Basic program to get the properly-scaled gyro and accelerometer data from a MPU-6050 6-axis motion sensor. Perform sensor fusion using Sebastian Madgwick's open-source IMU fusion filter. Running on the STM32F401 at 84 MHz achieved sensor fusion filter update rates of 5500 Hz. Additional info at https://github.com/kriswiner/MPU-6050.
main.cpp@1:cea9d83b8636, 2014-06-29 (annotated)
- Committer:
- onehorse
- Date:
- Sun Jun 29 21:41:36 2014 +0000
- Revision:
- 1:cea9d83b8636
- Parent:
- 0:65aa78c10981
first commit
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
onehorse | 0:65aa78c10981 | 1 | |
onehorse | 0:65aa78c10981 | 2 | /* MPU6050 Basic Example Code |
onehorse | 0:65aa78c10981 | 3 | by: Kris Winer |
onehorse | 0:65aa78c10981 | 4 | date: May 1, 2014 |
onehorse | 0:65aa78c10981 | 5 | license: Beerware - Use this code however you'd like. If you |
onehorse | 0:65aa78c10981 | 6 | find it useful you can buy me a beer some time. |
onehorse | 0:65aa78c10981 | 7 | |
onehorse | 0:65aa78c10981 | 8 | Demonstrate MPU-6050 basic functionality including initialization, accelerometer trimming, sleep mode functionality as well as |
onehorse | 0:65aa78c10981 | 9 | parameterizing the register addresses. Added display functions to allow display to on breadboard monitor. |
onehorse | 0:65aa78c10981 | 10 | No DMP use. We just want to get out the accelerations, temperature, and gyro readings. |
onehorse | 0:65aa78c10981 | 11 | |
onehorse | 0:65aa78c10981 | 12 | SDA and SCL should have external pull-up resistors (to 3.3V). |
onehorse | 0:65aa78c10981 | 13 | 10k resistors worked for me. They should be on the breakout |
onehorse | 0:65aa78c10981 | 14 | board. |
onehorse | 0:65aa78c10981 | 15 | |
onehorse | 0:65aa78c10981 | 16 | Hardware setup: |
onehorse | 0:65aa78c10981 | 17 | MPU6050 Breakout --------- Arduino |
onehorse | 0:65aa78c10981 | 18 | 3.3V --------------------- 3.3V |
onehorse | 0:65aa78c10981 | 19 | SDA ----------------------- A4 |
onehorse | 0:65aa78c10981 | 20 | SCL ----------------------- A5 |
onehorse | 0:65aa78c10981 | 21 | GND ---------------------- GND |
onehorse | 0:65aa78c10981 | 22 | |
onehorse | 0:65aa78c10981 | 23 | Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library. |
onehorse | 0:65aa78c10981 | 24 | Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1. |
onehorse | 0:65aa78c10981 | 25 | We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file. |
onehorse | 0:65aa78c10981 | 26 | We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file. |
onehorse | 0:65aa78c10981 | 27 | */ |
onehorse | 0:65aa78c10981 | 28 | |
onehorse | 1:cea9d83b8636 | 29 | #include "mbed.h" |
onehorse | 1:cea9d83b8636 | 30 | #include "MPU6050.h" |
onehorse | 1:cea9d83b8636 | 31 | #include "N5110.h" |
onehorse | 0:65aa78c10981 | 32 | |
onehorse | 0:65aa78c10981 | 33 | // Using NOKIA 5110 monochrome 84 x 48 pixel display |
onehorse | 0:65aa78c10981 | 34 | // pin 9 - Serial clock out (SCLK) |
onehorse | 0:65aa78c10981 | 35 | // pin 8 - Serial data out (DIN) |
onehorse | 0:65aa78c10981 | 36 | // pin 7 - Data/Command select (D/C) |
onehorse | 0:65aa78c10981 | 37 | // pin 5 - LCD chip select (CS) |
onehorse | 0:65aa78c10981 | 38 | // pin 6 - LCD reset (RST) |
onehorse | 0:65aa78c10981 | 39 | //Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6); |
onehorse | 0:65aa78c10981 | 40 | |
onehorse | 1:cea9d83b8636 | 41 | float sum = 0; |
onehorse | 1:cea9d83b8636 | 42 | uint32_t sumCount = 0; |
onehorse | 1:cea9d83b8636 | 43 | |
onehorse | 1:cea9d83b8636 | 44 | MPU6050 mpu6050; |
onehorse | 1:cea9d83b8636 | 45 | |
onehorse | 1:cea9d83b8636 | 46 | Timer t; |
onehorse | 1:cea9d83b8636 | 47 | |
onehorse | 1:cea9d83b8636 | 48 | Serial pc(USBTX, USBRX); // tx, rx |
onehorse | 1:cea9d83b8636 | 49 | |
onehorse | 1:cea9d83b8636 | 50 | // VCC, SCE, RST, D/C, MOSI,S CLK, LED |
onehorse | 1:cea9d83b8636 | 51 | N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7); |
onehorse | 1:cea9d83b8636 | 52 | |
onehorse | 1:cea9d83b8636 | 53 | int main() |
onehorse | 1:cea9d83b8636 | 54 | { |
onehorse | 1:cea9d83b8636 | 55 | pc.baud(9600); |
onehorse | 0:65aa78c10981 | 56 | |
onehorse | 1:cea9d83b8636 | 57 | //Set up I2C |
onehorse | 1:cea9d83b8636 | 58 | i2c.frequency(400000); // use fast (400 kHz) I2C |
onehorse | 1:cea9d83b8636 | 59 | |
onehorse | 1:cea9d83b8636 | 60 | t.start(); |
onehorse | 1:cea9d83b8636 | 61 | |
onehorse | 1:cea9d83b8636 | 62 | lcd.init(); |
onehorse | 1:cea9d83b8636 | 63 | lcd.setBrightness(0.05); |
onehorse | 1:cea9d83b8636 | 64 | |
onehorse | 1:cea9d83b8636 | 65 | |
onehorse | 1:cea9d83b8636 | 66 | // Read the WHO_AM_I register, this is a good test of communication |
onehorse | 1:cea9d83b8636 | 67 | uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050 |
onehorse | 1:cea9d83b8636 | 68 | pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r"); |
onehorse | 1:cea9d83b8636 | 69 | |
onehorse | 1:cea9d83b8636 | 70 | if (whoami == 0x68) // WHO_AM_I should always be 0x68 |
onehorse | 1:cea9d83b8636 | 71 | { |
onehorse | 1:cea9d83b8636 | 72 | pc.printf("MPU6050 is online..."); |
onehorse | 1:cea9d83b8636 | 73 | wait(1); |
onehorse | 1:cea9d83b8636 | 74 | lcd.clear(); |
onehorse | 1:cea9d83b8636 | 75 | lcd.printString("MPU6050 OK", 0, 0); |
onehorse | 0:65aa78c10981 | 76 | |
onehorse | 1:cea9d83b8636 | 77 | |
onehorse | 1:cea9d83b8636 | 78 | mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values |
onehorse | 1:cea9d83b8636 | 79 | pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r"); |
onehorse | 1:cea9d83b8636 | 80 | pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r"); |
onehorse | 1:cea9d83b8636 | 81 | pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r"); |
onehorse | 1:cea9d83b8636 | 82 | pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r"); |
onehorse | 1:cea9d83b8636 | 83 | pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r"); |
onehorse | 1:cea9d83b8636 | 84 | pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r"); |
onehorse | 1:cea9d83b8636 | 85 | wait(1); |
onehorse | 0:65aa78c10981 | 86 | |
onehorse | 1:cea9d83b8636 | 87 | if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) |
onehorse | 1:cea9d83b8636 | 88 | { |
onehorse | 1:cea9d83b8636 | 89 | mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration |
onehorse | 1:cea9d83b8636 | 90 | mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers |
onehorse | 1:cea9d83b8636 | 91 | mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature |
onehorse | 0:65aa78c10981 | 92 | |
onehorse | 1:cea9d83b8636 | 93 | lcd.clear(); |
onehorse | 1:cea9d83b8636 | 94 | lcd.printString("MPU6050", 0, 0); |
onehorse | 1:cea9d83b8636 | 95 | lcd.printString("pass self test", 0, 1); |
onehorse | 1:cea9d83b8636 | 96 | lcd.printString("initializing", 0, 2); |
onehorse | 1:cea9d83b8636 | 97 | wait(2); |
onehorse | 1:cea9d83b8636 | 98 | } |
onehorse | 1:cea9d83b8636 | 99 | else |
onehorse | 1:cea9d83b8636 | 100 | { |
onehorse | 1:cea9d83b8636 | 101 | pc.printf("Device did not the pass self-test!\n\r"); |
onehorse | 0:65aa78c10981 | 102 | |
onehorse | 1:cea9d83b8636 | 103 | lcd.clear(); |
onehorse | 1:cea9d83b8636 | 104 | lcd.printString("MPU6050", 0, 0); |
onehorse | 1:cea9d83b8636 | 105 | lcd.printString("no pass", 0, 1); |
onehorse | 1:cea9d83b8636 | 106 | lcd.printString("self test", 0, 2); |
onehorse | 1:cea9d83b8636 | 107 | } |
onehorse | 1:cea9d83b8636 | 108 | } |
onehorse | 1:cea9d83b8636 | 109 | else |
onehorse | 1:cea9d83b8636 | 110 | { |
onehorse | 1:cea9d83b8636 | 111 | pc.printf("Could not connect to MPU6050: \n\r"); |
onehorse | 1:cea9d83b8636 | 112 | pc.printf("%#x \n", whoami); |
onehorse | 1:cea9d83b8636 | 113 | |
onehorse | 1:cea9d83b8636 | 114 | lcd.clear(); |
onehorse | 1:cea9d83b8636 | 115 | lcd.printString("MPU6050", 0, 0); |
onehorse | 1:cea9d83b8636 | 116 | lcd.printString("no connection", 0, 1); |
onehorse | 1:cea9d83b8636 | 117 | lcd.printString("0x", 0, 2); lcd.setXYAddress(20, 2); lcd.printChar(whoami); |
onehorse | 1:cea9d83b8636 | 118 | |
onehorse | 1:cea9d83b8636 | 119 | while(1) ; // Loop forever if communication doesn't happen |
onehorse | 0:65aa78c10981 | 120 | } |
onehorse | 0:65aa78c10981 | 121 | |
onehorse | 0:65aa78c10981 | 122 | |
onehorse | 0:65aa78c10981 | 123 | |
onehorse | 1:cea9d83b8636 | 124 | while(1) { |
onehorse | 0:65aa78c10981 | 125 | |
onehorse | 1:cea9d83b8636 | 126 | // If data ready bit set, all data registers have new data |
onehorse | 1:cea9d83b8636 | 127 | if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt |
onehorse | 1:cea9d83b8636 | 128 | mpu6050.readAccelData(accelCount); // Read the x/y/z adc values |
onehorse | 1:cea9d83b8636 | 129 | mpu6050.getAres(); |
onehorse | 0:65aa78c10981 | 130 | |
onehorse | 0:65aa78c10981 | 131 | // Now we'll calculate the accleration value into actual g's |
onehorse | 0:65aa78c10981 | 132 | ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set |
onehorse | 0:65aa78c10981 | 133 | ay = (float)accelCount[1]*aRes - accelBias[1]; |
onehorse | 0:65aa78c10981 | 134 | az = (float)accelCount[2]*aRes - accelBias[2]; |
onehorse | 0:65aa78c10981 | 135 | |
onehorse | 1:cea9d83b8636 | 136 | mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values |
onehorse | 1:cea9d83b8636 | 137 | mpu6050.getGres(); |
onehorse | 0:65aa78c10981 | 138 | |
onehorse | 0:65aa78c10981 | 139 | // Calculate the gyro value into actual degrees per second |
onehorse | 1:cea9d83b8636 | 140 | gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set |
onehorse | 1:cea9d83b8636 | 141 | gy = (float)gyroCount[1]*gRes; // - gyroBias[1]; |
onehorse | 1:cea9d83b8636 | 142 | gz = (float)gyroCount[2]*gRes; // - gyroBias[2]; |
onehorse | 0:65aa78c10981 | 143 | |
onehorse | 1:cea9d83b8636 | 144 | tempCount = mpu6050.readTempData(); // Read the x/y/z adc values |
onehorse | 0:65aa78c10981 | 145 | temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade |
onehorse | 0:65aa78c10981 | 146 | } |
onehorse | 0:65aa78c10981 | 147 | |
onehorse | 0:65aa78c10981 | 148 | Now = t.read_us(); |
onehorse | 1:cea9d83b8636 | 149 | deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update |
onehorse | 0:65aa78c10981 | 150 | lastUpdate = Now; |
onehorse | 1:cea9d83b8636 | 151 | |
onehorse | 1:cea9d83b8636 | 152 | sum += deltat; |
onehorse | 1:cea9d83b8636 | 153 | sumCount++; |
onehorse | 1:cea9d83b8636 | 154 | |
onehorse | 0:65aa78c10981 | 155 | if(lastUpdate - firstUpdate > 10000000.0f) { |
onehorse | 1:cea9d83b8636 | 156 | beta = 0.04; // decrease filter gain after stabilized |
onehorse | 1:cea9d83b8636 | 157 | zeta = 0.015; // increasey bias drift gain after stabilized |
onehorse | 0:65aa78c10981 | 158 | } |
onehorse | 1:cea9d83b8636 | 159 | |
onehorse | 0:65aa78c10981 | 160 | // Pass gyro rate as rad/s |
onehorse | 1:cea9d83b8636 | 161 | mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f); |
onehorse | 0:65aa78c10981 | 162 | |
onehorse | 0:65aa78c10981 | 163 | // Serial print and/or display at 0.5 s rate independent of data rates |
onehorse | 0:65aa78c10981 | 164 | delt_t = t.read_ms() - count; |
onehorse | 0:65aa78c10981 | 165 | if (delt_t > 500) { // update LCD once per half-second independent of read rate |
onehorse | 1:cea9d83b8636 | 166 | |
onehorse | 1:cea9d83b8636 | 167 | pc.printf("ax = %f", 1000*ax); |
onehorse | 1:cea9d83b8636 | 168 | pc.printf(" ay = %f", 1000*ay); |
onehorse | 1:cea9d83b8636 | 169 | pc.printf(" az = %f mg\n\r", 1000*az); |
onehorse | 0:65aa78c10981 | 170 | |
onehorse | 1:cea9d83b8636 | 171 | pc.printf("gx = %f", gx); |
onehorse | 1:cea9d83b8636 | 172 | pc.printf(" gy = %f", gy); |
onehorse | 1:cea9d83b8636 | 173 | pc.printf(" gz = %f deg/s\n\r", gz); |
onehorse | 1:cea9d83b8636 | 174 | |
onehorse | 1:cea9d83b8636 | 175 | pc.printf(" temperature = %f C\n\r", temperature); |
onehorse | 0:65aa78c10981 | 176 | |
onehorse | 1:cea9d83b8636 | 177 | pc.printf("q0 = %f\n\r", q[0]); |
onehorse | 1:cea9d83b8636 | 178 | pc.printf("q1 = %f\n\r", q[1]); |
onehorse | 1:cea9d83b8636 | 179 | pc.printf("q2 = %f\n\r", q[2]); |
onehorse | 1:cea9d83b8636 | 180 | pc.printf("q3 = %f\n\r", q[3]); |
onehorse | 1:cea9d83b8636 | 181 | |
onehorse | 1:cea9d83b8636 | 182 | lcd.clear(); |
onehorse | 1:cea9d83b8636 | 183 | lcd.printString("MPU6050", 0, 0); |
onehorse | 1:cea9d83b8636 | 184 | lcd.printString("x y z", 0, 1); |
onehorse | 1:cea9d83b8636 | 185 | lcd.setXYAddress(0, 2); lcd.printChar((char)(1000*ax)); |
onehorse | 1:cea9d83b8636 | 186 | lcd.setXYAddress(20, 2); lcd.printChar((char)(1000*ay)); |
onehorse | 1:cea9d83b8636 | 187 | lcd.setXYAddress(40, 2); lcd.printChar((char)(1000*az)); lcd.printString("mg", 66, 2); |
onehorse | 1:cea9d83b8636 | 188 | |
onehorse | 0:65aa78c10981 | 189 | |
onehorse | 0:65aa78c10981 | 190 | // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. |
onehorse | 0:65aa78c10981 | 191 | // In this coordinate system, the positive z-axis is down toward Earth. |
onehorse | 0:65aa78c10981 | 192 | // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. |
onehorse | 0:65aa78c10981 | 193 | // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. |
onehorse | 0:65aa78c10981 | 194 | // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. |
onehorse | 0:65aa78c10981 | 195 | // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. |
onehorse | 0:65aa78c10981 | 196 | // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be |
onehorse | 0:65aa78c10981 | 197 | // applied in the correct order which for this configuration is yaw, pitch, and then roll. |
onehorse | 0:65aa78c10981 | 198 | // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. |
onehorse | 0:65aa78c10981 | 199 | yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); |
onehorse | 0:65aa78c10981 | 200 | pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); |
onehorse | 0:65aa78c10981 | 201 | roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); |
onehorse | 0:65aa78c10981 | 202 | pitch *= 180.0f / PI; |
onehorse | 0:65aa78c10981 | 203 | yaw *= 180.0f / PI; |
onehorse | 0:65aa78c10981 | 204 | roll *= 180.0f / PI; |
onehorse | 0:65aa78c10981 | 205 | |
onehorse | 1:cea9d83b8636 | 206 | // pc.printf("Yaw, Pitch, Roll: \n\r"); |
onehorse | 1:cea9d83b8636 | 207 | // pc.printf("%f", yaw); |
onehorse | 1:cea9d83b8636 | 208 | // pc.printf(", "); |
onehorse | 1:cea9d83b8636 | 209 | // pc.printf("%f", pitch); |
onehorse | 1:cea9d83b8636 | 210 | // pc.printf(", "); |
onehorse | 1:cea9d83b8636 | 211 | // pc.printf("%f\n\r", roll); |
onehorse | 1:cea9d83b8636 | 212 | // pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r"); |
onehorse | 0:65aa78c10981 | 213 | |
onehorse | 1:cea9d83b8636 | 214 | pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); |
onehorse | 1:cea9d83b8636 | 215 | pc.printf("average rate = %f\n\r", (float) sumCount/sum); |
onehorse | 1:cea9d83b8636 | 216 | |
onehorse | 1:cea9d83b8636 | 217 | myled= !myled; |
onehorse | 1:cea9d83b8636 | 218 | count = t.read_ms(); |
onehorse | 1:cea9d83b8636 | 219 | sum = 0; |
onehorse | 1:cea9d83b8636 | 220 | sumCount = 0; |
onehorse | 0:65aa78c10981 | 221 | } |
onehorse | 0:65aa78c10981 | 222 | } |
onehorse | 1:cea9d83b8636 | 223 | |
onehorse | 1:cea9d83b8636 | 224 | } |