Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed Eurobot_2012_Primary
Revision 26:0995f61cb7b8, committed 2012-10-17
- Comitter:
- narshu
- Date:
- Wed Oct 17 22:22:47 2012 +0000
- Parent:
- 25:143b19c1fb05
- Commit message:
- Eurobot 2012 Primary;
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/Kalman/IR/IR.cpp Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,74 @@
+#include "IR.h"
+#include "Kalman.h"
+#include "system.h"
+#include "geometryfuncs.h"
+#include "globals.h"
+#include "mbed.h"
+
+IR::IR(Kalman &kalmanin):
+#ifdef ROBOT_PRIMARY
+ IRserial(p9, p10),
+#else
+ IRserial(p13, p14),
+#endif
+ kalman(kalmanin) {
+
+ //Setting up IR serial
+ IRserial.baud(115200);
+ IRserial.format(8,Serial::Odd,1);
+}
+
+void IR::detachisr() {
+ IRserial.attach(NULL,Serial::RxIrq);
+}
+
+void IR::attachisr() {
+ IRserial.attach(this, &IR::vIRValueISR, Serial::RxIrq);
+}
+
+void IR::vIRValueISR (void) {
+
+ // A workaround for mbed UART ISR bug
+ // Clear the RBR flag to make sure the interrupt doesn't loop
+ // UART3 for the port on pins 9/10, UART2 for pins 28/27, and UART1 for pins 13/14.
+ // UART0 for USB UART
+
+#ifdef ROBOT_PRIMARY
+ unsigned char RBR = LPC_UART3->RBR;
+#else
+ unsigned char RBR = LPC_UART1->RBR;
+#endif
+
+ // bytes packing/unpacking for IR turret serial comm
+ static union IRValue_t {
+ float IR_floats[3];
+ int IR_ints[3];
+ unsigned char IR_chars[12];
+ } IRValues;
+
+ const char Alignment_char[4] = {0xFF,0xFE,0xFD,0xFC};
+ static int Alignment_ptr = 0;
+ static bool data_flag = false;
+ static int buff_pointer = 0;
+
+ if (!data_flag) { // look for alignment bytes
+ if (RBR == Alignment_char[Alignment_ptr]) {
+ Alignment_ptr ++;
+ }
+ if (Alignment_ptr >= 4) {
+ Alignment_ptr = 0;
+ data_flag = true; // set the dataflag
+ }
+ } else { // fetch data bytes
+ IRValues.IR_chars[buff_pointer] = RBR;
+ buff_pointer ++;
+ if (buff_pointer >= 12) {
+ buff_pointer = 0;
+ data_flag = false; // dessert the dataflag
+ kalman.runupdate(Kalman::measurement_t(IRValues.IR_ints[0]+3),IRValues.IR_floats[1],IRvariance);
+
+
+ }
+
+ }
+}
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/Kalman/IR/IR.h Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,25 @@
+
+#ifndef IR_H
+#define IR_H
+
+#include "mbed.h"
+
+//forward declaration of class Kalman to avoid cyclic include
+class Kalman;
+
+class IR {
+public:
+
+ Serial IRserial;
+
+ IR(Kalman &kalmanin);
+ void detachisr();
+ void attachisr();
+ void vIRValueISR (void);
+
+private:
+//reference to the kalman object to run the updates on
+ Kalman& kalman;
+};
+
+#endif //IR_H
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/Kalman/Kalman.cpp Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,467 @@
+//***************************************************************************************
+//Kalman Filter implementation
+//***************************************************************************************
+#include "Kalman.h"
+#include "rtos.h"
+#include "RFSRF05.h"
+#include "math.h"
+#include "globals.h"
+#include "motors.h"
+#include "system.h"
+#include "geometryfuncs.h"
+
+#include <tvmet/Matrix.h>
+#include <tvmet/Vector.h>
+using namespace tvmet;
+
+Kalman::Kalman(Motors &motorsin,
+ UI &uiin,
+ PinName Sonar_Trig,
+ PinName Sonar_Echo0,
+ PinName Sonar_Echo1,
+ PinName Sonar_Echo2,
+ PinName Sonar_Echo3,
+ PinName Sonar_Echo4,
+ PinName Sonar_Echo5,
+ PinName Sonar_SDI,
+ PinName Sonar_SDO,
+ PinName Sonar_SCK,
+ PinName Sonar_NCS,
+ PinName Sonar_NIRQ) :
+ ir(*this),
+ sonararray(Sonar_Trig,
+ Sonar_Echo0,
+ Sonar_Echo1,
+ Sonar_Echo2,
+ Sonar_Echo3,
+ Sonar_Echo4,
+ Sonar_Echo5,
+ Sonar_SDI,
+ Sonar_SDO,
+ Sonar_SCK,
+ Sonar_NCS,
+ Sonar_NIRQ),
+ motors(motorsin),
+ ui(uiin),
+ predictthread(predictloopwrapper, this, osPriorityNormal, 512),
+ predictticker( SIGTICKARGS(predictthread, 0x1) ),
+// sonarthread(sonarloopwrapper, this, osPriorityNormal, 256),
+// sonarticker( SIGTICKARGS(sonarthread, 0x1) ),
+ updatethread(updateloopwrapper, this, osPriorityNormal, 512) {
+
+ //Initilising offsets
+ InitLock.lock();
+ IR_Offset = 0;
+ Sonar_Offset = 0;
+ InitLock.unlock();
+
+
+ //Initilising matrices
+
+ // X = x, y, theta;
+ if (Colour)
+ X = 0.5, 0, 0;
+ else
+ X = 2.5, 0, PI;
+
+ P = 1, 0, 0,
+ 0, 1, 0,
+ 0, 0, 0.04;
+
+ //measurment variance R is provided by each sensor when calling runupdate
+
+ //attach callback
+ sonararray.callbackobj = (DummyCT*)this;
+ sonararray.mcallbackfunc = (void (DummyCT::*)(int beaconnum, float distance, float variance)) &Kalman::runupdate;
+
+
+ predictticker.start(20);
+// sonarticker.start(50);
+
+}
+
+
+//Note: this init function assumes that the robot faces east, theta=0, in the +x direction
+void Kalman::KalmanInit() {
+ motors.stop();
+ float SonarMeasuresx1000[3];
+ float IRMeasuresloc[3];
+ int beacon_cnt = 0;
+
+
+// doesn't work since they break the ISR
+ /*
+ #ifdef ROBOT_PRIMARY
+ LPC_UART3->FCR = LPC_UART3->FCR | 0x06; // Flush the serial FIFO buffer / OR with FCR
+ #else
+ LPC_UART1->FCR = LPC_UART1->FCR | 0x06; // Flush the serial FIFO buffer / OR with FCR
+ #endif
+ */
+ // zeros the measurements
+ for (int i = 0; i < 3; i++) {
+ SonarMeasures[i] = 0;
+ IRMeasures[i] = 0;
+ }
+
+ InitLock.lock();
+ //zeros offsets
+ IR_Offset = 0;
+ Sonar_Offset = 0;
+ InitLock.unlock();
+
+ // attaches ir interrup
+ ir.attachisr();
+
+ //wating untill the IR has reved up and picked up some valid data
+ //Thread::wait(1000);
+ wait(2);
+
+ //temporaraly disable IR updates
+ ir.detachisr();
+
+ //lock the state throughout the computation, as we will override the state at the end
+ InitLock.lock();
+ statelock.lock();
+
+
+
+ SonarMeasuresx1000[0] = SonarMeasures[0]*1000.0f;
+ SonarMeasuresx1000[1] = SonarMeasures[1]*1000.0f;
+ SonarMeasuresx1000[2] = SonarMeasures[2]*1000.0f;
+ IRMeasuresloc[0] = IRMeasures[0];
+ IRMeasuresloc[1] = IRMeasures[1];
+ IRMeasuresloc[2] = IRMeasures[2];
+ //printf("0: %0.4f, 1: %0.4f, 2: %0.4f \n\r", IRMeasuresloc[0]*180/PI, IRMeasuresloc[1]*180/PI, IRMeasuresloc[2]*180/PI);
+
+ float d = beaconpos[2].y - beaconpos[1].y;
+ float i = beaconpos[0].y - beaconpos[1].y;
+ float j = beaconpos[0].x - beaconpos[1].x;
+ float origin_x = beaconpos[1].x;
+ float y_coor = (SonarMeasuresx1000[1]*SonarMeasuresx1000[1]- SonarMeasuresx1000[2]*SonarMeasuresx1000[2] + d*d) / (2*d);
+ float x_coor = origin_x + (SonarMeasuresx1000[1]*SonarMeasuresx1000[1] - SonarMeasuresx1000[0]*SonarMeasuresx1000[0] + i*i + j*j)/(2*j) - i*y_coor/j;
+
+ //debug for trilateration
+ printf("Cal at x: %0.4f, y: %0.4f \r\n",x_coor,y_coor );
+
+ float Dist_Exp[3];
+ for (int i = 0; i < 3; i++) {
+ //Compute sonar offset
+ Dist_Exp[i] = hypot(beaconpos[i].y - y_coor,beaconpos[i].x - x_coor);
+ Sonar_Offset += (SonarMeasuresx1000[i]-Dist_Exp[i])/3000.0f;
+
+ //Compute IR offset
+ float angle_est = atan2(beaconpos[i].y - y_coor,beaconpos[i].x - x_coor);
+ if (!Colour)
+ angle_est -= PI;
+ //printf("Angle %d : %f \n\r",i,angle_est*180/PI );
+ // take average offset angle from valid readings
+ if (IRMeasuresloc[i] != 0) {
+ beacon_cnt ++;
+ // changed to current angle - estimated angle
+ float angle_temp = IRMeasuresloc[i] - angle_est;
+ angle_temp -= (floor(angle_temp/(2*PI)))*2*PI;
+ IR_Offset += angle_temp;
+ }
+ }
+ IR_Offset /= float(beacon_cnt);
+
+ //debug
+ printf("Offsets IR: %0.4f, Sonar: %0.4f \r\n",IR_Offset*180/PI,Sonar_Offset*1000 );
+
+ //statelock already locked
+ X(0) = x_coor/1000.0f;
+ X(1) = y_coor/1000.0f;
+
+ if (Colour)
+ X(2) = 0;
+ else
+ X(2) = PI;
+
+ // unlocks mutexes
+ InitLock.unlock();
+ statelock.unlock();
+
+
+ //reattach the IR processing
+ ir.attachisr();
+}
+
+
+void Kalman::predictloop() {
+
+ OLED4 = !ui.regid(0, 3);
+ OLED4 = !ui.regid(1, 4);
+
+ float lastleft = 0;
+ float lastright = 0;
+
+ while (1) {
+ Thread::signal_wait(0x1);
+ OLED1 = !OLED1;
+
+ int leftenc = motors.getEncoder1();
+ int rightenc = motors.getEncoder2();
+
+ float dleft = motors.encoderToDistance(leftenc-lastleft)/1000.0f;
+ float dright = motors.encoderToDistance(rightenc-lastright)/1000.0f;
+
+ lastleft = leftenc;
+ lastright = rightenc;
+
+
+ //The below calculation are in body frame (where +x is forward)
+ float dxp, dyp,d,r;
+ float thetap = (dright - dleft)*PI / (float(robotCircumference)/1000.0f);
+ if (abs(thetap) < 0.02) { //if the rotation through the integration step is small, approximate with a straight line to avoid numerical error
+ d = (dright + dleft)/2.0f;
+ dxp = d*cos(thetap/2.0f);
+ dyp = d*sin(thetap/2.0f);
+
+ } else { //calculate circle arc
+ //float r = (right + left) / (4.0f * PI * thetap);
+ r = (dright + dleft) / (2.0f*thetap);
+ dxp = abs(r)*sin(thetap);
+ dyp = r - r*cos(thetap);
+ }
+
+ statelock.lock();
+
+ float tempX2 = X(2);
+ //rotating to cartesian frame and updating state
+ X(0) += dxp * cos(X(2)) - dyp * sin(X(2));
+ X(1) += dxp * sin(X(2)) + dyp * cos(X(2));
+ X(2) = rectifyAng(X(2) + thetap);
+
+ //Linearising F around X
+ float avgX2 = (X(2) + tempX2)/2.0f;
+ Matrix<float, 3, 3> F;
+ F = 1, 0, (dxp * -sin(avgX2) - dyp * cos(avgX2)),
+ 0, 1, (dxp * cos(avgX2) - dyp * sin(avgX2)),
+ 0, 0, 1;
+
+ //Generating forward and rotational variance
+ float varfwd = fwdvarperunit * abs(dright + dleft) / 2.0f;
+ float varang = varperang * abs(thetap);
+ float varxydt = xyvarpertime * PREDICTPERIOD/1000.0f;
+ float varangdt = angvarpertime * PREDICTPERIOD/1000.0f;
+
+ //Rotating into cartesian frame
+ Matrix<float, 2, 2> Qsub,Qsubrot,Qrot;
+ Qsub = varfwd + varxydt, 0,
+ 0, varxydt;
+
+ Qrot = Rotmatrix(X(2));
+
+ Qsubrot = Qrot * Qsub * trans(Qrot);
+
+ //Generate Q
+ Matrix<float, 3, 3> Q;//(Qsubrot);
+ Q = Qsubrot(0,0), Qsubrot(0,1), 0,
+ Qsubrot(1,0), Qsubrot(1,1), 0,
+ 0, 0, varang + varangdt;
+
+ P = F * P * trans(F) + Q;
+
+ //Update UI
+ float statecpy[] = {X(0), X(1), X(2)};
+ ui.updateval(0, statecpy, 3);
+
+ float Pcpy[] = {P(0,0), P(0,1), P(1,0), P(1,1)};
+ ui.updateval(1, Pcpy, 4);
+
+ statelock.unlock();
+ }
+}
+
+//void Kalman::sonarloop() {
+// while (1) {
+// Thread::signal_wait(0x1);
+// sonararray.startRange();
+// }
+//}
+
+
+void Kalman::runupdate(measurement_t type, float value, float variance) {
+ //printf("beacon %d dist %f\r\n", sonarid, dist);
+ //led2 = !led2;
+
+ measurmentdata* measured = (measurmentdata*)measureMQ.alloc();
+ if (measured) {
+ measured->mtype = type;
+ measured->value = value;
+ measured->variance = variance;
+
+ osStatus putret = measureMQ.put(measured);
+ if (putret)
+ OLED4 = 1;
+ // printf("putting in MQ error code %#x\r\n", putret);
+ } else {
+ OLED4 = 1;
+ //printf("MQalloc returned NULL ptr\r\n");
+ }
+
+}
+
+void Kalman::updateloop() {
+
+ //sonar Y chanels
+ ui.regid(2, 1);
+ ui.regid(3, 1);
+ ui.regid(4, 1);
+
+ //IR Y chanels
+ ui.regid(5, 1);
+ ui.regid(6, 1);
+ ui.regid(7, 1);
+
+ measurement_t type;
+ float value,variance,rbx,rby,expecdist,Y;
+ float dhdx,dhdy;
+ bool aborton2stddev = false;
+
+ Matrix<float, 1, 3> H;
+
+ float S;
+ Matrix<float, 3, 3> I3( identity< Matrix<float, 3, 3> >() );
+
+
+ while (1) {
+ OLED2 = !OLED2;
+
+ osEvent evt = measureMQ.get();
+
+ if (evt.status == osEventMail) {
+
+ measurmentdata &measured = *(measurmentdata*)evt.value.p;
+ type = measured.mtype; //Note, may support more measurment types than sonar in the future!
+ value = measured.value;
+ variance = measured.variance;
+
+ // don't forget to free the memory
+ measureMQ.free(&measured);
+
+ if (type <= maxmeasure) {
+
+ if (type <= SONAR3) {
+
+ InitLock.lock();
+ float dist = value / 1000.0f - Sonar_Offset; //converting to m from mm,subtract the offset
+ InitLock.unlock();
+
+ int sonarid = type;
+ aborton2stddev = true;
+
+ statelock.lock();
+ //update the current sonar readings
+ SonarMeasures[sonarid] = dist;
+
+ rbx = X(0) - beaconpos[sonarid].x/1000.0f;
+ rby = X(1) - beaconpos[sonarid].y/1000.0f;
+
+ expecdist = hypot(rbx, rby);//sqrt(rbx*rbx + rby*rby);
+ Y = dist - expecdist;
+
+ //send to ui
+ ui.updateval(sonarid+2, Y);
+
+ dhdx = rbx / expecdist;
+ dhdy = rby / expecdist;
+
+ H = dhdx, dhdy, 0;
+
+ } else if (type <= IR3) {
+
+ aborton2stddev = false;
+ int IRidx = type-3;
+
+ // subtract the IR offset
+ InitLock.lock();
+ value -= IR_Offset;
+ InitLock.unlock();
+
+ statelock.lock();
+ IRMeasures[IRidx] = value;
+
+ rbx = X(0) - beaconpos[IRidx].x/1000.0f;
+ rby = X(1) - beaconpos[IRidx].y/1000.0f;
+
+ float expecang = atan2(-rby, -rbx) - X(2);
+ Y = rectifyAng(value - expecang);
+
+ //send to ui
+ ui.updateval(IRidx + 5, Y);
+
+ float dstsq = rbx*rbx + rby*rby;
+ H = -rby/dstsq, rbx/dstsq, -1;
+ }
+
+ Matrix<float, 3, 1> PH (P * trans(H));
+ S = (H * PH)(0,0) + variance;
+
+ if (aborton2stddev && Y*Y > 4 * S) {
+ statelock.unlock();
+ continue;
+ }
+
+ Matrix<float, 3, 1> K (PH * (1/S));
+
+ //Updating state
+ X += col(K, 0) * Y;
+ X(2) = rectifyAng(X(2));
+
+ P = (I3 - K * H) * P;
+
+ statelock.unlock();
+
+ }
+
+ } else {
+ OLED4 = 1;
+ //printf("ERROR: in updateloop, code %#x", evt);
+ }
+
+ }
+
+}
+
+// reset kalman states
+void Kalman::KalmanReset() {
+ float SonarMeasuresx1000[3];
+ statelock.lock();
+ SonarMeasuresx1000[0] = SonarMeasures[0]*1000.0f;
+ SonarMeasuresx1000[1] = SonarMeasures[1]*1000.0f;
+ SonarMeasuresx1000[2] = SonarMeasures[2]*1000.0f;
+ //printf("0: %0.4f, 1: %0.4f, 2: %0.4f \n\r", IRMeasuresloc[0]*180/PI, IRMeasuresloc[1]*180/PI, IRMeasuresloc[2]*180/PI);
+
+ float d = beaconpos[2].y - beaconpos[1].y;
+ float i = beaconpos[0].y - beaconpos[1].y;
+ float j = beaconpos[0].x - beaconpos[1].x;
+ float origin_x = beaconpos[1].x;
+ float y_coor = (SonarMeasuresx1000[1]*SonarMeasuresx1000[1]- SonarMeasuresx1000[2]*SonarMeasuresx1000[2] + d*d) / (2*d);
+ float x_coor = origin_x +(SonarMeasuresx1000[1]*SonarMeasuresx1000[1] - SonarMeasuresx1000[0]*SonarMeasuresx1000[0] + i*i + j*j)/(2*j) - i*y_coor/j;
+
+ //statelock already locked
+ X(0) = x_coor/1000.0f;
+ X(1) = y_coor/1000.0f;
+
+
+
+/* if (Colour){
+ X(0) = 0.2;
+ X(1) = 0.2;
+ //X(2) = 0;
+ }
+ else {
+ X(0) = 2.8;
+ X(1) = 0.2;
+ //X(2) = PI;
+ }
+ */
+ P = 0.05, 0, 0,
+ 0, 0.05, 0,
+ 0, 0, 0.04;
+
+ // unlocks mutexes
+ statelock.unlock();
+
+}
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/Kalman/Kalman.h Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,100 @@
+#ifndef KALMAN_H
+#define KALMAN_H
+
+#include "globals.h"
+
+
+#include "rtos.h"
+//#include "Matrix.h"
+#include "motors.h"
+#include "RFSRF05.h"
+#include "IR.h"
+#include "ui.h"
+
+#include <tvmet/Matrix.h>
+#include <tvmet/Vector.h>
+using namespace tvmet;
+
+
+class Kalman {
+public:
+ enum measurement_t {SONAR1 = 0, SONAR2, SONAR3, IR1, IR2, IR3};
+ static const measurement_t maxmeasure = IR3;
+
+ Kalman(Motors &motorsin,
+ UI &uiin,
+ PinName Sonar_Trig,
+ PinName Sonar_Echo0,
+ PinName Sonar_Echo1,
+ PinName Sonar_Echo2,
+ PinName Sonar_Echo3,
+ PinName Sonar_Echo4,
+ PinName Sonar_Echo5,
+ PinName Sonar_SDI,
+ PinName Sonar_SDO,
+ PinName Sonar_SCK,
+ PinName Sonar_NCS,
+ PinName Sonar_NIRQ);
+
+ void predict();
+ void runupdate(measurement_t type, float value, float variance);
+
+ //State variables
+ Vector<float, 3> X;
+ Matrix<float, 3, 3> P;
+ Mutex statelock;
+
+ float SonarMeasures[3];
+ float IRMeasures[3];
+ float IR_Offset;
+ float Sonar_Offset;
+ Mutex InitLock;
+
+ bool Kalman_init;
+
+ //The IR is public so it's possible to print the offset in the print function
+ IR ir;
+
+ //Initialises the kalman filter
+ void KalmanInit();
+
+ // reset kalman states
+ void KalmanReset();
+
+private:
+
+ //Sensor interfaces
+ RFSRF05 sonararray;
+ Motors& motors;
+ UI& ui;
+
+ Thread predictthread;
+ void predictloop();
+ static void predictloopwrapper(void const *argument) {
+ ((Kalman*)argument)->predictloop();
+ }
+ RtosTimer predictticker;
+
+// Thread sonarthread;
+// void sonarloop();
+// static void sonarloopwrapper(void const *argument){ ((Kalman*)argument)->sonarloop(); }
+// RtosTimer sonarticker;
+
+ struct measurmentdata {
+ measurement_t mtype;
+ float value;
+ float variance;
+ } ;
+
+ Mail <measurmentdata, 16> measureMQ;
+
+ Thread updatethread;
+ void updateloop();
+ static void updateloopwrapper(void const *argument) {
+ ((Kalman*)argument)->updateloop();
+ }
+
+
+};
+
+#endif //KALMAN_H
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/Kalman/Sonar/RF12B/RF12B.cpp Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,400 @@
+#include "RF12B.h"
+
+#include "RF_defs.h"
+#include <algorithm>
+#include "system.h"
+#include "globals.h"
+
+
+RF12B::RF12B(PinName _SDI,
+ PinName _SDO,
+ PinName _SCK,
+ PinName _NCS,
+ PinName _NIRQ):spi(_SDI, _SDO, _SCK),
+ NCS(_NCS), NIRQ(_NIRQ), NIRQ_in(_NIRQ) {// rfled(LED3) {
+
+ // SPI frequency, word lenght, polarity and phase */
+ spi.format(16,0);
+ spi.frequency(2000000);
+
+ // Set ~CS high
+ NCS = 1;
+
+ // Initialise RF Module
+ init();
+
+ // Setup interrupt to happen on falling edge of NIRQ
+ NIRQ.fall(this, &RF12B::rxISR);
+}
+
+// Returns the packet length if data is available in the receive buffer, 0 otherwise
+//unsigned int RF12B::available() {
+// return fifo.size();
+//}
+
+// Reads a packet of data, with length "size" Returns false if read failed. TODO: make a metafifo to isolate packets
+/*bool RF12B::read(unsigned char* data, unsigned int size) {
+ if (fifo.size() == 0) {
+ return false;
+ } else {
+ unsigned int i = 0;
+ while (fifo.size() > 0 && i < size) {
+ data[i++] = fifo.front();
+ fifo.pop();
+ }
+ return true;
+ }
+}
+*/
+
+// Reads a byte of data from the receive buffer
+/*
+unsigned char RF12B::read() {
+ if (available()) {
+ unsigned char data = fifo.front();
+ fifo.pop();
+ return data;
+ } else {
+ return 0xFF; // Error val although could also be data...
+ }
+}
+*/
+
+// Sends a packet of data to the RF module for transmission TODO: Make asych
+void RF12B::write(unsigned char *data, unsigned char length) {
+ unsigned char crc = 0;
+
+ // Transmitter mode
+ changeMode(TX);
+
+ writeCmd(0x0000);
+ send(0xAA); // PREAMBLE
+ send(0xAA);
+ send(0xAA);
+ send(0x2D); // SYNC
+ send(0xD4);
+ // Packet Length
+ send(length);
+ crc = crc8(crc, length);
+ send(crc);
+ crc = crc8(crc, crc);
+ // Packet Data
+ for (unsigned char i=0; i<length; i++) {
+ send(data[i]);
+ crc = crc8(crc, data[i]);
+ }
+ send(crc);
+ send(0xAA); // DUMMY BYTES
+ send(0xAA);
+ send(0xAA);
+
+ // Back to receiver mode
+ changeMode(RX);
+ status();
+
+
+}
+
+// Transmit a 1-byte data packet
+void RF12B::write(unsigned char data) {
+ write(&data, 1);
+}
+/*
+void RF12B::write(queue<char> &data, int length) {
+ char crc = 0;
+ char length_byte = 0;
+
+ // -1 means try to transmit everything in the queue
+ if (length == -1) {
+ length = data.size();
+ }
+
+ // max length of packet is 255
+ length_byte = min(length, 255);
+
+ // Transmitter mode
+ changeMode(TX);
+
+ writeCmd(0x0000);
+ send(0xAA); // PREAMBLE
+ send(0xAA);
+ send(0xAA);
+ send(0x2D); // SYNC
+ send(0xD4);
+ // Packet Length
+ send(length_byte);
+ crc = crc8(crc, length_byte);
+ send(crc);
+ crc = crc8(crc, crc);
+ // Packet Data
+ for (char i=0; i<length_byte; i++) {
+ send(data.front());
+ crc = crc8(crc, data.front());
+ data.pop();
+ }
+ send(crc);
+ send(0xAA); // DUMMY BYTES
+ send(0xAA);
+ send(0xAA);
+
+ // Back to receiver mode
+ changeMode(RX);
+ status();
+}
+*/
+/**********************************************************************
+ * PRIVATE FUNCTIONS
+ *********************************************************************/
+
+// Initialises the RF12B module
+void RF12B::init() {
+ // writeCmd(0x80E7); //EL,EF,868band,12.0pF
+ changeMode(RX);
+ writeCmd(0xA640); //frequency select
+ writeCmd(0xC647); //4.8kbps
+ writeCmd(0x94A0); //VDI,FAST,134kHz,0dBm,-103dBm
+ writeCmd(0xC2AC); //AL,!ml,DIG,DQD4
+ writeCmd(0xCA81); //FIFO8,SYNC,!ff,DR
+ writeCmd(0xCED4); //SYNC=2DD4
+ writeCmd(0xC483); //@PWR,NO RSTRIC,!st,!fi,OE,EN
+ writeCmd(0x9850); //!mp,90kHz,MAX OUT
+ writeCmd(0xCC17); //OB1, COB0, LPX, Iddy, CDDIT�CBW0
+ writeCmd(0xE000); //NOT USED
+ writeCmd(0xC800); //NOT USED
+ writeCmd(0xC040); //1.66MHz,2.2V
+
+ writeCmd(
+ RFM_CONFIG_EL |
+ RFM_CONFIG_EF |
+ RFM_CONFIG_BAND_433 //|
+ //RFM_CONFIG_X_11_0pf // meh, using default
+ );
+
+ // 2. Power Management Command
+ // leave everything switched off for now
+ /*
+ writeCmd(
+ RFM_POWER_MANAGEMENT // switch all off
+ );
+ */
+
+ // 3. Frequency Setting Command
+ writeCmd(
+ RFM_FREQUENCY |
+ RFM_FREQ_433Band(435.7) //I totally made this value up... if someone knows where the sweetspots are in this band, tell me!
+ );
+
+
+ // 4. Data Rate Command
+ //writeCmd(RFM_DATA_RATE_9600);
+ writeCmd(RFM_DATA_RATE_57600);
+
+
+ // 5. Receiver Control Command
+ writeCmd(
+ RFM_RX_CONTROL_P20_VDI |
+ RFM_RX_CONTROL_VDI_FAST |
+ //RFM_RX_CONTROL_BW(RFM_BAUD_RATE) |
+ RFM_RX_CONTROL_BW_134 | // CHANGE THIS TO 67 TO IMPROVE RANGE! (though the bitrate must then be below 8kbaud, and fsk modulation changed)
+ RFM_RX_CONTROL_GAIN_0 |
+ RFM_RX_CONTROL_RSSI_103 // Might need adjustment. Datasheet says around 10^-5 bit error rate at this level and baudrate.
+ );
+
+ // 6. Data Filter Command
+ writeCmd(
+ RFM_DATA_FILTER_AL |
+ RFM_DATA_FILTER_ML |
+ RFM_DATA_FILTER_DIG //|
+ //RFM_DATA_FILTER_DQD(4)
+ );
+
+ // 7. FIFO and Reset Mode Command
+ writeCmd(
+ RFM_FIFO_IT(8) |
+ RFM_FIFO_DR |
+ 0x8 //turn on 16bit sync word
+ );
+
+ // 8. FIFO Syncword
+ // Leave as default: 0xD4
+
+ // 9. Receiver FIFO Read
+ // when the interupt goes high, (and if we can assume that it was a fifo fill interrupt) we can read a byte using:
+ // result = RFM_READ_FIFO();
+
+ // 10. AFC Command
+ writeCmd(
+ //RFM_AFC_AUTO_VDI | //Note this might be changed to improve range. Refer to datasheet.
+ RFM_AFC_AUTO_INDEPENDENT |
+ RFM_AFC_RANGE_LIMIT_7_8 |
+ RFM_AFC_EN |
+ RFM_AFC_OE |
+ RFM_AFC_FI
+ );
+
+ // 11. TX Configuration Control Command
+ writeCmd(
+ RFM_TX_CONTROL_MOD_60 |
+ RFM_TX_CONTROL_POW_0
+ );
+
+
+ // 12. PLL Setting Command
+ writeCmd(
+ 0xCC77 & ~0x01 // Setting the PLL bandwith, less noise, but max bitrate capped at 86.2
+ // I think this will slow down the pll's reaction time. Not sure, check with someone!
+ );
+
+ changeMode(RX);
+ resetRX();
+ status();
+}
+
+/* Write a command to the RF Module */
+unsigned int RF12B::writeCmd(unsigned int cmd) {
+ NCS = 0;
+ unsigned int recv = spi.write(cmd);
+ NCS = 1;
+ return recv;
+}
+
+/* Sends a byte of data across RF */
+void RF12B::send(unsigned char data) {
+ while (NIRQ);
+ writeCmd(0xB800 + data);
+}
+
+/* Change the mode of the RF module to Transmitting or Receiving */
+void RF12B::changeMode(rfmode_t _mode) {
+ mode = _mode;
+ if (_mode == TX) {
+ writeCmd(0x8239); //!er,!ebb,ET,ES,EX,!eb,!ew,DC
+ } else { /* mode == RX */
+ writeCmd(0x8299); //er,!ebb,ET,ES,EX,!eb,!ew,DC
+ }
+}
+
+// Interrupt routine for data reception */
+void RF12B::rxISR() {
+
+ unsigned int data = 0;
+ static int i = -2;
+ static unsigned char packet_length = 0;
+ static unsigned char crc = 0;
+// #ifdef ROBOT_SECONDARY
+ static unsigned char temp;
+// #endif
+
+ //Loop while interrupt is asserted
+ while (!NIRQ_in && mode == RX) {
+
+ // Grab the packet's length byte
+ if (i == -2) {
+ data = writeCmd(0x0000);
+ if ( (data&0x8000) ) {
+ data = writeCmd(0xB000);
+ packet_length = (data&0x00FF);
+ crc = crc8(crc, packet_length);
+ i++;
+ }
+ }
+
+ //If we exhaust the interrupt, exit
+ if (NIRQ_in)
+ break;
+
+ // Check that packet length was correct
+ if (i == -1) {
+ data = writeCmd(0x0000);
+ if ( (data&0x8000) ) {
+ data = writeCmd(0xB000);
+ unsigned char crcofsize = (data&0x00FF);
+ if (crcofsize != crc) {
+ //It was wrong, start over
+ i = -2;
+ packet_length = 0;
+ crc = 0;
+ //temp = queue<unsigned char>();
+ resetRX();
+ } else {
+ crc = crc8(crc, crcofsize);
+ i++;
+ }
+ }
+ }
+
+ //If we exhaust the interrupt, exit
+ if (NIRQ_in)
+ break;
+
+ // Grab the packet's data
+ if (i >= 0 && i < packet_length) {
+ data = writeCmd(0x0000);
+ if ( (data&0x8000) ) {
+ data = writeCmd(0xB000);
+ // #ifdef ROBOT_SECONDARY
+ temp = data&0x00FF;
+ // #endif
+ //temp.push(data&0x00FF);
+ crc = crc8(crc, (unsigned char)(data&0x00FF));
+ i++;
+ }
+ }
+
+ //If we exhaust the interrupt, exit
+ if (NIRQ_in)
+ break;
+
+ if (i >= packet_length) {
+ data = writeCmd(0x0000);
+ if ( (data&0x8000) ) {
+ data = writeCmd(0xB000);
+ if ((unsigned char)(data & 0x00FF) == crc) {
+ //If the checksum is correct, add our data to the end of the output buffer
+ //while (!temp.empty()) {
+ //fifo.push(temp);
+ // temp.pop();
+//#ifdef ROBOT_SECONDARY
+ if (callbackfunc)
+ (*callbackfunc)(temp);
+
+ if (callbackobj && mcallbackfunc)
+ (callbackobj->*mcallbackfunc)(temp);
+//#endif
+ // }
+ }
+
+ // Tell RF Module we are finished, and clean up
+ i = -2;
+ packet_length = 0;
+ crc = 0;
+ //temp = queue<unsigned char>();
+ resetRX();
+ }
+ }
+ }
+
+}
+
+unsigned int RF12B::status() {
+ return writeCmd(0x0000);
+}
+
+// Tell the RF Module this packet is received and wait for the next */
+void RF12B::resetRX() {
+ writeCmd(0xCA81);
+ writeCmd(0xCA83);
+};
+
+// Calculate CRC8 */
+unsigned char RF12B::crc8(unsigned char crc, unsigned char data) {
+ crc = crc ^ data;
+ for (int i = 0; i < 8; i++) {
+ if (crc & 0x01) {
+ crc = (crc >> 1) ^ 0x8C;
+ } else {
+ crc >>= 1;
+ }
+ }
+ return crc;
+}
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/Kalman/Sonar/RF12B/RF12B.h Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,83 @@
+#ifndef _RF12B_H
+#define _RF12B_H
+
+#include "mbed.h"
+//#include <queue>
+
+enum rfmode_t{RX, TX};
+
+class DummyCT;
+
+class RF12B {
+public:
+ /* Constructor */
+ RF12B(PinName SDI,
+ PinName SDO,
+ PinName SCK,
+ PinName NCS,
+ PinName NIRQ);
+
+
+
+ /* Reads a packet of data. Returns false if read failed. Use available() to check how much space to allocate for buffer */
+ bool read(unsigned char* data, unsigned int size);
+
+ /* Reads a byte of data from the receive buffer
+ Returns 0xFF if there is no data */
+ unsigned char read();
+
+ /* Transmits a packet of data */
+ void write(unsigned char* data, unsigned char length);
+ void write(unsigned char data); /* 1-byte packet */
+// void write(std::queue<char> &data, int length = -1); /* sends a whole queue */
+
+ /* Returns the packet length if data is available in the receive buffer, 0 otherwise*/
+ unsigned int available();
+
+ /** A assigns a callback function when a new reading is available **/
+ void (*callbackfunc)(unsigned char rx_code);
+ DummyCT* callbackobj;
+ void (DummyCT::*mcallbackfunc)(unsigned char rx_code);
+
+protected:
+ /* Receive FIFO buffer */
+// std::queue<unsigned char> fifo;
+// std::queue<unsigned char> temp; //for storing stuff mid-packet
+
+ /* SPI module */
+ SPI spi;
+
+ /* Other digital pins */
+ DigitalOut NCS;
+ InterruptIn NIRQ;
+ DigitalIn NIRQ_in;
+ //DigitalOut rfled;
+
+ rfmode_t mode;
+
+ /* Initialises the RF12B module */
+ void init();
+
+ /* Write a command to the RF Module */
+ unsigned int writeCmd(unsigned int cmd);
+
+ /* Sends a byte of data across RF */
+ void send(unsigned char data);
+
+ /* Switch module between receive and transmit modes */
+ void changeMode(rfmode_t mode);
+
+ /* Interrupt routine for data reception */
+ void rxISR();
+
+ /* Tell the RF Module this packet is received and wait for the next */
+ void resetRX();
+
+ /* Return the RF Module Status word */
+ unsigned int status();
+
+ /* Calculate CRC8 */
+ unsigned char crc8(unsigned char crc, unsigned char data);
+};
+
+#endif /* _RF12B_H */
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Eurobot_shared/Kalman/Sonar/RF12B/RF_defs.h Wed Oct 17 22:22:47 2012 +0000 @@ -0,0 +1,478 @@ +/* + * Open HR20 + * + * target: ATmega169 @ 4 MHz in Honnywell Rondostat HR20E + * + * compiler: WinAVR-20071221 + * avr-libc 1.6.0 + * GCC 4.2.2 + * + * copyright: 2008 Dario Carluccio (hr20-at-carluccio-dot-de) + * 2008 Jiri Dobry (jdobry-at-centrum-dot-cz) + * 2008 Mario Fischer (MarioFischer-at-gmx-dot-net) + * 2007 Michael Smola (Michael-dot-Smola-at-gmx-dot-net) + * + * license: This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see http:*www.gnu.org/licenses + */ + +/* + * \file rfm.h + * \brief functions to control the RFM12 Radio Transceiver Module + * \author Mario Fischer <MarioFischer-at-gmx-dot-net>; Michael Smola <Michael-dot-Smola-at-gmx-dot-net> + * \date $Date: 2010/04/17 17:57:02 $ + * $Rev: 260 $ + */ + + +//#pragma once // multi-iclude prevention. gcc knows this pragma +#ifndef rfm_H +#define rfm_H + + +#define RFM_SPI_16(OUTVAL) rfm_spi16(OUTVAL) //<! a function that gets a uint16_t (clocked out value) and returns a uint16_t (clocked in value) + +#define RFM_CLK_OUTPUT 0 + +/* +#define RFM_TESTPIN_INIT +#define RFM_TESTPIN_ON +#define RFM_TESTPIN_OFF +#define RFM_TESTPIN_TOG + +#define RFM_CONFIG_DISABLE 0x00 //<! RFM_CONFIG_*** are combinable flags, what the RFM shold do +#define RFM_CONFIG_BROADCASTSTATUS 0x01 //<! Flag that enables the HR20's status broadcast every minute + +#define RFM_CONFIG_ENABLEALL 0xff +*/ + + +/////////////////////////////////////////////////////////////////////////////// +// +// RFM status bits +// +/////////////////////////////////////////////////////////////////////////////// + +// Interrupt bits, latched //////////////////////////////////////////////////// + +#define RFM_STATUS_FFIT 0x8000 // RX FIFO reached the progr. number of bits + // Cleared by any FIFO read method + +#define RFM_STATUS_RGIT 0x8000 // TX register is ready to receive + // Cleared by TX write + +#define RFM_STATUS_POR 0x4000 // Power On reset + // Cleared by read status + +#define RFM_STATUS_RGUR 0x2000 // TX register underrun, register over write + // Cleared by read status + +#define RFM_STATUS_FFOV 0x2000 // RX FIFO overflow + // Cleared by read status + +#define RFM_STATUS_WKUP 0x1000 // Wake up timer overflow + // Cleared by read status + +#define RFM_STATUS_EXT 0x0800 // Interupt changed to low + // Cleared by read status + +#define RFM_STATUS_LBD 0x0400 // Low battery detect + +// Status bits //////////////////////////////////////////////////////////////// + +#define RFM_STATUS_FFEM 0x0200 // FIFO is empty +#define RFM_STATUS_ATS 0x0100 // TX mode: Strong enough RF signal +#define RFM_STATUS_RSSI 0x0100 // RX mode: signal strength above programmed limit +#define RFM_STATUS_DQD 0x0080 // Data Quality detector output +#define RFM_STATUS_CRL 0x0040 // Clock recovery lock +#define RFM_STATUS_ATGL 0x0020 // Toggling in each AFC cycle + +/////////////////////////////////////////////////////////////////////////////// +// +// 1. Configuration Setting Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_CONFIG 0x8000 + +#define RFM_CONFIG_EL 0x8080 // Enable TX Register +#define RFM_CONFIG_EF 0x8040 // Enable RX FIFO buffer +#define RFM_CONFIG_BAND_315 0x8000 // Frequency band +#define RFM_CONFIG_BAND_433 0x8010 +#define RFM_CONFIG_BAND_868 0x8020 +#define RFM_CONFIG_BAND_915 0x8030 +#define RFM_CONFIG_X_8_5pf 0x8000 // Crystal Load Capacitor +#define RFM_CONFIG_X_9_0pf 0x8001 +#define RFM_CONFIG_X_9_5pf 0x8002 +#define RFM_CONFIG_X_10_0pf 0x8003 +#define RFM_CONFIG_X_10_5pf 0x8004 +#define RFM_CONFIG_X_11_0pf 0x8005 +#define RFM_CONFIG_X_11_5pf 0x8006 +#define RFM_CONFIG_X_12_0pf 0x8007 +#define RFM_CONFIG_X_12_5pf 0x8008 +#define RFM_CONFIG_X_13_0pf 0x8009 +#define RFM_CONFIG_X_13_5pf 0x800A +#define RFM_CONFIG_X_14_0pf 0x800B +#define RFM_CONFIG_X_14_5pf 0x800C +#define RFM_CONFIG_X_15_0pf 0x800D +#define RFM_CONFIG_X_15_5pf 0x800E +#define RFM_CONFIG_X_16_0pf 0x800F + +/////////////////////////////////////////////////////////////////////////////// +// +// 2. Power Management Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_POWER_MANAGEMENT 0x8200 + +#define RFM_POWER_MANAGEMENT_ER 0x8280 // Enable receiver +#define RFM_POWER_MANAGEMENT_EBB 0x8240 // Enable base band block +#define RFM_POWER_MANAGEMENT_ET 0x8220 // Enable transmitter +#define RFM_POWER_MANAGEMENT_ES 0x8210 // Enable synthesizer +#define RFM_POWER_MANAGEMENT_EX 0x8208 // Enable crystal oscillator +#define RFM_POWER_MANAGEMENT_EB 0x8204 // Enable low battery detector +#define RFM_POWER_MANAGEMENT_EW 0x8202 // Enable wake-up timer +#define RFM_POWER_MANAGEMENT_DC 0x8201 // Disable clock output of CLK pin + +#ifndef RFM_CLK_OUTPUT + #error RFM_CLK_OUTPUT must be defined to 0 or 1 +#endif +#if RFM_CLK_OUTPUT + #define RFM_TX_ON_PRE() RFM_SPI_16( \ + RFM_POWER_MANAGEMENT_ES | \ + RFM_POWER_MANAGEMENT_EX ) + #define RFM_TX_ON() RFM_SPI_16( \ + RFM_POWER_MANAGEMENT_ET | \ + RFM_POWER_MANAGEMENT_ES | \ + RFM_POWER_MANAGEMENT_EX ) + #define RFM_RX_ON() RFM_SPI_16( \ + RFM_POWER_MANAGEMENT_ER | \ + RFM_POWER_MANAGEMENT_EBB | \ + RFM_POWER_MANAGEMENT_ES | \ + RFM_POWER_MANAGEMENT_EX ) + #define RFM_OFF() RFM_SPI_16( \ + RFM_POWER_MANAGEMENT_EX ) +#else + #define RFM_TX_ON_PRE() RFM_SPI_16( \ + RFM_POWER_MANAGEMENT_DC | \ + RFM_POWER_MANAGEMENT_ES | \ + RFM_POWER_MANAGEMENT_EX ) + #define RFM_TX_ON() RFM_SPI_16( \ + RFM_POWER_MANAGEMENT_DC | \ + RFM_POWER_MANAGEMENT_ET | \ + RFM_POWER_MANAGEMENT_ES | \ + RFM_POWER_MANAGEMENT_EX ) + #define RFM_RX_ON() RFM_SPI_16( \ + RFM_POWER_MANAGEMENT_DC | \ + RFM_POWER_MANAGEMENT_ER | \ + RFM_POWER_MANAGEMENT_EBB | \ + RFM_POWER_MANAGEMENT_ES | \ + RFM_POWER_MANAGEMENT_EX ) + #define RFM_OFF() RFM_SPI_16(RFM_POWER_MANAGEMENT_DC) +#endif +/////////////////////////////////////////////////////////////////////////////// +// +// 3. Frequency Setting Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_FREQUENCY 0xA000 + +#define RFM_FREQ_315Band(v) (uint16_t)((v/10.0-31)*4000) +#define RFM_FREQ_433Band(v) (uint16_t)((v/10.0-43)*4000) +#define RFM_FREQ_868Band(v) (uint16_t)((v/20.0-43)*4000) +#define RFM_FREQ_915Band(v) (uint16_t)((v/30.0-30)*4000) + +/////////////////////////////////////////////////////////////////////////////// +// +// 4. Data Rate Command +// +///////////////////////////////////////////////////////////////////////////////// + +#define RFM_BAUD_RATE 9600 + +#define RFM_DATA_RATE 0xC600 + +#define RFM_DATA_RATE_CS 0xC680 +#define RFM_DATA_RATE_4800 0xC647 +#define RFM_DATA_RATE_9600 0xC623 +#define RFM_DATA_RATE_19200 0xC611 +#define RFM_DATA_RATE_38400 0xC608 +#define RFM_DATA_RATE_57600 0xC605 + +#define RFM_SET_DATARATE(baud) ( ((baud)<5400) ? (RFM_DATA_RATE_CS|((43104/(baud))-1)) : (RFM_DATA_RATE|((344828UL/(baud))-1)) ) + +/////////////////////////////////////////////////////////////////////////////// +// +// 5. Receiver Control Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_RX_CONTROL 0x9000 + +#define RFM_RX_CONTROL_P20_INT 0x9000 // Pin20 = ExternalInt +#define RFM_RX_CONTROL_P20_VDI 0x9400 // Pin20 = VDI out + +#define RFM_RX_CONTROL_VDI_FAST 0x9000 // fast VDI Response time +#define RFM_RX_CONTROL_VDI_MED 0x9100 // medium +#define RFM_RX_CONTROL_VDI_SLOW 0x9200 // slow +#define RFM_RX_CONTROL_VDI_ON 0x9300 // Always on + +#define RFM_RX_CONTROL_BW_400 0x9020 // bandwidth 400kHz +#define RFM_RX_CONTROL_BW_340 0x9040 // bandwidth 340kHz +#define RFM_RX_CONTROL_BW_270 0x9060 // bandwidth 270kHz +#define RFM_RX_CONTROL_BW_200 0x9080 // bandwidth 200kHz +#define RFM_RX_CONTROL_BW_134 0x90A0 // bandwidth 134kHz +#define RFM_RX_CONTROL_BW_67 0x90C0 // bandwidth 67kHz + +#define RFM_RX_CONTROL_GAIN_0 0x9000 // LNA gain 0db +#define RFM_RX_CONTROL_GAIN_6 0x9008 // LNA gain -6db +#define RFM_RX_CONTROL_GAIN_14 0x9010 // LNA gain -14db +#define RFM_RX_CONTROL_GAIN_20 0x9018 // LNA gain -20db + +#define RFM_RX_CONTROL_RSSI_103 0x9000 // DRSSI threshold -103dbm +#define RFM_RX_CONTROL_RSSI_97 0x9001 // DRSSI threshold -97dbm +#define RFM_RX_CONTROL_RSSI_91 0x9002 // DRSSI threshold -91dbm +#define RFM_RX_CONTROL_RSSI_85 0x9003 // DRSSI threshold -85dbm +#define RFM_RX_CONTROL_RSSI_79 0x9004 // DRSSI threshold -79dbm +#define RFM_RX_CONTROL_RSSI_73 0x9005 // DRSSI threshold -73dbm +//#define RFM_RX_CONTROL_RSSI_67 0x9006 // DRSSI threshold -67dbm // RF12B reserved +//#define RFM_RX_CONTROL_RSSI_61 0x9007 // DRSSI threshold -61dbm // RF12B reserved + +#define RFM_RX_CONTROL_BW(baud) (((baud)<8000) ? \ + RFM_RX_CONTROL_BW_67 : \ + ( \ + ((baud)<30000) ? \ + RFM_RX_CONTROL_BW_134 : \ + RFM_RX_CONTROL_BW_200 \ + )) + +/////////////////////////////////////////////////////////////////////////////// +// +// 6. Data Filter Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_DATA_FILTER 0xC228 + +#define RFM_DATA_FILTER_AL 0xC2A8 // clock recovery auto-lock +#define RFM_DATA_FILTER_ML 0xC268 // clock recovery fast mode +#define RFM_DATA_FILTER_DIG 0xC228 // data filter type digital +#define RFM_DATA_FILTER_ANALOG 0xC238 // data filter type analog +#define RFM_DATA_FILTER_DQD(level) (RFM_DATA_FILTER | (level & 0x7)) + +/////////////////////////////////////////////////////////////////////////////// +// +// 7. FIFO and Reset Mode Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_FIFO 0xCA00 + +#define RFM_FIFO_AL 0xCA04 // FIFO Start condition sync-word/always +#define RFM_FIFO_FF 0xCA02 // Enable FIFO fill +#define RFM_FIFO_DR 0xCA01 // Disable hi sens reset mode +#define RFM_FIFO_IT(level) (RFM_FIFO | (( (level) & 0xF)<<4)) + +#define RFM_FIFO_OFF() RFM_SPI_16(RFM_FIFO_IT(8) | RFM_FIFO_DR) +#define RFM_FIFO_ON() RFM_SPI_16(RFM_FIFO_IT(8) | RFM_FIFO_FF | RFM_FIFO_DR) + +///////////////////////////////////////////////////////////////////////////// +// +// 8. Receiver FIFO Read +// +///////////////////////////////////////////////////////////////////////////// + +#define RFM_READ_FIFO() (RFM_SPI_16(0xB000) & 0xFF) + +///////////////////////////////////////////////////////////////////////////// +// +// 9. AFC Command +// +///////////////////////////////////////////////////////////////////////////// + +#define RFM_AFC 0xC400 + +#define RFM_AFC_EN 0xC401 +#define RFM_AFC_OE 0xC402 +#define RFM_AFC_FI 0xC404 +#define RFM_AFC_ST 0xC408 + +// Limits the value of the frequency offset register to the next values: + +#define RFM_AFC_RANGE_LIMIT_NO 0xC400 // 0: No restriction +#define RFM_AFC_RANGE_LIMIT_15_16 0xC410 // 1: +15 fres to -16 fres +#define RFM_AFC_RANGE_LIMIT_7_8 0xC420 // 2: +7 fres to -8 fres +#define RFM_AFC_RANGE_LIMIT_3_4 0xC430 // 3: +3 fres to -4 fres + +// fres=2.5 kHz in 315MHz and 433MHz Bands +// fres=5.0 kHz in 868MHz Band +// fres=7.5 kHz in 915MHz Band + +#define RFM_AFC_AUTO_OFF 0xC400 // 0: Auto mode off (Strobe is controlled by microcontroller) +#define RFM_AFC_AUTO_ONCE 0xC440 // 1: Runs only once after each power-up +#define RFM_AFC_AUTO_VDI 0xC480 // 2: Keep the foffset only during receiving(VDI=high) +#define RFM_AFC_AUTO_INDEPENDENT 0xC4C0 // 3: Keep the foffset value independently trom the state of the VDI signal + +/////////////////////////////////////////////////////////////////////////////// +// +// 10. TX Configuration Control Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_TX_CONTROL 0x9800 + +#define RFM_TX_CONTROL_POW_0 0x9800 +#define RFM_TX_CONTROL_POW_3 0x9801 +#define RFM_TX_CONTROL_POW_6 0x9802 +#define RFM_TX_CONTROL_POW_9 0x9803 +#define RFM_TX_CONTROL_POW_12 0x9804 +#define RFM_TX_CONTROL_POW_15 0x9805 +#define RFM_TX_CONTROL_POW_18 0x9806 +#define RFM_TX_CONTROL_POW_21 0x9807 +#define RFM_TX_CONTROL_MOD_15 0x9800 +#define RFM_TX_CONTROL_MOD_30 0x9810 +#define RFM_TX_CONTROL_MOD_45 0x9820 +#define RFM_TX_CONTROL_MOD_60 0x9830 +#define RFM_TX_CONTROL_MOD_75 0x9840 +#define RFM_TX_CONTROL_MOD_90 0x9850 +#define RFM_TX_CONTROL_MOD_105 0x9860 +#define RFM_TX_CONTROL_MOD_120 0x9870 +#define RFM_TX_CONTROL_MOD_135 0x9880 +#define RFM_TX_CONTROL_MOD_150 0x9890 +#define RFM_TX_CONTROL_MOD_165 0x98A0 +#define RFM_TX_CONTROL_MOD_180 0x98B0 +#define RFM_TX_CONTROL_MOD_195 0x98C0 +#define RFM_TX_CONTROL_MOD_210 0x98D0 +#define RFM_TX_CONTROL_MOD_225 0x98E0 +#define RFM_TX_CONTROL_MOD_240 0x98F0 +#define RFM_TX_CONTROL_MP 0x9900 + +#define RFM_TX_CONTROL_MOD(baud) (((baud)<8000) ? \ + RFM_TX_CONTROL_MOD_45 : \ + ( \ + ((baud)<20000) ? \ + RFM_TX_CONTROL_MOD_60 : \ + ( \ + ((baud)<30000) ? \ + RFM_TX_CONTROL_MOD_75 : \ + ( \ + ((baud)<40000) ? \ + RFM_TX_CONTROL_MOD_90 : \ + RFM_TX_CONTROL_MOD_120 \ + ) \ + ) \ + )) + +///////////////////////////////////////////////////////////////////////////// +// +// 11. Transmitter Register Write Command +// +///////////////////////////////////////////////////////////////////////////// + +//#define RFM_WRITE(byte) RFM_SPI_16(0xB800 | ((byte) & 0xFF)) +#define RFM_WRITE(byte) RFM_SPI_16(0xB800 | (byte) ) + +/////////////////////////////////////////////////////////////////////////////// +// +// 12. Wake-up Timer Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_WAKEUP_TIMER 0xE000 +#define RFM_WAKEUP_SET(time) RFM_SPI_16(RFM_WAKEUP_TIMER | (time)) + +#define RFM_WAKEUP_480s (RFM_WAKEUP_TIMER |(11 << 8)| 234) +#define RFM_WAKEUP_240s (RFM_WAKEUP_TIMER |(10 << 8)| 234) +#define RFM_WAKEUP_120s (RFM_WAKEUP_TIMER |(9 << 8)| 234) +#define RFM_WAKEUP_119s (RFM_WAKEUP_TIMER |(9 << 8)| 232) + +#define RFM_WAKEUP_60s (RFM_WAKEUP_TIMER |(8 << 8) | 235) +#define RFM_WAKEUP_59s (RFM_WAKEUP_TIMER |(8 << 8) | 230) + +#define RFM_WAKEUP_30s (RFM_WAKEUP_TIMER |(7 << 8) | 235) +#define RFM_WAKEUP_29s (RFM_WAKEUP_TIMER |(7 << 8) | 227) + +#define RFM_WAKEUP_8s (RFM_WAKEUP_TIMER |(5 << 8) | 250) +#define RFM_WAKEUP_7s (RFM_WAKEUP_TIMER |(5 << 8) | 219) +#define RFM_WAKEUP_6s (RFM_WAKEUP_TIMER |(6 << 8) | 94) +#define RFM_WAKEUP_5s (RFM_WAKEUP_TIMER |(5 << 8) | 156) +#define RFM_WAKEUP_4s (RFM_WAKEUP_TIMER |(5 << 8) | 125) +#define RFM_WAKEUP_1s (RFM_WAKEUP_TIMER |(2 << 8) | 250) +#define RFM_WAKEUP_900ms (RFM_WAKEUP_TIMER |(2 << 8) | 225) +#define RFM_WAKEUP_800ms (RFM_WAKEUP_TIMER |(2 << 8) | 200) +#define RFM_WAKEUP_700ms (RFM_WAKEUP_TIMER |(2 << 8) | 175) +#define RFM_WAKEUP_600ms (RFM_WAKEUP_TIMER |(2 << 8) | 150) +#define RFM_WAKEUP_500ms (RFM_WAKEUP_TIMER |(2 << 8) | 125) +#define RFM_WAKEUP_400ms (RFM_WAKEUP_TIMER |(2 << 8) | 100) +#define RFM_WAKEUP_300ms (RFM_WAKEUP_TIMER |(2 << 8) | 75) +#define RFM_WAKEUP_200ms (RFM_WAKEUP_TIMER |(2 << 8) | 50) +#define RFM_WAKEUP_100ms (RFM_WAKEUP_TIMER |(2 << 8) | 25) + +/////////////////////////////////////////////////////////////////////////////// +// +// 13. Low Duty-Cycle Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_LOW_DUTY_CYCLE 0xC800 + +/////////////////////////////////////////////////////////////////////////////// +// +// 14. Low Battery Detector Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_LOW_BATT_DETECT 0xC000 +#define RFM_LOW_BATT_DETECT_D_1MHZ 0xC000 +#define RFM_LOW_BATT_DETECT_D_1_25MHZ 0xC020 +#define RFM_LOW_BATT_DETECT_D_1_66MHZ 0xC040 +#define RFM_LOW_BATT_DETECT_D_2MHZ 0xC060 +#define RFM_LOW_BATT_DETECT_D_2_5MHZ 0xC080 +#define RFM_LOW_BATT_DETECT_D_3_33MHZ 0xC0A0 +#define RFM_LOW_BATT_DETECT_D_5MHZ 0xC0C0 +#define RFM_LOW_BATT_DETECT_D_10MHZ 0xC0E0 + +/////////////////////////////////////////////////////////////////////////////// +// +// 15. Status Read Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_READ_STATUS() RFM_SPI_16(0x0000) +#define RFM_READ_STATUS_FFIT() SPI_1 (0x00) +#define RFM_READ_STATUS_RGIT RFM_READ_STATUS_FFIT + +/////////////////////////////////////////////////////////////////////////////// + +// RFM air protocol flags: + +#define RFMPROTO_FLAGS_BITASK_PACKETTYPE 0b11000000 //!< the uppermost 2 bits of the flags field encode the packettype +#define RFMPROTO_FLAGS_PACKETTYPE_BROADCAST 0b00000000 //!< broadcast packettype (message from hr20, protocol; step 1) +#define RFMPROTO_FLAGS_PACKETTYPE_COMMAND 0b01000000 //!< command packettype (message to hr20, protocol; step 2) +#define RFMPROTO_FLAGS_PACKETTYPE_REPLY 0b10000000 //!< reply packettype (message from hr20, protocol; step 3) +#define RFMPROTO_FLAGS_PACKETTYPE_SPECIAL 0b11000000 //!< currently unused packettype + +#define RFMPROTO_FLAGS_BITASK_DEVICETYPE 0b00011111 //!< the lowermost 5 bytes denote the device type. this way other sensors and actors may coexist +#define RFMPROTO_FLAGS_DEVICETYPE_OPENHR20 0b00010100 //!< topen HR20 device type. 10100 is for decimal 20 + +#define RFMPROTO_IS_PACKETTYPE_BROADCAST(FLAGS) ( RFMPROTO_FLAGS_PACKETTYPE_BROADCAST == ((FLAGS) & RFMPROTO_FLAGS_BITASK_PACKETTYPE) ) +#define RFMPROTO_IS_PACKETTYPE_COMMAND(FLAGS) ( RFMPROTO_FLAGS_PACKETTYPE_COMMAND == ((FLAGS) & RFMPROTO_FLAGS_BITASK_PACKETTYPE) ) +#define RFMPROTO_IS_PACKETTYPE_REPLY(FLAGS) ( RFMPROTO_FLAGS_PACKETTYPE_REPLY == ((FLAGS) & RFMPROTO_FLAGS_BITASK_PACKETTYPE) ) +#define RFMPROTO_IS_PACKETTYPE_SPECIAL(FLAGS) ( RFMPROTO_FLAGS_PACKETTYPE_SPECIAL == ((FLAGS) & RFMPROTO_FLAGS_BITASK_PACKETTYPE) ) +#define RFMPROTO_IS_DEVICETYPE_OPENHR20(FLAGS) ( RFMPROTO_FLAGS_DEVICETYPE_OPENHR20 == ((FLAGS) & RFMPROTO_FLAGS_BITASK_DEVICETYPE) ) + +/////////////////////////////////////////////////////////////////////////////// + +#endif \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/Kalman/Sonar/RFSRF05.cpp Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,183 @@
+
+#include "RFSRF05.h"
+#include "mbed.h"
+#include "globals.h"
+#include "system.h"
+
+
+RFSRF05::RFSRF05(PinName trigger,
+ PinName echo0,
+ PinName echo1,
+ PinName echo2,
+ PinName echo3,
+ PinName echo4,
+ PinName echo5,
+ PinName SDI,
+ PinName SDO,
+ PinName SCK,
+ PinName NCS,
+ PinName NIRQ)
+ : _rf(SDI,SDO,SCK,NCS,NIRQ),
+ _trigger(trigger),
+ _echo0(echo0),
+ _echo1(echo1),
+ _echo2(echo2),
+ _echo3(echo3),
+ _echo4(echo4),
+ _echo5(echo5) {
+
+ // initialises codes
+ codes[0] = CODE0;
+ codes[1] = CODE1;
+ codes[2] = CODE2;
+
+ //set callback execute to true
+ ValidPulse = false;
+
+ // Attach interrupts
+#ifdef SONAR_ECHO_INV
+ // inverted sonar inputs
+ _echo5.fall(this, &RFSRF05::_rising);
+ _echo0.rise(this, &RFSRF05::_falling);
+ _echo1.rise(this, &RFSRF05::_falling);
+ _echo2.rise(this, &RFSRF05::_falling);
+ _echo3.rise(this, &RFSRF05::_falling);
+ _echo4.rise(this, &RFSRF05::_falling);
+ _echo5.rise(this, &RFSRF05::_falling);
+#else
+ _echo5.rise(this, &RFSRF05::_rising);
+ _echo0.fall(this, &RFSRF05::_falling);
+ _echo1.fall(this, &RFSRF05::_falling);
+ _echo2.fall(this, &RFSRF05::_falling);
+ _echo3.fall(this, &RFSRF05::_falling);
+ _echo4.fall(this, &RFSRF05::_falling);
+ _echo5.fall(this, &RFSRF05::_falling);
+#endif
+
+
+ //init callabck function
+ callbackfunc = NULL;
+ callbackobj = NULL;
+ mcallbackfunc = NULL;
+
+ // innitialises beacon counter
+ _beacon_counter = 0;
+
+#ifdef ROBOT_PRIMARY
+ //Interrupts every 50ms for primary robot
+ _ticker.attach(this, &RFSRF05::_startRange, 0.05);
+#else
+ //attach callback
+ _rf.callbackobj = (DummyCT*)this;
+ _rf.mcallbackfunc = (void (DummyCT::*)(unsigned char rx_data)) &RFSRF05::startRange;
+#endif
+
+}
+
+#ifdef ROBOT_PRIMARY
+void RFSRF05::_startRange() {
+
+ //printf("Srange\r\r");
+
+ // increments counter
+ _beacon_counter = (_beacon_counter + 1) % 3;
+
+
+ // set flags
+ ValidPulse = false;
+ expValidPulse = true;
+
+ // writes code to RF port
+ _rf.write(codes[_beacon_counter]);
+
+ // send a trigger pulse, 10uS long
+ _trigger = 1;
+ wait_us (10);
+ _trigger = 0;
+
+}
+#else
+
+void RFSRF05::startRange(unsigned char rx_code) {
+ for (int i = 0; i < 3; i++) {
+ if (rx_code == codes[i]) {
+
+ // assign beacon_counter
+ _beacon_counter = i;
+
+ // set flags
+ ValidPulse = false;
+ expValidPulse = true;
+
+ // send a trigger pulse, 10uS long
+ _trigger = 1;
+ wait_us (10);
+ _trigger = 0;
+ break;
+ }
+ }
+}
+#endif
+
+// Clear and start the timer at the begining of the echo pulse
+void RFSRF05::_rising(void) {
+
+ _timer.reset();
+ _timer.start();
+
+ //Set callback execute to ture
+ if (expValidPulse) {
+ ValidPulse = true;
+ expValidPulse = false;
+ }
+}
+
+// Stop and read the timer at the end of the pulse
+void RFSRF05::_falling(void) {
+ _timer.stop();
+
+ if (ValidPulse) {
+ //printf("Validpulse trig!\r\n");
+ ValidPulse = false;
+
+ //Calucate distance
+ //true offset is about 100, we put 300 so circles overlap
+ _dist[_beacon_counter] = _timer.read_us()/2.9 + 300;
+
+ if (callbackfunc)
+ (*callbackfunc)(_beacon_counter, _dist[_beacon_counter]);
+
+ if (callbackobj && mcallbackfunc)
+ (callbackobj->*mcallbackfunc)(_beacon_counter, _dist[_beacon_counter], sonarvariance);
+
+ }
+
+}
+
+float RFSRF05::read0() {
+ // returns distance
+ return (_dist[0]);
+}
+
+float RFSRF05::read1() {
+ // returns distance
+ return (_dist[1]);
+}
+
+float RFSRF05::read2() {
+ // returns distance
+ return (_dist[2]);
+}
+
+float RFSRF05::read(unsigned int beaconnum) {
+ // returns distance
+ return (_dist[beaconnum]);
+}
+
+void RFSRF05::setCode(int code_index, unsigned char code) {
+ codes[code_index] = code;
+}
+
+//SRF05::operator float() {
+// return read();
+//}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/Kalman/Sonar/RFSRF05.h Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,102 @@
+
+#ifndef MBED_RFSRF05_H
+#define MBED_RFSRF05_H
+
+
+
+#include "mbed.h"
+#include "RF12B.h"
+#include "globals.h"
+
+
+#define CODE0 0x22
+#define CODE1 0x44
+#define CODE2 0x88
+
+/* SAMPLE IMPLEMENTATION!
+RFSRF05 my_srf(p13,p21,p22,p23,p24,p25,p26,p5,p6,p7,p8,p9);
+
+
+void callbinmain(int num, float dist) {
+ //Here is where you deal with your brand new reading ;D
+}
+
+int main() {
+ pc.printf("Hello World of RobotSonar!\r\n");
+ my_srf.callbackfunc = callbinmain;
+
+ while (1);
+}
+
+ */
+
+class DummyCT;
+
+class RFSRF05 {
+public:
+
+ RFSRF05(
+ PinName trigger,
+ PinName echo0,
+ PinName echo1,
+ PinName echo2,
+ PinName echo3,
+ PinName echo4,
+ PinName echo5,
+ PinName SDI,
+ PinName SDO,
+ PinName SCK,
+ PinName NCS,
+ PinName NIRQ);
+
+ /** A non-blocking function that will return the last measurement
+ *
+ * @returns floating point representation of distance in mm
+ */
+ float read0();
+ float read1();
+ float read2();
+ float read(unsigned int beaconnum);
+
+
+ /** A assigns a callback function when a new reading is available **/
+ void (*callbackfunc)(int beaconnum, float distance);
+ DummyCT* callbackobj;
+ void (DummyCT::*mcallbackfunc)(int beaconnum, float distance, float variance);
+
+ //triggers a read
+ #ifndef ROBOT_PRIMARY
+ void startRange(unsigned char rx_code);
+ #endif
+
+ //set codes
+ void setCode(int code_index, unsigned char code);
+ unsigned char codes[3];
+
+ /** A short hand way of using the read function */
+ //operator float();
+
+private :
+ RF12B _rf;
+ DigitalOut _trigger;
+ InterruptIn _echo0;
+ InterruptIn _echo1;
+ InterruptIn _echo2;
+ InterruptIn _echo3;
+ InterruptIn _echo4;
+ InterruptIn _echo5;
+ Timer _timer;
+ Ticker _ticker;
+ #ifdef ROBOT_PRIMARY
+ void _startRange(void);
+ #endif
+ void _rising (void);
+ void _falling (void);
+ float _dist[3];
+ int _beacon_counter;
+ bool ValidPulse;
+ bool expValidPulse;
+
+};
+
+#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/Motion/motion.cpp Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,237 @@
+#include "motion.h"
+#include "geometryfuncs.h"
+#include "system.h"
+#include "PID.h"
+
+AnalogIn ObsAvoidPin(p20);
+
+Motion::Motion(Motors &motorsin, AI &aiin, Kalman &kalmanin):
+ thr_motion(mtwrapper,this,osPriorityNormal,1024),
+ motors(motorsin),
+ ai(aiin),
+ kalman(kalmanin) { }
+
+// motion control thread ------------------------
+void Motion::motion_thread() {
+ motors.resetEncoders();
+ motors.setSpeed(5,5);
+ motors.stop();
+ // Thread::wait(1500);
+ //ai.thr_AI.signal_set(0x01);
+
+ //PID declare
+ PID PIDControllerMotorTheta2(FWD_MOVE_P, FWD_MOVE_P/10.0f, 0.000005, MOTION_UPDATE_PERIOD/1000.0f); //Going forward
+ PID PIDControllerMotorTheta(SPIN_MOVE_P, SPIN_MOVE_P/10.0f, 0.000005, MOTION_UPDATE_PERIOD/1000.0f); //Spinning on the spot
+
+ //PID Initialisation
+ PIDControllerMotorTheta2.setMode(MANUAL_MODE);
+ PIDControllerMotorTheta.setMode(MANUAL_MODE);
+
+ PIDControllerMotorTheta2.setBias(0);
+ PIDControllerMotorTheta.setBias(0);
+
+ PIDControllerMotorTheta2.setOutputLimits(-1, 1);
+ PIDControllerMotorTheta.setOutputLimits(-1, 1);
+
+ PIDControllerMotorTheta2.setInputLimits(-PI, PI);
+ PIDControllerMotorTheta.setInputLimits(-PI, PI);
+
+ PIDControllerMotorTheta.setSetPoint(0);
+ PIDControllerMotorTheta2.setSetPoint(0);
+
+ float currX, currY,currTheta;
+ float speedL,speedR;
+ float diffDir;
+ float xBuffer, yBuffer;
+ float xOriginalBuffer = 0, yOriginalBuffer = 0;
+ int initiateFlag = 1;
+ int dontSpinFlag = 0;
+ int atTargetFlag = 0;
+ int atTargetDirectionFlag = 0;
+
+ while (1) {
+ //kalman.statelock.lock();
+ if (ai.flag_terminate) {
+ // stops motors and teminates the thread
+ motors.stop();
+ //motors.coastStop();
+ terminate();
+ }
+
+ // stops motor
+ if ((ai.flag_motorStop) || (ObsAvoidPin > 0.4)) {
+ motors.stop();
+ } else if (ai.flag_manOverride) {
+
+ } else {
+
+
+ // get kalman localization estimate ------------------------
+ kalman.statelock.lock();
+ currX = kalman.X(0)*1000.0f;
+ currY = kalman.X(1)*1000.0f;
+ currTheta = kalman.X(2);
+ kalman.statelock.unlock();
+
+ // make a local copy of the target
+ ai.targetlock.lock();
+ AI::Target loctarget = ai.gettarget();
+ ai.targetlock.unlock();
+ /*
+ //PID Tuning Code
+ if (pc.readable() == 1) {
+ float cmd;
+ pc.scanf("%f", &cmd);
+ //Tune PID referece
+ PIDControllerMotorTheta2.setTunings(cmd, 0, 0);
+ }
+ */
+
+
+ if (initiateFlag == 1) {
+ xOriginalBuffer = currX;
+ yOriginalBuffer = currY;
+
+ xBuffer = ai.gettarget().x;
+ yBuffer = ai.gettarget().y;
+
+ initiateFlag = 0;
+ }
+
+ if (xBuffer != loctarget.x || yBuffer != loctarget.y) {
+ //target changed
+ //update xOriginal and yOriginal buffers
+ xOriginalBuffer = currX;
+ yOriginalBuffer = currY;
+
+ xBuffer = loctarget.x;
+ yBuffer = loctarget.y;
+
+ atTargetFlag = 0;
+ atTargetDirectionFlag = 0;
+
+ }
+
+ // check if target reached ----------------------------------
+ if (atTargetFlag || hypot(currX - loctarget.x, currY - loctarget.y) < POSITION_TOR) {
+
+ if (atTargetFlag == 0) {
+ motors.stop();
+ Thread::wait(100);
+ }
+
+
+ if (hypot(currX - loctarget.x, currY - loctarget.y) < POSITION_TOR) {
+ atTargetFlag = 1;
+ }
+ OLED4 = 1;
+
+ diffDir = rectifyAng(currTheta - loctarget.theta);
+ //diffSpeed = diffDir / PI;
+
+ PIDControllerMotorTheta.setProcessValue(diffDir);
+ float tempPidVar = PIDControllerMotorTheta.compute();
+ motors.setSpeed( -int(tempPidVar*MOVE_SPEED), int(tempPidVar*MOVE_SPEED));
+
+ if (abs(diffDir) < ANGLE_TOR) {
+
+ if (atTargetDirectionFlag == 0) {
+ ai.thr_AI.signal_set(0x01);
+ atTargetDirectionFlag = 1;
+ }
+
+ /*
+ if (!loctarget.reached) {
+ static int counter = 10;
+ // guarding counter for reaching target
+ if (counter-- == 0) {
+ counter = 10;
+ ai.target.reached = true;
+ ai.thr_AI.signal_set(0x01);
+
+ }
+ }
+ */
+ }
+ }
+
+ // adjust motion to reach target ----------------------------
+ else {
+
+ OLED3 = 1;
+
+ /*
+ if ((hypot(xOriginalBuffer - loctarget.x, yOriginalBuffer - loctarget.y) - hypot(xOriginalBuffer - currX, yOriginalBuffer - currY)) < 0) {
+ loctarget.facing = !loctarget.facing;
+ dontSpinFlag = 1;
+ } else {
+ dontSpinFlag = 0;
+ }
+ */
+
+ // calc direction to target
+ float targetDir = atan2(loctarget.y - currY, loctarget.x - currX);
+ if (!loctarget.facing) targetDir = targetDir + PI;
+
+ //Angle differene in -PI to PI
+ diffDir = rectifyAng(currTheta - targetDir);
+
+ //Set PID process variable
+ PIDControllerMotorTheta.setProcessValue(diffDir);
+ PIDControllerMotorTheta2.setProcessValue(diffDir);
+
+ //if diffDIr is neg, spin right
+ //if diffDir is pos, spin left
+
+ if ((abs(diffDir) > ANGLE_TOR*4) && (dontSpinFlag == 0)) { //roughly 32 degrees
+ //ANGLE_TOR*4
+ float tempPidVar = PIDControllerMotorTheta.compute();
+ motors.setSpeed( -int(tempPidVar*MOVE_SPEED), int(tempPidVar*MOVE_SPEED));
+ //pc.printf("spin,%f\n",diffDir);
+
+ } else {
+
+ float tempPidVar = PIDControllerMotorTheta2.compute();
+ float MoveSpeedLimiter = 1;
+ //pc.printf("turn,%f\n",diffDir);
+
+ float distanceToX = (float)abs(currX - loctarget.x);
+ float distanceToY = (float)abs(currY - loctarget.y);
+
+ float distanceToTarget = hypot(distanceToX, distanceToY);
+
+ if ((distanceToTarget < 400) && (distanceToTarget > 200) && motors.accelerationRegister == 1) {
+ MoveSpeedLimiter = (distanceToTarget)/400;
+ } else if (distanceToTarget <= 200) {
+ MoveSpeedLimiter = 0.5;
+ }
+
+
+
+
+ // calculte the motor speeds
+ if (tempPidVar >= 0) {
+ //turn left
+ speedL = (1-abs(tempPidVar))*MOVE_SPEED*MoveSpeedLimiter;
+ speedR = MOVE_SPEED*MoveSpeedLimiter;
+
+ } else {
+ //turn right
+ speedR = (1-abs(tempPidVar))*MOVE_SPEED*MoveSpeedLimiter;
+ speedL = MOVE_SPEED*MoveSpeedLimiter;
+ }
+
+
+
+
+ if (loctarget.facing) motors.setSpeed( int(speedL), int(speedR));
+ else motors.setSpeed( -int(speedR), -int(speedL));
+
+ }
+ }
+ }
+ //kalman.statelock.unlock();
+ // wait
+ Thread::wait(MOTION_UPDATE_PERIOD);
+ }
+}
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/Motion/motion.h Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,21 @@
+#include "motors.h"
+#include "ai.h"
+#include "Kalman.h"
+
+#ifndef MOTION
+#define MOTION
+class Motion {
+public:
+ Motion(Motors &motorsin, AI &aiin, Kalman &kalmanin);
+ Thread thr_motion;
+
+private:
+ Motors& motors;
+ AI& ai;
+ Kalman& kalman;
+
+ void motion_thread();
+ static void mtwrapper(void const *arg){ ((Motion*)arg)->motion_thread(); }
+
+};
+#endif
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/TSH.h Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,62 @@
+#ifndef TSH_H
+#define TSH_H
+
+#include "rtos.h"
+
+//Thread Safe Hardware
+
+class TSI2C : public I2C {
+public:
+
+ TSI2C( PinName sda,
+ PinName scl,
+ const char* name=NULL )
+ : I2C(sda, scl, name) { }
+
+
+ int read( int address,
+ char* data,
+ int length,
+ bool repeated = false ) {
+
+ rlock.lock();
+ int retval = I2C::read(address, data, length, repeated);
+ rlock.unlock();
+
+ return retval;
+ }
+
+ int read(int ack) {
+ rlock.lock();
+ int retval = I2C::read(ack);
+ rlock.unlock();
+
+ return retval;
+ }
+
+ int write( int address,
+ const char* data,
+ int length,
+ bool repeated = false ) {
+
+ wlock.lock();
+ int retval = I2C::write(address, data, length, repeated);
+ wlock.unlock();
+
+ return retval;
+ }
+
+ int write(int data) {
+ wlock.lock();
+ int retval = I2C::write(data);
+ wlock.unlock();
+
+ return retval;
+ }
+
+private:
+ Mutex rlock;
+ Mutex wlock;
+};
+
+#endif
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/ai/ai.cpp Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,52 @@
+#include "ai.h"
+#include "rtos.h"
+#include "globals.h"
+
+
+
+AI::AI() :
+ thr_AI(aithreadwrapper,this,osPriorityNormal,1024) {
+ flag_terminate = false;
+ flag_motorStop = true;
+ flag_manOverride = false;
+ //printf("aistart\r\n");
+}
+
+
+void AI::settarget(float targetX, float targetY, float targetTheta, bool targetfacing, bool colour, int maxSpeed) {
+ targetlock.lock();
+ MOVE_SPEED = maxSpeed;
+ target.x = targetX;
+ target.y = targetY;
+ target.theta = targetTheta;
+ target.facing = targetfacing;
+ target.reached = false;
+ if (!colour) {
+ target.x = 3000 - target.x;
+ target.theta = PI - target.theta;
+
+ target.theta -= (floor(target.theta/(2*PI)))*2*PI;
+ if (target.theta < -PI) {
+ target.theta += 2*PI;
+ }
+ if (target.theta > PI) {
+ target.theta -= 2*PI;
+ }
+
+
+ }
+ targetlock.unlock();
+}
+
+void AI::settarget(Target targetin) {
+ targetlock.lock();
+ target = targetin;
+ targetlock.unlock();
+}
+
+AI::Target AI::gettarget() {
+ targetlock.lock();
+ Target temptarget = target;
+ targetlock.unlock();
+ return temptarget;
+}
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/ai/ai.h Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,37 @@
+#ifndef AI_H
+#define AI_H
+
+#include "rtos.h"
+//#include "Kalman.h"
+
+class AI {
+public:
+AI();
+
+Mutex targetlock;
+Thread thr_AI;
+
+struct Target {
+ float x;
+ float y;
+ float theta;
+ bool facing;
+ bool reached;
+} target;
+
+void settarget(float targetX, float targetY, float targetTheta, bool targetfacing = true, bool colour = true, int maxSpeed = 35);
+void settarget(Target);
+Target gettarget();
+
+bool flag_terminate;// = false;
+bool flag_motorStop; // = true;
+bool flag_manOverride; // = false;
+
+private:
+
+void ai_thread ();
+static void aithreadwrapper(void const *arg){ ((AI*)arg)->ai_thread(); }
+
+};
+
+#endif //AI_H
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/geometryfuncs/geometryfuncs.h Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,28 @@
+#ifndef GEOMETRYFUNCS_H
+#define GEOMETRYFUNCS_H
+
+#include <tvmet/Matrix.h>
+
+template <typename T>
+Matrix <T, 2, 2> Rotmatrix(T theta) {
+ Matrix <T, 2, 2> outmatrix;
+ outmatrix = cos(theta), -sin(theta),
+ sin(theta), cos(theta);
+ return outmatrix;
+}
+
+// rectifies angle to range -PI to PI
+template <typename T>
+T rectifyAng (T ang_in) {
+ ang_in -= (floor(ang_in/(2*PI)))*2*PI;
+ if (ang_in < -PI) {
+ ang_in += 2*PI;
+ }
+ if (ang_in > PI) {
+ ang_in -= 2*PI;
+ }
+
+ return ang_in;
+}
+
+#endif //GEOMETRYFUNCS_H
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/system/system.cpp Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,29 @@
+#include "system.h"
+
+//Defining the externs
+DigitalOut OLED1(LED1);
+DigitalOut OLED2(LED2);
+DigitalOut OLED3(LED3);
+DigitalOut OLED4(LED4);
+
+//nop style wait function
+void nopwait(int ms){
+while(ms--)
+ for (volatile int i = 0; i < 24000; i++);
+}
+
+float cpupercent; //defining the extern
+void measureCPUidle (void const* arg) {
+
+ Timer timer;
+ cpupercent = 0; //defined in system.h
+
+ while(1) {
+ timer.reset();
+ timer.start();
+ wait(1);
+
+ int thistime = timer.read_us()-1000000;
+ cpupercent = thistime;
+ }
+}
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/system/system.h Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,51 @@
+
+#ifndef SYSTEM_H
+#define SYSTEM_H
+
+#include "globals.h"
+#include "rtos.h"
+
+//Declaring the onboard LED's for everyone to use
+extern DigitalOut OLED1;//(LED1);
+extern DigitalOut OLED2;//(LED2);
+extern DigitalOut OLED3;//(LED3);
+extern DigitalOut OLED4;//(LED4);
+
+//nop style wait function
+void nopwait(int ms);
+
+//a type which is a pointer to a rtos thread function
+typedef void (*tfuncptr_t)(void const *argument);
+
+//---------------------
+//Signal ticker stuff
+#define SIGTICKARGS(thread, signal) \
+ (tfuncptr_t) (&Signalsetter::callback), osTimerPeriodic, (void*)(new Signalsetter(thread, signal))
+
+class Signalsetter {
+public:
+ Signalsetter(Thread& inthread, int insignal) :
+ thread(inthread) {
+ signal = insignal;
+ //pc.printf("ptr saved as %#x \r\n", (int)(&(inthread)));
+ }
+
+ static void callback(void* thisin) {
+
+ Signalsetter* fthis = (Signalsetter*)thisin;
+ //pc.printf("callback will signal thread object at %#x \r\n", (int)(&(fthis->thread)));
+ fthis->thread.signal_set(fthis->signal);
+ //delete fthis; //this is useful for single fire tickers!
+ }
+
+private:
+ Thread& thread;
+ int signal;
+};
+
+//---------------------
+//cpu usage measurement function
+extern float cpupercent;
+void measureCPUidle (void const* arg);
+
+#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/ui/ui.cpp Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,103 @@
+
+#include "ui.h"
+#include <iostream>
+#include "system.h"
+
+UI::UI() :
+ tUI(printtw,this,osPriorityNormal,2048) {
+ newdataflags = 0;
+ for (int i = 0; i < NUMIDS; i++) {
+ idlist[i] = 0;
+ buffarr[i] = 0;
+ }
+
+}
+
+bool UI::regid(char id, unsigned int length) {
+
+ //check if the id is already taken
+ if (id < NUMIDS && !idlist[id]) {
+ idlist[id] = length;
+ buffarr[id] = new float[length];
+ return true;
+ } else
+ return false;
+}
+
+bool UI::updateval(char id, float* buffer, unsigned int length) {
+
+ //check if the id is registered, and has buffer of correct length
+ if (id < NUMIDS && idlist[id] == length && buffarr[id] && !(newdataflags & (1<<id))) {
+ for (int i = 0; i < length; i++)
+ buffarr[id][i] = buffer[i];
+ newdataflags |= (1<<id);
+ return true;
+ } else{
+ return false;
+ }
+}
+
+bool UI::updateval(char id, float value) {
+
+ //check if the id is registered, and the old value has been written
+ if (id < NUMIDS && idlist[id] == 1 && buffarr[id] && !(newdataflags & (1<<id))) {
+ buffarr[id][0] = value;
+ newdataflags |= (1<<id);
+ return true;
+ } else
+ return false;
+
+}
+
+bool UI::unregid(char id) {
+ if (id < NUMIDS) {
+ idlist[id] = 0;
+ if (buffarr[id])
+ delete buffarr[id];
+ return true;
+ } else
+ return false;
+}
+
+void UI::printloop() {
+
+#ifdef UION
+ Thread::wait(3500);
+#else
+ Thread::wait(osWaitForever);
+#endif
+
+ char* sync = "ABCD";
+ std::cout.write(sync, 4);
+ //std::cout.flush();
+ std::cout << std::endl;
+ //printf("\r\n");
+
+ while (1) {
+
+ OLED3 = !OLED3;
+
+ //send number of packets
+ char numtosend = 0;
+ for (int id = 0; id < NUMIDS; id++)
+ if (newdataflags & (1<<id))
+ numtosend++;
+
+ std::cout.put(numtosend);
+
+ //send packets
+ for (char id = 0; id < NUMIDS; id++) {
+ if (newdataflags & (1<<id)) {
+ std::cout.put(id);
+ std::cout.write((char*)buffarr[id], idlist[id] * sizeof(float));
+ newdataflags &= ~(1<<id);
+ }
+ }
+
+ std::cout << std::endl;
+ //std::cout.flush();
+ Thread::wait(200);
+ }
+
+}
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Eurobot_shared/ui/ui.h Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,30 @@
+
+#ifndef UI_H
+#define UI_H
+
+#include "rtos.h"
+
+#define NUMIDS 32
+
+class UI {
+public:
+ Thread tUI;
+
+ UI();
+
+ bool regid(char id, unsigned int length);
+ bool updateval(char id, float* buffer, unsigned int length);
+ bool updateval(char id, float value);
+ bool unregid(char id);
+
+private:
+ Mutex printlock;
+ char idlist[NUMIDS];
+ float* buffarr[NUMIDS];
+ volatile int newdataflags; //Only works for NUMID = 32
+
+ void printloop();
+ static void printtw(void const *arg){ ((UI*)arg)->printloop(); }
+};
+
+#endif //UI_H
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Servo/Servo.cpp Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,26 @@
+#include "Servo.h"
+#include "mbed.h"
+
+ Servo::Servo(PinName Pin) : ServoPin(Pin) {}
+
+ void Servo::SetPosition(int Pos) {
+ Position = Pos;
+ }
+
+ void Servo::StartPulse() {
+ ServoPin = 1;
+ PulseStop.attach_us(this, &Servo::EndPulse, Position);
+ }
+
+ void Servo::EndPulse() {
+ ServoPin = 0;
+ }
+
+ void Servo::Enable(int StartPos, int Period) {
+ Position = StartPos;
+ Pulse.attach_us(this, &Servo::StartPulse, Period);
+ }
+
+ void Servo::Disable() {
+ Pulse.detach();
+ }
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Servo/Servo.h Wed Oct 17 22:22:47 2012 +0000
@@ -0,0 +1,90 @@
+/* mbed Servo Library without using PWM pins
+ * Copyright (c) 2010 Jasper Denkers
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#ifndef MBED_SERVO_H
+#define MBED_SERVO_H
+
+#include "mbed.h"
+
+/** Class to control a servo on any pin, without using pwm
+ *
+ * Example:
+ * @code
+ * // Keep sweeping servo from left to right
+ * #include "mbed.h"
+ * #include "Servo.h"
+ *
+ * Servo Servo1(p20);
+ *
+ * Servo1.Enable(1500,20000);
+ *
+ * while(1) {
+ * for (int pos = 1000; pos < 2000; pos += 25) {
+ * Servo1.SetPosition(pos);
+ * wait_ms(20);
+ * }
+ * for (int pos = 2000; pos > 1000; pos -= 25) {
+ * Servo1.SetPosition(pos);
+ * wait_ms(20);
+ * }
+ * }
+ * @endcode
+ */
+
+class Servo {
+
+public:
+ /** Create a new Servo object on any mbed pin
+ *
+ * @param Pin Pin on mbed to connect servo to
+ */
+ Servo(PinName Pin);
+
+ /** Change the position of the servo. Position in us
+ *
+ * @param NewPos The new value of the servos position (us)
+ */
+ void SetPosition(int NewPos);
+
+ /** Enable the servo. Without enabling the servo won't be running. Startposition and period both in us.
+ *
+ * @param StartPos The position of the servo to start (us)
+ * @param Period The time between every pulse. 20000 us = 50 Hz(standard) (us)
+ */
+ void Enable(int StartPos, int Period);
+
+ /** Disable the servo. After disabling the servo won't get any signal anymore
+ *
+ */
+ void Disable();
+
+private:
+ void StartPulse();
+ void EndPulse();
+
+ int Position;
+ DigitalOut ServoPin;
+ Ticker Pulse;
+ Timeout PulseStop;
+};
+
+#endif
\ No newline at end of file