Basic program to get the properly-scaled gyro and accelerometer data from a MPU-6050 6-axis motion sensor. Perform sensor fusion using Sebastian Madgwick's open-source IMU fusion filter. Running on the STM32F401 at 84 MHz achieved sensor fusion filter update rates of 5500 Hz. Additional info at https://github.com/kriswiner/MPU-6050.
Diff: main.cpp
- Revision:
- 1:cea9d83b8636
- Parent:
- 0:65aa78c10981
diff -r 65aa78c10981 -r cea9d83b8636 main.cpp --- a/main.cpp Sun May 25 04:51:50 2014 +0000 +++ b/main.cpp Sun Jun 29 21:41:36 2014 +0000 @@ -1,4 +1,3 @@ -#include "mbed.h" /* MPU6050 Basic Example Code by: Kris Winer @@ -27,9 +26,9 @@ We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file. */ -//#include <Wire.h> -//#include <Adafruit_GFX.h> -//#include <Adafruit_PCD8544.h> +#include "mbed.h" +#include "MPU6050.h" +#include "N5110.h" // Using NOKIA 5110 monochrome 84 x 48 pixel display // pin 9 - Serial clock out (SCLK) @@ -39,750 +38,154 @@ // pin 6 - LCD reset (RST) //Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6); -// Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device -// Invensense Inc., www.invensense.com -// See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in -// above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor -// -#define XGOFFS_TC 0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD -#define YGOFFS_TC 0x01 -#define ZGOFFS_TC 0x02 -#define X_FINE_GAIN 0x03 // [7:0] fine gain -#define Y_FINE_GAIN 0x04 -#define Z_FINE_GAIN 0x05 -#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer -#define XA_OFFSET_L_TC 0x07 -#define YA_OFFSET_H 0x08 -#define YA_OFFSET_L_TC 0x09 -#define ZA_OFFSET_H 0x0A -#define ZA_OFFSET_L_TC 0x0B -#define SELF_TEST_X 0x0D -#define SELF_TEST_Y 0x0E -#define SELF_TEST_Z 0x0F -#define SELF_TEST_A 0x10 -#define XG_OFFS_USRH 0x13 // User-defined trim values for gyroscope; supported in MPU-6050? -#define XG_OFFS_USRL 0x14 -#define YG_OFFS_USRH 0x15 -#define YG_OFFS_USRL 0x16 -#define ZG_OFFS_USRH 0x17 -#define ZG_OFFS_USRL 0x18 -#define SMPLRT_DIV 0x19 -#define CONFIG 0x1A -#define GYRO_CONFIG 0x1B -#define ACCEL_CONFIG 0x1C -#define FF_THR 0x1D // Free-fall -#define FF_DUR 0x1E // Free-fall -#define MOT_THR 0x1F // Motion detection threshold bits [7:0] -#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms -#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] -#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms -#define FIFO_EN 0x23 -#define I2C_MST_CTRL 0x24 -#define I2C_SLV0_ADDR 0x25 -#define I2C_SLV0_REG 0x26 -#define I2C_SLV0_CTRL 0x27 -#define I2C_SLV1_ADDR 0x28 -#define I2C_SLV1_REG 0x29 -#define I2C_SLV1_CTRL 0x2A -#define I2C_SLV2_ADDR 0x2B -#define I2C_SLV2_REG 0x2C -#define I2C_SLV2_CTRL 0x2D -#define I2C_SLV3_ADDR 0x2E -#define I2C_SLV3_REG 0x2F -#define I2C_SLV3_CTRL 0x30 -#define I2C_SLV4_ADDR 0x31 -#define I2C_SLV4_REG 0x32 -#define I2C_SLV4_DO 0x33 -#define I2C_SLV4_CTRL 0x34 -#define I2C_SLV4_DI 0x35 -#define I2C_MST_STATUS 0x36 -#define INT_PIN_CFG 0x37 -#define INT_ENABLE 0x38 -#define DMP_INT_STATUS 0x39 // Check DMP interrupt -#define INT_STATUS 0x3A -#define ACCEL_XOUT_H 0x3B -#define ACCEL_XOUT_L 0x3C -#define ACCEL_YOUT_H 0x3D -#define ACCEL_YOUT_L 0x3E -#define ACCEL_ZOUT_H 0x3F -#define ACCEL_ZOUT_L 0x40 -#define TEMP_OUT_H 0x41 -#define TEMP_OUT_L 0x42 -#define GYRO_XOUT_H 0x43 -#define GYRO_XOUT_L 0x44 -#define GYRO_YOUT_H 0x45 -#define GYRO_YOUT_L 0x46 -#define GYRO_ZOUT_H 0x47 -#define GYRO_ZOUT_L 0x48 -#define EXT_SENS_DATA_00 0x49 -#define EXT_SENS_DATA_01 0x4A -#define EXT_SENS_DATA_02 0x4B -#define EXT_SENS_DATA_03 0x4C -#define EXT_SENS_DATA_04 0x4D -#define EXT_SENS_DATA_05 0x4E -#define EXT_SENS_DATA_06 0x4F -#define EXT_SENS_DATA_07 0x50 -#define EXT_SENS_DATA_08 0x51 -#define EXT_SENS_DATA_09 0x52 -#define EXT_SENS_DATA_10 0x53 -#define EXT_SENS_DATA_11 0x54 -#define EXT_SENS_DATA_12 0x55 -#define EXT_SENS_DATA_13 0x56 -#define EXT_SENS_DATA_14 0x57 -#define EXT_SENS_DATA_15 0x58 -#define EXT_SENS_DATA_16 0x59 -#define EXT_SENS_DATA_17 0x5A -#define EXT_SENS_DATA_18 0x5B -#define EXT_SENS_DATA_19 0x5C -#define EXT_SENS_DATA_20 0x5D -#define EXT_SENS_DATA_21 0x5E -#define EXT_SENS_DATA_22 0x5F -#define EXT_SENS_DATA_23 0x60 -#define MOT_DETECT_STATUS 0x61 -#define I2C_SLV0_DO 0x63 -#define I2C_SLV1_DO 0x64 -#define I2C_SLV2_DO 0x65 -#define I2C_SLV3_DO 0x66 -#define I2C_MST_DELAY_CTRL 0x67 -#define SIGNAL_PATH_RESET 0x68 -#define MOT_DETECT_CTRL 0x69 -#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP -#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode -#define PWR_MGMT_2 0x6C -#define DMP_BANK 0x6D // Activates a specific bank in the DMP -#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank -#define DMP_REG 0x6F // Register in DMP from which to read or to which to write -#define DMP_REG_1 0x70 -#define DMP_REG_2 0x71 -#define FIFO_COUNTH 0x72 -#define FIFO_COUNTL 0x73 -#define FIFO_R_W 0x74 -#define WHO_AM_I_MPU6050 0x75 // Should return 0x68 +float sum = 0; +uint32_t sumCount = 0; + + MPU6050 mpu6050; + + Timer t; + + Serial pc(USBTX, USBRX); // tx, rx + + // VCC, SCE, RST, D/C, MOSI,S CLK, LED + N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7); + +int main() +{ + pc.baud(9600); -// Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor -// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 -#define ADO 0 -#if ADO -#define MPU6050_ADDRESS 0x69 // Device address when ADO = 1 -#else -#define MPU6050_ADDRESS 0x68 // Device address when ADO = 0 -#endif - -// Set up I2C -I2C i2c(PB_9, PB_8); -//i2c.frequency(400000); // use fast (400 kHz) I2C - -// Set up serial port -Serial pc(PA_2, PA_3); // PA_2, PA_3 on STM32F01 Nucleo - -Timer t; + //Set up I2C + i2c.frequency(400000); // use fast (400 kHz) I2C + + t.start(); + + lcd.init(); + lcd.setBrightness(0.05); + + + // Read the WHO_AM_I register, this is a good test of communication + uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050 + pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r"); + + if (whoami == 0x68) // WHO_AM_I should always be 0x68 + { + pc.printf("MPU6050 is online..."); + wait(1); + lcd.clear(); + lcd.printString("MPU6050 OK", 0, 0); -// Set initial input parameters -enum Ascale { - AFS_2G = 0, - AFS_4G, - AFS_8G, - AFS_16G -}; - -enum Gscale { - GFS_250DPS = 0, - GFS_500DPS, - GFS_1000DPS, - GFS_2000DPS -}; - -// Specify sensor full scale -int Gscale = GFS_250DPS; -int Ascale = AFS_2G; -float aRes, gRes; // scale resolutions per LSB for the sensors - -// Pin definitions -int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins -char blinkOn = false; - -int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output -float ax, ay, az; // Stores the real accel value in g's -int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output -float gx, gy, gz; // Stores the real gyro value in degrees per seconds -float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer -int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius -float temperature; -float SelfTest[6]; + + mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values + pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r"); + pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r"); + pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r"); + pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r"); + pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r"); + pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r"); + wait(1); -uint32_t delt_t = 0; // used to control display output rate -uint32_t count = 0; // used to control display output rate - -// parameters for 6 DoF sensor fusion calculations -float PI = 3.141593; -float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3 -float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta -float GyroMeasDrift = PI * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) -float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value -float pitch, yaw, roll; -float deltat = 0.0f; // integration interval for both filter schemes -uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval -uint32_t Now = 0; // used to calculate integration interval -float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion - -DigitalOut myled(LED1); - -//=================================================================================================================== -//====== Set of useful function to access acceleratio, gyroscope, and temperature data -//=================================================================================================================== - - void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) -{ - i2c.write(address); - i2c.write(subAddress); - i2c.write(data); -} - - uint8_t readByte(uint8_t address, uint8_t subAddress) -{ - uint8_t data; // `data` will store the register data - i2c.write(address); - i2c.write(subAddress); - data = i2c.read(1); // read the length byte and the 7 databytes - return data; // Return data read from slave register -} + if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) + { + mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration + mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers + mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature - void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) -{ - i2c.write(address); - i2c.write(subAddress); - for (int ii = 0; ii < count; ii++) { - dest[ii] = i2c.read(1); - } + lcd.clear(); + lcd.printString("MPU6050", 0, 0); + lcd.printString("pass self test", 0, 1); + lcd.printString("initializing", 0, 2); + wait(2); + } + else + { + pc.printf("Device did not the pass self-test!\n\r"); -} -void getGres() { - switch (Gscale) - { - // Possible gyro scales (and their register bit settings) are: - // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). - // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: - case GFS_250DPS: - gRes = 250.0/32768.0; - break; - case GFS_500DPS: - gRes = 500.0/32768.0; - break; - case GFS_1000DPS: - gRes = 1000.0/32768.0; - break; - case GFS_2000DPS: - gRes = 2000.0/32768.0; - break; + lcd.clear(); + lcd.printString("MPU6050", 0, 0); + lcd.printString("no pass", 0, 1); + lcd.printString("self test", 0, 2); + } + } + else + { + pc.printf("Could not connect to MPU6050: \n\r"); + pc.printf("%#x \n", whoami); + + lcd.clear(); + lcd.printString("MPU6050", 0, 0); + lcd.printString("no connection", 0, 1); + lcd.printString("0x", 0, 2); lcd.setXYAddress(20, 2); lcd.printChar(whoami); + + while(1) ; // Loop forever if communication doesn't happen } -} - -void getAres() { - switch (Ascale) - { - // Possible accelerometer scales (and their register bit settings) are: - // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). - // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: - case AFS_2G: - aRes = 2.0/32768.0; - break; - case AFS_4G: - aRes = 4.0/32768.0; - break; - case AFS_8G: - aRes = 8.0/32768.0; - break; - case AFS_16G: - aRes = 16.0/32768.0; - break; - } -} - - -void readAccelData(int16_t * destination) -{ - uint8_t rawData[6]; // x/y/z accel register data stored here - readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array - destination[0] = (int16_t)((rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = (int16_t)((rawData[2] << 8) | rawData[3]) ; - destination[2] = (int16_t)((rawData[4] << 8) | rawData[5]) ; -} - -void readGyroData(int16_t * destination) -{ - uint8_t rawData[6]; // x/y/z gyro register data stored here - readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array - destination[0] = (int16_t)((rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = (int16_t)((rawData[2] << 8) | rawData[3]) ; - destination[2] = (int16_t)((rawData[4] << 8) | rawData[5]) ; -} - -int16_t readTempData() -{ - uint8_t rawData[2]; // x/y/z gyro register data stored here - readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array - return ((int16_t)rawData[0]) << 8 | rawData[1] ; // Turn the MSB and LSB into a 16-bit value -} -// Configure the motion detection control for low power accelerometer mode -void LowPowerAccelOnlyMPU6050() -{ - -// The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly -// Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration -// above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a -// threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out -// consideration for these threshold evaluations; otherwise, the flags would be set all the time! - - uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1); - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6] - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running - - c = readByte(MPU6050_ADDRESS, PWR_MGMT_2); - writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5] - writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running - - c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0] -// Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter - - c = readByte(MPU6050_ADDRESS, CONFIG); - writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0] - writeByte(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate - - c = readByte(MPU6050_ADDRESS, INT_ENABLE); - writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts - writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only - -// Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold -// for at least the counter duration - writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg - writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate - - wait(0.1); // Add delay for accumulation of samples - - c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0] - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance - - c = readByte(MPU6050_ADDRESS, PWR_MGMT_2); - writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7] - writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2]) - - c = readByte(MPU6050_ADDRESS, PWR_MGMT_1); - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5 - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts - -} - - -void initMPU6050() -{ - // Initialize MPU6050 device - // reset device - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device - wait(0.1); - - // wake up device - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors - wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt - - // get stable time source - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 - - // Configure Gyro and Accelerometer - // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; - // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both - // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate - writeByte(MPU6050_ADDRESS, CONFIG, 0x03); - - // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) - writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above - - // Set gyroscope full scale range - // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 - uint8_t c = readByte(MPU6050_ADDRESS, GYRO_CONFIG); - writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] - writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3] - writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro - - // Set accelerometer configuration - c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3] - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer - - // Configure Interrupts and Bypass Enable - // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips - // can join the I2C bus and all can be controlled by the Arduino as master - writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22); - writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt -} - -// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average -// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. -void calibrateMPU6050(float * dest1, float * dest2) -{ - uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data - uint8_t ii, fifo_count, packet_count; - int16_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; - -// reset device, reset all registers, clear gyro and accelerometer bias registers - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device - wait(0.1); - -// get stable time source -// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); - writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00); - wait(0.2); - -// Configure device for bias calculation - writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts - writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source - writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master - writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes - writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP - wait(0.015); - -// Configure MPU6050 gyro and accelerometer for bias calculation - writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz - writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz - writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity - wait(0.2); - - uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec - uint16_t accelsensitivity = 16384; // = 16384 LSB/g - -// Configure FIFO to capture accelerometer and gyro data for bias calculation - writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO - writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050) - wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes - -// At end of sample accumulation, turn off FIFO sensor read - writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO - readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, data); // read FIFO sample count - fifo_count = ((uint16_t)data[0] << 8) | data[1]; - packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging - - for (ii = 0; ii < packet_count; ii++) { - readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, data); // read data for averaging - accel_bias[0] += (((int16_t)data[0] << 8) | data[1] ) ; // Divide sum of FIFO gyro data by number of samples - accel_bias[1] += (((int16_t)data[2] << 8) | data[3] ) ; - accel_bias[2] += (((int16_t)data[4] << 8) | data[5] ) - accelsensitivity; // Assumes device facing up! - gyro_bias[0] += (((int16_t)data[6] << 8) | data[7] ) ; - gyro_bias[1] += (((int16_t)data[8] << 8) | data[9] ) ; - gyro_bias[2] += (((int16_t)data[10] << 8) | data[11]) ; -} - - accel_bias[0] /= packet_count; // Normalize sums to get average count biases - accel_bias[1] /= packet_count; - accel_bias[2] /= packet_count; - gyro_bias[0] /= packet_count; - gyro_bias[1] /= packet_count; - gyro_bias[2] /= packet_count; - -// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup - data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format - data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases - data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; - data[3] = (-gyro_bias[1]/4) & 0xFF; - data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; - data[5] = (-gyro_bias[2]/4) & 0xFF; - -// Push gyro biases to hardware registers -// writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); // might not be supported in MPU6050 -// writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]); -// writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]); -// writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]); -// writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]); -// writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]); - - dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction - dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; - dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; - -// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain -// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold -// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature -// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that -// the accelerometer biases calculated above must be divided by 8. - - int16_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases - readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values - accel_bias_reg[0] = ((int16_t)data[0] << 8) | data[1]; - readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]); - accel_bias_reg[1] = ((int16_t)data[0] << 8) | data[1]; - readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]); - accel_bias_reg[2] = ((int16_t)data[0] << 8) | data[1]; - - int16_t mask = 0x0001; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers - uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis - - for(ii = 0; ii < 3; ii++) { - if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit - } + while(1) { - // Construct total accelerometer bias, including calculated average accelerometer bias from above - accel_bias_reg[0] -= accel_bias[0]/8; // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) - accel_bias_reg[1] -= accel_bias[1]/8; - accel_bias_reg[2] -= accel_bias[2]/8; - - data[0] = (accel_bias_reg[0] >> 8) & 0xFF; - data[1] = (accel_bias_reg[0]) & 0xFF; - data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers - data[2] = (accel_bias_reg[1] >> 8) & 0xFF; - data[3] = (accel_bias_reg[1]) & 0xFF; - data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers - data[4] = (accel_bias_reg[2] >> 8) & 0xFF; - data[5] = (accel_bias_reg[2]) & 0xFF; - data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers - - // Push accelerometer biases to hardware registers -// writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]); // might not be supported in MPU6050 -// writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]); -// writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]); -// writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]); -// writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]); -// writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]); - -// Output scaled accelerometer biases for manual subtraction in the main program - dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; - dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; - dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; - } - - -// Accelerometer and gyroscope self test; check calibration wrt factory settings -void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass -{ - uint8_t rawData[4]; - uint8_t selfTest[6]; - float factoryTrim[6]; - - // Configure the accelerometer for self-test - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g - writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s - wait(0.25); // Delay a while to let the device execute the self-test - rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results - rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results - rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results - rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results - // Extract the acceleration test results first - selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer - selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer - selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer - // Extract the gyration test results first - selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer - selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer - selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer - // Process results to allow final comparison with factory set values - factoryTrim[0] = (4096.0*0.34)*(pow( (0.92/0.34) , ((selfTest[0] - 1.0)/30.0))); // FT[Xa] factory trim calculation - factoryTrim[1] = (4096.0*0.34)*(pow( (0.92/0.34) , ((selfTest[1] - 1.0)/30.0))); // FT[Ya] factory trim calculation - factoryTrim[2] = (4096.0*0.34)*(pow( (0.92/0.34) , ((selfTest[2] - 1.0)/30.0))); // FT[Za] factory trim calculation - factoryTrim[3] = ( 25.0*131.0)*(pow( 1.046 , (selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation - factoryTrim[4] = (-25.0*131.0)*(pow( 1.046 , (selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation - factoryTrim[5] = ( 25.0*131.0)*(pow( 1.046 , (selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation - - // Output self-test results and factory trim calculation if desired - // Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]); - // Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]); - // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]); - // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]); - - // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response - // To get to percent, must multiply by 100 and subtract result from 100 - for (int i = 0; i < 6; i++) { - destination[i] = 100.0 + 100.0*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences - } - -} - - -// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" -// (see http://www.x-io.co.uk/category/open-source/ for examples and more details) -// which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative -// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. -// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms -// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! - void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz) - { - float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability - float norm; // vector norm - float f1, f2, f3; // objetive funcyion elements - float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements - float qDot1, qDot2, qDot3, qDot4; - float hatDot1, hatDot2, hatDot3, hatDot4; - float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error - - // Auxiliary variables to avoid repeated arithmetic - float _halfq1 = 0.5f * q1; - float _halfq2 = 0.5f * q2; - float _halfq3 = 0.5f * q3; - float _halfq4 = 0.5f * q4; - float _2q1 = 2.0f * q1; - float _2q2 = 2.0f * q2; - float _2q3 = 2.0f * q3; - float _2q4 = 2.0f * q4; -// float _2q1q3 = 2.0f * q1 * q3; -// float _2q3q4 = 2.0f * q3 * q4; - - // Normalise accelerometer measurement - norm = sqrt(ax * ax + ay * ay + az * az); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f/norm; - ax *= norm; - ay *= norm; - az *= norm; - - // Compute the objective function and Jacobian - f1 = _2q2 * q4 - _2q1 * q3 - ax; - f2 = _2q1 * q2 + _2q3 * q4 - ay; - f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az; - J_11or24 = _2q3; - J_12or23 = _2q4; - J_13or22 = _2q1; - J_14or21 = _2q2; - J_32 = 2.0f * J_14or21; - J_33 = 2.0f * J_11or24; - - // Compute the gradient (matrix multiplication) - hatDot1 = J_14or21 * f2 - J_11or24 * f1; - hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3; - hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1; - hatDot4 = J_14or21 * f1 + J_11or24 * f2; - - // Normalize the gradient - norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4); - hatDot1 /= norm; - hatDot2 /= norm; - hatDot3 /= norm; - hatDot4 /= norm; - - // Compute estimated gyroscope biases - gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3; - gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2; - gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1; - - // Compute and remove gyroscope biases - gbiasx += gerrx * deltat * zeta; - gbiasy += gerry * deltat * zeta; - gbiasz += gerrz * deltat * zeta; - gx -= gbiasx; - gy -= gbiasy; - gz -= gbiasz; - - // Compute the quaternion derivative - qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz; - qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy; - qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx; - qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx; - - // Compute then integrate estimated quaternion derivative - q1 += (qDot1 -(beta * hatDot1)) * deltat; - q2 += (qDot2 -(beta * hatDot2)) * deltat; - q3 += (qDot3 -(beta * hatDot3)) * deltat; - q4 += (qDot4 -(beta * hatDot4)) * deltat; - - // Normalize the quaternion - norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion - norm = 1.0f/norm; - q[0] = q1 * norm; - q[1] = q2 * norm; - q[2] = q3 * norm; - q[3] = q4 * norm; - } - - -void setup() -{ - - // Read the WHO_AM_I register, this is a good test of communication - uint8_t c = readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050 - - if (c == 0x68) // WHO_AM_I should always be 0x68 - { - pc.printf("MPU6050 is online..."); - - MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values - pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value"); - pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value"); - pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value"); - pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value"); - pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value"); - pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value"); - - if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) { - - calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers - initMPU6050(); pc.printf("MPU6050 initialized for active data mode...."); // Initialize device for active mode read of acclerometer, gyroscope, and temperature - } - else - { - pc.printf("Could not connect to MPU6050: 0x"); - pc.printf("%h", c); - while(1) ; // Loop forever if communication doesn't happen - } -} -} - - -int main() -{ - // If data ready bit set, all data registers have new data - if(readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt - readAccelData(accelCount); // Read the x/y/z adc values - getAres(); + // If data ready bit set, all data registers have new data + if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt + mpu6050.readAccelData(accelCount); // Read the x/y/z adc values + mpu6050.getAres(); // Now we'll calculate the accleration value into actual g's ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set ay = (float)accelCount[1]*aRes - accelBias[1]; az = (float)accelCount[2]*aRes - accelBias[2]; - readGyroData(gyroCount); // Read the x/y/z adc values - getGres(); + mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values + mpu6050.getGres(); // Calculate the gyro value into actual degrees per second - gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set - gy = (float)gyroCount[1]*gRes - gyroBias[1]; - gz = (float)gyroCount[2]*gRes - gyroBias[2]; + gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes; // - gyroBias[1]; + gz = (float)gyroCount[2]*gRes; // - gyroBias[2]; - tempCount = readTempData(); // Read the x/y/z adc values + tempCount = mpu6050.readTempData(); // Read the x/y/z adc values temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade } Now = t.read_us(); - deltat = ((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update + deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update lastUpdate = Now; + + sum += deltat; + sumCount++; + if(lastUpdate - firstUpdate > 10000000.0f) { - beta = 0.04; // decrease filter gain after stabilized - zeta = 0.015; // increaseyro bias drift gain after stabilized + beta = 0.04; // decrease filter gain after stabilized + zeta = 0.015; // increasey bias drift gain after stabilized } + // Pass gyro rate as rad/s - MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f); + mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f); // Serial print and/or display at 0.5 s rate independent of data rates delt_t = t.read_ms() - count; if (delt_t > 500) { // update LCD once per half-second independent of read rate - // DigitalOut(LED1); - - pc.printf("ax = "); pc.printf("%i", 1000*ax); - pc.printf(" ay = "); pc.printf("%i", 1000*ay); - pc.printf(" az = "); pc.printf("%i", 1000*az); pc.printf(" mg"); + + pc.printf("ax = %f", 1000*ax); + pc.printf(" ay = %f", 1000*ay); + pc.printf(" az = %f mg\n\r", 1000*az); - pc.printf("gx = "); pc.printf("%f", gx); - pc.printf(" gy = "); pc.printf("%f", gy); - pc.printf(" gz = "); pc.printf("%f", gz); pc.printf(" deg/s"); + pc.printf("gx = %f", gx); + pc.printf(" gy = %f", gy); + pc.printf(" gz = %f deg/s\n\r", gz); + + pc.printf(" temperature = %f C\n\r", temperature); - pc.printf("q0 = "); pc.printf("%f", q[0]); - pc.printf(" qx = "); pc.printf("%f", q[1]); - pc.printf(" qy = "); pc.printf("%f", q[2]); - pc.printf(" qz = "); pc.printf("%f", q[3]); + pc.printf("q0 = %f\n\r", q[0]); + pc.printf("q1 = %f\n\r", q[1]); + pc.printf("q2 = %f\n\r", q[2]); + pc.printf("q3 = %f\n\r", q[3]); + + lcd.clear(); + lcd.printString("MPU6050", 0, 0); + lcd.printString("x y z", 0, 1); + lcd.setXYAddress(0, 2); lcd.printChar((char)(1000*ax)); + lcd.setXYAddress(20, 2); lcd.printChar((char)(1000*ay)); + lcd.setXYAddress(40, 2); lcd.printChar((char)(1000*az)); lcd.printString("mg", 66, 2); + // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. // In this coordinate system, the positive z-axis is down toward Earth. @@ -800,21 +203,22 @@ yaw *= 180.0f / PI; roll *= 180.0f / PI; - pc.printf("Yaw, Pitch, Roll: "); - pc.printf("%f", yaw); - pc.printf(", "); - pc.printf("%f", pitch); - pc.printf(", "); - pc.printf("%f", roll); +// pc.printf("Yaw, Pitch, Roll: \n\r"); +// pc.printf("%f", yaw); +// pc.printf(", "); +// pc.printf("%f", pitch); +// pc.printf(", "); +// pc.printf("%f\n\r", roll); +// pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r"); - pc.printf("average rate = "); pc.printf("%f", (1.0f/deltat)); pc.printf(" Hz"); - - - blinkOn = ~blinkOn; - count = t.read_ms(); + pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); + pc.printf("average rate = %f\n\r", (float) sumCount/sum); + + myled= !myled; + count = t.read_ms(); + sum = 0; + sumCount = 0; } - while(1) { - myled = !myled; - wait(1); - } } + + } \ No newline at end of file