA_ZRMOT_DUR
garfieldsg 0:662207e34fba 572 */
syundo0730 6:f38dfe62d74c 573 void MPU6050::setZeroMotionDetectionDuration(uint8_t duration) {
syundo0730 6:f38dfe62d74c 574 i2cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_DUR, duration);
garfieldsg 0:662207e34fba 575 }
garfieldsg 0:662207e34fba 576
garfieldsg 0:662207e34fba 577 // FIFO_EN register
garfieldsg 0:662207e34fba 578
garfieldsg 0:662207e34fba 579 /** Get temperature FIFO enabled value.
garfieldsg 0:662207e34fba 580 * When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and
garfieldsg 0:662207e34fba 581 * 66) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 582 * @return Current temperature FIFO enabled value
garfieldsg 0:662207e34fba 583 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 584 */
syundo0730 6:f38dfe62d74c 585 bool MPU6050::getTempFIFOEnabled() {
syundo0730 6:f38dfe62d74c 586 i2cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 587 return buffer[0];
garfieldsg 0:662207e34fba 588 }
garfieldsg 0:662207e34fba 589 /** Set temperature FIFO enabled value.
garfieldsg 0:662207e34fba 590 * @param enabled New temperature FIFO enabled value
garfieldsg 0:662207e34fba 591 * @see getTempFIFOEnabled()
garfieldsg 0:662207e34fba 592 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 593 */
syundo0730 6:f38dfe62d74c 594 void MPU6050::setTempFIFOEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 595 i2cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 596 }
garfieldsg 0:662207e34fba 597 /** Get gyroscope X-axis FIFO enabled value.
garfieldsg 0:662207e34fba 598 * When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and
garfieldsg 0:662207e34fba 599 * 68) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 600 * @return Current gyroscope X-axis FIFO enabled value
garfieldsg 0:662207e34fba 601 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 602 */
syundo0730 6:f38dfe62d74c 603 bool MPU6050::getXGyroFIFOEnabled() {
syundo0730 6:f38dfe62d74c 604 i2cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 605 return buffer[0];
garfieldsg 0:662207e34fba 606 }
garfieldsg 0:662207e34fba 607 /** Set gyroscope X-axis FIFO enabled value.
garfieldsg 0:662207e34fba 608 * @param enabled New gyroscope X-axis FIFO enabled value
garfieldsg 0:662207e34fba 609 * @see getXGyroFIFOEnabled()
garfieldsg 0:662207e34fba 610 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 611 */
syundo0730 6:f38dfe62d74c 612 void MPU6050::setXGyroFIFOEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 613 i2cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 614 }
garfieldsg 0:662207e34fba 615 /** Get gyroscope Y-axis FIFO enabled value.
garfieldsg 0:662207e34fba 616 * When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and
garfieldsg 0:662207e34fba 617 * 70) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 618 * @return Current gyroscope Y-axis FIFO enabled value
garfieldsg 0:662207e34fba 619 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 620 */
syundo0730 6:f38dfe62d74c 621 bool MPU6050::getYGyroFIFOEnabled() {
syundo0730 6:f38dfe62d74c 622 i2cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 623 return buffer[0];
garfieldsg 0:662207e34fba 624 }
garfieldsg 0:662207e34fba 625 /** Set gyroscope Y-axis FIFO enabled value.
garfieldsg 0:662207e34fba 626 * @param enabled New gyroscope Y-axis FIFO enabled value
garfieldsg 0:662207e34fba 627 * @see getYGyroFIFOEnabled()
garfieldsg 0:662207e34fba 628 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 629 */
syundo0730 6:f38dfe62d74c 630 void MPU6050::setYGyroFIFOEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 631 i2cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 632 }
garfieldsg 0:662207e34fba 633 /** Get gyroscope Z-axis FIFO enabled value.
garfieldsg 0:662207e34fba 634 * When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and
garfieldsg 0:662207e34fba 635 * 72) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 636 * @return Current gyroscope Z-axis FIFO enabled value
garfieldsg 0:662207e34fba 637 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 638 */
syundo0730 6:f38dfe62d74c 639 bool MPU6050::getZGyroFIFOEnabled() {
syundo0730 6:f38dfe62d74c 640 i2cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 641 return buffer[0];
garfieldsg 0:662207e34fba 642 }
garfieldsg 0:662207e34fba 643 /** Set gyroscope Z-axis FIFO enabled value.
garfieldsg 0:662207e34fba 644 * @param enabled New gyroscope Z-axis FIFO enabled value
garfieldsg 0:662207e34fba 645 * @see getZGyroFIFOEnabled()
garfieldsg 0:662207e34fba 646 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 647 */
syundo0730 6:f38dfe62d74c 648 void MPU6050::setZGyroFIFOEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 649 i2cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 650 }
garfieldsg 0:662207e34fba 651 /** Get accelerometer FIFO enabled value.
garfieldsg 0:662207e34fba 652 * When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H,
garfieldsg 0:662207e34fba 653 * ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be
garfieldsg 0:662207e34fba 654 * written into the FIFO buffer.
garfieldsg 0:662207e34fba 655 * @return Current accelerometer FIFO enabled value
garfieldsg 0:662207e34fba 656 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 657 */
syundo0730 6:f38dfe62d74c 658 bool MPU6050::getAccelFIFOEnabled() {
syundo0730 6:f38dfe62d74c 659 i2cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 660 return buffer[0];
garfieldsg 0:662207e34fba 661 }
garfieldsg 0:662207e34fba 662 /** Set accelerometer FIFO enabled value.
garfieldsg 0:662207e34fba 663 * @param enabled New accelerometer FIFO enabled value
garfieldsg 0:662207e34fba 664 * @see getAccelFIFOEnabled()
garfieldsg 0:662207e34fba 665 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 666 */
syundo0730 6:f38dfe62d74c 667 void MPU6050::setAccelFIFOEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 668 i2cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 669 }
garfieldsg 0:662207e34fba 670 /** Get Slave 2 FIFO enabled value.
garfieldsg 0:662207e34fba 671 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 672 * associated with Slave 2 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 673 * @return Current Slave 2 FIFO enabled value
garfieldsg 0:662207e34fba 674 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 675 */
syundo0730 6:f38dfe62d74c 676 bool MPU6050::getSlave2FIFOEnabled() {
syundo0730 6:f38dfe62d74c 677 i2cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 678 return buffer[0];
garfieldsg 0:662207e34fba 679 }
garfieldsg 0:662207e34fba 680 /** Set Slave 2 FIFO enabled value.
garfieldsg 0:662207e34fba 681 * @param enabled New Slave 2 FIFO enabled value
garfieldsg 0:662207e34fba 682 * @see getSlave2FIFOEnabled()
garfieldsg 0:662207e34fba 683 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 684 */
syundo0730 6:f38dfe62d74c 685 void MPU6050::setSlave2FIFOEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 686 i2cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 687 }
garfieldsg 0:662207e34fba 688 /** Get Slave 1 FIFO enabled value.
garfieldsg 0:662207e34fba 689 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 690 * associated with Slave 1 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 691 * @return Current Slave 1 FIFO enabled value
garfieldsg 0:662207e34fba 692 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 693 */
syundo0730 6:f38dfe62d74c 694 bool MPU6050::getSlave1FIFOEnabled() {
syundo0730 6:f38dfe62d74c 695 i2cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 696 return buffer[0];
garfieldsg 0:662207e34fba 697 }
garfieldsg 0:662207e34fba 698 /** Set Slave 1 FIFO enabled value.
garfieldsg 0:662207e34fba 699 * @param enabled New Slave 1 FIFO enabled value
garfieldsg 0:662207e34fba 700 * @see getSlave1FIFOEnabled()
garfieldsg 0:662207e34fba 701 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 702 */
syundo0730 6:f38dfe62d74c 703 void MPU6050::setSlave1FIFOEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 704 i2cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 705 }
garfieldsg 0:662207e34fba 706 /** Get Slave 0 FIFO enabled value.
garfieldsg 0:662207e34fba 707 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 708 * associated with Slave 0 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 709 * @return Current Slave 0 FIFO enabled value
garfieldsg 0:662207e34fba 710 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 711 */
syundo0730 6:f38dfe62d74c 712 bool MPU6050::getSlave0FIFOEnabled() {
syundo0730 6:f38dfe62d74c 713 i2cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 714 return buffer[0];
garfieldsg 0:662207e34fba 715 }
garfieldsg 0:662207e34fba 716 /** Set Slave 0 FIFO enabled value.
garfieldsg 0:662207e34fba 717 * @param enabled New Slave 0 FIFO enabled value
garfieldsg 0:662207e34fba 718 * @see getSlave0FIFOEnabled()
garfieldsg 0:662207e34fba 719 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 720 */
syundo0730 6:f38dfe62d74c 721 void MPU6050::setSlave0FIFOEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 722 i2cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 723 }
garfieldsg 0:662207e34fba 724
garfieldsg 0:662207e34fba 725 // I2C_MST_CTRL register
garfieldsg 0:662207e34fba 726
garfieldsg 0:662207e34fba 727 /** Get multi-master enabled value.
garfieldsg 0:662207e34fba 728 * Multi-master capability allows multiple I2C masters to operate on the same
garfieldsg 0:662207e34fba 729 * bus. In circuits where multi-master capability is required, set MULT_MST_EN
garfieldsg 0:662207e34fba 730 * to 1. This will increase current drawn by approximately 30uA.
garfieldsg 0:662207e34fba 731 *
garfieldsg 0:662207e34fba 732 * In circuits where multi-master capability is required, the state of the I2C
garfieldsg 0:662207e34fba 733 * bus must always be monitored by each separate I2C Master. Before an I2C
garfieldsg 0:662207e34fba 734 * Master can assume arbitration of the bus, it must first confirm that no other
garfieldsg 0:662207e34fba 735 * I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the
garfieldsg 0:662207e34fba 736 * MPU-60X0's bus arbitration detection logic is turned on, enabling it to
garfieldsg 0:662207e34fba 737 * detect when the bus is available.
garfieldsg 0:662207e34fba 738 *
garfieldsg 0:662207e34fba 739 * @return Current multi-master enabled value
garfieldsg 0:662207e34fba 740 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 741 */
syundo0730 6:f38dfe62d74c 742 bool MPU6050::getMultiMasterEnabled() {
syundo0730 6:f38dfe62d74c 743 i2cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, buffer);
garfieldsg 0:662207e34fba 744 return buffer[0];
garfieldsg 0:662207e34fba 745 }
garfieldsg 0:662207e34fba 746 /** Set multi-master enabled value.
garfieldsg 0:662207e34fba 747 * @param enabled New multi-master enabled value
garfieldsg 0:662207e34fba 748 * @see getMultiMasterEnabled()
garfieldsg 0:662207e34fba 749 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 750 */
syundo0730 6:f38dfe62d74c 751 void MPU6050::setMultiMasterEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 752 i2cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, enabled);
garfieldsg 0:662207e34fba 753 }
garfieldsg 0:662207e34fba 754 /** Get wait-for-external-sensor-data enabled value.
garfieldsg 0:662207e34fba 755 * When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be
garfieldsg 0:662207e34fba 756 * delayed until External Sensor data from the Slave Devices are loaded into the
garfieldsg 0:662207e34fba 757 * EXT_SENS_DATA registers. This is used to ensure that both the internal sensor
garfieldsg 0:662207e34fba 758 * data (i.e. from gyro and accel) and external sensor data have been loaded to
garfieldsg 0:662207e34fba 759 * their respective data registers (i.e. the data is synced) when the Data Ready
garfieldsg 0:662207e34fba 760 * interrupt is triggered.
garfieldsg 0:662207e34fba 761 *
garfieldsg 0:662207e34fba 762 * @return Current wait-for-external-sensor-data enabled value
garfieldsg 0:662207e34fba 763 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 764 */
syundo0730 6:f38dfe62d74c 765 bool MPU6050::getWaitForExternalSensorEnabled() {
syundo0730 6:f38dfe62d74c 766 i2cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, buffer);
garfieldsg 0:662207e34fba 767 return buffer[0];
garfieldsg 0:662207e34fba 768 }
garfieldsg 0:662207e34fba 769 /** Set wait-for-external-sensor-data enabled value.
garfieldsg 0:662207e34fba 770 * @param enabled New wait-for-external-sensor-data enabled value
garfieldsg 0:662207e34fba 771 * @see getWaitForExternalSensorEnabled()
garfieldsg 0:662207e34fba 772 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 773 */
syundo0730 6:f38dfe62d74c 774 void MPU6050::setWaitForExternalSensorEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 775 i2cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, enabled);
garfieldsg 0:662207e34fba 776 }
garfieldsg 0:662207e34fba 777 /** Get Slave 3 FIFO enabled value.
garfieldsg 0:662207e34fba 778 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 779 * associated with Slave 3 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 780 * @return Current Slave 3 FIFO enabled value
garfieldsg 0:662207e34fba 781 * @see MPU6050_RA_MST_CTRL
garfieldsg 0:662207e34fba 782 */
syundo0730 6:f38dfe62d74c 783 bool MPU6050::getSlave3FIFOEnabled() {
syundo0730 6:f38dfe62d74c 784 i2cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 785 return buffer[0];
garfieldsg 0:662207e34fba 786 }
garfieldsg 0:662207e34fba 787 /** Set Slave 3 FIFO enabled value.
garfieldsg 0:662207e34fba 788 * @param enabled New Slave 3 FIFO enabled value
garfieldsg 0:662207e34fba 789 * @see getSlave3FIFOEnabled()
garfieldsg 0:662207e34fba 790 * @see MPU6050_RA_MST_CTRL
garfieldsg 0:662207e34fba 791 */
syundo0730 6:f38dfe62d74c 792 void MPU6050::setSlave3FIFOEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 793 i2cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 794 }
garfieldsg 0:662207e34fba 795 /** Get slave read/write transition enabled value.
garfieldsg 0:662207e34fba 796 * The I2C_MST_P_NSR bit configures the I2C Master's transition from one slave
garfieldsg 0:662207e34fba 797 * read to the next slave read. If the bit equals 0, there will be a restart
garfieldsg 0:662207e34fba 798 * between reads. If the bit equals 1, there will be a stop followed by a start
garfieldsg 0:662207e34fba 799 * of the following read. When a write transaction follows a read transaction,
garfieldsg 0:662207e34fba 800 * the stop followed by a start of the successive write will be always used.
garfieldsg 0:662207e34fba 801 *
garfieldsg 0:662207e34fba 802 * @return Current slave read/write transition enabled value
garfieldsg 0:662207e34fba 803 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 804 */
syundo0730 6:f38dfe62d74c 805 bool MPU6050::getSlaveReadWriteTransitionEnabled() {
syundo0730 6:f38dfe62d74c 806 i2cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, buffer);
garfieldsg 0:662207e34fba 807 return buffer[0];
garfieldsg 0:662207e34fba 808 }
garfieldsg 0:662207e34fba 809 /** Set slave read/write transition enabled value.
garfieldsg 0:662207e34fba 810 * @param enabled New slave read/write transition enabled value
garfieldsg 0:662207e34fba 811 * @see getSlaveReadWriteTransitionEnabled()
garfieldsg 0:662207e34fba 812 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 813 */
syundo0730 6:f38dfe62d74c 814 void MPU6050::setSlaveReadWriteTransitionEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 815 i2cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, enabled);
garfieldsg 0:662207e34fba 816 }
garfieldsg 0:662207e34fba 817 /** Get I2C master clock speed.
garfieldsg 0:662207e34fba 818 * I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the
garfieldsg 0:662207e34fba 819 * MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to
garfieldsg 0:662207e34fba 820 * the following table:
garfieldsg 0:662207e34fba 821 *
garfieldsg 0:662207e34fba 822 * <pre>
garfieldsg 0:662207e34fba 823 * I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider
garfieldsg 0:662207e34fba 824 * ------------+------------------------+-------------------
garfieldsg 0:662207e34fba 825 * 0 | 348kHz | 23
garfieldsg 0:662207e34fba 826 * 1 | 333kHz | 24
garfieldsg 0:662207e34fba 827 * 2 | 320kHz | 25
garfieldsg 0:662207e34fba 828 * 3 | 308kHz | 26
garfieldsg 0:662207e34fba 829 * 4 | 296kHz | 27
garfieldsg 0:662207e34fba 830 * 5 | 286kHz | 28
garfieldsg 0:662207e34fba 831 * 6 | 276kHz | 29
garfieldsg 0:662207e34fba 832 * 7 | 267kHz | 30
garfieldsg 0:662207e34fba 833 * 8 | 258kHz | 31
garfieldsg 0:662207e34fba 834 * 9 | 500kHz | 16
garfieldsg 0:662207e34fba 835 * 10 | 471kHz | 17
garfieldsg 0:662207e34fba 836 * 11 | 444kHz | 18
garfieldsg 0:662207e34fba 837 * 12 | 421kHz | 19
garfieldsg 0:662207e34fba 838 * 13 | 400kHz | 20
garfieldsg 0:662207e34fba 839 * 14 | 381kHz | 21
garfieldsg 0:662207e34fba 840 * 15 | 364kHz | 22
garfieldsg 0:662207e34fba 841 * </pre>
garfieldsg 0:662207e34fba 842 *
garfieldsg 0:662207e34fba 843 * @return Current I2C master clock speed
garfieldsg 0:662207e34fba 844 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 845 */
syundo0730 6:f38dfe62d74c 846 uint8_t MPU6050::getMasterClockSpeed() {
syundo0730 6:f38dfe62d74c 847 i2cdev.readBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, buffer);
garfieldsg 0:662207e34fba 848 return buffer[0];
garfieldsg 0:662207e34fba 849 }
garfieldsg 0:662207e34fba 850 /** Set I2C master clock speed.
garfieldsg 0:662207e34fba 851 * @reparam speed Current I2C master clock speed
garfieldsg 0:662207e34fba 852 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 853 */
syundo0730 6:f38dfe62d74c 854 void MPU6050::setMasterClockSpeed(uint8_t speed) {
syundo0730 6:f38dfe62d74c 855 i2cdev.writeBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, speed);
garfieldsg 0:662207e34fba 856 }
garfieldsg 0:662207e34fba 857
garfieldsg 0:662207e34fba 858 // I2C_SLV* registers (Slave 0-3)
garfieldsg 0:662207e34fba 859
garfieldsg 0:662207e34fba 860 /** Get the I2C address of the specified slave (0-3).
garfieldsg 0:662207e34fba 861 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
garfieldsg 0:662207e34fba 862 * operation, and if it is cleared, then it's a write operation. The remaining
garfieldsg 0:662207e34fba 863 * bits (6-0) are the 7-bit device address of the slave device.
garfieldsg 0:662207e34fba 864 *
syundo0730 6:f38dfe62d74c 865 * In read mode, the result of the read is placed in the lowest available
garfieldsg 0:662207e34fba 866 * EXT_SENS_DATA register. For further information regarding the allocation of
garfieldsg 0:662207e34fba 867 * read results, please refer to the EXT_SENS_DATA register description
garfieldsg 0:662207e34fba 868 * (Registers 73 - 96).
garfieldsg 0:662207e34fba 869 *
garfieldsg 0:662207e34fba 870 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
garfieldsg 0:662207e34fba 871 * characteristics, and so it has its own functions (getSlave4* and setSlave4*).
garfieldsg 0:662207e34fba 872 *
garfieldsg 0:662207e34fba 873 * I2C data transactions are performed at the Sample Rate, as defined in
garfieldsg 0:662207e34fba 874 * Register 25. The user is responsible for ensuring that I2C data transactions
garfieldsg 0:662207e34fba 875 * to and from each enabled Slave can be completed within a single period of the
garfieldsg 0:662207e34fba 876 * Sample Rate.
garfieldsg 0:662207e34fba 877 *
garfieldsg 0:662207e34fba 878 * The I2C slave access rate can be reduced relative to the Sample Rate. This
garfieldsg 0:662207e34fba 879 * reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a
garfieldsg 0:662207e34fba 880 * slave's access rate is reduced relative to the Sample Rate is determined by
garfieldsg 0:662207e34fba 881 * I2C_MST_DELAY_CTRL (Register 103).
garfieldsg 0:662207e34fba 882 *
garfieldsg 0:662207e34fba 883 * The processing order for the slaves is fixed. The sequence followed for
garfieldsg 0:662207e34fba 884 * processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a
garfieldsg 0:662207e34fba 885 * particular Slave is disabled it will be skipped.
garfieldsg 0:662207e34fba 886 *
garfieldsg 0:662207e34fba 887 * Each slave can either be accessed at the sample rate or at a reduced sample
garfieldsg 0:662207e34fba 888 * rate. In a case where some slaves are accessed at the Sample Rate and some
garfieldsg 0:662207e34fba 889 * slaves are accessed at the reduced rate, the sequence of accessing the slaves
garfieldsg 0:662207e34fba 890 * (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will
garfieldsg 0:662207e34fba 891 * be skipped if their access rate dictates that they should not be accessed
garfieldsg 0:662207e34fba 892 * during that particular cycle. For further information regarding the reduced
garfieldsg 0:662207e34fba 893 * access rate, please refer to Register 52. Whether a slave is accessed at the
garfieldsg 0:662207e34fba 894 * Sample Rate or at the reduced rate is determined by the Delay Enable bits in
garfieldsg 0:662207e34fba 895 * Register 103.
garfieldsg 0:662207e34fba 896 *
garfieldsg 0:662207e34fba 897 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 898 * @return Current address for specified slave
garfieldsg 0:662207e34fba 899 * @see MPU6050_RA_I2C_SLV0_ADDR
garfieldsg 0:662207e34fba 900 */
syundo0730 6:f38dfe62d74c 901 uint8_t MPU6050::getSlaveAddress(uint8_t num) {
garfieldsg 0:662207e34fba 902 if (num > 3) return 0;
syundo0730 6:f38dfe62d74c 903 i2cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, buffer);
garfieldsg 0:662207e34fba 904 return buffer[0];
garfieldsg 0:662207e34fba 905 }
garfieldsg 0:662207e34fba 906 /** Set the I2C address of the specified slave (0-3).
garfieldsg 0:662207e34fba 907 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 908 * @param address New address for specified slave
garfieldsg 0:662207e34fba 909 * @see getSlaveAddress()
garfieldsg 0:662207e34fba 910 * @see MPU6050_RA_I2C_SLV0_ADDR
garfieldsg 0:662207e34fba 911 */
syundo0730 6:f38dfe62d74c 912 void MPU6050::setSlaveAddress(uint8_t num, uint8_t address) {
garfieldsg 0:662207e34fba 913 if (num > 3) return;
syundo0730 6:f38dfe62d74c 914 i2cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, address);
garfieldsg 0:662207e34fba 915 }
garfieldsg 0:662207e34fba 916 /** Get the active internal register for the specified slave (0-3).
garfieldsg 0:662207e34fba 917 * Read/write operations for this slave will be done to whatever internal
garfieldsg 0:662207e34fba 918 * register address is stored in this MPU register.
garfieldsg 0:662207e34fba 919 *
garfieldsg 0:662207e34fba 920 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
garfieldsg 0:662207e34fba 921 * characteristics, and so it has its own functions.
garfieldsg 0:662207e34fba 922 *
garfieldsg 0:662207e34fba 923 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 924 * @return Current active register for specified slave
garfieldsg 0:662207e34fba 925 * @see MPU6050_RA_I2C_SLV0_REG
garfieldsg 0:662207e34fba 926 */
syundo0730 6:f38dfe62d74c 927 uint8_t MPU6050::getSlaveRegister(uint8_t num) {
garfieldsg 0:662207e34fba 928 if (num > 3) return 0;
syundo0730 6:f38dfe62d74c 929 i2cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, buffer);
garfieldsg 0:662207e34fba 930 return buffer[0];
garfieldsg 0:662207e34fba 931 }
garfieldsg 0:662207e34fba 932 /** Set the active internal register for the specified slave (0-3).
garfieldsg 0:662207e34fba 933 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 934 * @param reg New active register for specified slave
garfieldsg 0:662207e34fba 935 * @see getSlaveRegister()
garfieldsg 0:662207e34fba 936 * @see MPU6050_RA_I2C_SLV0_REG
garfieldsg 0:662207e34fba 937 */
syundo0730 6:f38dfe62d74c 938 void MPU6050::setSlaveRegister(uint8_t num, uint8_t reg) {
garfieldsg 0:662207e34fba 939 if (num > 3) return;
syundo0730 6:f38dfe62d74c 940 i2cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, reg);
garfieldsg 0:662207e34fba 941 }
garfieldsg 0:662207e34fba 942 /** Get the enabled value for the specified slave (0-3).
garfieldsg 0:662207e34fba 943 * When set to 1, this bit enables Slave 0 for data transfer operations. When
garfieldsg 0:662207e34fba 944 * cleared to 0, this bit disables Slave 0 from data transfer operations.
garfieldsg 0:662207e34fba 945 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 946 * @return Current enabled value for specified slave
garfieldsg 0:662207e34fba 947 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 948 */
syundo0730 6:f38dfe62d74c 949 bool MPU6050::getSlaveEnabled(uint8_t num) {
garfieldsg 0:662207e34fba 950 if (num > 3) return 0;
syundo0730 6:f38dfe62d74c 951 i2cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, buffer);
garfieldsg 0:662207e34fba 952 return buffer[0];
garfieldsg 0:662207e34fba 953 }
garfieldsg 0:662207e34fba 954 /** Set the enabled value for the specified slave (0-3).
garfieldsg 0:662207e34fba 955 * @param num Slave number (0-3)
syundo0730 6:f38dfe62d74c 956 * @param enabled New enabled value for specified slave
garfieldsg 0:662207e34fba 957 * @see getSlaveEnabled()
garfieldsg 0:662207e34fba 958 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 959 */
syundo0730 6:f38dfe62d74c 960 void MPU6050::setSlaveEnabled(uint8_t num, bool enabled) {
garfieldsg 0:662207e34fba 961 if (num > 3) return;
syundo0730 6:f38dfe62d74c 962 i2cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, enabled);
garfieldsg 0:662207e34fba 963 }
garfieldsg 0:662207e34fba 964 /** Get word pair byte-swapping enabled for the specified slave (0-3).
garfieldsg 0:662207e34fba 965 * When set to 1, this bit enables byte swapping. When byte swapping is enabled,
garfieldsg 0:662207e34fba 966 * the high and low bytes of a word pair are swapped. Please refer to
garfieldsg 0:662207e34fba 967 * I2C_SLV0_GRP for the pairing convention of the word pairs. When cleared to 0,
garfieldsg 0:662207e34fba 968 * bytes transferred to and from Slave 0 will be written to EXT_SENS_DATA
garfieldsg 0:662207e34fba 969 * registers in the order they were transferred.
garfieldsg 0:662207e34fba 970 *
garfieldsg 0:662207e34fba 971 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 972 * @return Current word pair byte-swapping enabled value for specified slave
garfieldsg 0:662207e34fba 973 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 974 */
syundo0730 6:f38dfe62d74c 975 bool MPU6050::getSlaveWordByteSwap(uint8_t num) {
garfieldsg 0:662207e34fba 976 if (num > 3) return 0;
syundo0730 6:f38dfe62d74c 977 i2cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, buffer);
garfieldsg 0:662207e34fba 978 return buffer[0];
garfieldsg 0:662207e34fba 979 }
garfieldsg 0:662207e34fba 980 /** Set word pair byte-swapping enabled for the specified slave (0-3).
garfieldsg 0:662207e34fba 981 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 982 * @param enabled New word pair byte-swapping enabled value for specified slave
garfieldsg 0:662207e34fba 983 * @see getSlaveWordByteSwap()
garfieldsg 0:662207e34fba 984 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 985 */
syundo0730 6:f38dfe62d74c 986 void MPU6050::setSlaveWordByteSwap(uint8_t num, bool enabled) {
garfieldsg 0:662207e34fba 987 if (num > 3) return;
syundo0730 6:f38dfe62d74c 988 i2cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, enabled);
garfieldsg 0:662207e34fba 989 }
garfieldsg 0:662207e34fba 990 /** Get write mode for the specified slave (0-3).
garfieldsg 0:662207e34fba 991 * When set to 1, the transaction will read or write data only. When cleared to
garfieldsg 0:662207e34fba 992 * 0, the transaction will write a register address prior to reading or writing
garfieldsg 0:662207e34fba 993 * data. This should equal 0 when specifying the register address within the
garfieldsg 0:662207e34fba 994 * Slave device to/from which the ensuing data transaction will take place.
garfieldsg 0:662207e34fba 995 *
garfieldsg 0:662207e34fba 996 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 997 * @return Current write mode for specified slave (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 998 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 999 */
syundo0730 6:f38dfe62d74c 1000 bool MPU6050::getSlaveWriteMode(uint8_t num) {
garfieldsg 0:662207e34fba 1001 if (num > 3) return 0;
syundo0730 6:f38dfe62d74c 1002 i2cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, buffer);
garfieldsg 0:662207e34fba 1003 return buffer[0];
garfieldsg 0:662207e34fba 1004 }
garfieldsg 0:662207e34fba 1005 /** Set write mode for the specified slave (0-3).
garfieldsg 0:662207e34fba 1006 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1007 * @param mode New write mode for specified slave (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 1008 * @see getSlaveWriteMode()
garfieldsg 0:662207e34fba 1009 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1010 */
syundo0730 6:f38dfe62d74c 1011 void MPU6050::setSlaveWriteMode(uint8_t num, bool mode) {
garfieldsg 0:662207e34fba 1012 if (num > 3) return;
syundo0730 6:f38dfe62d74c 1013 i2cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, mode);
garfieldsg 0:662207e34fba 1014 }
garfieldsg 0:662207e34fba 1015 /** Get word pair grouping order offset for the specified slave (0-3).
garfieldsg 0:662207e34fba 1016 * This sets specifies the grouping order of word pairs received from registers.
garfieldsg 0:662207e34fba 1017 * When cleared to 0, bytes from register addresses 0 and 1, 2 and 3, etc (even,
garfieldsg 0:662207e34fba 1018 * then odd register addresses) are paired to form a word. When set to 1, bytes
garfieldsg 0:662207e34fba 1019 * from register addresses are paired 1 and 2, 3 and 4, etc. (odd, then even
garfieldsg 0:662207e34fba 1020 * register addresses) are paired to form a word.
garfieldsg 0:662207e34fba 1021 *
garfieldsg 0:662207e34fba 1022 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1023 * @return Current word pair grouping order offset for specified slave
garfieldsg 0:662207e34fba 1024 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1025 */
syundo0730 6:f38dfe62d74c 1026 bool MPU6050::getSlaveWordGroupOffset(uint8_t num) {
garfieldsg 0:662207e34fba 1027 if (num > 3) return 0;
syundo0730 6:f38dfe62d74c 1028 i2cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, buffer);
garfieldsg 0:662207e34fba 1029 return buffer[0];
garfieldsg 0:662207e34fba 1030 }
garfieldsg 0:662207e34fba 1031 /** Set word pair grouping order offset for the specified slave (0-3).
garfieldsg 0:662207e34fba 1032 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1033 * @param enabled New word pair grouping order offset for specified slave
garfieldsg 0:662207e34fba 1034 * @see getSlaveWordGroupOffset()
garfieldsg 0:662207e34fba 1035 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1036 */
syundo0730 6:f38dfe62d74c 1037 void MPU6050::setSlaveWordGroupOffset(uint8_t num, bool enabled) {
garfieldsg 0:662207e34fba 1038 if (num > 3) return;
syundo0730 6:f38dfe62d74c 1039 i2cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, enabled);
garfieldsg 0:662207e34fba 1040 }
garfieldsg 0:662207e34fba 1041 /** Get number of bytes to read for the specified slave (0-3).
garfieldsg 0:662207e34fba 1042 * Specifies the number of bytes transferred to and from Slave 0. Clearing this
garfieldsg 0:662207e34fba 1043 * bit to 0 is equivalent to disabling the register by writing 0 to I2C_SLV0_EN.
garfieldsg 0:662207e34fba 1044 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1045 * @return Number of bytes to read for specified slave
garfieldsg 0:662207e34fba 1046 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1047 */
syundo0730 6:f38dfe62d74c 1048 uint8_t MPU6050::getSlaveDataLength(uint8_t num) {
garfieldsg 0:662207e34fba 1049 if (num > 3) return 0;
syundo0730 6:f38dfe62d74c 1050 i2cdev.readBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, buffer);
garfieldsg 0:662207e34fba 1051 return buffer[0];
garfieldsg 0:662207e34fba 1052 }
garfieldsg 0:662207e34fba 1053 /** Set number of bytes to read for the specified slave (0-3).
garfieldsg 0:662207e34fba 1054 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1055 * @param length Number of bytes to read for specified slave
garfieldsg 0:662207e34fba 1056 * @see getSlaveDataLength()
garfieldsg 0:662207e34fba 1057 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1058 */
syundo0730 6:f38dfe62d74c 1059 void MPU6050::setSlaveDataLength(uint8_t num, uint8_t length) {
garfieldsg 0:662207e34fba 1060 if (num > 3) return;
syundo0730 6:f38dfe62d74c 1061 i2cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, length);
garfieldsg 0:662207e34fba 1062 }
garfieldsg 0:662207e34fba 1063
garfieldsg 0:662207e34fba 1064 // I2C_SLV* registers (Slave 4)
garfieldsg 0:662207e34fba 1065
garfieldsg 0:662207e34fba 1066 /** Get the I2C address of Slave 4.
garfieldsg 0:662207e34fba 1067 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
garfieldsg 0:662207e34fba 1068 * operation, and if it is cleared, then it's a write operation. The remaining
garfieldsg 0:662207e34fba 1069 * bits (6-0) are the 7-bit device address of the slave device.
garfieldsg 0:662207e34fba 1070 *
garfieldsg 0:662207e34fba 1071 * @return Current address for Slave 4
garfieldsg 0:662207e34fba 1072 * @see getSlaveAddress()
garfieldsg 0:662207e34fba 1073 * @see MPU6050_RA_I2C_SLV4_ADDR
garfieldsg 0:662207e34fba 1074 */
syundo0730 6:f38dfe62d74c 1075 uint8_t MPU6050::getSlave4Address() {
syundo0730 6:f38dfe62d74c 1076 i2cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, buffer);
garfieldsg 0:662207e34fba 1077 return buffer[0];
garfieldsg 0:662207e34fba 1078 }
garfieldsg 0:662207e34fba 1079 /** Set the I2C address of Slave 4.
garfieldsg 0:662207e34fba 1080 * @param address New address for Slave 4
garfieldsg 0:662207e34fba 1081 * @see getSlave4Address()
garfieldsg 0:662207e34fba 1082 * @see MPU6050_RA_I2C_SLV4_ADDR
garfieldsg 0:662207e34fba 1083 */
syundo0730 6:f38dfe62d74c 1084 void MPU6050::setSlave4Address(uint8_t address) {
syundo0730 6:f38dfe62d74c 1085 i2cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, address);
garfieldsg 0:662207e34fba 1086 }
garfieldsg 0:662207e34fba 1087 /** Get the active internal register for the Slave 4.
garfieldsg 0:662207e34fba 1088 * Read/write operations for this slave will be done to whatever internal
garfieldsg 0:662207e34fba 1089 * register address is stored in this MPU register.
garfieldsg 0:662207e34fba 1090 *
garfieldsg 0:662207e34fba 1091 * @return Current active register for Slave 4
garfieldsg 0:662207e34fba 1092 * @see MPU6050_RA_I2C_SLV4_REG
garfieldsg 0:662207e34fba 1093 */
syundo0730 6:f38dfe62d74c 1094 uint8_t MPU6050::getSlave4Register() {
syundo0730 6:f38dfe62d74c 1095 i2cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_REG, buffer);
garfieldsg 0:662207e34fba 1096 return buffer[0];
garfieldsg 0:662207e34fba 1097 }
garfieldsg 0:662207e34fba 1098 /** Set the active internal register for Slave 4.
garfieldsg 0:662207e34fba 1099 * @param reg New active register for Slave 4
garfieldsg 0:662207e34fba 1100 * @see getSlave4Register()
garfieldsg 0:662207e34fba 1101 * @see MPU6050_RA_I2C_SLV4_REG
garfieldsg 0:662207e34fba 1102 */
syundo0730 6:f38dfe62d74c 1103 void MPU6050::setSlave4Register(uint8_t reg) {
syundo0730 6:f38dfe62d74c 1104 i2cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_REG, reg);
garfieldsg 0:662207e34fba 1105 }
garfieldsg 0:662207e34fba 1106 /** Set new byte to write to Slave 4.
garfieldsg 0:662207e34fba 1107 * This register stores the data to be written into the Slave 4. If I2C_SLV4_RW
garfieldsg 0:662207e34fba 1108 * is set 1 (set to read), this register has no effect.
garfieldsg 0:662207e34fba 1109 * @param data New byte to write to Slave 4
garfieldsg 0:662207e34fba 1110 * @see MPU6050_RA_I2C_SLV4_DO
garfieldsg 0:662207e34fba 1111 */
syundo0730 6:f38dfe62d74c 1112 void MPU6050::setSlave4OutputByte(uint8_t data) {
syundo0730 6:f38dfe62d74c 1113 i2cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_DO, data);
garfieldsg 0:662207e34fba 1114 }
garfieldsg 0:662207e34fba 1115 /** Get the enabled value for the Slave 4.
garfieldsg 0:662207e34fba 1116 * When set to 1, this bit enables Slave 4 for data transfer operations. When
garfieldsg 0:662207e34fba 1117 * cleared to 0, this bit disables Slave 4 from data transfer operations.
garfieldsg 0:662207e34fba 1118 * @return Current enabled value for Slave 4
garfieldsg 0:662207e34fba 1119 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1120 */
syundo0730 6:f38dfe62d74c 1121 bool MPU6050::getSlave4Enabled() {
syundo0730 6:f38dfe62d74c 1122 i2cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1123 return buffer[0];
garfieldsg 0:662207e34fba 1124 }
garfieldsg 0:662207e34fba 1125 /** Set the enabled value for Slave 4.
garfieldsg 0:662207e34fba 1126 * @param enabled New enabled value for Slave 4
garfieldsg 0:662207e34fba 1127 * @see getSlave4Enabled()
garfieldsg 0:662207e34fba 1128 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1129 */
syundo0730 6:f38dfe62d74c 1130 void MPU6050::setSlave4Enabled(bool enabled) {
syundo0730 6:f38dfe62d74c 1131 i2cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1132 }
garfieldsg 0:662207e34fba 1133 /** Get the enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1134 * When set to 1, this bit enables the generation of an interrupt signal upon
garfieldsg 0:662207e34fba 1135 * completion of a Slave 4 transaction. When cleared to 0, this bit disables the
garfieldsg 0:662207e34fba 1136 * generation of an interrupt signal upon completion of a Slave 4 transaction.
garfieldsg 0:662207e34fba 1137 * The interrupt status can be observed in Register 54.
garfieldsg 0:662207e34fba 1138 *
garfieldsg 0:662207e34fba 1139 * @return Current enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1140 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1141 */
syundo0730 6:f38dfe62d74c 1142 bool MPU6050::getSlave4InterruptEnabled() {
syundo0730 6:f38dfe62d74c 1143 i2cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1144 return buffer[0];
garfieldsg 0:662207e34fba 1145 }
garfieldsg 0:662207e34fba 1146 /** Set the enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1147 * @param enabled New enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1148 * @see getSlave4InterruptEnabled()
garfieldsg 0:662207e34fba 1149 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1150 */
syundo0730 6:f38dfe62d74c 1151 void MPU6050::setSlave4InterruptEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 1152 i2cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1153 }
garfieldsg 0:662207e34fba 1154 /** Get write mode for Slave 4.
garfieldsg 0:662207e34fba 1155 * When set to 1, the transaction will read or write data only. When cleared to
garfieldsg 0:662207e34fba 1156 * 0, the transaction will write a register address prior to reading or writing
garfieldsg 0:662207e34fba 1157 * data. This should equal 0 when specifying the register address within the
garfieldsg 0:662207e34fba 1158 * Slave device to/from which the ensuing data transaction will take place.
garfieldsg 0:662207e34fba 1159 *
garfieldsg 0:662207e34fba 1160 * @return Current write mode for Slave 4 (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 1161 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1162 */
syundo0730 6:f38dfe62d74c 1163 bool MPU6050::getSlave4WriteMode() {
syundo0730 6:f38dfe62d74c 1164 i2cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, buffer);
garfieldsg 0:662207e34fba 1165 return buffer[0];
garfieldsg 0:662207e34fba 1166 }
garfieldsg 0:662207e34fba 1167 /** Set write mode for the Slave 4.
garfieldsg 0:662207e34fba 1168 * @param mode New write mode for Slave 4 (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 1169 * @see getSlave4WriteMode()
garfieldsg 0:662207e34fba 1170 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1171 */
syundo0730 6:f38dfe62d74c 1172 void MPU6050::setSlave4WriteMode(bool mode) {
syundo0730 6:f38dfe62d74c 1173 i2cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, mode);
garfieldsg 0:662207e34fba 1174 }
garfieldsg 0:662207e34fba 1175 /** Get Slave 4 master delay value.
garfieldsg 0:662207e34fba 1176 * This configures the reduced access rate of I2C slaves relative to the Sample
garfieldsg 0:662207e34fba 1177 * Rate. When a slave's access rate is decreased relative to the Sample Rate,
garfieldsg 0:662207e34fba 1178 * the slave is accessed every:
garfieldsg 0:662207e34fba 1179 *
garfieldsg 0:662207e34fba 1180 * 1 / (1 + I2C_MST_DLY) samples
garfieldsg 0:662207e34fba 1181 *
garfieldsg 0:662207e34fba 1182 * This base Sample Rate in turn is determined by SMPLRT_DIV (register 25) and
garfieldsg 0:662207e34fba 1183 * DLPF_CFG (register 26). Whether a slave's access rate is reduced relative to
garfieldsg 0:662207e34fba 1184 * the Sample Rate is determined by I2C_MST_DELAY_CTRL (register 103). For
garfieldsg 0:662207e34fba 1185 * further information regarding the Sample Rate, please refer to register 25.
garfieldsg 0:662207e34fba 1186 *
garfieldsg 0:662207e34fba 1187 * @return Current Slave 4 master delay value
garfieldsg 0:662207e34fba 1188 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1189 */
syundo0730 6:f38dfe62d74c 1190 uint8_t MPU6050::getSlave4MasterDelay() {
syundo0730 6:f38dfe62d74c 1191 i2cdev.readBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, buffer);
garfieldsg 0:662207e34fba 1192 return buffer[0];
garfieldsg 0:662207e34fba 1193 }
garfieldsg 0:662207e34fba 1194 /** Set Slave 4 master delay value.
garfieldsg 0:662207e34fba 1195 * @param delay New Slave 4 master delay value
garfieldsg 0:662207e34fba 1196 * @see getSlave4MasterDelay()
garfieldsg 0:662207e34fba 1197 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1198 */
syundo0730 6:f38dfe62d74c 1199 void MPU6050::setSlave4MasterDelay(uint8_t delay) {
syundo0730 6:f38dfe62d74c 1200 i2cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, delay);
garfieldsg 0:662207e34fba 1201 }
garfieldsg 0:662207e34fba 1202 /** Get last available byte read from Slave 4.
garfieldsg 0:662207e34fba 1203 * This register stores the data read from Slave 4. This field is populated
garfieldsg 0:662207e34fba 1204 * after a read transaction.
garfieldsg 0:662207e34fba 1205 * @return Last available byte read from to Slave 4
garfieldsg 0:662207e34fba 1206 * @see MPU6050_RA_I2C_SLV4_DI
garfieldsg 0:662207e34fba 1207 */
syundo0730 6:f38dfe62d74c 1208 uint8_t MPU6050::getSlate4InputByte() {
syundo0730 6:f38dfe62d74c 1209 i2cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_DI, buffer);
garfieldsg 0:662207e34fba 1210 return buffer[0];
garfieldsg 0:662207e34fba 1211 }
garfieldsg 0:662207e34fba 1212
garfieldsg 0:662207e34fba 1213 // I2C_MST_STATUS register
garfieldsg 0:662207e34fba 1214
garfieldsg 0:662207e34fba 1215 /** Get FSYNC interrupt status.
garfieldsg 0:662207e34fba 1216 * This bit reflects the status of the FSYNC interrupt from an external device
garfieldsg 0:662207e34fba 1217 * into the MPU-60X0. This is used as a way to pass an external interrupt
garfieldsg 0:662207e34fba 1218 * through the MPU-60X0 to the host application processor. When set to 1, this
garfieldsg 0:662207e34fba 1219 * bit will cause an interrupt if FSYNC_INT_EN is asserted in INT_PIN_CFG
garfieldsg 0:662207e34fba 1220 * (Register 55).
garfieldsg 0:662207e34fba 1221 * @return FSYNC interrupt status
garfieldsg 0:662207e34fba 1222 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1223 */
syundo0730 6:f38dfe62d74c 1224 bool MPU6050::getPassthroughStatus() {
syundo0730 6:f38dfe62d74c 1225 i2cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_PASS_THROUGH_BIT, buffer);
garfieldsg 0:662207e34fba 1226 return buffer[0];
garfieldsg 0:662207e34fba 1227 }
garfieldsg 0:662207e34fba 1228 /** Get Slave 4 transaction done status.
garfieldsg 0:662207e34fba 1229 * Automatically sets to 1 when a Slave 4 transaction has completed. This
garfieldsg 0:662207e34fba 1230 * triggers an interrupt if the I2C_MST_INT_EN bit in the INT_ENABLE register
garfieldsg 0:662207e34fba 1231 * (Register 56) is asserted and if the SLV_4_DONE_INT bit is asserted in the
garfieldsg 0:662207e34fba 1232 * I2C_SLV4_CTRL register (Register 52).
garfieldsg 0:662207e34fba 1233 * @return Slave 4 transaction done status
garfieldsg 0:662207e34fba 1234 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1235 */
syundo0730 6:f38dfe62d74c 1236 bool MPU6050::getSlave4IsDone() {
syundo0730 6:f38dfe62d74c 1237 i2cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_DONE_BIT, buffer);
garfieldsg 0:662207e34fba 1238 return buffer[0];
garfieldsg 0:662207e34fba 1239 }
garfieldsg 0:662207e34fba 1240 /** Get master arbitration lost status.
garfieldsg 0:662207e34fba 1241 * This bit automatically sets to 1 when the I2C Master has lost arbitration of
garfieldsg 0:662207e34fba 1242 * the auxiliary I2C bus (an error condition). This triggers an interrupt if the
garfieldsg 0:662207e34fba 1243 * I2C_MST_INT_EN bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1244 * @return Master arbitration lost status
garfieldsg 0:662207e34fba 1245 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1246 */
syundo0730 6:f38dfe62d74c 1247 bool MPU6050::getLostArbitration() {
syundo0730 6:f38dfe62d74c 1248 i2cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_LOST_ARB_BIT, buffer);
garfieldsg 0:662207e34fba 1249 return buffer[0];
garfieldsg 0:662207e34fba 1250 }
garfieldsg 0:662207e34fba 1251 /** Get Slave 4 NACK status.
garfieldsg 0:662207e34fba 1252 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1253 * transaction with Slave 4. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1254 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1255 * @return Slave 4 NACK interrupt status
garfieldsg 0:662207e34fba 1256 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1257 */
syundo0730 6:f38dfe62d74c 1258 bool MPU6050::getSlave4Nack() {
syundo0730 6:f38dfe62d74c 1259 i2cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1260 return buffer[0];
garfieldsg 0:662207e34fba 1261 }
garfieldsg 0:662207e34fba 1262 /** Get Slave 3 NACK status.
garfieldsg 0:662207e34fba 1263 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1264 * transaction with Slave 3. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1265 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1266 * @return Slave 3 NACK interrupt status
garfieldsg 0:662207e34fba 1267 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1268 */
syundo0730 6:f38dfe62d74c 1269 bool MPU6050::getSlave3Nack() {
syundo0730 6:f38dfe62d74c 1270 i2cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV3_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1271 return buffer[0];
garfieldsg 0:662207e34fba 1272 }
garfieldsg 0:662207e34fba 1273 /** Get Slave 2 NACK status.
garfieldsg 0:662207e34fba 1274 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1275 * transaction with Slave 2. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1276 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1277 * @return Slave 2 NACK interrupt status
garfieldsg 0:662207e34fba 1278 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1279 */
syundo0730 6:f38dfe62d74c 1280 bool MPU6050::getSlave2Nack() {
syundo0730 6:f38dfe62d74c 1281 i2cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV2_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1282 return buffer[0];
garfieldsg 0:662207e34fba 1283 }
garfieldsg 0:662207e34fba 1284 /** Get Slave 1 NACK status.
garfieldsg 0:662207e34fba 1285 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1286 * transaction with Slave 1. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1287 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1288 * @return Slave 1 NACK interrupt status
garfieldsg 0:662207e34fba 1289 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1290 */
syundo0730 6:f38dfe62d74c 1291 bool MPU6050::getSlave1Nack() {
syundo0730 6:f38dfe62d74c 1292 i2cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV1_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1293 return buffer[0];
garfieldsg 0:662207e34fba 1294 }
garfieldsg 0:662207e34fba 1295 /** Get Slave 0 NACK status.
garfieldsg 0:662207e34fba 1296 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1297 * transaction with Slave 0. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1298 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1299 * @return Slave 0 NACK interrupt status
garfieldsg 0:662207e34fba 1300 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1301 */
syundo0730 6:f38dfe62d74c 1302 bool MPU6050::getSlave0Nack() {
syundo0730 6:f38dfe62d74c 1303 i2cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV0_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1304 return buffer[0];
garfieldsg 0:662207e34fba 1305 }
garfieldsg 0:662207e34fba 1306
garfieldsg 0:662207e34fba 1307 // INT_PIN_CFG register
garfieldsg 0:662207e34fba 1308
garfieldsg 0:662207e34fba 1309 /** Get interrupt logic level mode.
garfieldsg 0:662207e34fba 1310 * Will be set 0 for active-high, 1 for active-low.
garfieldsg 0:662207e34fba 1311 * @return Current interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1312 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1313 * @see MPU6050_INTCFG_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1314 */
syundo0730 6:f38dfe62d74c 1315 bool MPU6050::getInterruptMode() {
syundo0730 6:f38dfe62d74c 1316 i2cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, buffer);
garfieldsg 0:662207e34fba 1317 return buffer[0];
garfieldsg 0:662207e34fba 1318 }
garfieldsg 0:662207e34fba 1319 /** Set interrupt logic level mode.
garfieldsg 0:662207e34fba 1320 * @param mode New interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1321 * @see getInterruptMode()
garfieldsg 0:662207e34fba 1322 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1323 * @see MPU6050_INTCFG_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1324 */
syundo0730 6:f38dfe62d74c 1325 void MPU6050::setInterruptMode(bool mode) {
syundo0730 6:f38dfe62d74c 1326 i2cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, mode);
garfieldsg 0:662207e34fba 1327 }
garfieldsg 0:662207e34fba 1328 /** Get interrupt drive mode.
garfieldsg 0:662207e34fba 1329 * Will be set 0 for push-pull, 1 for open-drain.
garfieldsg 0:662207e34fba 1330 * @return Current interrupt drive mode (0=push-pull, 1=open-drain)
garfieldsg 0:662207e34fba 1331 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1332 * @see MPU6050_INTCFG_INT_OPEN_BIT
garfieldsg 0:662207e34fba 1333 */
syundo0730 6:f38dfe62d74c 1334 bool MPU6050::getInterruptDrive() {
syundo0730 6:f38dfe62d74c 1335 i2cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, buffer);
garfieldsg 0:662207e34fba 1336 return buffer[0];
garfieldsg 0:662207e34fba 1337 }
garfieldsg 0:662207e34fba 1338 /** Set interrupt drive mode.
garfieldsg 0:662207e34fba 1339 * @param drive New interrupt drive mode (0=push-pull, 1=open-drain)
garfieldsg 0:662207e34fba 1340 * @see getInterruptDrive()
garfieldsg 0:662207e34fba 1341 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1342 * @see MPU6050_INTCFG_INT_OPEN_BIT
garfieldsg 0:662207e34fba 1343 */
syundo0730 6:f38dfe62d74c 1344 void MPU6050::setInterruptDrive(bool drive) {
syundo0730 6:f38dfe62d74c 1345 i2cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, drive);
garfieldsg 0:662207e34fba 1346 }
garfieldsg 0:662207e34fba 1347 /** Get interrupt latch mode.
garfieldsg 0:662207e34fba 1348 * Will be set 0 for 50us-pulse, 1 for latch-until-int-cleared.
garfieldsg 0:662207e34fba 1349 * @return Current latch mode (0=50us-pulse, 1=latch-until-int-cleared)
garfieldsg 0:662207e34fba 1350 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1351 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
garfieldsg 0:662207e34fba 1352 */
syundo0730 6:f38dfe62d74c 1353 bool MPU6050::getInterruptLatch() {
syundo0730 6:f38dfe62d74c 1354 i2cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1355 return buffer[0];
garfieldsg 0:662207e34fba 1356 }
garfieldsg 0:662207e34fba 1357 /** Set interrupt latch mode.
garfieldsg 0:662207e34fba 1358 * @param latch New latch mode (0=50us-pulse, 1=latch-until-int-cleared)
garfieldsg 0:662207e34fba 1359 * @see getInterruptLatch()
garfieldsg 0:662207e34fba 1360 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1361 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
garfieldsg 0:662207e34fba 1362 */
syundo0730 6:f38dfe62d74c 1363 void MPU6050::setInterruptLatch(bool latch) {
syundo0730 6:f38dfe62d74c 1364 i2cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, latch);
garfieldsg 0:662207e34fba 1365 }
garfieldsg 0:662207e34fba 1366 /** Get interrupt latch clear mode.
garfieldsg 0:662207e34fba 1367 * Will be set 0 for status-read-only, 1 for any-register-read.
garfieldsg 0:662207e34fba 1368 * @return Current latch clear mode (0=status-read-only, 1=any-register-read)
garfieldsg 0:662207e34fba 1369 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1370 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
garfieldsg 0:662207e34fba 1371 */
syundo0730 6:f38dfe62d74c 1372 bool MPU6050::getInterruptLatchClear() {
syundo0730 6:f38dfe62d74c 1373 i2cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, buffer);
garfieldsg 0:662207e34fba 1374 return buffer[0];
garfieldsg 0:662207e34fba 1375 }
garfieldsg 0:662207e34fba 1376 /** Set interrupt latch clear mode.
garfieldsg 0:662207e34fba 1377 * @param clear New latch clear mode (0=status-read-only, 1=any-register-read)
garfieldsg 0:662207e34fba 1378 * @see getInterruptLatchClear()
garfieldsg 0:662207e34fba 1379 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1380 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
garfieldsg 0:662207e34fba 1381 */
syundo0730 6:f38dfe62d74c 1382 void MPU6050::setInterruptLatchClear(bool clear) {
syundo0730 6:f38dfe62d74c 1383 i2cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, clear);
garfieldsg 0:662207e34fba 1384 }
garfieldsg 0:662207e34fba 1385 /** Get FSYNC interrupt logic level mode.
garfieldsg 0:662207e34fba 1386 * @return Current FSYNC interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1387 * @see getFSyncInterruptMode()
garfieldsg 0:662207e34fba 1388 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1389 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1390 */
syundo0730 6:f38dfe62d74c 1391 bool MPU6050::getFSyncInterruptLevel() {
syundo0730 6:f38dfe62d74c 1392 i2cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, buffer);
garfieldsg 0:662207e34fba 1393 return buffer[0];
garfieldsg 0:662207e34fba 1394 }
garfieldsg 0:662207e34fba 1395 /** Set FSYNC interrupt logic level mode.
garfieldsg 0:662207e34fba 1396 * @param mode New FSYNC interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1397 * @see getFSyncInterruptMode()
garfieldsg 0:662207e34fba 1398 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1399 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1400 */
syundo0730 6:f38dfe62d74c 1401 void MPU6050::setFSyncInterruptLevel(bool level) {
syundo0730 6:f38dfe62d74c 1402 i2cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, level);
garfieldsg 0:662207e34fba 1403 }
garfieldsg 0:662207e34fba 1404 /** Get FSYNC pin interrupt enabled setting.
garfieldsg 0:662207e34fba 1405 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1406 * @return Current interrupt enabled setting
garfieldsg 0:662207e34fba 1407 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1408 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
garfieldsg 0:662207e34fba 1409 */
syundo0730 6:f38dfe62d74c 1410 bool MPU6050::getFSyncInterruptEnabled() {
syundo0730 6:f38dfe62d74c 1411 i2cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1412 return buffer[0];
garfieldsg 0:662207e34fba 1413 }
garfieldsg 0:662207e34fba 1414 /** Set FSYNC pin interrupt enabled setting.
garfieldsg 0:662207e34fba 1415 * @param enabled New FSYNC pin interrupt enabled setting
garfieldsg 0:662207e34fba 1416 * @see getFSyncInterruptEnabled()
garfieldsg 0:662207e34fba 1417 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1418 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
garfieldsg 0:662207e34fba 1419 */
syundo0730 6:f38dfe62d74c 1420 void MPU6050::setFSyncInterruptEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 1421 i2cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1422 }
garfieldsg 0:662207e34fba 1423 /** Get I2C bypass enabled status.
garfieldsg 0:662207e34fba 1424 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
garfieldsg 0:662207e34fba 1425 * 0, the host application processor will be able to directly access the
garfieldsg 0:662207e34fba 1426 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
garfieldsg 0:662207e34fba 1427 * application processor will not be able to directly access the auxiliary I2C
garfieldsg 0:662207e34fba 1428 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
garfieldsg 0:662207e34fba 1429 * bit[5]).
garfieldsg 0:662207e34fba 1430 * @return Current I2C bypass enabled status
garfieldsg 0:662207e34fba 1431 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1432 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
garfieldsg 0:662207e34fba 1433 */
syundo0730 6:f38dfe62d74c 1434 bool MPU6050::getI2CBypassEnabled() {
syundo0730 6:f38dfe62d74c 1435 i2cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1436 return buffer[0];
garfieldsg 0:662207e34fba 1437 }
garfieldsg 0:662207e34fba 1438 /** Set I2C bypass enabled status.
garfieldsg 0:662207e34fba 1439 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
garfieldsg 0:662207e34fba 1440 * 0, the host application processor will be able to directly access the
garfieldsg 0:662207e34fba 1441 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
garfieldsg 0:662207e34fba 1442 * application processor will not be able to directly access the auxiliary I2C
garfieldsg 0:662207e34fba 1443 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
garfieldsg 0:662207e34fba 1444 * bit[5]).
garfieldsg 0:662207e34fba 1445 * @param enabled New I2C bypass enabled status
garfieldsg 0:662207e34fba 1446 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1447 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
garfieldsg 0:662207e34fba 1448 */
syundo0730 6:f38dfe62d74c 1449 void MPU6050::setI2CBypassEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 1450 i2cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1451 }
garfieldsg 0:662207e34fba 1452 /** Get reference clock output enabled status.
garfieldsg 0:662207e34fba 1453 * When this bit is equal to 1, a reference clock output is provided at the
garfieldsg 0:662207e34fba 1454 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
garfieldsg 0:662207e34fba 1455 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
garfieldsg 0:662207e34fba 1456 * Specification document.
garfieldsg 0:662207e34fba 1457 * @return Current reference clock output enabled status
garfieldsg 0:662207e34fba 1458 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1459 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
garfieldsg 0:662207e34fba 1460 */
syundo0730 6:f38dfe62d74c 1461 bool MPU6050::getClockOutputEnabled() {
syundo0730 6:f38dfe62d74c 1462 i2cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1463 return buffer[0];
garfieldsg 0:662207e34fba 1464 }
garfieldsg 0:662207e34fba 1465 /** Set reference clock output enabled status.
garfieldsg 0:662207e34fba 1466 * When this bit is equal to 1, a reference clock output is provided at the
garfieldsg 0:662207e34fba 1467 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
garfieldsg 0:662207e34fba 1468 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
garfieldsg 0:662207e34fba 1469 * Specification document.
garfieldsg 0:662207e34fba 1470 * @param enabled New reference clock output enabled status
garfieldsg 0:662207e34fba 1471 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1472 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
garfieldsg 0:662207e34fba 1473 */
syundo0730 6:f38dfe62d74c 1474 void MPU6050::setClockOutputEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 1475 i2cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1476 }
garfieldsg 0:662207e34fba 1477
garfieldsg 0:662207e34fba 1478 // INT_ENABLE register
garfieldsg 0:662207e34fba 1479
garfieldsg 0:662207e34fba 1480 /** Get full interrupt enabled status.
garfieldsg 0:662207e34fba 1481 * Full register byte for all interrupts, for quick reading. Each bit will be
garfieldsg 0:662207e34fba 1482 * set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1483 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1484 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1485 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1486 **/
syundo0730 6:f38dfe62d74c 1487 uint8_t MPU6050::getIntEnabled() {
syundo0730 6:f38dfe62d74c 1488 i2cdev.readByte(devAddr, MPU6050_RA_INT_ENABLE, buffer);
garfieldsg 0:662207e34fba 1489 return buffer[0];
garfieldsg 0:662207e34fba 1490 }
garfieldsg 0:662207e34fba 1491 /** Set full interrupt enabled status.
garfieldsg 0:662207e34fba 1492 * Full register byte for all interrupts, for quick reading. Each bit should be
garfieldsg 0:662207e34fba 1493 * set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1494 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1495 * @see getIntFreefallEnabled()
garfieldsg 0:662207e34fba 1496 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1497 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1498 **/
syundo0730 6:f38dfe62d74c 1499 void MPU6050::setIntEnabled(uint8_t enabled) {
syundo0730 6:f38dfe62d74c 1500 i2cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, enabled);
garfieldsg 0:662207e34fba 1501 }
garfieldsg 0:662207e34fba 1502 /** Get Free Fall interrupt enabled status.
garfieldsg 0:662207e34fba 1503 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1504 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1505 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1506 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1507 **/
syundo0730 6:f38dfe62d74c 1508 bool MPU6050::getIntFreefallEnabled() {
syundo0730 6:f38dfe62d74c 1509 i2cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, buffer);
garfieldsg 0:662207e34fba 1510 return buffer[0];
garfieldsg 0:662207e34fba 1511 }
garfieldsg 0:662207e34fba 1512 /** Set Free Fall interrupt enabled status.
garfieldsg 0:662207e34fba 1513 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1514 * @see getIntFreefallEnabled()
garfieldsg 0:662207e34fba 1515 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1516 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1517 **/
syundo0730 6:f38dfe62d74c 1518 void MPU6050::setIntFreefallEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 1519 i2cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, enabled);
garfieldsg 0:662207e34fba 1520 }
garfieldsg 0:662207e34fba 1521 /** Get Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1522 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1523 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1524 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1525 * @see MPU6050_INTERRUPT_MOT_BIT
garfieldsg 0:662207e34fba 1526 **/
syundo0730 6:f38dfe62d74c 1527 bool MPU6050::getIntMotionEnabled() {
syundo0730 6:f38dfe62d74c 1528 i2cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, buffer);
garfieldsg 0:662207e34fba 1529 return buffer[0];
garfieldsg 0:662207e34fba 1530 }
garfieldsg 0:662207e34fba 1531 /** Set Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1532 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1533 * @see getIntMotionEnabled()
garfieldsg 0:662207e34fba 1534 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1535 * @see MPU6050_INTERRUPT_MOT_BIT
garfieldsg 0:662207e34fba 1536 **/
syundo0730 6:f38dfe62d74c 1537 void MPU6050::setIntMotionEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 1538 i2cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, enabled);
garfieldsg 0:662207e34fba 1539 }
garfieldsg 0:662207e34fba 1540 /** Get Zero Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1541 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1542 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1543 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1544 * @see MPU6050_INTERRUPT_ZMOT_BIT
garfieldsg 0:662207e34fba 1545 **/
syundo0730 6:f38dfe62d74c 1546 bool MPU6050::getIntZeroMotionEnabled() {
syundo0730 6:f38dfe62d74c 1547 i2cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
garfieldsg 0:662207e34fba 1548 return buffer[0];
garfieldsg 0:662207e34fba 1549 }
garfieldsg 0:662207e34fba 1550 /** Set Zero Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1551 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1552 * @see getIntZeroMotionEnabled()
garfieldsg 0:662207e34fba 1553 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1554 * @see MPU6050_INTERRUPT_ZMOT_BIT
garfieldsg 0:662207e34fba 1555 **/
syundo0730 6:f38dfe62d74c 1556 void MPU6050::setIntZeroMotionEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 1557 i2cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, enabled);
garfieldsg 0:662207e34fba 1558 }
garfieldsg 0:662207e34fba 1559 /** Get FIFO Buffer Overflow interrupt enabled status.
garfieldsg 0:662207e34fba 1560 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1561 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1562 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1563 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
garfieldsg 0:662207e34fba 1564 **/
syundo0730 6:f38dfe62d74c 1565 bool MPU6050::getIntFIFOBufferOverflowEnabled() {
syundo0730 6:f38dfe62d74c 1566 i2cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
garfieldsg 0:662207e34fba 1567 return buffer[0];
garfieldsg 0:662207e34fba 1568 }
garfieldsg 0:662207e34fba 1569 /** Set FIFO Buffer Overflow interrupt enabled status.
garfieldsg 0:662207e34fba 1570 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1571 * @see getIntFIFOBufferOverflowEnabled()
garfieldsg 0:662207e34fba 1572 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1573 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
garfieldsg 0:662207e34fba 1574 **/
syundo0730 6:f38dfe62d74c 1575 void MPU6050::setIntFIFOBufferOverflowEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 1576 i2cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, enabled);
garfieldsg 0:662207e34fba 1577 }
garfieldsg 0:662207e34fba 1578 /** Get I2C Master interrupt enabled status.
garfieldsg 0:662207e34fba 1579 * This enables any of the I2C Master interrupt sources to generate an
garfieldsg 0:662207e34fba 1580 * interrupt. Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1581 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1582 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1583 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
garfieldsg 0:662207e34fba 1584 **/
syundo0730 6:f38dfe62d74c 1585 bool MPU6050::getIntI2CMasterEnabled() {
syundo0730 6:f38dfe62d74c 1586 i2cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
garfieldsg 0:662207e34fba 1587 return buffer[0];
garfieldsg 0:662207e34fba 1588 }
garfieldsg 0:662207e34fba 1589 /** Set I2C Master interrupt enabled status.
garfieldsg 0:662207e34fba 1590 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1591 * @see getIntI2CMasterEnabled()
garfieldsg 0:662207e34fba 1592 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1593 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
garfieldsg 0:662207e34fba 1594 **/
syundo0730 6:f38dfe62d74c 1595 void MPU6050::setIntI2CMasterEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 1596 i2cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, enabled);
garfieldsg 0:662207e34fba 1597 }
garfieldsg 0:662207e34fba 1598 /** Get Data Ready interrupt enabled setting.
garfieldsg 0:662207e34fba 1599 * This event occurs each time a write operation to all of the sensor registers
garfieldsg 0:662207e34fba 1600 * has been completed. Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1601 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1602 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1603 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
garfieldsg 0:662207e34fba 1604 */
syundo0730 6:f38dfe62d74c 1605 bool MPU6050::getIntDataReadyEnabled() {
syundo0730 6:f38dfe62d74c 1606 i2cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
garfieldsg 0:662207e34fba 1607 return buffer[0];
garfieldsg 0:662207e34fba 1608 }
garfieldsg 0:662207e34fba 1609 /** Set Data Ready interrupt enabled status.
garfieldsg 0:662207e34fba 1610 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1611 * @see getIntDataReadyEnabled()
garfieldsg 0:662207e34fba 1612 * @see MPU6050_RA_INT_CFG
garfieldsg 0:662207e34fba 1613 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
garfieldsg 0:662207e34fba 1614 */
syundo0730 6:f38dfe62d74c 1615 void MPU6050::setIntDataReadyEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 1616 i2cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, enabled);
garfieldsg 0:662207e34fba 1617 }
garfieldsg 0:662207e34fba 1618
garfieldsg 0:662207e34fba 1619 // INT_STATUS register
garfieldsg 0:662207e34fba 1620
garfieldsg 0:662207e34fba 1621 /** Get full set of interrupt status bits.
garfieldsg 0:662207e34fba 1622 * These bits clear to 0 after the register has been read. Very useful
garfieldsg 0:662207e34fba 1623 * for getting multiple INT statuses, since each single bit read clears
garfieldsg 0:662207e34fba 1624 * all of them because it has to read the whole byte.
garfieldsg 0:662207e34fba 1625 * @return Current interrupt status
garfieldsg 0:662207e34fba 1626 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1627 */
syundo0730 6:f38dfe62d74c 1628 uint8_t MPU6050::getIntStatus() {
syundo0730 6:f38dfe62d74c 1629 i2cdev.readByte(devAddr, MPU6050_RA_INT_STATUS, buffer);
garfieldsg 0:662207e34fba 1630 return buffer[0];
garfieldsg 0:662207e34fba 1631 }
garfieldsg 0:662207e34fba 1632 /** Get Free Fall interrupt status.
garfieldsg 0:662207e34fba 1633 * This bit automatically sets to 1 when a Free Fall interrupt has been
garfieldsg 0:662207e34fba 1634 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1635 * @return Current interrupt status
garfieldsg 0:662207e34fba 1636 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1637 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1638 */
syundo0730 6:f38dfe62d74c 1639 bool MPU6050::getIntFreefallStatus() {
syundo0730 6:f38dfe62d74c 1640 i2cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FF_BIT, buffer);
garfieldsg 0:662207e34fba 1641 return buffer[0];
garfieldsg 0:662207e34fba 1642 }
garfieldsg 0:662207e34fba 1643 /** Get Motion Detection interrupt status.
garfieldsg 0:662207e34fba 1644 * This bit automatically sets to 1 when a Motion Detection interrupt has been
garfieldsg 0:662207e34fba 1645 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1646 * @return Current interrupt status
garfieldsg 0:662207e34fba 1647 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1648 * @see MPU6050_INTERRUPT_MOT_BIT
garfieldsg 0:662207e34fba 1649 */
syundo0730 6:f38dfe62d74c 1650 bool MPU6050::getIntMotionStatus() {
syundo0730 6:f38dfe62d74c 1651 i2cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_MOT_BIT, buffer);
garfieldsg 0:662207e34fba 1652 return buffer[0];
garfieldsg 0:662207e34fba 1653 }
garfieldsg 0:662207e34fba 1654 /** Get Zero Motion Detection interrupt status.
garfieldsg 0:662207e34fba 1655 * This bit automatically sets to 1 when a Zero Motion Detection interrupt has
garfieldsg 0:662207e34fba 1656 * been generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1657 * @return Current interrupt status
garfieldsg 0:662207e34fba 1658 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1659 * @see MPU6050_INTERRUPT_ZMOT_BIT
garfieldsg 0:662207e34fba 1660 */
syundo0730 6:f38dfe62d74c 1661 bool MPU6050::getIntZeroMotionStatus() {
syundo0730 6:f38dfe62d74c 1662 i2cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
garfieldsg 0:662207e34fba 1663 return buffer[0];
garfieldsg 0:662207e34fba 1664 }
garfieldsg 0:662207e34fba 1665 /** Get FIFO Buffer Overflow interrupt status.
garfieldsg 0:662207e34fba 1666 * This bit automatically sets to 1 when a Free Fall interrupt has been
garfieldsg 0:662207e34fba 1667 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1668 * @return Current interrupt status
garfieldsg 0:662207e34fba 1669 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1670 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
garfieldsg 0:662207e34fba 1671 */
syundo0730 6:f38dfe62d74c 1672 bool MPU6050::getIntFIFOBufferOverflowStatus() {
syundo0730 6:f38dfe62d74c 1673 i2cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
garfieldsg 0:662207e34fba 1674 return buffer[0];
garfieldsg 0:662207e34fba 1675 }
garfieldsg 0:662207e34fba 1676 /** Get I2C Master interrupt status.
garfieldsg 0:662207e34fba 1677 * This bit automatically sets to 1 when an I2C Master interrupt has been
garfieldsg 0:662207e34fba 1678 * generated. For a list of I2C Master interrupts, please refer to Register 54.
garfieldsg 0:662207e34fba 1679 * The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1680 * @return Current interrupt status
garfieldsg 0:662207e34fba 1681 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1682 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
garfieldsg 0:662207e34fba 1683 */
syundo0730 6:f38dfe62d74c 1684 bool MPU6050::getIntI2CMasterStatus() {
syundo0730 6:f38dfe62d74c 1685 i2cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
garfieldsg 0:662207e34fba 1686 return buffer[0];
garfieldsg 0:662207e34fba 1687 }
garfieldsg 0:662207e34fba 1688 /** Get Data Ready interrupt status.
garfieldsg 0:662207e34fba 1689 * This bit automatically sets to 1 when a Data Ready interrupt has been
garfieldsg 0:662207e34fba 1690 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1691 * @return Current interrupt status
garfieldsg 0:662207e34fba 1692 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1693 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
garfieldsg 0:662207e34fba 1694 */
syundo0730 6:f38dfe62d74c 1695 bool MPU6050::getIntDataReadyStatus() {
syundo0730 6:f38dfe62d74c 1696 i2cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
garfieldsg 0:662207e34fba 1697 return buffer[0];
garfieldsg 0:662207e34fba 1698 }
garfieldsg 0:662207e34fba 1699
garfieldsg 0:662207e34fba 1700 // ACCEL_*OUT_* registers
garfieldsg 0:662207e34fba 1701
garfieldsg 0:662207e34fba 1702 /** Get raw 9-axis motion sensor readings (accel/gyro/compass).
garfieldsg 0:662207e34fba 1703 * FUNCTION NOT FULLY IMPLEMENTED YET.
garfieldsg 0:662207e34fba 1704 * @param ax 16-bit signed integer container for accelerometer X-axis value
garfieldsg 0:662207e34fba 1705 * @param ay 16-bit signed integer container for accelerometer Y-axis value
garfieldsg 0:662207e34fba 1706 * @param az 16-bit signed integer container for accelerometer Z-axis value
garfieldsg 0:662207e34fba 1707 * @param gx 16-bit signed integer container for gyroscope X-axis value
garfieldsg 0:662207e34fba 1708 * @param gy 16-bit signed integer container for gyroscope Y-axis value
garfieldsg 0:662207e34fba 1709 * @param gz 16-bit signed integer container for gyroscope Z-axis value
garfieldsg 0:662207e34fba 1710 * @param mx 16-bit signed integer container for magnetometer X-axis value
garfieldsg 0:662207e34fba 1711 * @param my 16-bit signed integer container for magnetometer Y-axis value
garfieldsg 0:662207e34fba 1712 * @param mz 16-bit signed integer container for magnetometer Z-axis value
garfieldsg 0:662207e34fba 1713 * @see getMotion6()
garfieldsg 0:662207e34fba 1714 * @see getAcceleration()
garfieldsg 0:662207e34fba 1715 * @see getRotation()
garfieldsg 0:662207e34fba 1716 * @see MPU6050_RA_ACCEL_XOUT_H
garfieldsg 0:662207e34fba 1717 */
syundo0730 6:f38dfe62d74c 1718 void MPU6050::getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz) {
garfieldsg 0:662207e34fba 1719 getMotion6(ax, ay, az, gx, gy, gz);
syundo0730 6:f38dfe62d74c 1720 // TODO: magnetometer integration
garfieldsg 0:662207e34fba 1721 }
garfieldsg 0:662207e34fba 1722 /** Get raw 6-axis motion sensor readings (accel/gyro).
garfieldsg 0:662207e34fba 1723 * Retrieves all currently available motion sensor values.
garfieldsg 0:662207e34fba 1724 * @param ax 16-bit signed integer container for accelerometer X-axis value
garfieldsg 0:662207e34fba 1725 * @param ay 16-bit signed integer container for accelerometer Y-axis value
garfieldsg 0:662207e34fba 1726 * @param az 16-bit signed integer container for accelerometer Z-axis value
garfieldsg 0:662207e34fba 1727 * @param gx 16-bit signed integer container for gyroscope X-axis value
garfieldsg 0:662207e34fba 1728 * @param gy 16-bit signed integer container for gyroscope Y-axis value
garfieldsg 0:662207e34fba 1729 * @param gz 16-bit signed integer container for gyroscope Z-axis value
garfieldsg 0:662207e34fba 1730 * @see getAcceleration()
garfieldsg 0:662207e34fba 1731 * @see getRotation()
garfieldsg 0:662207e34fba 1732 * @see MPU6050_RA_ACCEL_XOUT_H
garfieldsg 0:662207e34fba 1733 */
syundo0730 6:f38dfe62d74c 1734 void MPU6050::getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz) {
syundo0730 6:f38dfe62d74c 1735 i2cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 14, buffer);
garfieldsg 0:662207e34fba 1736 *ax = (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1737 *ay = (((int16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 1738 *az = (((int16_t)buffer[4]) << 8) | buffer[5];
garfieldsg 0:662207e34fba 1739 *gx = (((int16_t)buffer[8]) << 8) | buffer[9];
garfieldsg 0:662207e34fba 1740 *gy = (((int16_t)buffer[10]) << 8) | buffer[11];
garfieldsg 0:662207e34fba 1741 *gz = (((int16_t)buffer[12]) << 8) | buffer[13];
garfieldsg 0:662207e34fba 1742 }
garfieldsg 0:662207e34fba 1743 /** Get 3-axis accelerometer readings.
garfieldsg 0:662207e34fba 1744 * These registers store the most recent accelerometer measurements.
garfieldsg 0:662207e34fba 1745 * Accelerometer measurements are written to these registers at the Sample Rate
garfieldsg 0:662207e34fba 1746 * as defined in Register 25.
garfieldsg 0:662207e34fba 1747 *
garfieldsg 0:662207e34fba 1748 * The accelerometer measurement registers, along with the temperature
garfieldsg 0:662207e34fba 1749 * measurement registers, gyroscope measurement registers, and external sensor
garfieldsg 0:662207e34fba 1750 * data registers, are composed of two sets of registers: an internal register
garfieldsg 0:662207e34fba 1751 * set and a user-facing read register set.
garfieldsg 0:662207e34fba 1752 *
garfieldsg 0:662207e34fba 1753 * The data within the accelerometer sensors' internal register set is always
garfieldsg 0:662207e34fba 1754 * updated at the Sample Rate. Meanwhile, the user-facing read register set
garfieldsg 0:662207e34fba 1755 * duplicates the internal register set's data values whenever the serial
garfieldsg 0:662207e34fba 1756 * interface is idle. This guarantees that a burst read of sensor registers will
garfieldsg 0:662207e34fba 1757 * read measurements from the same sampling instant. Note that if burst reads
garfieldsg 0:662207e34fba 1758 * are not used, the user is responsible for ensuring a set of single byte reads
garfieldsg 0:662207e34fba 1759 * correspond to a single sampling instant by checking the Data Ready interrupt.
garfieldsg 0:662207e34fba 1760 *
garfieldsg 0:662207e34fba 1761 * Each 16-bit accelerometer measurement has a full scale defined in ACCEL_FS
garfieldsg 0:662207e34fba 1762 * (Register 28). For each full scale setting, the accelerometers' sensitivity
garfieldsg 0:662207e34fba 1763 * per LSB in ACCEL_xOUT is shown in the table below:
garfieldsg 0:662207e34fba 1764 *
garfieldsg 0:662207e34fba 1765 * <pre>
garfieldsg 0:662207e34fba 1766 * AFS_SEL | Full Scale Range | LSB Sensitivity
garfieldsg 0:662207e34fba 1767 * --------+------------------+----------------
garfieldsg 0:662207e34fba 1768 * 0 | +/- 2g | 8192 LSB/mg
garfieldsg 0:662207e34fba 1769 * 1 | +/- 4g | 4096 LSB/mg
garfieldsg 0:662207e34fba 1770 * 2 | +/- 8g | 2048 LSB/mg
garfieldsg 0:662207e34fba 1771 * 3 | +/- 16g | 1024 LSB/mg
garfieldsg 0:662207e34fba 1772 * </pre>
garfieldsg 0:662207e34fba 1773 *
garfieldsg 0:662207e34fba 1774 * @param x 16-bit signed integer container for X-axis acceleration
garfieldsg 0:662207e34fba 1775 * @param y 16-bit signed integer container for Y-axis acceleration
garfieldsg 0:662207e34fba 1776 * @param z 16-bit signed integer container for Z-axis acceleration
garfieldsg 0:662207e34fba 1777 * @see MPU6050_RA_GYRO_XOUT_H
garfieldsg 0:662207e34fba 1778 */
syundo0730 6:f38dfe62d74c 1779 void MPU6050::getAcceleration(int16_t* x, int16_t* y, int16_t* z) {
syundo0730 6:f38dfe62d74c 1780 i2cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 6, buffer);
garfieldsg 0:662207e34fba 1781 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1782 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 1783 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
garfieldsg 0:662207e34fba 1784 }
garfieldsg 0:662207e34fba 1785 /** Get X-axis accelerometer reading.
garfieldsg 0:662207e34fba 1786 * @return X-axis acceleration measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1787 * @see getMotion6()
garfieldsg 0:662207e34fba 1788 * @see MPU6050_RA_ACCEL_XOUT_H
garfieldsg 0:662207e34fba 1789 */
syundo0730 6:f38dfe62d74c 1790 int16_t MPU6050::getAccelerationX() {
syundo0730 6:f38dfe62d74c 1791 i2cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1792 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1793 }
garfieldsg 0:662207e34fba 1794 /** Get Y-axis accelerometer reading.
garfieldsg 0:662207e34fba 1795 * @return Y-axis acceleration measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1796 * @see getMotion6()
garfieldsg 0:662207e34fba 1797 * @see MPU6050_RA_ACCEL_YOUT_H
garfieldsg 0:662207e34fba 1798 */
syundo0730 6:f38dfe62d74c 1799 int16_t MPU6050::getAccelerationY() {
syundo0730 6:f38dfe62d74c 1800 i2cdev.readBytes(devAddr, MPU6050_RA_ACCEL_YOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1801 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1802 }
garfieldsg 0:662207e34fba 1803 /** Get Z-axis accelerometer reading.
garfieldsg 0:662207e34fba 1804 * @return Z-axis acceleration measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1805 * @see getMotion6()
garfieldsg 0:662207e34fba 1806 * @see MPU6050_RA_ACCEL_ZOUT_H
garfieldsg 0:662207e34fba 1807 */
syundo0730 6:f38dfe62d74c 1808 int16_t MPU6050::getAccelerationZ() {
syundo0730 6:f38dfe62d74c 1809 i2cdev.readBytes(devAddr, MPU6050_RA_ACCEL_ZOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1810 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1811 }
garfieldsg 0:662207e34fba 1812
garfieldsg 0:662207e34fba 1813 // TEMP_OUT_* registers
garfieldsg 0:662207e34fba 1814
garfieldsg 0:662207e34fba 1815 /** Get current internal temperature.
garfieldsg 0:662207e34fba 1816 * @return Temperature reading in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1817 * @see MPU6050_RA_TEMP_OUT_H
garfieldsg 0:662207e34fba 1818 */
syundo0730 6:f38dfe62d74c 1819 int16_t MPU6050::getTemperature() {
syundo0730 6:f38dfe62d74c 1820 i2cdev.readBytes(devAddr, MPU6050_RA_TEMP_OUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1821 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1822 }
garfieldsg 0:662207e34fba 1823
garfieldsg 0:662207e34fba 1824 // GYRO_*OUT_* registers
garfieldsg 0:662207e34fba 1825
garfieldsg 0:662207e34fba 1826 /** Get 3-axis gyroscope readings.
garfieldsg 0:662207e34fba 1827 * These gyroscope measurement registers, along with the accelerometer
garfieldsg 0:662207e34fba 1828 * measurement registers, temperature measurement registers, and external sensor
garfieldsg 0:662207e34fba 1829 * data registers, are composed of two sets of registers: an internal register
garfieldsg 0:662207e34fba 1830 * set and a user-facing read register set.
garfieldsg 0:662207e34fba 1831 * The data within the gyroscope sensors' internal register set is always
garfieldsg 0:662207e34fba 1832 * updated at the Sample Rate. Meanwhile, the user-facing read register set
garfieldsg 0:662207e34fba 1833 * duplicates the internal register set's data values whenever the serial
garfieldsg 0:662207e34fba 1834 * interface is idle. This guarantees that a burst read of sensor registers will
garfieldsg 0:662207e34fba 1835 * read measurements from the same sampling instant. Note that if burst reads
garfieldsg 0:662207e34fba 1836 * are not used, the user is responsible for ensuring a set of single byte reads
garfieldsg 0:662207e34fba 1837 * correspond to a single sampling instant by checking the Data Ready interrupt.
garfieldsg 0:662207e34fba 1838 *
garfieldsg 0:662207e34fba 1839 * Each 16-bit gyroscope measurement has a full scale defined in FS_SEL
garfieldsg 0:662207e34fba 1840 * (Register 27). For each full scale setting, the gyroscopes' sensitivity per
garfieldsg 0:662207e34fba 1841 * LSB in GYRO_xOUT is shown in the table below:
garfieldsg 0:662207e34fba 1842 *
garfieldsg 0:662207e34fba 1843 * <pre>
garfieldsg 0:662207e34fba 1844 * FS_SEL | Full Scale Range | LSB Sensitivity
garfieldsg 0:662207e34fba 1845 * -------+--------------------+----------------
garfieldsg 0:662207e34fba 1846 * 0 | +/- 250 degrees/s | 131 LSB/deg/s
garfieldsg 0:662207e34fba 1847 * 1 | +/- 500 degrees/s | 65.5 LSB/deg/s
garfieldsg 0:662207e34fba 1848 * 2 | +/- 1000 degrees/s | 32.8 LSB/deg/s
garfieldsg 0:662207e34fba 1849 * 3 | +/- 2000 degrees/s | 16.4 LSB/deg/s
garfieldsg 0:662207e34fba 1850 * </pre>
garfieldsg 0:662207e34fba 1851 *
garfieldsg 0:662207e34fba 1852 * @param x 16-bit signed integer container for X-axis rotation
garfieldsg 0:662207e34fba 1853 * @param y 16-bit signed integer container for Y-axis rotation
garfieldsg 0:662207e34fba 1854 * @param z 16-bit signed integer container for Z-axis rotation
garfieldsg 0:662207e34fba 1855 * @see getMotion6()
garfieldsg 0:662207e34fba 1856 * @see MPU6050_RA_GYRO_XOUT_H
garfieldsg 0:662207e34fba 1857 */
syundo0730 6:f38dfe62d74c 1858 void MPU6050::getRotation(int16_t* x, int16_t* y, int16_t* z) {
syundo0730 6:f38dfe62d74c 1859 i2cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 6, buffer);
garfieldsg 0:662207e34fba 1860 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1861 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 1862 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
garfieldsg 0:662207e34fba 1863 }
garfieldsg 0:662207e34fba 1864 /** Get X-axis gyroscope reading.
garfieldsg 0:662207e34fba 1865 * @return X-axis rotation measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1866 * @see getMotion6()
garfieldsg 0:662207e34fba 1867 * @see MPU6050_RA_GYRO_XOUT_H
garfieldsg 0:662207e34fba 1868 */
syundo0730 6:f38dfe62d74c 1869 int16_t MPU6050::getRotationX() {
syundo0730 6:f38dfe62d74c 1870 i2cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1871 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1872 }
garfieldsg 0:662207e34fba 1873 /** Get Y-axis gyroscope reading.
garfieldsg 0:662207e34fba 1874 * @return Y-axis rotation measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1875 * @see getMotion6()
garfieldsg 0:662207e34fba 1876 * @see MPU6050_RA_GYRO_YOUT_H
garfieldsg 0:662207e34fba 1877 */
syundo0730 6:f38dfe62d74c 1878 int16_t MPU6050::getRotationY() {
syundo0730 6:f38dfe62d74c 1879 i2cdev.readBytes(devAddr, MPU6050_RA_GYRO_YOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1880 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1881 }
garfieldsg 0:662207e34fba 1882 /** Get Z-axis gyroscope reading.
garfieldsg 0:662207e34fba 1883 * @return Z-axis rotation measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1884 * @see getMotion6()
garfieldsg 0:662207e34fba 1885 * @see MPU6050_RA_GYRO_ZOUT_H
garfieldsg 0:662207e34fba 1886 */
syundo0730 6:f38dfe62d74c 1887 int16_t MPU6050::getRotationZ() {
syundo0730 6:f38dfe62d74c 1888 i2cdev.readBytes(devAddr, MPU6050_RA_GYRO_ZOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1889 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1890 }
garfieldsg 0:662207e34fba 1891
garfieldsg 0:662207e34fba 1892 // EXT_SENS_DATA_* registers
garfieldsg 0:662207e34fba 1893
garfieldsg 0:662207e34fba 1894 /** Read single byte from external sensor data register.
garfieldsg 0:662207e34fba 1895 * These registers store data read from external sensors by the Slave 0, 1, 2,
garfieldsg 0:662207e34fba 1896 * and 3 on the auxiliary I2C interface. Data read by Slave 4 is stored in
garfieldsg 0:662207e34fba 1897 * I2C_SLV4_DI (Register 53).
garfieldsg 0:662207e34fba 1898 *
garfieldsg 0:662207e34fba 1899 * External sensor data is written to these registers at the Sample Rate as
garfieldsg 0:662207e34fba 1900 * defined in Register 25. This access rate can be reduced by using the Slave
garfieldsg 0:662207e34fba 1901 * Delay Enable registers (Register 103).
garfieldsg 0:662207e34fba 1902 *
garfieldsg 0:662207e34fba 1903 * External sensor data registers, along with the gyroscope measurement
garfieldsg 0:662207e34fba 1904 * registers, accelerometer measurement registers, and temperature measurement
garfieldsg 0:662207e34fba 1905 * registers, are composed of two sets of registers: an internal register set
garfieldsg 0:662207e34fba 1906 * and a user-facing read register set.
garfieldsg 0:662207e34fba 1907 *
garfieldsg 0:662207e34fba 1908 * The data within the external sensors' internal register set is always updated
garfieldsg 0:662207e34fba 1909 * at the Sample Rate (or the reduced access rate) whenever the serial interface
garfieldsg 0:662207e34fba 1910 * is idle. This guarantees that a burst read of sensor registers will read
garfieldsg 0:662207e34fba 1911 * measurements from the same sampling instant. Note that if burst reads are not
garfieldsg 0:662207e34fba 1912 * used, the user is responsible for ensuring a set of single byte reads
garfieldsg 0:662207e34fba 1913 * correspond to a single sampling instant by checking the Data Ready interrupt.
garfieldsg 0:662207e34fba 1914 *
garfieldsg 0:662207e34fba 1915 * Data is placed in these external sensor data registers according to
garfieldsg 0:662207e34fba 1916 * I2C_SLV0_CTRL, I2C_SLV1_CTRL, I2C_SLV2_CTRL, and I2C_SLV3_CTRL (Registers 39,
garfieldsg 0:662207e34fba 1917 * 42, 45, and 48). When more than zero bytes are read (I2C_SLVx_LEN > 0) from
garfieldsg 0:662207e34fba 1918 * an enabled slave (I2C_SLVx_EN = 1), the slave is read at the Sample Rate (as
garfieldsg 0:662207e34fba 1919 * defined in Register 25) or delayed rate (if specified in Register 52 and
garfieldsg 0:662207e34fba 1920 * 103). During each Sample cycle, slave reads are performed in order of Slave
garfieldsg 0:662207e34fba 1921 * number. If all slaves are enabled with more than zero bytes to be read, the
garfieldsg 0:662207e34fba 1922 * order will be Slave 0, followed by Slave 1, Slave 2, and Slave 3.
garfieldsg 0:662207e34fba 1923 *
garfieldsg 0:662207e34fba 1924 * Each enabled slave will have EXT_SENS_DATA registers associated with it by
garfieldsg 0:662207e34fba 1925 * number of bytes read (I2C_SLVx_LEN) in order of slave number, starting from
garfieldsg 0:662207e34fba 1926 * EXT_SENS_DATA_00. Note that this means enabling or disabling a slave may
garfieldsg 0:662207e34fba 1927 * change the higher numbered slaves' associated registers. Furthermore, if
garfieldsg 0:662207e34fba 1928 * fewer total bytes are being read from the external sensors as a result of
garfieldsg 0:662207e34fba 1929 * such a change, then the data remaining in the registers which no longer have
garfieldsg 0:662207e34fba 1930 * an associated slave device (i.e. high numbered registers) will remain in
garfieldsg 0:662207e34fba 1931 * these previously allocated registers unless reset.
garfieldsg 0:662207e34fba 1932 *
garfieldsg 0:662207e34fba 1933 * If the sum of the read lengths of all SLVx transactions exceed the number of
garfieldsg 0:662207e34fba 1934 * available EXT_SENS_DATA registers, the excess bytes will be dropped. There
garfieldsg 0:662207e34fba 1935 * are 24 EXT_SENS_DATA registers and hence the total read lengths between all
garfieldsg 0:662207e34fba 1936 * the slaves cannot be greater than 24 or some bytes will be lost.
garfieldsg 0:662207e34fba 1937 *
garfieldsg 0:662207e34fba 1938 * Note: Slave 4's behavior is distinct from that of Slaves 0-3. For further
garfieldsg 0:662207e34fba 1939 * information regarding the characteristics of Slave 4, please refer to
garfieldsg 0:662207e34fba 1940 * Registers 49 to 53.
garfieldsg 0:662207e34fba 1941 *
garfieldsg 0:662207e34fba 1942 * EXAMPLE:
garfieldsg 0:662207e34fba 1943 * Suppose that Slave 0 is enabled with 4 bytes to be read (I2C_SLV0_EN = 1 and
garfieldsg 0:662207e34fba 1944 * I2C_SLV0_LEN = 4) while Slave 1 is enabled with 2 bytes to be read so that
garfieldsg 0:662207e34fba 1945 * I2C_SLV1_EN = 1 and I2C_SLV1_LEN = 2. In such a situation, EXT_SENS_DATA _00
garfieldsg 0:662207e34fba 1946 * through _03 will be associated with Slave 0, while EXT_SENS_DATA _04 and 05
garfieldsg 0:662207e34fba 1947 * will be associated with Slave 1. If Slave 2 is enabled as well, registers
garfieldsg 0:662207e34fba 1948 * starting from EXT_SENS_DATA_06 will be allocated to Slave 2.
garfieldsg 0:662207e34fba 1949 *
garfieldsg 0:662207e34fba 1950 * If Slave 2 is disabled while Slave 3 is enabled in this same situation, then
garfieldsg 0:662207e34fba 1951 * registers starting from EXT_SENS_DATA_06 will be allocated to Slave 3
garfieldsg 0:662207e34fba 1952 * instead.
garfieldsg 0:662207e34fba 1953 *
garfieldsg 0:662207e34fba 1954 * REGISTER ALLOCATION FOR DYNAMIC DISABLE VS. NORMAL DISABLE:
garfieldsg 0:662207e34fba 1955 * If a slave is disabled at any time, the space initially allocated to the
garfieldsg 0:662207e34fba 1956 * slave in the EXT_SENS_DATA register, will remain associated with that slave.
garfieldsg 0:662207e34fba 1957 * This is to avoid dynamic adjustment of the register allocation.
garfieldsg 0:662207e34fba 1958 *
garfieldsg 0:662207e34fba 1959 * The allocation of the EXT_SENS_DATA registers is recomputed only when (1) all
garfieldsg 0:662207e34fba 1960 * slaves are disabled, or (2) the I2C_MST_RST bit is set (Register 106).
garfieldsg 0:662207e34fba 1961 *
garfieldsg 0:662207e34fba 1962 * This above is also true if one of the slaves gets NACKed and stops
garfieldsg 0:662207e34fba 1963 * functioning.
garfieldsg 0:662207e34fba 1964 *
garfieldsg 0:662207e34fba 1965 * @param position Starting position (0-23)
garfieldsg 0:662207e34fba 1966 * @return Byte read from register
garfieldsg 0:662207e34fba 1967 */
syundo0730 6:f38dfe62d74c 1968 uint8_t MPU6050::getExternalSensorByte(int position) {
syundo0730 6:f38dfe62d74c 1969 i2cdev.readByte(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, buffer);
garfieldsg 0:662207e34fba 1970 return buffer[0];
garfieldsg 0:662207e34fba 1971 }
garfieldsg 0:662207e34fba 1972 /** Read word (2 bytes) from external sensor data registers.
garfieldsg 0:662207e34fba 1973 * @param position Starting position (0-21)
garfieldsg 0:662207e34fba 1974 * @return Word read from register
garfieldsg 0:662207e34fba 1975 * @see getExternalSensorByte()
garfieldsg 0:662207e34fba 1976 */
syundo0730 6:f38dfe62d74c 1977 uint16_t MPU6050::getExternalSensorWord(int position) {
syundo0730 6:f38dfe62d74c 1978 i2cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 2, buffer);
garfieldsg 0:662207e34fba 1979 return (((uint16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1980 }
garfieldsg 0:662207e34fba 1981 /** Read double word (4 bytes) from external sensor data registers.
garfieldsg 0:662207e34fba 1982 * @param position Starting position (0-20)
garfieldsg 0:662207e34fba 1983 * @return Double word read from registers
garfieldsg 0:662207e34fba 1984 * @see getExternalSensorByte()
garfieldsg 0:662207e34fba 1985 */
syundo0730 6:f38dfe62d74c 1986 uint32_t MPU6050::getExternalSensorDWord(int position) {
syundo0730 6:f38dfe62d74c 1987 i2cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 4, buffer);
garfieldsg 0:662207e34fba 1988 return (((uint32_t)buffer[0]) << 24) | (((uint32_t)buffer[1]) << 16) | (((uint16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 1989 }
garfieldsg 0:662207e34fba 1990
garfieldsg 0:662207e34fba 1991 // MOT_DETECT_STATUS register
garfieldsg 0:662207e34fba 1992
syundo0730 6:f38dfe62d74c 1993 /** Get full motion detection status register content (all bits).
syundo0730 6:f38dfe62d74c 1994 * @return Motion detection status byte
syundo0730 6:f38dfe62d74c 1995 * @see MPU6050_RA_MOT_DETECT_STATUS
syundo0730 6:f38dfe62d74c 1996 */
syundo0730 6:f38dfe62d74c 1997 uint8_t MPU6050::getMotionStatus() {
syundo0730 6:f38dfe62d74c 1998 i2cdev.readByte(devAddr, MPU6050_RA_MOT_DETECT_STATUS, buffer);
syundo0730 6:f38dfe62d74c 1999 return buffer[0];
syundo0730 6:f38dfe62d74c 2000 }
garfieldsg 0:662207e34fba 2001 /** Get X-axis negative motion detection interrupt status.
garfieldsg 0:662207e34fba 2002 * @return Motion detection status
garfieldsg 0:662207e34fba 2003 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2004 * @see MPU6050_MOTION_MOT_XNEG_BIT
garfieldsg 0:662207e34fba 2005 */
syundo0730 6:f38dfe62d74c 2006 bool MPU6050::getXNegMotionDetected() {
syundo0730 6:f38dfe62d74c 2007 i2cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XNEG_BIT, buffer);
garfieldsg 0:662207e34fba 2008 return buffer[0];
garfieldsg 0:662207e34fba 2009 }
garfieldsg 0:662207e34fba 2010 /** Get X-axis positive motion detection interrupt status.
garfieldsg 0:662207e34fba 2011 * @return Motion detection status
garfieldsg 0:662207e34fba 2012 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2013 * @see MPU6050_MOTION_MOT_XPOS_BIT
garfieldsg 0:662207e34fba 2014 */
syundo0730 6:f38dfe62d74c 2015 bool MPU6050::getXPosMotionDetected() {
syundo0730 6:f38dfe62d74c 2016 i2cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XPOS_BIT, buffer);
garfieldsg 0:662207e34fba 2017 return buffer[0];
garfieldsg 0:662207e34fba 2018 }
garfieldsg 0:662207e34fba 2019 /** Get Y-axis negative motion detection interrupt status.
garfieldsg 0:662207e34fba 2020 * @return Motion detection status
garfieldsg 0:662207e34fba 2021 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2022 * @see MPU6050_MOTION_MOT_YNEG_BIT
garfieldsg 0:662207e34fba 2023 */
syundo0730 6:f38dfe62d74c 2024 bool MPU6050::getYNegMotionDetected() {
syundo0730 6:f38dfe62d74c 2025 i2cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YNEG_BIT, buffer);
garfieldsg 0:662207e34fba 2026 return buffer[0];
garfieldsg 0:662207e34fba 2027 }
garfieldsg 0:662207e34fba 2028 /** Get Y-axis positive motion detection interrupt status.
garfieldsg 0:662207e34fba 2029 * @return Motion detection status
garfieldsg 0:662207e34fba 2030 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2031 * @see MPU6050_MOTION_MOT_YPOS_BIT
garfieldsg 0:662207e34fba 2032 */
syundo0730 6:f38dfe62d74c 2033 bool MPU6050::getYPosMotionDetected() {
syundo0730 6:f38dfe62d74c 2034 i2cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YPOS_BIT, buffer);
garfieldsg 0:662207e34fba 2035 return buffer[0];
garfieldsg 0:662207e34fba 2036 }
garfieldsg 0:662207e34fba 2037 /** Get Z-axis negative motion detection interrupt status.
garfieldsg 0:662207e34fba 2038 * @return Motion detection status
garfieldsg 0:662207e34fba 2039 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2040 * @see MPU6050_MOTION_MOT_ZNEG_BIT
garfieldsg 0:662207e34fba 2041 */
syundo0730 6:f38dfe62d74c 2042 bool MPU6050::getZNegMotionDetected() {
syundo0730 6:f38dfe62d74c 2043 i2cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZNEG_BIT, buffer);
garfieldsg 0:662207e34fba 2044 return buffer[0];
garfieldsg 0:662207e34fba 2045 }
garfieldsg 0:662207e34fba 2046 /** Get Z-axis positive motion detection interrupt status.
garfieldsg 0:662207e34fba 2047 * @return Motion detection status
garfieldsg 0:662207e34fba 2048 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2049 * @see MPU6050_MOTION_MOT_ZPOS_BIT
garfieldsg 0:662207e34fba 2050 */
syundo0730 6:f38dfe62d74c 2051 bool MPU6050::getZPosMotionDetected() {
syundo0730 6:f38dfe62d74c 2052 i2cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZPOS_BIT, buffer);
garfieldsg 0:662207e34fba 2053 return buffer[0];
garfieldsg 0:662207e34fba 2054 }
garfieldsg 0:662207e34fba 2055 /** Get zero motion detection interrupt status.
garfieldsg 0:662207e34fba 2056 * @return Motion detection status
garfieldsg 0:662207e34fba 2057 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2058 * @see MPU6050_MOTION_MOT_ZRMOT_BIT
garfieldsg 0:662207e34fba 2059 */
syundo0730 6:f38dfe62d74c 2060 bool MPU6050::getZeroMotionDetected() {
syundo0730 6:f38dfe62d74c 2061 i2cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZRMOT_BIT, buffer);
garfieldsg 0:662207e34fba 2062 return buffer[0];
garfieldsg 0:662207e34fba 2063 }
garfieldsg 0:662207e34fba 2064
garfieldsg 0:662207e34fba 2065 // I2C_SLV*_DO register
garfieldsg 0:662207e34fba 2066
garfieldsg 0:662207e34fba 2067 /** Write byte to Data Output container for specified slave.
garfieldsg 0:662207e34fba 2068 * This register holds the output data written into Slave when Slave is set to
garfieldsg 0:662207e34fba 2069 * write mode. For further information regarding Slave control, please
garfieldsg 0:662207e34fba 2070 * refer to Registers 37 to 39 and immediately following.
garfieldsg 0:662207e34fba 2071 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 2072 * @param data Byte to write
garfieldsg 0:662207e34fba 2073 * @see MPU6050_RA_I2C_SLV0_DO
garfieldsg 0:662207e34fba 2074 */
syundo0730 6:f38dfe62d74c 2075 void MPU6050::setSlaveOutputByte(uint8_t num, uint8_t data) {
garfieldsg 0:662207e34fba 2076 if (num > 3) return;
syundo0730 6:f38dfe62d74c 2077 i2cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_DO + num, data);
garfieldsg 0:662207e34fba 2078 }
garfieldsg 0:662207e34fba 2079
garfieldsg 0:662207e34fba 2080 // I2C_MST_DELAY_CTRL register
garfieldsg 0:662207e34fba 2081
garfieldsg 0:662207e34fba 2082 /** Get external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2083 * This register is used to specify the timing of external sensor data
garfieldsg 0:662207e34fba 2084 * shadowing. When DELAY_ES_SHADOW is set to 1, shadowing of external
garfieldsg 0:662207e34fba 2085 * sensor data is delayed until all data has been received.
garfieldsg 0:662207e34fba 2086 * @return Current external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2087 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2088 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
garfieldsg 0:662207e34fba 2089 */
syundo0730 6:f38dfe62d74c 2090 bool MPU6050::getExternalShadowDelayEnabled() {
syundo0730 6:f38dfe62d74c 2091 i2cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, buffer);
garfieldsg 0:662207e34fba 2092 return buffer[0];
garfieldsg 0:662207e34fba 2093 }
garfieldsg 0:662207e34fba 2094 /** Set external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2095 * @param enabled New external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2096 * @see getExternalShadowDelayEnabled()
garfieldsg 0:662207e34fba 2097 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2098 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
garfieldsg 0:662207e34fba 2099 */
syundo0730 6:f38dfe62d74c 2100 void MPU6050::setExternalShadowDelayEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 2101 i2cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, enabled);
garfieldsg 0:662207e34fba 2102 }
garfieldsg 0:662207e34fba 2103 /** Get slave delay enabled status.
garfieldsg 0:662207e34fba 2104 * When a particular slave delay is enabled, the rate of access for the that
garfieldsg 0:662207e34fba 2105 * slave device is reduced. When a slave's access rate is decreased relative to
garfieldsg 0:662207e34fba 2106 * the Sample Rate, the slave is accessed every:
garfieldsg 0:662207e34fba 2107 *
garfieldsg 0:662207e34fba 2108 * 1 / (1 + I2C_MST_DLY) Samples
garfieldsg 0:662207e34fba 2109 *
garfieldsg 0:662207e34fba 2110 * This base Sample Rate in turn is determined by SMPLRT_DIV (register * 25)
garfieldsg 0:662207e34fba 2111 * and DLPF_CFG (register 26).
garfieldsg 0:662207e34fba 2112 *
garfieldsg 0:662207e34fba 2113 * For further information regarding I2C_MST_DLY, please refer to register 52.
garfieldsg 0:662207e34fba 2114 * For further information regarding the Sample Rate, please refer to register 25.
garfieldsg 0:662207e34fba 2115 *
garfieldsg 0:662207e34fba 2116 * @param num Slave number (0-4)
garfieldsg 0:662207e34fba 2117 * @return Current slave delay enabled status.
garfieldsg 0:662207e34fba 2118 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2119 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
garfieldsg 0:662207e34fba 2120 */
syundo0730 6:f38dfe62d74c 2121 bool MPU6050::getSlaveDelayEnabled(uint8_t num) {
garfieldsg 0:662207e34fba 2122 // MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT is 4, SLV3 is 3, etc.
garfieldsg 0:662207e34fba 2123 if (num > 4) return 0;
syundo0730 6:f38dfe62d74c 2124 i2cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, buffer);
garfieldsg 0:662207e34fba 2125 return buffer[0];
garfieldsg 0:662207e34fba 2126 }
garfieldsg 0:662207e34fba 2127 /** Set slave delay enabled status.
garfieldsg 0:662207e34fba 2128 * @param num Slave number (0-4)
garfieldsg 0:662207e34fba 2129 * @param enabled New slave delay enabled status.
garfieldsg 0:662207e34fba 2130 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2131 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
garfieldsg 0:662207e34fba 2132 */
syundo0730 6:f38dfe62d74c 2133 void MPU6050::setSlaveDelayEnabled(uint8_t num, bool enabled) {
syundo0730 6:f38dfe62d74c 2134 i2cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, enabled);
garfieldsg 0:662207e34fba 2135 }
garfieldsg 0:662207e34fba 2136
garfieldsg 0:662207e34fba 2137 // SIGNAL_PATH_RESET register
garfieldsg 0:662207e34fba 2138
garfieldsg 0:662207e34fba 2139 /** Reset gyroscope signal path.
garfieldsg 0:662207e34fba 2140 * The reset will revert the signal path analog to digital converters and
garfieldsg 0:662207e34fba 2141 * filters to their power up configurations.
garfieldsg 0:662207e34fba 2142 * @see MPU6050_RA_SIGNAL_PATH_RESET
garfieldsg 0:662207e34fba 2143 * @see MPU6050_PATHRESET_GYRO_RESET_BIT
garfieldsg 0:662207e34fba 2144 */
syundo0730 6:f38dfe62d74c 2145 void MPU6050::resetGyroscopePath() {
syundo0730 6:f38dfe62d74c 2146 i2cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_GYRO_RESET_BIT, true);
garfieldsg 0:662207e34fba 2147 }
garfieldsg 0:662207e34fba 2148 /** Reset accelerometer signal path.
garfieldsg 0:662207e34fba 2149 * The reset will revert the signal path analog to digital converters and
garfieldsg 0:662207e34fba 2150 * filters to their power up configurations.
garfieldsg 0:662207e34fba 2151 * @see MPU6050_RA_SIGNAL_PATH_RESET
garfieldsg 0:662207e34fba 2152 * @see MPU6050_PATHRESET_ACCEL_RESET_BIT
garfieldsg 0:662207e34fba 2153 */
syundo0730 6:f38dfe62d74c 2154 void MPU6050::resetAccelerometerPath() {
syundo0730 6:f38dfe62d74c 2155 i2cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_ACCEL_RESET_BIT, true);
garfieldsg 0:662207e34fba 2156 }
garfieldsg 0:662207e34fba 2157 /** Reset temperature sensor signal path.
garfieldsg 0:662207e34fba 2158 * The reset will revert the signal path analog to digital converters and
garfieldsg 0:662207e34fba 2159 * filters to their power up configurations.
garfieldsg 0:662207e34fba 2160 * @see MPU6050_RA_SIGNAL_PATH_RESET
garfieldsg 0:662207e34fba 2161 * @see MPU6050_PATHRESET_TEMP_RESET_BIT
garfieldsg 0:662207e34fba 2162 */
syundo0730 6:f38dfe62d74c 2163 void MPU6050::resetTemperaturePath() {
syundo0730 6:f38dfe62d74c 2164 i2cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_TEMP_RESET_BIT, true);
garfieldsg 0:662207e34fba 2165 }
garfieldsg 0:662207e34fba 2166
garfieldsg 0:662207e34fba 2167 // MOT_DETECT_CTRL register
garfieldsg 0:662207e34fba 2168
garfieldsg 0:662207e34fba 2169 /** Get accelerometer power-on delay.
garfieldsg 0:662207e34fba 2170 * The accelerometer data path provides samples to the sensor registers, Motion
garfieldsg 0:662207e34fba 2171 * detection, Zero Motion detection, and Free Fall detection modules. The
garfieldsg 0:662207e34fba 2172 * signal path contains filters which must be flushed on wake-up with new
garfieldsg 0:662207e34fba 2173 * samples before the detection modules begin operations. The default wake-up
garfieldsg 0:662207e34fba 2174 * delay, of 4ms can be lengthened by up to 3ms. This additional delay is
garfieldsg 0:662207e34fba 2175 * specified in ACCEL_ON_DELAY in units of 1 LSB = 1 ms. The user may select
garfieldsg 0:662207e34fba 2176 * any value above zero unless instructed otherwise by InvenSense. Please refer
garfieldsg 0:662207e34fba 2177 * to Section 8 of the MPU-6000/MPU-6050 Product Specification document for
garfieldsg 0:662207e34fba 2178 * further information regarding the detection modules.
garfieldsg 0:662207e34fba 2179 * @return Current accelerometer power-on delay
garfieldsg 0:662207e34fba 2180 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2181 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
garfieldsg 0:662207e34fba 2182 */
syundo0730 6:f38dfe62d74c 2183 uint8_t MPU6050::getAccelerometerPowerOnDelay() {
syundo0730 6:f38dfe62d74c 2184 i2cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, buffer);
garfieldsg 0:662207e34fba 2185 return buffer[0];
garfieldsg 0:662207e34fba 2186 }
garfieldsg 0:662207e34fba 2187 /** Set accelerometer power-on delay.
garfieldsg 0:662207e34fba 2188 * @param delay New accelerometer power-on delay (0-3)
garfieldsg 0:662207e34fba 2189 * @see getAccelerometerPowerOnDelay()
garfieldsg 0:662207e34fba 2190 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2191 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
garfieldsg 0:662207e34fba 2192 */
syundo0730 6:f38dfe62d74c 2193 void MPU6050::setAccelerometerPowerOnDelay(uint8_t delay) {
syundo0730 6:f38dfe62d74c 2194 i2cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, delay);
garfieldsg 0:662207e34fba 2195 }
garfieldsg 0:662207e34fba 2196 /** Get Free Fall detection counter decrement configuration.
garfieldsg 0:662207e34fba 2197 * Detection is registered by the Free Fall detection module after accelerometer
garfieldsg 0:662207e34fba 2198 * measurements meet their respective threshold conditions over a specified
garfieldsg 0:662207e34fba 2199 * number of samples. When the threshold conditions are met, the corresponding
garfieldsg 0:662207e34fba 2200 * detection counter increments by 1. The user may control the rate at which the
garfieldsg 0:662207e34fba 2201 * detection counter decrements when the threshold condition is not met by
garfieldsg 0:662207e34fba 2202 * configuring FF_COUNT. The decrement rate can be set according to the
garfieldsg 0:662207e34fba 2203 * following table:
garfieldsg 0:662207e34fba 2204 *
garfieldsg 0:662207e34fba 2205 * <pre>
garfieldsg 0:662207e34fba 2206 * FF_COUNT | Counter Decrement
garfieldsg 0:662207e34fba 2207 * ---------+------------------
garfieldsg 0:662207e34fba 2208 * 0 | Reset
garfieldsg 0:662207e34fba 2209 * 1 | 1
garfieldsg 0:662207e34fba 2210 * 2 | 2
garfieldsg 0:662207e34fba 2211 * 3 | 4
garfieldsg 0:662207e34fba 2212 * </pre>
garfieldsg 0:662207e34fba 2213 *
garfieldsg 0:662207e34fba 2214 * When FF_COUNT is configured to 0 (reset), any non-qualifying sample will
garfieldsg 0:662207e34fba 2215 * reset the counter to 0. For further information on Free Fall detection,
garfieldsg 0:662207e34fba 2216 * please refer to Registers 29 to 32.
garfieldsg 0:662207e34fba 2217 *
garfieldsg 0:662207e34fba 2218 * @return Current decrement configuration
garfieldsg 0:662207e34fba 2219 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2220 * @see MPU6050_DETECT_FF_COUNT_BIT
garfieldsg 0:662207e34fba 2221 */
syundo0730 6:f38dfe62d74c 2222 uint8_t MPU6050::getFreefallDetectionCounterDecrement() {
syundo0730 6:f38dfe62d74c 2223 i2cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, buffer);
garfieldsg 0:662207e34fba 2224 return buffer[0];
garfieldsg 0:662207e34fba 2225 }
garfieldsg 0:662207e34fba 2226 /** Set Free Fall detection counter decrement configuration.
garfieldsg 0:662207e34fba 2227 * @param decrement New decrement configuration value
garfieldsg 0:662207e34fba 2228 * @see getFreefallDetectionCounterDecrement()
garfieldsg 0:662207e34fba 2229 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2230 * @see MPU6050_DETECT_FF_COUNT_BIT
garfieldsg 0:662207e34fba 2231 */
syundo0730 6:f38dfe62d74c 2232 void MPU6050::setFreefallDetectionCounterDecrement(uint8_t decrement) {
syundo0730 6:f38dfe62d74c 2233 i2cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, decrement);
garfieldsg 0:662207e34fba 2234 }
garfieldsg 0:662207e34fba 2235 /** Get Motion detection counter decrement configuration.
garfieldsg 0:662207e34fba 2236 * Detection is registered by the Motion detection module after accelerometer
garfieldsg 0:662207e34fba 2237 * measurements meet their respective threshold conditions over a specified
garfieldsg 0:662207e34fba 2238 * number of samples. When the threshold conditions are met, the corresponding
garfieldsg 0:662207e34fba 2239 * detection counter increments by 1. The user may control the rate at which the
garfieldsg 0:662207e34fba 2240 * detection counter decrements when the threshold condition is not met by
garfieldsg 0:662207e34fba 2241 * configuring MOT_COUNT. The decrement rate can be set according to the
garfieldsg 0:662207e34fba 2242 * following table:
garfieldsg 0:662207e34fba 2243 *
garfieldsg 0:662207e34fba 2244 * <pre>
garfieldsg 0:662207e34fba 2245 * MOT_COUNT | Counter Decrement
garfieldsg 0:662207e34fba 2246 * ----------+------------------
garfieldsg 0:662207e34fba 2247 * 0 | Reset
garfieldsg 0:662207e34fba 2248 * 1 | 1
garfieldsg 0:662207e34fba 2249 * 2 | 2
garfieldsg 0:662207e34fba 2250 * 3 | 4
garfieldsg 0:662207e34fba 2251 * </pre>
garfieldsg 0:662207e34fba 2252 *
garfieldsg 0:662207e34fba 2253 * When MOT_COUNT is configured to 0 (reset), any non-qualifying sample will
garfieldsg 0:662207e34fba 2254 * reset the counter to 0. For further information on Motion detection,
garfieldsg 0:662207e34fba 2255 * please refer to Registers 29 to 32.
garfieldsg 0:662207e34fba 2256 *
garfieldsg 0:662207e34fba 2257 */
syundo0730 6:f38dfe62d74c 2258 uint8_t MPU6050::getMotionDetectionCounterDecrement() {
syundo0730 6:f38dfe62d74c 2259 i2cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, buffer);
garfieldsg 0:662207e34fba 2260 return buffer[0];
garfieldsg 0:662207e34fba 2261 }
garfieldsg 0:662207e34fba 2262 /** Set Motion detection counter decrement configuration.
garfieldsg 0:662207e34fba 2263 * @param decrement New decrement configuration value
garfieldsg 0:662207e34fba 2264 * @see getMotionDetectionCounterDecrement()
garfieldsg 0:662207e34fba 2265 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2266 * @see MPU6050_DETECT_MOT_COUNT_BIT
garfieldsg 0:662207e34fba 2267 */
syundo0730 6:f38dfe62d74c 2268 void MPU6050::setMotionDetectionCounterDecrement(uint8_t decrement) {
syundo0730 6:f38dfe62d74c 2269 i2cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, decrement);
garfieldsg 0:662207e34fba 2270 }
garfieldsg 0:662207e34fba 2271
garfieldsg 0:662207e34fba 2272 // USER_CTRL register
garfieldsg 0:662207e34fba 2273
garfieldsg 0:662207e34fba 2274 /** Get FIFO enabled status.
garfieldsg 0:662207e34fba 2275 * When this bit is set to 0, the FIFO buffer is disabled. The FIFO buffer
garfieldsg 0:662207e34fba 2276 * cannot be written to or read from while disabled. The FIFO buffer's state
garfieldsg 0:662207e34fba 2277 * does not change unless the MPU-60X0 is power cycled.
garfieldsg 0:662207e34fba 2278 * @return Current FIFO enabled status
garfieldsg 0:662207e34fba 2279 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2280 * @see MPU6050_USERCTRL_FIFO_EN_BIT
garfieldsg 0:662207e34fba 2281 */
syundo0730 6:f38dfe62d74c 2282 bool MPU6050::getFIFOEnabled() {
syundo0730 6:f38dfe62d74c 2283 i2cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 2284 return buffer[0];
garfieldsg 0:662207e34fba 2285 }
garfieldsg 0:662207e34fba 2286 /** Set FIFO enabled status.
garfieldsg 0:662207e34fba 2287 * @param enabled New FIFO enabled status
garfieldsg 0:662207e34fba 2288 * @see getFIFOEnabled()
garfieldsg 0:662207e34fba 2289 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2290 * @see MPU6050_USERCTRL_FIFO_EN_BIT
garfieldsg 0:662207e34fba 2291 */
syundo0730 6:f38dfe62d74c 2292 void MPU6050::setFIFOEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 2293 i2cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 2294 }
garfieldsg 0:662207e34fba 2295 /** Get I2C Master Mode enabled status.
garfieldsg 0:662207e34fba 2296 * When this mode is enabled, the MPU-60X0 acts as the I2C Master to the
garfieldsg 0:662207e34fba 2297 * external sensor slave devices on the auxiliary I2C bus. When this bit is
garfieldsg 0:662207e34fba 2298 * cleared to 0, the auxiliary I2C bus lines (AUX_DA and AUX_CL) are logically
garfieldsg 0:662207e34fba 2299 * driven by the primary I2C bus (SDA and SCL). This is a precondition to
garfieldsg 0:662207e34fba 2300 * enabling Bypass Mode. For further information regarding Bypass Mode, please
garfieldsg 0:662207e34fba 2301 * refer to Register 55.
garfieldsg 0:662207e34fba 2302 * @return Current I2C Master Mode enabled status
garfieldsg 0:662207e34fba 2303 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2304 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
garfieldsg 0:662207e34fba 2305 */
syundo0730 6:f38dfe62d74c 2306 bool MPU6050::getI2CMasterModeEnabled() {
syundo0730 6:f38dfe62d74c 2307 i2cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, buffer);
garfieldsg 0:662207e34fba 2308 return buffer[0];
garfieldsg 0:662207e34fba 2309 }
garfieldsg 0:662207e34fba 2310 /** Set I2C Master Mode enabled status.
garfieldsg 0:662207e34fba 2311 * @param enabled New I2C Master Mode enabled status
garfieldsg 0:662207e34fba 2312 * @see getI2CMasterModeEnabled()
garfieldsg 0:662207e34fba 2313 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2314 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
garfieldsg 0:662207e34fba 2315 */
syundo0730 6:f38dfe62d74c 2316 void MPU6050::setI2CMasterModeEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 2317 i2cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled);
garfieldsg 0:662207e34fba 2318 }
garfieldsg 0:662207e34fba 2319 /** Switch from I2C to SPI mode (MPU-6000 only)
garfieldsg 0:662207e34fba 2320 * If this is set, the primary SPI interface will be enabled in place of the
garfieldsg 0:662207e34fba 2321 * disabled primary I2C interface.
garfieldsg 0:662207e34fba 2322 */
syundo0730 6:f38dfe62d74c 2323 void MPU6050::switchSPIEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 2324 i2cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_IF_DIS_BIT, enabled);
garfieldsg 0:662207e34fba 2325 }
garfieldsg 0:662207e34fba 2326 /** Reset the FIFO.
garfieldsg 0:662207e34fba 2327 * This bit resets the FIFO buffer when set to 1 while FIFO_EN equals 0. This
garfieldsg 0:662207e34fba 2328 * bit automatically clears to 0 after the reset has been triggered.
garfieldsg 0:662207e34fba 2329 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2330 * @see MPU6050_USERCTRL_FIFO_RESET_BIT
garfieldsg 0:662207e34fba 2331 */
syundo0730 6:f38dfe62d74c 2332 void MPU6050::resetFIFO() {
syundo0730 6:f38dfe62d74c 2333 i2cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_RESET_BIT, true);
garfieldsg 0:662207e34fba 2334 }
garfieldsg 0:662207e34fba 2335 /** Reset the I2C Master.
garfieldsg 0:662207e34fba 2336 * This bit resets the I2C Master when set to 1 while I2C_MST_EN equals 0.
garfieldsg 0:662207e34fba 2337 * This bit automatically clears to 0 after the reset has been triggered.
garfieldsg 0:662207e34fba 2338 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2339 * @see MPU6050_USERCTRL_I2C_MST_RESET_BIT
garfieldsg 0:662207e34fba 2340 */
syundo0730 6:f38dfe62d74c 2341 void MPU6050::resetI2CMaster() {
syundo0730 6:f38dfe62d74c 2342 i2cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_RESET_BIT, true);
garfieldsg 0:662207e34fba 2343 }
garfieldsg 0:662207e34fba 2344 /** Reset all sensor registers and signal paths.
garfieldsg 0:662207e34fba 2345 * When set to 1, this bit resets the signal paths for all sensors (gyroscopes,
garfieldsg 0:662207e34fba 2346 * accelerometers, and temperature sensor). This operation will also clear the
garfieldsg 0:662207e34fba 2347 * sensor registers. This bit automatically clears to 0 after the reset has been
garfieldsg 0:662207e34fba 2348 * triggered.
garfieldsg 0:662207e34fba 2349 *
garfieldsg 0:662207e34fba 2350 * When resetting only the signal path (and not the sensor registers), please
garfieldsg 0:662207e34fba 2351 * use Register 104, SIGNAL_PATH_RESET.
garfieldsg 0:662207e34fba 2352 *
garfieldsg 0:662207e34fba 2353 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2354 * @see MPU6050_USERCTRL_SIG_COND_RESET_BIT
garfieldsg 0:662207e34fba 2355 */
syundo0730 6:f38dfe62d74c 2356 void MPU6050::resetSensors() {
syundo0730 6:f38dfe62d74c 2357 i2cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_SIG_COND_RESET_BIT, true);
garfieldsg 0:662207e34fba 2358 }
garfieldsg 0:662207e34fba 2359
garfieldsg 0:662207e34fba 2360 // PWR_MGMT_1 register
garfieldsg 0:662207e34fba 2361
garfieldsg 0:662207e34fba 2362 /** Trigger a full device reset.
garfieldsg 0:662207e34fba 2363 * A small delay of ~50ms may be desirable after triggering a reset.
garfieldsg 0:662207e34fba 2364 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2365 * @see MPU6050_PWR1_DEVICE_RESET_BIT
garfieldsg 0:662207e34fba 2366 */
syundo0730 6:f38dfe62d74c 2367 void MPU6050::reset() {
syundo0730 6:f38dfe62d74c 2368 i2cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_DEVICE_RESET_BIT, true);
garfieldsg 0:662207e34fba 2369 }
garfieldsg 0:662207e34fba 2370 /** Get sleep mode status.
garfieldsg 0:662207e34fba 2371 * Setting the SLEEP bit in the register puts the device into very low power
garfieldsg 0:662207e34fba 2372 * sleep mode. In this mode, only the serial interface and internal registers
garfieldsg 0:662207e34fba 2373 * remain active, allowing for a very low standby current. Clearing this bit
garfieldsg 0:662207e34fba 2374 * puts the device back into normal mode. To save power, the individual standby
garfieldsg 0:662207e34fba 2375 * selections for each of the gyros should be used if any gyro axis is not used
garfieldsg 0:662207e34fba 2376 * by the application.
garfieldsg 0:662207e34fba 2377 * @return Current sleep mode enabled status
garfieldsg 0:662207e34fba 2378 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2379 * @see MPU6050_PWR1_SLEEP_BIT
garfieldsg 0:662207e34fba 2380 */
syundo0730 6:f38dfe62d74c 2381 bool MPU6050::getSleepEnabled() {
syundo0730 6:f38dfe62d74c 2382 i2cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, buffer);
garfieldsg 0:662207e34fba 2383 return buffer[0];
garfieldsg 0:662207e34fba 2384 }
garfieldsg 0:662207e34fba 2385 /** Set sleep mode status.
garfieldsg 0:662207e34fba 2386 * @param enabled New sleep mode enabled status
garfieldsg 0:662207e34fba 2387 * @see getSleepEnabled()
garfieldsg 0:662207e34fba 2388 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2389 * @see MPU6050_PWR1_SLEEP_BIT
garfieldsg 0:662207e34fba 2390 */
syundo0730 6:f38dfe62d74c 2391 void MPU6050::setSleepEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 2392 i2cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled);
garfieldsg 0:662207e34fba 2393 }
garfieldsg 0:662207e34fba 2394 /** Get wake cycle enabled status.
garfieldsg 0:662207e34fba 2395 * When this bit is set to 1 and SLEEP is disabled, the MPU-60X0 will cycle
garfieldsg 0:662207e34fba 2396 * between sleep mode and waking up to take a single sample of data from active
garfieldsg 0:662207e34fba 2397 * sensors at a rate determined by LP_WAKE_CTRL (register 108).
garfieldsg 0:662207e34fba 2398 * @return Current sleep mode enabled status
garfieldsg 0:662207e34fba 2399 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2400 * @see MPU6050_PWR1_CYCLE_BIT
garfieldsg 0:662207e34fba 2401 */
syundo0730 6:f38dfe62d74c 2402 bool MPU6050::getWakeCycleEnabled() {
syundo0730 6:f38dfe62d74c 2403 i2cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, buffer);
garfieldsg 0:662207e34fba 2404 return buffer[0];
garfieldsg 0:662207e34fba 2405 }
garfieldsg 0:662207e34fba 2406 /** Set wake cycle enabled status.
garfieldsg 0:662207e34fba 2407 * @param enabled New sleep mode enabled status
garfieldsg 0:662207e34fba 2408 * @see getWakeCycleEnabled()
garfieldsg 0:662207e34fba 2409 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2410 * @see MPU6050_PWR1_CYCLE_BIT
garfieldsg 0:662207e34fba 2411 */
syundo0730 6:f38dfe62d74c 2412 void MPU6050::setWakeCycleEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 2413 i2cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, enabled);
garfieldsg 0:662207e34fba 2414 }
garfieldsg 0:662207e34fba 2415 /** Get temperature sensor enabled status.
garfieldsg 0:662207e34fba 2416 * Control the usage of the internal temperature sensor.
garfieldsg 0:662207e34fba 2417 *
garfieldsg 0:662207e34fba 2418 * Note: this register stores the *disabled* value, but for consistency with the
garfieldsg 0:662207e34fba 2419 * rest of the code, the function is named and used with standard true/false
garfieldsg 0:662207e34fba 2420 * values to indicate whether the sensor is enabled or disabled, respectively.
garfieldsg 0:662207e34fba 2421 *
garfieldsg 0:662207e34fba 2422 * @return Current temperature sensor enabled status
garfieldsg 0:662207e34fba 2423 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2424 * @see MPU6050_PWR1_TEMP_DIS_BIT
garfieldsg 0:662207e34fba 2425 */
syundo0730 6:f38dfe62d74c 2426 bool MPU6050::getTempSensorEnabled() {
syundo0730 6:f38dfe62d74c 2427 i2cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, buffer);
garfieldsg 0:662207e34fba 2428 return buffer[0] == 0; // 1 is actually disabled here
garfieldsg 0:662207e34fba 2429 }
garfieldsg 0:662207e34fba 2430 /** Set temperature sensor enabled status.
garfieldsg 0:662207e34fba 2431 * Note: this register stores the *disabled* value, but for consistency with the
garfieldsg 0:662207e34fba 2432 * rest of the code, the function is named and used with standard true/false
garfieldsg 0:662207e34fba 2433 * values to indicate whether the sensor is enabled or disabled, respectively.
garfieldsg 0:662207e34fba 2434 *
garfieldsg 0:662207e34fba 2435 * @param enabled New temperature sensor enabled status
garfieldsg 0:662207e34fba 2436 * @see getTempSensorEnabled()
garfieldsg 0:662207e34fba 2437 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2438 * @see MPU6050_PWR1_TEMP_DIS_BIT
garfieldsg 0:662207e34fba 2439 */
syundo0730 6:f38dfe62d74c 2440 void MPU6050::setTempSensorEnabled(bool enabled) {
garfieldsg 0:662207e34fba 2441 // 1 is actually disabled here
syundo0730 6:f38dfe62d74c 2442 i2cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, !enabled);
garfieldsg 0:662207e34fba 2443 }
garfieldsg 0:662207e34fba 2444 /** Get clock source setting.
garfieldsg 0:662207e34fba 2445 * @return Current clock source setting
garfieldsg 0:662207e34fba 2446 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2447 * @see MPU6050_PWR1_CLKSEL_BIT
garfieldsg 0:662207e34fba 2448 * @see MPU6050_PWR1_CLKSEL_LENGTH
garfieldsg 0:662207e34fba 2449 */
syundo0730 6:f38dfe62d74c 2450 uint8_t MPU6050::getClockSource() {
syundo0730 6:f38dfe62d74c 2451 i2cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, buffer);
garfieldsg 0:662207e34fba 2452 return buffer[0];
garfieldsg 0:662207e34fba 2453 }
garfieldsg 0:662207e34fba 2454 /** Set clock source setting.
garfieldsg 0:662207e34fba 2455 * An internal 8MHz oscillator, gyroscope based clock, or external sources can
garfieldsg 0:662207e34fba 2456 * be selected as the MPU-60X0 clock source. When the internal 8 MHz oscillator
garfieldsg 0:662207e34fba 2457 * or an external source is chosen as the clock source, the MPU-60X0 can operate
garfieldsg 0:662207e34fba 2458 * in low power modes with the gyroscopes disabled.
garfieldsg 0:662207e34fba 2459 *
garfieldsg 0:662207e34fba 2460 * Upon power up, the MPU-60X0 clock source defaults to the internal oscillator.
garfieldsg 0:662207e34fba 2461 * However, it is highly recommended that the device be configured to use one of
garfieldsg 0:662207e34fba 2462 * the gyroscopes (or an external clock source) as the clock reference for
garfieldsg 0:662207e34fba 2463 * improved stability. The clock source can be selected according to the following table:
garfieldsg 0:662207e34fba 2464 *
garfieldsg 0:662207e34fba 2465 * <pre>
garfieldsg 0:662207e34fba 2466 * CLK_SEL | Clock Source
garfieldsg 0:662207e34fba 2467 * --------+--------------------------------------
garfieldsg 0:662207e34fba 2468 * 0 | Internal oscillator
garfieldsg 0:662207e34fba 2469 * 1 | PLL with X Gyro reference
garfieldsg 0:662207e34fba 2470 * 2 | PLL with Y Gyro reference
garfieldsg 0:662207e34fba 2471 * 3 | PLL with Z Gyro reference
garfieldsg 0:662207e34fba 2472 * 4 | PLL with external 32.768kHz reference
garfieldsg 0:662207e34fba 2473 * 5 | PLL with external 19.2MHz reference
garfieldsg 0:662207e34fba 2474 * 6 | Reserved
garfieldsg 0:662207e34fba 2475 * 7 | Stops the clock and keeps the timing generator in reset
garfieldsg 0:662207e34fba 2476 * </pre>
garfieldsg 0:662207e34fba 2477 *
garfieldsg 0:662207e34fba 2478 * @param source New clock source setting
garfieldsg 0:662207e34fba 2479 * @see getClockSource()
garfieldsg 0:662207e34fba 2480 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2481 * @see MPU6050_PWR1_CLKSEL_BIT
garfieldsg 0:662207e34fba 2482 * @see MPU6050_PWR1_CLKSEL_LENGTH
garfieldsg 0:662207e34fba 2483 */
syundo0730 6:f38dfe62d74c 2484 void MPU6050::setClockSource(uint8_t source) {
syundo0730 6:f38dfe62d74c 2485 i2cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source);
garfieldsg 0:662207e34fba 2486 }
garfieldsg 0:662207e34fba 2487
garfieldsg 0:662207e34fba 2488 // PWR_MGMT_2 register
garfieldsg 0:662207e34fba 2489
garfieldsg 0:662207e34fba 2490 /** Get wake frequency in Accel-Only Low Power Mode.
garfieldsg 0:662207e34fba 2491 * The MPU-60X0 can be put into Accerlerometer Only Low Power Mode by setting
garfieldsg 0:662207e34fba 2492 * PWRSEL to 1 in the Power Management 1 register (Register 107). In this mode,
garfieldsg 0:662207e34fba 2493 * the device will power off all devices except for the primary I2C interface,
garfieldsg 0:662207e34fba 2494 * waking only the accelerometer at fixed intervals to take a single
garfieldsg 0:662207e34fba 2495 * measurement. The frequency of wake-ups can be configured with LP_WAKE_CTRL
garfieldsg 0:662207e34fba 2496 * as shown below:
garfieldsg 0:662207e34fba 2497 *
garfieldsg 0:662207e34fba 2498 * <pre>
garfieldsg 0:662207e34fba 2499 * LP_WAKE_CTRL | Wake-up Frequency
garfieldsg 0:662207e34fba 2500 * -------------+------------------
garfieldsg 0:662207e34fba 2501 * 0 | 1.25 Hz
garfieldsg 0:662207e34fba 2502 * 1 | 2.5 Hz
garfieldsg 0:662207e34fba 2503 * 2 | 5 Hz
garfieldsg 0:662207e34fba 2504 * 3 | 10 Hz
garfieldsg 0:662207e34fba 2505 * <pre>
garfieldsg 0:662207e34fba 2506 *
garfieldsg 0:662207e34fba 2507 * For further information regarding the MPU-60X0's power modes, please refer to
garfieldsg 0:662207e34fba 2508 * Register 107.
garfieldsg 0:662207e34fba 2509 *
garfieldsg 0:662207e34fba 2510 * @return Current wake frequency
garfieldsg 0:662207e34fba 2511 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2512 */
syundo0730 6:f38dfe62d74c 2513 uint8_t MPU6050::getWakeFrequency() {
syundo0730 6:f38dfe62d74c 2514 i2cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, buffer);
garfieldsg 0:662207e34fba 2515 return buffer[0];
garfieldsg 0:662207e34fba 2516 }
garfieldsg 0:662207e34fba 2517 /** Set wake frequency in Accel-Only Low Power Mode.
garfieldsg 0:662207e34fba 2518 * @param frequency New wake frequency
garfieldsg 0:662207e34fba 2519 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2520 */
syundo0730 6:f38dfe62d74c 2521 void MPU6050::setWakeFrequency(uint8_t frequency) {
syundo0730 6:f38dfe62d74c 2522 i2cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, frequency);
garfieldsg 0:662207e34fba 2523 }
garfieldsg 0:662207e34fba 2524
garfieldsg 0:662207e34fba 2525 /** Get X-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2526 * If enabled, the X-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2527 * @return Current X-axis standby enabled status
garfieldsg 0:662207e34fba 2528 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2529 * @see MPU6050_PWR2_STBY_XA_BIT
garfieldsg 0:662207e34fba 2530 */
syundo0730 6:f38dfe62d74c 2531 bool MPU6050::getStandbyXAccelEnabled() {
syundo0730 6:f38dfe62d74c 2532 i2cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, buffer);
garfieldsg 0:662207e34fba 2533 return buffer[0];
garfieldsg 0:662207e34fba 2534 }
garfieldsg 0:662207e34fba 2535 /** Set X-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2536 * @param New X-axis standby enabled status
garfieldsg 0:662207e34fba 2537 * @see getStandbyXAccelEnabled()
garfieldsg 0:662207e34fba 2538 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2539 * @see MPU6050_PWR2_STBY_XA_BIT
garfieldsg 0:662207e34fba 2540 */
syundo0730 6:f38dfe62d74c 2541 void MPU6050::setStandbyXAccelEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 2542 i2cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, enabled);
garfieldsg 0:662207e34fba 2543 }
garfieldsg 0:662207e34fba 2544 /** Get Y-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2545 * If enabled, the Y-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2546 * @return Current Y-axis standby enabled status
garfieldsg 0:662207e34fba 2547 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2548 * @see MPU6050_PWR2_STBY_YA_BIT
garfieldsg 0:662207e34fba 2549 */
syundo0730 6:f38dfe62d74c 2550 bool MPU6050::getStandbyYAccelEnabled() {
syundo0730 6:f38dfe62d74c 2551 i2cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, buffer);
garfieldsg 0:662207e34fba 2552 return buffer[0];
garfieldsg 0:662207e34fba 2553 }
garfieldsg 0:662207e34fba 2554 /** Set Y-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2555 * @param New Y-axis standby enabled status
garfieldsg 0:662207e34fba 2556 * @see getStandbyYAccelEnabled()
garfieldsg 0:662207e34fba 2557 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2558 * @see MPU6050_PWR2_STBY_YA_BIT
garfieldsg 0:662207e34fba 2559 */
syundo0730 6:f38dfe62d74c 2560 void MPU6050::setStandbyYAccelEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 2561 i2cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, enabled);
garfieldsg 0:662207e34fba 2562 }
garfieldsg 0:662207e34fba 2563 /** Get Z-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2564 * If enabled, the Z-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2565 * @return Current Z-axis standby enabled status
garfieldsg 0:662207e34fba 2566 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2567 * @see MPU6050_PWR2_STBY_ZA_BIT
garfieldsg 0:662207e34fba 2568 */
syundo0730 6:f38dfe62d74c 2569 bool MPU6050::getStandbyZAccelEnabled() {
syundo0730 6:f38dfe62d74c 2570 i2cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, buffer);
garfieldsg 0:662207e34fba 2571 return buffer[0];
garfieldsg 0:662207e34fba 2572 }
garfieldsg 0:662207e34fba 2573 /** Set Z-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2574 * @param New Z-axis standby enabled status
garfieldsg 0:662207e34fba 2575 * @see getStandbyZAccelEnabled()
garfieldsg 0:662207e34fba 2576 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2577 * @see MPU6050_PWR2_STBY_ZA_BIT
garfieldsg 0:662207e34fba 2578 */
syundo0730 6:f38dfe62d74c 2579 void MPU6050::setStandbyZAccelEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 2580 i2cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, enabled);
garfieldsg 0:662207e34fba 2581 }
garfieldsg 0:662207e34fba 2582 /** Get X-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2583 * If enabled, the X-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2584 * @return Current X-axis standby enabled status
garfieldsg 0:662207e34fba 2585 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2586 * @see MPU6050_PWR2_STBY_XG_BIT
garfieldsg 0:662207e34fba 2587 */
syundo0730 6:f38dfe62d74c 2588 bool MPU6050::getStandbyXGyroEnabled() {
syundo0730 6:f38dfe62d74c 2589 i2cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, buffer);
garfieldsg 0:662207e34fba 2590 return buffer[0];
garfieldsg 0:662207e34fba 2591 }
garfieldsg 0:662207e34fba 2592 /** Set X-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2593 * @param New X-axis standby enabled status
garfieldsg 0:662207e34fba 2594 * @see getStandbyXGyroEnabled()
garfieldsg 0:662207e34fba 2595 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2596 * @see MPU6050_PWR2_STBY_XG_BIT
garfieldsg 0:662207e34fba 2597 */
syundo0730 6:f38dfe62d74c 2598 void MPU6050::setStandbyXGyroEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 2599 i2cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, enabled);
garfieldsg 0:662207e34fba 2600 }
garfieldsg 0:662207e34fba 2601 /** Get Y-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2602 * If enabled, the Y-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2603 * @return Current Y-axis standby enabled status
garfieldsg 0:662207e34fba 2604 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2605 * @see MPU6050_PWR2_STBY_YG_BIT
garfieldsg 0:662207e34fba 2606 */
syundo0730 6:f38dfe62d74c 2607 bool MPU6050::getStandbyYGyroEnabled() {
syundo0730 6:f38dfe62d74c 2608 i2cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, buffer);
garfieldsg 0:662207e34fba 2609 return buffer[0];
garfieldsg 0:662207e34fba 2610 }
garfieldsg 0:662207e34fba 2611 /** Set Y-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2612 * @param New Y-axis standby enabled status
garfieldsg 0:662207e34fba 2613 * @see getStandbyYGyroEnabled()
garfieldsg 0:662207e34fba 2614 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2615 * @see MPU6050_PWR2_STBY_YG_BIT
garfieldsg 0:662207e34fba 2616 */
syundo0730 6:f38dfe62d74c 2617 void MPU6050::setStandbyYGyroEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 2618 i2cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, enabled);
garfieldsg 0:662207e34fba 2619 }
garfieldsg 0:662207e34fba 2620 /** Get Z-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2621 * If enabled, the Z-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2622 * @return Current Z-axis standby enabled status
garfieldsg 0:662207e34fba 2623 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2624 * @see MPU6050_PWR2_STBY_ZG_BIT
garfieldsg 0:662207e34fba 2625 */
syundo0730 6:f38dfe62d74c 2626 bool MPU6050::getStandbyZGyroEnabled() {
syundo0730 6:f38dfe62d74c 2627 i2cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, buffer);
garfieldsg 0:662207e34fba 2628 return buffer[0];
garfieldsg 0:662207e34fba 2629 }
garfieldsg 0:662207e34fba 2630 /** Set Z-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2631 * @param New Z-axis standby enabled status
garfieldsg 0:662207e34fba 2632 * @see getStandbyZGyroEnabled()
garfieldsg 0:662207e34fba 2633 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2634 * @see MPU6050_PWR2_STBY_ZG_BIT
garfieldsg 0:662207e34fba 2635 */
syundo0730 6:f38dfe62d74c 2636 void MPU6050::setStandbyZGyroEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 2637 i2cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, enabled);
garfieldsg 0:662207e34fba 2638 }
garfieldsg 0:662207e34fba 2639
garfieldsg 0:662207e34fba 2640 // FIFO_COUNT* registers
garfieldsg 0:662207e34fba 2641
garfieldsg 0:662207e34fba 2642 /** Get current FIFO buffer size.
garfieldsg 0:662207e34fba 2643 * This value indicates the number of bytes stored in the FIFO buffer. This
garfieldsg 0:662207e34fba 2644 * number is in turn the number of bytes that can be read from the FIFO buffer
garfieldsg 0:662207e34fba 2645 * and it is directly proportional to the number of samples available given the
garfieldsg 0:662207e34fba 2646 * set of sensor data bound to be stored in the FIFO (register 35 and 36).
garfieldsg 0:662207e34fba 2647 * @return Current FIFO buffer size
garfieldsg 0:662207e34fba 2648 */
syundo0730 6:f38dfe62d74c 2649 uint16_t MPU6050::getFIFOCount() {
syundo0730 6:f38dfe62d74c 2650 i2cdev.readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer);
garfieldsg 0:662207e34fba 2651 return (((uint16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2652 }
garfieldsg 0:662207e34fba 2653
garfieldsg 0:662207e34fba 2654 // FIFO_R_W register
garfieldsg 0:662207e34fba 2655
garfieldsg 0:662207e34fba 2656 /** Get byte from FIFO buffer.
garfieldsg 0:662207e34fba 2657 * This register is used to read and write data from the FIFO buffer. Data is
garfieldsg 0:662207e34fba 2658 * written to the FIFO in order of register number (from lowest to highest). If
garfieldsg 0:662207e34fba 2659 * all the FIFO enable flags (see below) are enabled and all External Sensor
garfieldsg 0:662207e34fba 2660 * Data registers (Registers 73 to 96) are associated with a Slave device, the
garfieldsg 0:662207e34fba 2661 * contents of registers 59 through 96 will be written in order at the Sample
garfieldsg 0:662207e34fba 2662 * Rate.
garfieldsg 0:662207e34fba 2663 *
garfieldsg 0:662207e34fba 2664 * The contents of the sensor data registers (Registers 59 to 96) are written
garfieldsg 0:662207e34fba 2665 * into the FIFO buffer when their corresponding FIFO enable flags are set to 1
garfieldsg 0:662207e34fba 2666 * in FIFO_EN (Register 35). An additional flag for the sensor data registers
garfieldsg 0:662207e34fba 2667 * associated with I2C Slave 3 can be found in I2C_MST_CTRL (Register 36).
garfieldsg 0:662207e34fba 2668 *
garfieldsg 0:662207e34fba 2669 * If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is
garfieldsg 0:662207e34fba 2670 * automatically set to 1. This bit is located in INT_STATUS (Register 58).
garfieldsg 0:662207e34fba 2671 * When the FIFO buffer has overflowed, the oldest data will be lost and new
garfieldsg 0:662207e34fba 2672 * data will be written to the FIFO.
garfieldsg 0:662207e34fba 2673 *
garfieldsg 0:662207e34fba 2674 * If the FIFO buffer is empty, reading this register will return the last byte
garfieldsg 0:662207e34fba 2675 * that was previously read from the FIFO until new data is available. The user
garfieldsg 0:662207e34fba 2676 * should check FIFO_COUNT to ensure that the FIFO buffer is not read when
garfieldsg 0:662207e34fba 2677 * empty.
garfieldsg 0:662207e34fba 2678 *
garfieldsg 0:662207e34fba 2679 * @return Byte from FIFO buffer
garfieldsg 0:662207e34fba 2680 */
syundo0730 6:f38dfe62d74c 2681 uint8_t MPU6050::getFIFOByte() {
syundo0730 6:f38dfe62d74c 2682 i2cdev.readByte(devAddr, MPU6050_RA_FIFO_R_W, buffer);
garfieldsg 0:662207e34fba 2683 return buffer[0];
garfieldsg 0:662207e34fba 2684 }
syundo0730 6:f38dfe62d74c 2685 void MPU6050::getFIFOBytes(uint8_t *data, uint8_t length) {
syundo0730 6:f38dfe62d74c 2686 i2cdev.readBytes(devAddr, MPU6050_RA_FIFO_R_W, length, data);
garfieldsg 0:662207e34fba 2687 }
garfieldsg 0:662207e34fba 2688 /** Write byte to FIFO buffer.
garfieldsg 0:662207e34fba 2689 * @see getFIFOByte()
garfieldsg 0:662207e34fba 2690 * @see MPU6050_RA_FIFO_R_W
garfieldsg 0:662207e34fba 2691 */
syundo0730 6:f38dfe62d74c 2692 void MPU6050::setFIFOByte(uint8_t data) {
syundo0730 6:f38dfe62d74c 2693 i2cdev.writeByte(devAddr, MPU6050_RA_FIFO_R_W, data);
garfieldsg 0:662207e34fba 2694 }
garfieldsg 0:662207e34fba 2695
garfieldsg 0:662207e34fba 2696 // WHO_AM_I register
garfieldsg 0:662207e34fba 2697
garfieldsg 0:662207e34fba 2698 /** Get Device ID.
garfieldsg 0:662207e34fba 2699 * This register is used to verify the identity of the device (0b110100, 0x34).
garfieldsg 0:662207e34fba 2700 * @return Device ID (6 bits only! should be 0x34)
garfieldsg 0:662207e34fba 2701 * @see MPU6050_RA_WHO_AM_I
garfieldsg 0:662207e34fba 2702 * @see MPU6050_WHO_AM_I_BIT
garfieldsg 0:662207e34fba 2703 * @see MPU6050_WHO_AM_I_LENGTH
garfieldsg 0:662207e34fba 2704 */
syundo0730 6:f38dfe62d74c 2705 uint8_t MPU6050::getDeviceID() {
syundo0730 6:f38dfe62d74c 2706 i2cdev.readBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, buffer);
garfieldsg 0:662207e34fba 2707 return buffer[0];
garfieldsg 0:662207e34fba 2708 }
garfieldsg 0:662207e34fba 2709 /** Set Device ID.
garfieldsg 0:662207e34fba 2710 * Write a new ID into the WHO_AM_I register (no idea why this should ever be
garfieldsg 0:662207e34fba 2711 * necessary though).
garfieldsg 0:662207e34fba 2712 * @param id New device ID to set.
garfieldsg 0:662207e34fba 2713 * @see getDeviceID()
garfieldsg 0:662207e34fba 2714 * @see MPU6050_RA_WHO_AM_I
garfieldsg 0:662207e34fba 2715 * @see MPU6050_WHO_AM_I_BIT
garfieldsg 0:662207e34fba 2716 * @see MPU6050_WHO_AM_I_LENGTH
garfieldsg 0:662207e34fba 2717 */
syundo0730 6:f38dfe62d74c 2718 void MPU6050::setDeviceID(uint8_t id) {
syundo0730 6:f38dfe62d74c 2719 i2cdev.writeBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, id);
garfieldsg 0:662207e34fba 2720 }
garfieldsg 0:662207e34fba 2721
garfieldsg 0:662207e34fba 2722 // ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========
garfieldsg 0:662207e34fba 2723
garfieldsg 0:662207e34fba 2724 // XG_OFFS_TC register
garfieldsg 0:662207e34fba 2725
syundo0730 6:f38dfe62d74c 2726 uint8_t MPU6050::getOTPBankValid() {
syundo0730 6:f38dfe62d74c 2727 i2cdev.readBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, buffer);
garfieldsg 0:662207e34fba 2728 return buffer[0];
garfieldsg 0:662207e34fba 2729 }
syundo0730 6:f38dfe62d74c 2730 void MPU6050::setOTPBankValid(bool enabled) {
syundo0730 6:f38dfe62d74c 2731 i2cdev.writeBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, enabled);
garfieldsg 0:662207e34fba 2732 }
syundo0730 6:f38dfe62d74c 2733 int8_t MPU6050::getXGyroOffsetTC() {
syundo0730 6:f38dfe62d74c 2734 i2cdev.readBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
garfieldsg 0:662207e34fba 2735 return buffer[0];
garfieldsg 0:662207e34fba 2736 }
syundo0730 6:f38dfe62d74c 2737 void MPU6050::setXGyroOffsetTC(int8_t offset) {
syundo0730 6:f38dfe62d74c 2738 i2cdev.writeBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
garfieldsg 0:662207e34fba 2739 }
garfieldsg 0:662207e34fba 2740
garfieldsg 0:662207e34fba 2741 // YG_OFFS_TC register
garfieldsg 0:662207e34fba 2742
syundo0730 6:f38dfe62d74c 2743 int8_t MPU6050::getYGyroOffsetTC() {
syundo0730 6:f38dfe62d74c 2744 i2cdev.readBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
garfieldsg 0:662207e34fba 2745 return buffer[0];
garfieldsg 0:662207e34fba 2746 }
syundo0730 6:f38dfe62d74c 2747 void MPU6050::setYGyroOffsetTC(int8_t offset) {
syundo0730 6:f38dfe62d74c 2748 i2cdev.writeBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
garfieldsg 0:662207e34fba 2749 }
garfieldsg 0:662207e34fba 2750
garfieldsg 0:662207e34fba 2751 // ZG_OFFS_TC register
garfieldsg 0:662207e34fba 2752
syundo0730 6:f38dfe62d74c 2753 int8_t MPU6050::getZGyroOffsetTC() {
syundo0730 6:f38dfe62d74c 2754 i2cdev.readBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
garfieldsg 0:662207e34fba 2755 return buffer[0];
garfieldsg 0:662207e34fba 2756 }
syundo0730 6:f38dfe62d74c 2757 void MPU6050::setZGyroOffsetTC(int8_t offset) {
syundo0730 6:f38dfe62d74c 2758 i2cdev.writeBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
garfieldsg 0:662207e34fba 2759 }
garfieldsg 0:662207e34fba 2760
garfieldsg 0:662207e34fba 2761 // X_FINE_GAIN register
garfieldsg 0:662207e34fba 2762
syundo0730 6:f38dfe62d74c 2763 int8_t MPU6050::getXFineGain() {
syundo0730 6:f38dfe62d74c 2764 i2cdev.readByte(devAddr, MPU6050_RA_X_FINE_GAIN, buffer);
garfieldsg 0:662207e34fba 2765 return buffer[0];
garfieldsg 0:662207e34fba 2766 }
syundo0730 6:f38dfe62d74c 2767 void MPU6050::setXFineGain(int8_t gain) {
syundo0730 6:f38dfe62d74c 2768 i2cdev.writeByte(devAddr, MPU6050_RA_X_FINE_GAIN, gain);
garfieldsg 0:662207e34fba 2769 }
garfieldsg 0:662207e34fba 2770
garfieldsg 0:662207e34fba 2771 // Y_FINE_GAIN register
garfieldsg 0:662207e34fba 2772
syundo0730 6:f38dfe62d74c 2773 int8_t MPU6050::getYFineGain() {
syundo0730 6:f38dfe62d74c 2774 i2cdev.readByte(devAddr, MPU6050_RA_Y_FINE_GAIN, buffer);
garfieldsg 0:662207e34fba 2775 return buffer[0];
garfieldsg 0:662207e34fba 2776 }
syundo0730 6:f38dfe62d74c 2777 void MPU6050::setYFineGain(int8_t gain) {
syundo0730 6:f38dfe62d74c 2778 i2cdev.writeByte(devAddr, MPU6050_RA_Y_FINE_GAIN, gain);
garfieldsg 0:662207e34fba 2779 }
garfieldsg 0:662207e34fba 2780
garfieldsg 0:662207e34fba 2781 // Z_FINE_GAIN register
garfieldsg 0:662207e34fba 2782
syundo0730 6:f38dfe62d74c 2783 int8_t MPU6050::getZFineGain() {
syundo0730 6:f38dfe62d74c 2784 i2cdev.readByte(devAddr, MPU6050_RA_Z_FINE_GAIN, buffer);
garfieldsg 0:662207e34fba 2785 return buffer[0];
garfieldsg 0:662207e34fba 2786 }
syundo0730 6:f38dfe62d74c 2787 void MPU6050::setZFineGain(int8_t gain) {
syundo0730 6:f38dfe62d74c 2788 i2cdev.writeByte(devAddr, MPU6050_RA_Z_FINE_GAIN, gain);
garfieldsg 0:662207e34fba 2789 }
garfieldsg 0:662207e34fba 2790
garfieldsg 0:662207e34fba 2791 // XA_OFFS_* registers
garfieldsg 0:662207e34fba 2792
syundo0730 6:f38dfe62d74c 2793 int16_t MPU6050::getXAccelOffset() {
syundo0730 6:f38dfe62d74c 2794 i2cdev.readBytes(devAddr, MPU6050_RA_XA_OFFS_H, 2, buffer);
garfieldsg 0:662207e34fba 2795 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2796 }
syundo0730 6:f38dfe62d74c 2797 void MPU6050::setXAccelOffset(int16_t offset) {
syundo0730 6:f38dfe62d74c 2798 i2cdev.writeWord(devAddr, MPU6050_RA_XA_OFFS_H, offset);
garfieldsg 0:662207e34fba 2799 }
garfieldsg 0:662207e34fba 2800
garfieldsg 0:662207e34fba 2801 // YA_OFFS_* register
garfieldsg 0:662207e34fba 2802
syundo0730 6:f38dfe62d74c 2803 int16_t MPU6050::getYAccelOffset() {
syundo0730 6:f38dfe62d74c 2804 i2cdev.readBytes(devAddr, MPU6050_RA_YA_OFFS_H, 2, buffer);
garfieldsg 0:662207e34fba 2805 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2806 }
syundo0730 6:f38dfe62d74c 2807 void MPU6050::setYAccelOffset(int16_t offset) {
syundo0730 6:f38dfe62d74c 2808 i2cdev.writeWord(devAddr, MPU6050_RA_YA_OFFS_H, offset);
garfieldsg 0:662207e34fba 2809 }
garfieldsg 0:662207e34fba 2810
garfieldsg 0:662207e34fba 2811 // ZA_OFFS_* register
garfieldsg 0:662207e34fba 2812
syundo0730 6:f38dfe62d74c 2813 int16_t MPU6050::getZAccelOffset() {
syundo0730 6:f38dfe62d74c 2814 i2cdev.readBytes(devAddr, MPU6050_RA_ZA_OFFS_H, 2, buffer);
garfieldsg 0:662207e34fba 2815 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2816 }
syundo0730 6:f38dfe62d74c 2817 void MPU6050::setZAccelOffset(int16_t offset) {
syundo0730 6:f38dfe62d74c 2818 i2cdev.writeWord(devAddr, MPU6050_RA_ZA_OFFS_H, offset);
garfieldsg 0:662207e34fba 2819 }
garfieldsg 0:662207e34fba 2820
garfieldsg 0:662207e34fba 2821 // XG_OFFS_USR* registers
garfieldsg 0:662207e34fba 2822
syundo0730 6:f38dfe62d74c 2823 int16_t MPU6050::getXGyroOffset() {
syundo0730 6:f38dfe62d74c 2824 i2cdev.readBytes(devAddr, MPU6050_RA_XG_OFFS_USRH, 2, buffer);
garfieldsg 0:662207e34fba 2825 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2826 }
syundo0730 6:f38dfe62d74c 2827 void MPU6050::setXGyroOffset(int16_t offset) {
syundo0730 6:f38dfe62d74c 2828 i2cdev.writeWord(devAddr, MPU6050_RA_XG_OFFS_USRH, offset);
garfieldsg 0:662207e34fba 2829 }
garfieldsg 0:662207e34fba 2830
garfieldsg 0:662207e34fba 2831 // YG_OFFS_USR* register
garfieldsg 0:662207e34fba 2832
syundo0730 6:f38dfe62d74c 2833 int16_t MPU6050::getYGyroOffset() {
syundo0730 6:f38dfe62d74c 2834 i2cdev.readBytes(devAddr, MPU6050_RA_YG_OFFS_USRH, 2, buffer);
garfieldsg 0:662207e34fba 2835 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2836 }
syundo0730 6:f38dfe62d74c 2837 void MPU6050::setYGyroOffset(int16_t offset) {
syundo0730 6:f38dfe62d74c 2838 i2cdev.writeWord(devAddr, MPU6050_RA_YG_OFFS_USRH, offset);
garfieldsg 0:662207e34fba 2839 }
garfieldsg 0:662207e34fba 2840
garfieldsg 0:662207e34fba 2841 // ZG_OFFS_USR* register
garfieldsg 0:662207e34fba 2842
syundo0730 6:f38dfe62d74c 2843 int16_t MPU6050::getZGyroOffset() {
syundo0730 6:f38dfe62d74c 2844 i2cdev.readBytes(devAddr, MPU6050_RA_ZG_OFFS_USRH, 2, buffer);
garfieldsg 0:662207e34fba 2845 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2846 }
syundo0730 6:f38dfe62d74c 2847 void MPU6050::setZGyroOffset(int16_t offset) {
syundo0730 6:f38dfe62d74c 2848 i2cdev.writeWord(devAddr, MPU6050_RA_ZG_OFFS_USRH, offset);
garfieldsg 0:662207e34fba 2849 }
garfieldsg 0:662207e34fba 2850
garfieldsg 0:662207e34fba 2851 // INT_ENABLE register (DMP functions)
garfieldsg 0:662207e34fba 2852
syundo0730 6:f38dfe62d74c 2853 bool MPU6050::getIntPLLReadyEnabled() {
syundo0730 6:f38dfe62d74c 2854 i2cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
garfieldsg 0:662207e34fba 2855 return buffer[0];
garfieldsg 0:662207e34fba 2856 }
syundo0730 6:f38dfe62d74c 2857 void MPU6050::setIntPLLReadyEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 2858 i2cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, enabled);
garfieldsg 0:662207e34fba 2859 }
syundo0730 6:f38dfe62d74c 2860 bool MPU6050::getIntDMPEnabled() {
syundo0730 6:f38dfe62d74c 2861 i2cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
garfieldsg 0:662207e34fba 2862 return buffer[0];
garfieldsg 0:662207e34fba 2863 }
syundo0730 6:f38dfe62d74c 2864 void MPU6050::setIntDMPEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 2865 i2cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, enabled);
garfieldsg 0:662207e34fba 2866 }
garfieldsg 0:662207e34fba 2867
garfieldsg 0:662207e34fba 2868 // DMP_INT_STATUS
garfieldsg 0:662207e34fba 2869
syundo0730 6:f38dfe62d74c 2870 bool MPU6050::getDMPInt5Status() {
syundo0730 6:f38dfe62d74c 2871 i2cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_5_BIT, buffer);
garfieldsg 0:662207e34fba 2872 return buffer[0];
garfieldsg 0:662207e34fba 2873 }
syundo0730 6:f38dfe62d74c 2874 bool MPU6050::getDMPInt4Status() {
syundo0730 6:f38dfe62d74c 2875 i2cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_4_BIT, buffer);
garfieldsg 0:662207e34fba 2876 return buffer[0];
garfieldsg 0:662207e34fba 2877 }
syundo0730 6:f38dfe62d74c 2878 bool MPU6050::getDMPInt3Status() {
syundo0730 6:f38dfe62d74c 2879 i2cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_3_BIT, buffer);
garfieldsg 0:662207e34fba 2880 return buffer[0];
garfieldsg 0:662207e34fba 2881 }
syundo0730 6:f38dfe62d74c 2882 bool MPU6050::getDMPInt2Status() {
syundo0730 6:f38dfe62d74c 2883 i2cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_2_BIT, buffer);
garfieldsg 0:662207e34fba 2884 return buffer[0];
garfieldsg 0:662207e34fba 2885 }
syundo0730 6:f38dfe62d74c 2886 bool MPU6050::getDMPInt1Status() {
syundo0730 6:f38dfe62d74c 2887 i2cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_1_BIT, buffer);
garfieldsg 0:662207e34fba 2888 return buffer[0];
garfieldsg 0:662207e34fba 2889 }
syundo0730 6:f38dfe62d74c 2890 bool MPU6050::getDMPInt0Status() {
syundo0730 6:f38dfe62d74c 2891 i2cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_0_BIT, buffer);
garfieldsg 0:662207e34fba 2892 return buffer[0];
garfieldsg 0:662207e34fba 2893 }
garfieldsg 0:662207e34fba 2894
garfieldsg 0:662207e34fba 2895 // INT_STATUS register (DMP functions)
garfieldsg 0:662207e34fba 2896
syundo0730 6:f38dfe62d74c 2897 bool MPU6050::getIntPLLReadyStatus() {
syundo0730 6:f38dfe62d74c 2898 i2cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
garfieldsg 0:662207e34fba 2899 return buffer[0];
garfieldsg 0:662207e34fba 2900 }
syundo0730 6:f38dfe62d74c 2901 bool MPU6050::getIntDMPStatus() {
syundo0730 6:f38dfe62d74c 2902 i2cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
garfieldsg 0:662207e34fba 2903 return buffer[0];
garfieldsg 0:662207e34fba 2904 }
garfieldsg 0:662207e34fba 2905
garfieldsg 0:662207e34fba 2906 // USER_CTRL register (DMP functions)
garfieldsg 0:662207e34fba 2907
syundo0730 6:f38dfe62d74c 2908 bool MPU6050::getDMPEnabled() {
syundo0730 6:f38dfe62d74c 2909 i2cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, buffer);
garfieldsg 0:662207e34fba 2910 return buffer[0];
garfieldsg 0:662207e34fba 2911 }
syundo0730 6:f38dfe62d74c 2912 void MPU6050::setDMPEnabled(bool enabled) {
syundo0730 6:f38dfe62d74c 2913 i2cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, enabled);
garfieldsg 0:662207e34fba 2914 }
syundo0730 6:f38dfe62d74c 2915 void MPU6050::resetDMP() {
syundo0730 6:f38dfe62d74c 2916 i2cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_RESET_BIT, true);
garfieldsg 0:662207e34fba 2917 }
garfieldsg 0:662207e34fba 2918
garfieldsg 0:662207e34fba 2919 // BANK_SEL register
garfieldsg 0:662207e34fba 2920
syundo0730 6:f38dfe62d74c 2921 void MPU6050::setMemoryBank(uint8_t bank, bool prefetchEnabled, bool userBank) {
garfieldsg 0:662207e34fba 2922 bank &= 0x1F;
garfieldsg 0:662207e34fba 2923 if (userBank) bank |= 0x20;
garfieldsg 0:662207e34fba 2924 if (prefetchEnabled) bank |= 0x40;
syundo0730 6:f38dfe62d74c 2925 i2cdev.writeByte(devAddr, MPU6050_RA_BANK_SEL, bank);
garfieldsg 0:662207e34fba 2926 }
garfieldsg 0:662207e34fba 2927
garfieldsg 0:662207e34fba 2928 // MEM_START_ADDR register
garfieldsg 0:662207e34fba 2929
syundo0730 6:f38dfe62d74c 2930 void MPU6050::setMemoryStartAddress(uint8_t address) {
syundo0730 6:f38dfe62d74c 2931 i2cdev.writeByte(devAddr, MPU6050_RA_MEM_START_ADDR, address);
garfieldsg 0:662207e34fba 2932 }
garfieldsg 0:662207e34fba 2933
garfieldsg 0:662207e34fba 2934 // MEM_R_W register
garfieldsg 0:662207e34fba 2935
syundo0730 6:f38dfe62d74c 2936 uint8_t MPU6050::readMemoryByte() {
syundo0730 6:f38dfe62d74c 2937 i2cdev.readByte(devAddr, MPU6050_RA_MEM_R_W, buffer);
garfieldsg 0:662207e34fba 2938 return buffer[0];
garfieldsg 0:662207e34fba 2939 }
syundo0730 6:f38dfe62d74c 2940 void MPU6050::writeMemoryByte(uint8_t data) {
syundo0730 6:f38dfe62d74c 2941 i2cdev.writeByte(devAddr, MPU6050_RA_MEM_R_W, data);
garfieldsg 0:662207e34fba 2942 }
syundo0730 6:f38dfe62d74c 2943 void MPU6050::readMemoryBlock(uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address) {
garfieldsg 0:662207e34fba 2944 setMemoryBank(bank);
garfieldsg 0:662207e34fba 2945 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 2946 uint8_t chunkSize;
garfieldsg 0:662207e34fba 2947 for (uint16_t i = 0; i < dataSize;) {
garfieldsg 0:662207e34fba 2948 // determine correct chunk size according to bank position and data size
garfieldsg 0:662207e34fba 2949 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
garfieldsg 0:662207e34fba 2950
garfieldsg 0:662207e34fba 2951 // make sure we don't go past the data size
garfieldsg 0:662207e34fba 2952 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
garfieldsg 0:662207e34fba 2953
garfieldsg 0:662207e34fba 2954 // make sure this chunk doesn't go past the bank boundary (256 bytes)
garfieldsg 0:662207e34fba 2955 if (chunkSize > 256 - address) chunkSize = 256 - address;
garfieldsg 0:662207e34fba 2956
garfieldsg 0:662207e34fba 2957 // read the chunk of data as specified
syundo0730 6:f38dfe62d74c 2958 i2cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, data + i);
syundo0730 6:f38dfe62d74c 2959
garfieldsg 0:662207e34fba 2960 // increase byte index by [chunkSize]
garfieldsg 0:662207e34fba 2961 i += chunkSize;
garfieldsg 0:662207e34fba 2962
garfieldsg 0:662207e34fba 2963 // uint8_t automatically wraps to 0 at 256
garfieldsg 0:662207e34fba 2964 address += chunkSize;
garfieldsg 0:662207e34fba 2965
garfieldsg 0:662207e34fba 2966 // if we aren't done, update bank (if necessary) and address
garfieldsg 0:662207e34fba 2967 if (i < dataSize) {
garfieldsg 0:662207e34fba 2968 if (address == 0) bank++;
garfieldsg 0:662207e34fba 2969 setMemoryBank(bank);
garfieldsg 0:662207e34fba 2970 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 2971 }
garfieldsg 0:662207e34fba 2972 }
garfieldsg 0:662207e34fba 2973 }
syundo0730 6:f38dfe62d74c 2974 bool MPU6050::writeMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify, bool useProgMem) {
garfieldsg 0:662207e34fba 2975 setMemoryBank(bank);
garfieldsg 0:662207e34fba 2976 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 2977 uint8_t chunkSize;
syundo0730 6:f38dfe62d74c 2978 uint8_t *verifyBuffer;
syundo0730 6:f38dfe62d74c 2979 uint8_t *progBuffer;
garfieldsg 0:662207e34fba 2980 uint16_t i;
garfieldsg 0:662207e34fba 2981 uint8_t j;
garfieldsg 0:662207e34fba 2982 if (verify) verifyBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
garfieldsg 0:662207e34fba 2983 if (useProgMem) progBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
garfieldsg 0:662207e34fba 2984 for (i = 0; i < dataSize;) {
garfieldsg 0:662207e34fba 2985 // determine correct chunk size according to bank position and data size
garfieldsg 0:662207e34fba 2986 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
garfieldsg 0:662207e34fba 2987
garfieldsg 0:662207e34fba 2988 // make sure we don't go past the data size
garfieldsg 0:662207e34fba 2989 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
garfieldsg 0:662207e34fba 2990
garfieldsg 0:662207e34fba 2991 // make sure this chunk doesn't go past the bank boundary (256 bytes)
garfieldsg 0:662207e34fba 2992 if (chunkSize > 256 - address) chunkSize = 256 - address;
syundo0730 6:f38dfe62d74c 2993
garfieldsg 0:662207e34fba 2994 if (useProgMem) {
garfieldsg 0:662207e34fba 2995 // write the chunk of data as specified
garfieldsg 0:662207e34fba 2996 for (j = 0; j < chunkSize; j++) progBuffer[j] = pgm_read_byte(data + i + j);
garfieldsg 0:662207e34fba 2997 } else {
garfieldsg 0:662207e34fba 2998 // write the chunk of data as specified
garfieldsg 0:662207e34fba 2999 progBuffer = (uint8_t *)data + i;
garfieldsg 0:662207e34fba 3000 }
garfieldsg 0:662207e34fba 3001
syundo0730 6:f38dfe62d74c 3002 i2cdev.writeBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, progBuffer);
garfieldsg 0:662207e34fba 3003
garfieldsg 0:662207e34fba 3004 // verify data if needed
garfieldsg 0:662207e34fba 3005 if (verify && verifyBuffer) {
garfieldsg 0:662207e34fba 3006 setMemoryBank(bank);
garfieldsg 0:662207e34fba 3007 setMemoryStartAddress(address);
syundo0730 6:f38dfe62d74c 3008 i2cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, verifyBuffer);
garfieldsg 0:662207e34fba 3009 if (memcmp(progBuffer, verifyBuffer, chunkSize) != 0) {
garfieldsg 0:662207e34fba 3010 /*Serial.print("Block write verification error, bank ");
garfieldsg 0:662207e34fba 3011 Serial.print(bank, DEC);
garfieldsg 0:662207e34fba 3012 Serial.print(", address ");
garfieldsg 0:662207e34fba 3013 Serial.print(address, DEC);
garfieldsg 0:662207e34fba 3014 Serial.print("!\nExpected:");
garfieldsg 0:662207e34fba 3015 for (j = 0; j < chunkSize; j++) {
garfieldsg 0:662207e34fba 3016 Serial.print(" 0x");
garfieldsg 0:662207e34fba 3017 if (progBuffer[j] < 16) Serial.print("0");
garfieldsg 0:662207e34fba 3018 Serial.print(progBuffer[j], HEX);
garfieldsg 0:662207e34fba 3019 }
garfieldsg 0:662207e34fba 3020 Serial.print("\nReceived:");
garfieldsg 0:662207e34fba 3021 for (uint8_t j = 0; j < chunkSize; j++) {
garfieldsg 0:662207e34fba 3022 Serial.print(" 0x");
garfieldsg 0:662207e34fba 3023 if (verifyBuffer[i + j] < 16) Serial.print("0");
garfieldsg 0:662207e34fba 3024 Serial.print(verifyBuffer[i + j], HEX);
garfieldsg 0:662207e34fba 3025 }
garfieldsg 0:662207e34fba 3026 Serial.print("\n");*/
garfieldsg 0:662207e34fba 3027 free(verifyBuffer);
garfieldsg 0:662207e34fba 3028 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3029 return false; // uh oh.
garfieldsg 0:662207e34fba 3030 }
garfieldsg 0:662207e34fba 3031 }
garfieldsg 0:662207e34fba 3032
garfieldsg 0:662207e34fba 3033 // increase byte index by [chunkSize]
garfieldsg 0:662207e34fba 3034 i += chunkSize;
garfieldsg 0:662207e34fba 3035
garfieldsg 0:662207e34fba 3036 // uint8_t automatically wraps to 0 at 256
garfieldsg 0:662207e34fba 3037 address += chunkSize;
garfieldsg 0:662207e34fba 3038
garfieldsg 0:662207e34fba 3039 // if we aren't done, update bank (if necessary) and address
garfieldsg 0:662207e34fba 3040 if (i < dataSize) {
garfieldsg 0:662207e34fba 3041 if (address == 0) bank++;
garfieldsg 0:662207e34fba 3042 setMemoryBank(bank);
garfieldsg 0:662207e34fba 3043 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 3044 }
garfieldsg 0:662207e34fba 3045 }
garfieldsg 0:662207e34fba 3046 if (verify) free(verifyBuffer);
garfieldsg 0:662207e34fba 3047 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3048 return true;
garfieldsg 0:662207e34fba 3049 }
syundo0730 6:f38dfe62d74c 3050 bool MPU6050::writeProgMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify) {
garfieldsg 0:662207e34fba 3051 return writeMemoryBlock(data, dataSize, bank, address, verify, true);
garfieldsg 0:662207e34fba 3052 }
syundo0730 6:f38dfe62d74c 3053 bool MPU6050::writeDMPConfigurationSet(const uint8_t *data, uint16_t dataSize, bool useProgMem) {
syundo0730 6:f38dfe62d74c 3054 uint8_t *progBuffer, success, special;
garfieldsg 0:662207e34fba 3055 uint16_t i, j;
garfieldsg 0:662207e34fba 3056 if (useProgMem) {
garfieldsg 0:662207e34fba 3057 progBuffer = (uint8_t *)malloc(8); // assume 8-byte blocks, realloc later if necessary
garfieldsg 0:662207e34fba 3058 }
garfieldsg 0:662207e34fba 3059
garfieldsg 0:662207e34fba 3060 // config set data is a long string of blocks with the following structure:
garfieldsg 0:662207e34fba 3061 // [bank] [offset] [length] [byte[0], byte[1], ..., byte[length]]
garfieldsg 0:662207e34fba 3062 uint8_t bank, offset, length;
garfieldsg 0:662207e34fba 3063 for (i = 0; i < dataSize;) {
garfieldsg 0:662207e34fba 3064 if (useProgMem) {
garfieldsg 0:662207e34fba 3065 bank = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3066 offset = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3067 length = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3068 } else {
garfieldsg 0:662207e34fba 3069 bank = data[i++];
garfieldsg 0:662207e34fba 3070 offset = data[i++];
garfieldsg 0:662207e34fba 3071 length = data[i++];
garfieldsg 0:662207e34fba 3072 }
garfieldsg 0:662207e34fba 3073
garfieldsg 0:662207e34fba 3074 // write data or perform special action
garfieldsg 0:662207e34fba 3075 if (length > 0) {
garfieldsg 0:662207e34fba 3076 // regular block of data to write
garfieldsg 0:662207e34fba 3077 /*Serial.print("Writing config block to bank ");
garfieldsg 0:662207e34fba 3078 Serial.print(bank);
garfieldsg 0:662207e34fba 3079 Serial.print(", offset ");
garfieldsg 0:662207e34fba 3080 Serial.print(offset);
garfieldsg 0:662207e34fba 3081 Serial.print(", length=");
garfieldsg 0:662207e34fba 3082 Serial.println(length);*/
garfieldsg 0:662207e34fba 3083 if (useProgMem) {
garfieldsg 0:662207e34fba 3084 if (sizeof(progBuffer) < length) progBuffer = (uint8_t *)realloc(progBuffer, length);
garfieldsg 0:662207e34fba 3085 for (j = 0; j < length; j++) progBuffer[j] = pgm_read_byte(data + i + j);
garfieldsg 0:662207e34fba 3086 } else {
garfieldsg 0:662207e34fba 3087 progBuffer = (uint8_t *)data + i;
garfieldsg 0:662207e34fba 3088 }
garfieldsg 0:662207e34fba 3089 success = writeMemoryBlock(progBuffer, length, bank, offset, true);
garfieldsg 0:662207e34fba 3090 i += length;
garfieldsg 0:662207e34fba 3091 } else {
garfieldsg 0:662207e34fba 3092 // special instruction
garfieldsg 0:662207e34fba 3093 // NOTE: this kind of behavior (what and when to do certain things)
garfieldsg 0:662207e34fba 3094 // is totally undocumented. This code is in here based on observed
garfieldsg 0:662207e34fba 3095 // behavior only, and exactly why (or even whether) it has to be here
garfieldsg 0:662207e34fba 3096 // is anybody's guess for now.
garfieldsg 0:662207e34fba 3097 if (useProgMem) {
garfieldsg 0:662207e34fba 3098 special = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3099 } else {
garfieldsg 0:662207e34fba 3100 special = data[i++];
garfieldsg 0:662207e34fba 3101 }
garfieldsg 0:662207e34fba 3102 /*Serial.print("Special command code ");
garfieldsg 0:662207e34fba 3103 Serial.print(special, HEX);
garfieldsg 0:662207e34fba 3104 Serial.println(" found...");*/
garfieldsg 0:662207e34fba 3105 if (special == 0x01) {
garfieldsg 0:662207e34fba 3106 // enable DMP-related interrupts
syundo0730 6:f38dfe62d74c 3107
garfieldsg 0:662207e34fba 3108 //setIntZeroMotionEnabled(true);
garfieldsg 0:662207e34fba 3109 //setIntFIFOBufferOverflowEnabled(true);
garfieldsg 0:662207e34fba 3110 //setIntDMPEnabled(true);
syundo0730 6:f38dfe62d74c 3111 i2cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, 0x32); // single operation
garfieldsg 0:662207e34fba 3112
garfieldsg 0:662207e34fba 3113 success = true;
garfieldsg 0:662207e34fba 3114 } else {
garfieldsg 0:662207e34fba 3115 // unknown special command
garfieldsg 0:662207e34fba 3116 success = false;
garfieldsg 0:662207e34fba 3117 }
garfieldsg 0:662207e34fba 3118 }
syundo0730 6:f38dfe62d74c 3119
garfieldsg 0:662207e34fba 3120 if (!success) {
garfieldsg 0:662207e34fba 3121 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3122 return false; // uh oh
garfieldsg 0:662207e34fba 3123 }
garfieldsg 0:662207e34fba 3124 }
garfieldsg 0:662207e34fba 3125 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3126 return true;
garfieldsg 0:662207e34fba 3127 }
syundo0730 6:f38dfe62d74c 3128 bool MPU6050::writeProgDMPConfigurationSet(const uint8_t *data, uint16_t dataSize) {
syundo0730 6:f38dfe62d74c 3129 return writeDMPConfigurationSet(data, dataSize, true);
garfieldsg 0:662207e34fba 3130 }
garfieldsg 0:662207e34fba 3131
garfieldsg 0:662207e34fba 3132 // DMP_CFG_1 register
garfieldsg 0:662207e34fba 3133
syundo0730 6:f38dfe62d74c 3134 uint8_t MPU6050::getDMPConfig1() {
syundo0730 6:f38dfe62d74c 3135 i2cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_1, buffer);
garfieldsg 0:662207e34fba 3136 return buffer[0];
garfieldsg 0:662207e34fba 3137 }
syundo0730 6:f38dfe62d74c 3138 void MPU6050::setDMPConfig1(uint8_t config) {
syundo0730 6:f38dfe62d74c 3139 i2cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_1, config);
garfieldsg 0:662207e34fba 3140 }
garfieldsg 0:662207e34fba 3141
garfieldsg 0:662207e34fba 3142 // DMP_CFG_2 register
garfieldsg 0:662207e34fba 3143
syundo0730 6:f38dfe62d74c 3144 uint8_t MPU6050::getDMPConfig2() {
syundo0730 6:f38dfe62d74c 3145 i2cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_2, buffer);
garfieldsg 0:662207e34fba 3146 return buffer[0];
garfieldsg 0:662207e34fba 3147 }
syundo0730 6:f38dfe62d74c 3148 void MPU6050::setDMPConfig2(uint8_t config) {
syundo0730 6:f38dfe62d74c 3149 i2cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_2, config);
syundo0730 6:f38dfe62d74c 3150 }