
An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.
Dependencies: mbed FastIO FastPWM USBDevice
Fork of Pinscape_Controller by
This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.
In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.
A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.
You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.
Downloads
- Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
- Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.
Documentation
The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.
You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).
System Requirements
The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.
The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.
Main Features
Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.
Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.
Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.
Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.
Expansion Boards
There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".
In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.
The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.
Update notes
If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.
First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.
Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.
New Features
V2 has numerous new features. Here are some of the highlights...
Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.
Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.
Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.
Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.
Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.
Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.
IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.
Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.
More Downloads
- Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).
Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
- Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
- Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
- Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.
Copyright and License
The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.
Warning to VirtuaPin Kit Owners
This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.
main.cpp@87:8d35c74403af, 2017-05-09 (annotated)
- Committer:
- mjr
- Date:
- Tue May 09 05:48:37 2017 +0000
- Revision:
- 87:8d35c74403af
- Parent:
- 86:e30a1f60f783
- Child:
- 88:98bce687e6c0
AEDR-8300, VL6180X, TLC59116; new plunger firing detection
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
mjr | 51:57eb311faafa | 1 | /* Copyright 2014, 2016 M J Roberts, MIT License |
mjr | 5:a70c0bce770d | 2 | * |
mjr | 5:a70c0bce770d | 3 | * Permission is hereby granted, free of charge, to any person obtaining a copy of this software |
mjr | 5:a70c0bce770d | 4 | * and associated documentation files (the "Software"), to deal in the Software without |
mjr | 5:a70c0bce770d | 5 | * restriction, including without limitation the rights to use, copy, modify, merge, publish, |
mjr | 5:a70c0bce770d | 6 | * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the |
mjr | 5:a70c0bce770d | 7 | * Software is furnished to do so, subject to the following conditions: |
mjr | 5:a70c0bce770d | 8 | * |
mjr | 5:a70c0bce770d | 9 | * The above copyright notice and this permission notice shall be included in all copies or |
mjr | 5:a70c0bce770d | 10 | * substantial portions of the Software. |
mjr | 5:a70c0bce770d | 11 | * |
mjr | 5:a70c0bce770d | 12 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING |
mjr | 48:058ace2aed1d | 13 | * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND |
mjr | 5:a70c0bce770d | 14 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, |
mjr | 5:a70c0bce770d | 15 | * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
mjr | 5:a70c0bce770d | 16 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
mjr | 5:a70c0bce770d | 17 | */ |
mjr | 5:a70c0bce770d | 18 | |
mjr | 5:a70c0bce770d | 19 | // |
mjr | 35:e959ffba78fd | 20 | // The Pinscape Controller |
mjr | 35:e959ffba78fd | 21 | // A comprehensive input/output controller for virtual pinball machines |
mjr | 5:a70c0bce770d | 22 | // |
mjr | 48:058ace2aed1d | 23 | // This project implements an I/O controller for virtual pinball cabinets. The |
mjr | 48:058ace2aed1d | 24 | // controller's function is to connect Visual Pinball (and other Windows pinball |
mjr | 48:058ace2aed1d | 25 | // emulators) with physical devices in the cabinet: buttons, sensors, and |
mjr | 48:058ace2aed1d | 26 | // feedback devices that create visual or mechanical effects during play. |
mjr | 38:091e511ce8a0 | 27 | // |
mjr | 48:058ace2aed1d | 28 | // The controller can perform several different functions, which can be used |
mjr | 38:091e511ce8a0 | 29 | // individually or in any combination: |
mjr | 5:a70c0bce770d | 30 | // |
mjr | 38:091e511ce8a0 | 31 | // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the |
mjr | 38:091e511ce8a0 | 32 | // motion of the cabinet when you nudge it. Visual Pinball and other pinball |
mjr | 38:091e511ce8a0 | 33 | // emulators on the PC have native handling for this type of input, so that |
mjr | 38:091e511ce8a0 | 34 | // physical nudges on the cabinet turn into simulated effects on the virtual |
mjr | 38:091e511ce8a0 | 35 | // ball. The KL25Z measures accelerations as analog readings and is quite |
mjr | 38:091e511ce8a0 | 36 | // sensitive, so the effect of a nudge on the simulation is proportional |
mjr | 38:091e511ce8a0 | 37 | // to the strength of the nudge. Accelerations are reported to the PC via a |
mjr | 38:091e511ce8a0 | 38 | // simulated joystick (using the X and Y axes); you just have to set some |
mjr | 38:091e511ce8a0 | 39 | // preferences in your pinball software to tell it that an accelerometer |
mjr | 38:091e511ce8a0 | 40 | // is attached. |
mjr | 5:a70c0bce770d | 41 | // |
mjr | 74:822a92bc11d2 | 42 | // - Plunger position sensing, with multiple sensor options. To use this feature, |
mjr | 35:e959ffba78fd | 43 | // you need to choose a sensor and set it up, connect the sensor electrically to |
mjr | 35:e959ffba78fd | 44 | // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how |
mjr | 35:e959ffba78fd | 45 | // the sensor is hooked up. The Pinscape software monitors the sensor and sends |
mjr | 35:e959ffba78fd | 46 | // readings to Visual Pinball via the joystick Z axis. VP and other PC software |
mjr | 38:091e511ce8a0 | 47 | // have native support for this type of input; as with the nudge setup, you just |
mjr | 38:091e511ce8a0 | 48 | // have to set some options in VP to activate the plunger. |
mjr | 17:ab3cec0c8bf4 | 49 | // |
mjr | 87:8d35c74403af | 50 | // We support several sensor types: |
mjr | 35:e959ffba78fd | 51 | // |
mjr | 87:8d35c74403af | 52 | // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with |
mjr | 87:8d35c74403af | 53 | // reflective optical sensing and built-in lighting and optics. The sensor |
mjr | 87:8d35c74403af | 54 | // is attached to the plunger so that it moves with the plunger, and slides |
mjr | 87:8d35c74403af | 55 | // along a guide rail with a reflective pattern of regularly spaces bars |
mjr | 87:8d35c74403af | 56 | // for the encoder to read. We read the plunger position by counting the |
mjr | 87:8d35c74403af | 57 | // bars the sensor passes as it moves across the rail. This is the newest |
mjr | 87:8d35c74403af | 58 | // option, and it's my current favorite because it's highly accurate, |
mjr | 87:8d35c74403af | 59 | // precise, and fast, plus it's relatively inexpensive. |
mjr | 87:8d35c74403af | 60 | // |
mjr | 87:8d35c74403af | 61 | // - Slide potentiometers. There are slide potentioneters available with a |
mjr | 87:8d35c74403af | 62 | // long enough travel distance (at least 85mm) to cover the plunger travel. |
mjr | 87:8d35c74403af | 63 | // Attach the plunger to the potentiometer knob so that the moving the |
mjr | 87:8d35c74403af | 64 | // plunger moves the pot knob. We sense the position by simply reading |
mjr | 87:8d35c74403af | 65 | // the analog voltage on the pot brush. A pot with a "linear taper" (that |
mjr | 87:8d35c74403af | 66 | // is, the resistance varies linearly with the position) is required. |
mjr | 87:8d35c74403af | 67 | // This option is cheap, easy to set up, and works well. |
mjr | 5:a70c0bce770d | 68 | // |
mjr | 87:8d35c74403af | 69 | // - VL6108X time-of-flight distance sensor. This is an optical distance |
mjr | 87:8d35c74403af | 70 | // sensor that measures the distance to a nearby object (within about 10cm) |
mjr | 87:8d35c74403af | 71 | // by measuring the travel time for reflected pulses of light. It's fairly |
mjr | 87:8d35c74403af | 72 | // cheap and easy to set up, but I don't recommend it because it has very |
mjr | 87:8d35c74403af | 73 | // low precision. |
mjr | 6:cc35eb643e8f | 74 | // |
mjr | 87:8d35c74403af | 75 | // - TSL1410R/TSL1412R linear array optical sensors. These are large optical |
mjr | 87:8d35c74403af | 76 | // sensors with the pixels arranged in a single row. The pixel arrays are |
mjr | 87:8d35c74403af | 77 | // large enough on these to cover the travel distance of the plunger, so we |
mjr | 87:8d35c74403af | 78 | // can set up the sensor near the plunger in such a way that the plunger |
mjr | 87:8d35c74403af | 79 | // casts a shadow on the sensor. We detect the plunger position by finding |
mjr | 87:8d35c74403af | 80 | // the edge of the sahdow in the image. The optics for this setup are very |
mjr | 87:8d35c74403af | 81 | // simple since we don't need any lenses. This was the first sensor we |
mjr | 87:8d35c74403af | 82 | // supported, and works very well, but unfortunately the sensor is difficult |
mjr | 87:8d35c74403af | 83 | // to find now since it's been discontinued by the manufacturer. |
mjr | 87:8d35c74403af | 84 | // |
mjr | 87:8d35c74403af | 85 | // The v2 Build Guide has details on how to build and configure all of the |
mjr | 87:8d35c74403af | 86 | // sensor options. |
mjr | 87:8d35c74403af | 87 | // |
mjr | 87:8d35c74403af | 88 | // Visual Pinball has built-in support for plunger devices like this one, but |
mjr | 87:8d35c74403af | 89 | // some older VP tables (particularly for VP 9) can't use it without some |
mjr | 87:8d35c74403af | 90 | // modifications to their scripting. The Build Guide has advice on how to |
mjr | 87:8d35c74403af | 91 | // fix up VP tables to add plunger support when necessary. |
mjr | 5:a70c0bce770d | 92 | // |
mjr | 77:0b96f6867312 | 93 | // - Button input wiring. You can assign GPIO ports as inputs for physical |
mjr | 77:0b96f6867312 | 94 | // pinball-style buttons, such as flipper buttons, a Start button, coin |
mjr | 77:0b96f6867312 | 95 | // chute switches, tilt bobs, and service panel buttons. You can configure |
mjr | 77:0b96f6867312 | 96 | // each button input to report a keyboard key or joystick button press to |
mjr | 77:0b96f6867312 | 97 | // the PC when the physical button is pushed. |
mjr | 13:72dda449c3c0 | 98 | // |
mjr | 53:9b2611964afc | 99 | // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets |
mjr | 53:9b2611964afc | 100 | // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the |
mjr | 53:9b2611964afc | 101 | // KL25Z, and lets PC software (such as Visual Pinball) control them during game |
mjr | 53:9b2611964afc | 102 | // play to create a more immersive playing experience. The Pinscape software |
mjr | 53:9b2611964afc | 103 | // presents itself to the host as an LedWiz device and accepts the full LedWiz |
mjr | 53:9b2611964afc | 104 | // command set, so software on the PC designed for real LedWiz'es can control |
mjr | 53:9b2611964afc | 105 | // attached devices without any modifications. |
mjr | 5:a70c0bce770d | 106 | // |
mjr | 53:9b2611964afc | 107 | // Even though the software provides a very thorough LedWiz emulation, the KL25Z |
mjr | 53:9b2611964afc | 108 | // GPIO hardware design imposes some serious limitations. The big one is that |
mjr | 53:9b2611964afc | 109 | // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have |
mjr | 53:9b2611964afc | 110 | // varying-intensity outputs (e.g., for controlling the brightness level of an |
mjr | 53:9b2611964afc | 111 | // LED or the speed or a motor). You can control more than 10 output ports, but |
mjr | 53:9b2611964afc | 112 | // only 10 can have PWM control; the rest are simple "digital" ports that can only |
mjr | 53:9b2611964afc | 113 | // be switched fully on or fully off. The second limitation is that the KL25Z |
mjr | 53:9b2611964afc | 114 | // just doesn't have that many GPIO ports overall. There are enough to populate |
mjr | 53:9b2611964afc | 115 | // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is |
mjr | 53:9b2611964afc | 116 | // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade |
mjr | 53:9b2611964afc | 117 | // off more outputs for fewer inputs, or vice versa. The third limitation is that |
mjr | 53:9b2611964afc | 118 | // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't |
mjr | 53:9b2611964afc | 119 | // even enough to control a small LED. So in order to connect any kind of feedback |
mjr | 53:9b2611964afc | 120 | // device to an output, you *must* build some external circuitry to boost the |
mjr | 53:9b2611964afc | 121 | // current handing. The Build Guide has a reference circuit design for this |
mjr | 53:9b2611964afc | 122 | // purpose that's simple and inexpensive to build. |
mjr | 6:cc35eb643e8f | 123 | // |
mjr | 87:8d35c74403af | 124 | // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips. |
mjr | 87:8d35c74403af | 125 | // You can attach external PWM chips for controlling device outputs, instead of |
mjr | 87:8d35c74403af | 126 | // using (or in addition to) the on-board GPIO ports as described above. The |
mjr | 87:8d35c74403af | 127 | // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each |
mjr | 87:8d35c74403af | 128 | // chip provides 16 PWM outputs, so you just need two of them to get the full |
mjr | 87:8d35c74403af | 129 | // complement of 32 output ports of a real LedWiz. You can hook up even more, |
mjr | 87:8d35c74403af | 130 | // though. Four chips gives you 64 ports, which should be plenty for nearly any |
mjr | 87:8d35c74403af | 131 | // virtual pinball project. |
mjr | 53:9b2611964afc | 132 | // |
mjr | 53:9b2611964afc | 133 | // The Pinscape Expansion Board project (which appeared in early 2016) provides |
mjr | 53:9b2611964afc | 134 | // a reference hardware design, with EAGLE circuit board layouts, that takes full |
mjr | 53:9b2611964afc | 135 | // advantage of the TLC5940 capability. It lets you create a customized set of |
mjr | 53:9b2611964afc | 136 | // outputs with full PWM control and power handling for high-current devices |
mjr | 87:8d35c74403af | 137 | // built in to the boards. |
mjr | 87:8d35c74403af | 138 | // |
mjr | 87:8d35c74403af | 139 | // To accommodate the larger supply of ports possible with the external chips, |
mjr | 87:8d35c74403af | 140 | // the controller software provides a custom, extended version of the LedWiz |
mjr | 87:8d35c74403af | 141 | // protocol that can handle up to 128 ports. Legacy PC software designed only |
mjr | 87:8d35c74403af | 142 | // for the original LedWiz obviously can't use the extended protocol, and thus |
mjr | 87:8d35c74403af | 143 | // can't take advantage of its extra capabilities, but the latest version of |
mjr | 87:8d35c74403af | 144 | // DOF (DirectOutput Framework) *does* know the new language and can take full |
mjr | 87:8d35c74403af | 145 | // advantage. Older software will still work, though - the new extensions are |
mjr | 87:8d35c74403af | 146 | // all backwards compatible, so old software that only knows about the original |
mjr | 87:8d35c74403af | 147 | // LedWiz protocol will still work, with the limitation that it can only access |
mjr | 87:8d35c74403af | 148 | // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that |
mjr | 87:8d35c74403af | 149 | // creates virtual LedWiz units representing additional ports beyond the first |
mjr | 87:8d35c74403af | 150 | // 32. This allows legacy LedWiz client software to address all ports by |
mjr | 87:8d35c74403af | 151 | // making them think that you have several physical LedWiz units installed. |
mjr | 26:cb71c4af2912 | 152 | // |
mjr | 38:091e511ce8a0 | 153 | // - Night Mode control for output devices. You can connect a switch or button |
mjr | 38:091e511ce8a0 | 154 | // to the controller to activate "Night Mode", which disables feedback devices |
mjr | 38:091e511ce8a0 | 155 | // that you designate as noisy. You can designate outputs individually as being |
mjr | 38:091e511ce8a0 | 156 | // included in this set or not. This is useful if you want to play a game on |
mjr | 38:091e511ce8a0 | 157 | // your cabinet late at night without waking the kids and annoying the neighbors. |
mjr | 38:091e511ce8a0 | 158 | // |
mjr | 38:091e511ce8a0 | 159 | // - TV ON switch. The controller can pulse a relay to turn on your TVs after |
mjr | 38:091e511ce8a0 | 160 | // power to the cabinet comes on, with a configurable delay timer. This feature |
mjr | 38:091e511ce8a0 | 161 | // is for TVs that don't turn themselves on automatically when first plugged in. |
mjr | 38:091e511ce8a0 | 162 | // To use this feature, you have to build some external circuitry to allow the |
mjr | 77:0b96f6867312 | 163 | // software to sense the power supply status. The Build Guide has details |
mjr | 77:0b96f6867312 | 164 | // on the necessary circuitry. You can use this to switch your TV on via a |
mjr | 77:0b96f6867312 | 165 | // hardwired connection to the TV's "on" button, which requires taking the |
mjr | 77:0b96f6867312 | 166 | // TV apart to gain access to its internal wiring, or optionally via the IR |
mjr | 77:0b96f6867312 | 167 | // remote control transmitter feature below. |
mjr | 77:0b96f6867312 | 168 | // |
mjr | 77:0b96f6867312 | 169 | // - Infrared (IR) remote control receiver and transmitter. You can attach an |
mjr | 77:0b96f6867312 | 170 | // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the |
mjr | 77:0b96f6867312 | 171 | // KL25Z capable of sending and/or receiving IR remote control signals. This |
mjr | 77:0b96f6867312 | 172 | // can be used with the TV ON feature above to turn your TV(s) on when the |
mjr | 77:0b96f6867312 | 173 | // system power comes on by sending the "on" command to them via IR, as though |
mjr | 77:0b96f6867312 | 174 | // you pressed the "on" button on the remote control. The sensor lets the |
mjr | 77:0b96f6867312 | 175 | // Pinscape software learn the IR codes from your existing remotes, in the |
mjr | 77:0b96f6867312 | 176 | // same manner as a handheld universal remote control, and the IR LED lets |
mjr | 77:0b96f6867312 | 177 | // it transmit learned codes. The sensor can also be used to receive codes |
mjr | 77:0b96f6867312 | 178 | // during normal operation and turn them into PC keystrokes; this lets you |
mjr | 77:0b96f6867312 | 179 | // access extra commands on the PC without adding more buttons to your |
mjr | 77:0b96f6867312 | 180 | // cabinet. The IR LED can also be used to transmit other codes when you |
mjr | 77:0b96f6867312 | 181 | // press selected cabinet buttons, allowing you to assign cabinet buttons |
mjr | 77:0b96f6867312 | 182 | // to send IR commands to your cabinet TV or other devices. |
mjr | 38:091e511ce8a0 | 183 | // |
mjr | 35:e959ffba78fd | 184 | // |
mjr | 35:e959ffba78fd | 185 | // |
mjr | 33:d832bcab089e | 186 | // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current |
mjr | 33:d832bcab089e | 187 | // device status. The flash patterns are: |
mjr | 6:cc35eb643e8f | 188 | // |
mjr | 48:058ace2aed1d | 189 | // short yellow flash = waiting to connect |
mjr | 6:cc35eb643e8f | 190 | // |
mjr | 48:058ace2aed1d | 191 | // short red flash = the connection is suspended (the host is in sleep |
mjr | 48:058ace2aed1d | 192 | // or suspend mode, the USB cable is unplugged after a connection |
mjr | 48:058ace2aed1d | 193 | // has been established) |
mjr | 48:058ace2aed1d | 194 | // |
mjr | 48:058ace2aed1d | 195 | // two short red flashes = connection lost (the device should immediately |
mjr | 48:058ace2aed1d | 196 | // go back to short-yellow "waiting to reconnect" mode when a connection |
mjr | 48:058ace2aed1d | 197 | // is lost, so this display shouldn't normally appear) |
mjr | 6:cc35eb643e8f | 198 | // |
mjr | 38:091e511ce8a0 | 199 | // long red/yellow = USB connection problem. The device still has a USB |
mjr | 48:058ace2aed1d | 200 | // connection to the host (or so it appears to the device), but data |
mjr | 48:058ace2aed1d | 201 | // transmissions are failing. |
mjr | 38:091e511ce8a0 | 202 | // |
mjr | 73:4e8ce0b18915 | 203 | // medium blue flash = TV ON delay timer running. This means that the |
mjr | 73:4e8ce0b18915 | 204 | // power to the secondary PSU has just been turned on, and the TV ON |
mjr | 73:4e8ce0b18915 | 205 | // timer is waiting for the configured delay time before pulsing the |
mjr | 73:4e8ce0b18915 | 206 | // TV power button relay. This is only shown if the TV ON feature is |
mjr | 73:4e8ce0b18915 | 207 | // enabled. |
mjr | 73:4e8ce0b18915 | 208 | // |
mjr | 6:cc35eb643e8f | 209 | // long yellow/green = everything's working, but the plunger hasn't |
mjr | 38:091e511ce8a0 | 210 | // been calibrated. Follow the calibration procedure described in |
mjr | 38:091e511ce8a0 | 211 | // the project documentation. This flash mode won't appear if there's |
mjr | 38:091e511ce8a0 | 212 | // no plunger sensor configured. |
mjr | 6:cc35eb643e8f | 213 | // |
mjr | 38:091e511ce8a0 | 214 | // alternating blue/green = everything's working normally, and plunger |
mjr | 38:091e511ce8a0 | 215 | // calibration has been completed (or there's no plunger attached) |
mjr | 10:976666ffa4ef | 216 | // |
mjr | 48:058ace2aed1d | 217 | // fast red/purple = out of memory. The controller halts and displays |
mjr | 48:058ace2aed1d | 218 | // this diagnostic code until you manually reset it. If this happens, |
mjr | 48:058ace2aed1d | 219 | // it's probably because the configuration is too complex, in which |
mjr | 48:058ace2aed1d | 220 | // case the same error will occur after the reset. If it's stuck |
mjr | 48:058ace2aed1d | 221 | // in this cycle, you'll have to restore the default configuration |
mjr | 48:058ace2aed1d | 222 | // by re-installing the controller software (the Pinscape .bin file). |
mjr | 10:976666ffa4ef | 223 | // |
mjr | 48:058ace2aed1d | 224 | // |
mjr | 48:058ace2aed1d | 225 | // USB PROTOCOL: Most of our USB messaging is through standard USB HID |
mjr | 48:058ace2aed1d | 226 | // classes (joystick, keyboard). We also accept control messages on our |
mjr | 48:058ace2aed1d | 227 | // primary HID interface "OUT endpoint" using a custom protocol that's |
mjr | 48:058ace2aed1d | 228 | // not defined in any USB standards (we do have to provide a USB HID |
mjr | 48:058ace2aed1d | 229 | // Report Descriptor for it, but this just describes the protocol as |
mjr | 48:058ace2aed1d | 230 | // opaque vendor-defined bytes). The control protocol incorporates the |
mjr | 48:058ace2aed1d | 231 | // LedWiz protocol as a subset, and adds our own private extensions. |
mjr | 48:058ace2aed1d | 232 | // For full details, see USBProtocol.h. |
mjr | 33:d832bcab089e | 233 | |
mjr | 33:d832bcab089e | 234 | |
mjr | 0:5acbbe3f4cf4 | 235 | #include "mbed.h" |
mjr | 6:cc35eb643e8f | 236 | #include "math.h" |
mjr | 74:822a92bc11d2 | 237 | #include "diags.h" |
mjr | 48:058ace2aed1d | 238 | #include "pinscape.h" |
mjr | 79:682ae3171a08 | 239 | #include "NewMalloc.h" |
mjr | 0:5acbbe3f4cf4 | 240 | #include "USBJoystick.h" |
mjr | 0:5acbbe3f4cf4 | 241 | #include "MMA8451Q.h" |
mjr | 1:d913e0afb2ac | 242 | #include "FreescaleIAP.h" |
mjr | 2:c174f9ee414a | 243 | #include "crc32.h" |
mjr | 26:cb71c4af2912 | 244 | #include "TLC5940.h" |
mjr | 87:8d35c74403af | 245 | #include "TLC59116.h" |
mjr | 34:6b981a2afab7 | 246 | #include "74HC595.h" |
mjr | 35:e959ffba78fd | 247 | #include "nvm.h" |
mjr | 48:058ace2aed1d | 248 | #include "TinyDigitalIn.h" |
mjr | 77:0b96f6867312 | 249 | #include "IRReceiver.h" |
mjr | 77:0b96f6867312 | 250 | #include "IRTransmitter.h" |
mjr | 77:0b96f6867312 | 251 | #include "NewPwm.h" |
mjr | 74:822a92bc11d2 | 252 | |
mjr | 82:4f6209cb5c33 | 253 | // plunger sensors |
mjr | 82:4f6209cb5c33 | 254 | #include "plunger.h" |
mjr | 82:4f6209cb5c33 | 255 | #include "edgeSensor.h" |
mjr | 82:4f6209cb5c33 | 256 | #include "potSensor.h" |
mjr | 82:4f6209cb5c33 | 257 | #include "quadSensor.h" |
mjr | 82:4f6209cb5c33 | 258 | #include "nullSensor.h" |
mjr | 82:4f6209cb5c33 | 259 | #include "barCodeSensor.h" |
mjr | 82:4f6209cb5c33 | 260 | #include "distanceSensor.h" |
mjr | 87:8d35c74403af | 261 | #include "tsl14xxSensor.h" |
mjr | 82:4f6209cb5c33 | 262 | |
mjr | 2:c174f9ee414a | 263 | |
mjr | 21:5048e16cc9ef | 264 | #define DECL_EXTERNS |
mjr | 17:ab3cec0c8bf4 | 265 | #include "config.h" |
mjr | 17:ab3cec0c8bf4 | 266 | |
mjr | 76:7f5912b6340e | 267 | // forward declarations |
mjr | 76:7f5912b6340e | 268 | static void waitPlungerIdle(void); |
mjr | 53:9b2611964afc | 269 | |
mjr | 53:9b2611964afc | 270 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 271 | // |
mjr | 53:9b2611964afc | 272 | // OpenSDA module identifier. This is for the benefit of the Windows |
mjr | 53:9b2611964afc | 273 | // configuration tool. When the config tool installs a .bin file onto |
mjr | 53:9b2611964afc | 274 | // the KL25Z, it will first find the sentinel string within the .bin file, |
mjr | 53:9b2611964afc | 275 | // and patch the "\0" bytes that follow the sentinel string with the |
mjr | 53:9b2611964afc | 276 | // OpenSDA module ID data. This allows us to report the OpenSDA |
mjr | 53:9b2611964afc | 277 | // identifiers back to the host system via USB, which in turn allows the |
mjr | 53:9b2611964afc | 278 | // config tool to figure out which OpenSDA MSD (mass storage device - a |
mjr | 53:9b2611964afc | 279 | // virtual disk drive) correlates to which Pinscape controller USB |
mjr | 53:9b2611964afc | 280 | // interface. |
mjr | 53:9b2611964afc | 281 | // |
mjr | 53:9b2611964afc | 282 | // This is only important if multiple Pinscape devices are attached to |
mjr | 53:9b2611964afc | 283 | // the same host. There doesn't seem to be any other way to figure out |
mjr | 53:9b2611964afc | 284 | // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA |
mjr | 53:9b2611964afc | 285 | // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't |
mjr | 53:9b2611964afc | 286 | // have any way to learn about the OpenSDA module it's connected to. The |
mjr | 53:9b2611964afc | 287 | // only way to pass this information to the KL25Z side that I can come up |
mjr | 53:9b2611964afc | 288 | // with is to have the Windows host embed it in the .bin file before |
mjr | 53:9b2611964afc | 289 | // downloading it to the OpenSDA MSD. |
mjr | 53:9b2611964afc | 290 | // |
mjr | 53:9b2611964afc | 291 | // We initialize the const data buffer (the part after the sentinel string) |
mjr | 53:9b2611964afc | 292 | // with all "\0" bytes, so that's what will be in the executable image that |
mjr | 53:9b2611964afc | 293 | // comes out of the mbed compiler. If you manually install the resulting |
mjr | 53:9b2611964afc | 294 | // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes |
mjr | 53:9b2611964afc | 295 | // will stay this way and read as all 0's at run-time. Since a real TUID |
mjr | 53:9b2611964afc | 296 | // would never be all 0's, that tells us that we were never patched and |
mjr | 53:9b2611964afc | 297 | // thus don't have any information on the OpenSDA module. |
mjr | 53:9b2611964afc | 298 | // |
mjr | 53:9b2611964afc | 299 | const char *getOpenSDAID() |
mjr | 53:9b2611964afc | 300 | { |
mjr | 53:9b2611964afc | 301 | #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///" |
mjr | 53:9b2611964afc | 302 | static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///"; |
mjr | 53:9b2611964afc | 303 | const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1; |
mjr | 53:9b2611964afc | 304 | |
mjr | 53:9b2611964afc | 305 | return OpenSDA + OpenSDA_prefix_length; |
mjr | 53:9b2611964afc | 306 | } |
mjr | 53:9b2611964afc | 307 | |
mjr | 53:9b2611964afc | 308 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 309 | // |
mjr | 53:9b2611964afc | 310 | // Build ID. We use the date and time of compiling the program as a build |
mjr | 53:9b2611964afc | 311 | // identifier. It would be a little nicer to use a simple serial number |
mjr | 53:9b2611964afc | 312 | // instead, but the mbed platform doesn't have a way to automate that. The |
mjr | 53:9b2611964afc | 313 | // timestamp is a pretty good proxy for a serial number in that it will |
mjr | 53:9b2611964afc | 314 | // naturally increase on each new build, which is the primary property we |
mjr | 53:9b2611964afc | 315 | // want from this. |
mjr | 53:9b2611964afc | 316 | // |
mjr | 53:9b2611964afc | 317 | // As with the embedded OpenSDA ID, we store the build timestamp with a |
mjr | 53:9b2611964afc | 318 | // sentinel string prefix, to allow automated tools to find the static data |
mjr | 53:9b2611964afc | 319 | // in the .bin file by searching for the sentinel string. In contrast to |
mjr | 53:9b2611964afc | 320 | // the OpenSDA ID, the value we store here is for tools to extract rather |
mjr | 53:9b2611964afc | 321 | // than store, since we automatically populate it via the preprocessor |
mjr | 53:9b2611964afc | 322 | // macros. |
mjr | 53:9b2611964afc | 323 | // |
mjr | 53:9b2611964afc | 324 | const char *getBuildID() |
mjr | 53:9b2611964afc | 325 | { |
mjr | 53:9b2611964afc | 326 | #define BUILDID_PREFIX "///Pinscape.Build.ID///" |
mjr | 53:9b2611964afc | 327 | static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///"; |
mjr | 53:9b2611964afc | 328 | const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1; |
mjr | 53:9b2611964afc | 329 | |
mjr | 53:9b2611964afc | 330 | return BuildID + BuildID_prefix_length; |
mjr | 53:9b2611964afc | 331 | } |
mjr | 53:9b2611964afc | 332 | |
mjr | 74:822a92bc11d2 | 333 | // -------------------------------------------------------------------------- |
mjr | 74:822a92bc11d2 | 334 | // Main loop iteration timing statistics. Collected only if |
mjr | 74:822a92bc11d2 | 335 | // ENABLE_DIAGNOSTICS is set in diags.h. |
mjr | 76:7f5912b6340e | 336 | #if ENABLE_DIAGNOSTICS |
mjr | 76:7f5912b6340e | 337 | uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount; |
mjr | 76:7f5912b6340e | 338 | uint64_t mainLoopMsgTime, mainLoopMsgCount; |
mjr | 76:7f5912b6340e | 339 | Timer mainLoopTimer; |
mjr | 76:7f5912b6340e | 340 | #endif |
mjr | 76:7f5912b6340e | 341 | |
mjr | 53:9b2611964afc | 342 | |
mjr | 5:a70c0bce770d | 343 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 344 | // |
mjr | 38:091e511ce8a0 | 345 | // Forward declarations |
mjr | 38:091e511ce8a0 | 346 | // |
mjr | 38:091e511ce8a0 | 347 | void setNightMode(bool on); |
mjr | 38:091e511ce8a0 | 348 | void toggleNightMode(); |
mjr | 38:091e511ce8a0 | 349 | |
mjr | 38:091e511ce8a0 | 350 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 351 | // utilities |
mjr | 17:ab3cec0c8bf4 | 352 | |
mjr | 77:0b96f6867312 | 353 | // int/float point square of a number |
mjr | 77:0b96f6867312 | 354 | inline int square(int x) { return x*x; } |
mjr | 26:cb71c4af2912 | 355 | inline float square(float x) { return x*x; } |
mjr | 26:cb71c4af2912 | 356 | |
mjr | 26:cb71c4af2912 | 357 | // floating point rounding |
mjr | 26:cb71c4af2912 | 358 | inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); } |
mjr | 26:cb71c4af2912 | 359 | |
mjr | 17:ab3cec0c8bf4 | 360 | |
mjr | 33:d832bcab089e | 361 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 362 | // |
mjr | 40:cc0d9814522b | 363 | // Extended verison of Timer class. This adds the ability to interrogate |
mjr | 40:cc0d9814522b | 364 | // the running state. |
mjr | 40:cc0d9814522b | 365 | // |
mjr | 77:0b96f6867312 | 366 | class ExtTimer: public Timer |
mjr | 40:cc0d9814522b | 367 | { |
mjr | 40:cc0d9814522b | 368 | public: |
mjr | 77:0b96f6867312 | 369 | ExtTimer() : running(false) { } |
mjr | 40:cc0d9814522b | 370 | |
mjr | 40:cc0d9814522b | 371 | void start() { running = true; Timer::start(); } |
mjr | 40:cc0d9814522b | 372 | void stop() { running = false; Timer::stop(); } |
mjr | 40:cc0d9814522b | 373 | |
mjr | 40:cc0d9814522b | 374 | bool isRunning() const { return running; } |
mjr | 40:cc0d9814522b | 375 | |
mjr | 40:cc0d9814522b | 376 | private: |
mjr | 40:cc0d9814522b | 377 | bool running; |
mjr | 40:cc0d9814522b | 378 | }; |
mjr | 40:cc0d9814522b | 379 | |
mjr | 53:9b2611964afc | 380 | |
mjr | 53:9b2611964afc | 381 | // -------------------------------------------------------------------------- |
mjr | 40:cc0d9814522b | 382 | // |
mjr | 33:d832bcab089e | 383 | // USB product version number |
mjr | 5:a70c0bce770d | 384 | // |
mjr | 47:df7a88cd249c | 385 | const uint16_t USB_VERSION_NO = 0x000A; |
mjr | 33:d832bcab089e | 386 | |
mjr | 33:d832bcab089e | 387 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 388 | // |
mjr | 6:cc35eb643e8f | 389 | // Joystick axis report range - we report from -JOYMAX to +JOYMAX |
mjr | 33:d832bcab089e | 390 | // |
mjr | 6:cc35eb643e8f | 391 | #define JOYMAX 4096 |
mjr | 6:cc35eb643e8f | 392 | |
mjr | 9:fd65b0a94720 | 393 | |
mjr | 17:ab3cec0c8bf4 | 394 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 395 | // |
mjr | 40:cc0d9814522b | 396 | // Wire protocol value translations. These translate byte values to and |
mjr | 40:cc0d9814522b | 397 | // from the USB protocol to local native format. |
mjr | 35:e959ffba78fd | 398 | // |
mjr | 35:e959ffba78fd | 399 | |
mjr | 35:e959ffba78fd | 400 | // unsigned 16-bit integer |
mjr | 35:e959ffba78fd | 401 | inline uint16_t wireUI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 402 | { |
mjr | 35:e959ffba78fd | 403 | return b[0] | ((uint16_t)b[1] << 8); |
mjr | 35:e959ffba78fd | 404 | } |
mjr | 40:cc0d9814522b | 405 | inline void ui16Wire(uint8_t *b, uint16_t val) |
mjr | 40:cc0d9814522b | 406 | { |
mjr | 40:cc0d9814522b | 407 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 408 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 409 | } |
mjr | 35:e959ffba78fd | 410 | |
mjr | 35:e959ffba78fd | 411 | inline int16_t wireI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 412 | { |
mjr | 35:e959ffba78fd | 413 | return (int16_t)wireUI16(b); |
mjr | 35:e959ffba78fd | 414 | } |
mjr | 40:cc0d9814522b | 415 | inline void i16Wire(uint8_t *b, int16_t val) |
mjr | 40:cc0d9814522b | 416 | { |
mjr | 40:cc0d9814522b | 417 | ui16Wire(b, (uint16_t)val); |
mjr | 40:cc0d9814522b | 418 | } |
mjr | 35:e959ffba78fd | 419 | |
mjr | 35:e959ffba78fd | 420 | inline uint32_t wireUI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 421 | { |
mjr | 35:e959ffba78fd | 422 | return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24); |
mjr | 35:e959ffba78fd | 423 | } |
mjr | 40:cc0d9814522b | 424 | inline void ui32Wire(uint8_t *b, uint32_t val) |
mjr | 40:cc0d9814522b | 425 | { |
mjr | 40:cc0d9814522b | 426 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 427 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 428 | b[2] = (uint8_t)((val >> 16) & 0xff); |
mjr | 40:cc0d9814522b | 429 | b[3] = (uint8_t)((val >> 24) & 0xff); |
mjr | 40:cc0d9814522b | 430 | } |
mjr | 35:e959ffba78fd | 431 | |
mjr | 35:e959ffba78fd | 432 | inline int32_t wireI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 433 | { |
mjr | 35:e959ffba78fd | 434 | return (int32_t)wireUI32(b); |
mjr | 35:e959ffba78fd | 435 | } |
mjr | 35:e959ffba78fd | 436 | |
mjr | 53:9b2611964afc | 437 | // Convert "wire" (USB) pin codes to/from PinName values. |
mjr | 53:9b2611964afc | 438 | // |
mjr | 53:9b2611964afc | 439 | // The internal mbed PinName format is |
mjr | 53:9b2611964afc | 440 | // |
mjr | 53:9b2611964afc | 441 | // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT |
mjr | 53:9b2611964afc | 442 | // |
mjr | 53:9b2611964afc | 443 | // where 'port' is 0-4 for Port A to Port E, and 'pin' is |
mjr | 53:9b2611964afc | 444 | // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2). |
mjr | 53:9b2611964afc | 445 | // |
mjr | 53:9b2611964afc | 446 | // We remap this to our more compact wire format where each |
mjr | 53:9b2611964afc | 447 | // pin name fits in 8 bits: |
mjr | 53:9b2611964afc | 448 | // |
mjr | 53:9b2611964afc | 449 | // ((port) << 5) | pin) // WIRE FORMAT |
mjr | 53:9b2611964afc | 450 | // |
mjr | 53:9b2611964afc | 451 | // E.g., E31 is (4 << 5) | 31. |
mjr | 53:9b2611964afc | 452 | // |
mjr | 53:9b2611964afc | 453 | // Wire code FF corresponds to PinName NC (not connected). |
mjr | 53:9b2611964afc | 454 | // |
mjr | 53:9b2611964afc | 455 | inline PinName wirePinName(uint8_t c) |
mjr | 35:e959ffba78fd | 456 | { |
mjr | 53:9b2611964afc | 457 | if (c == 0xFF) |
mjr | 53:9b2611964afc | 458 | return NC; // 0xFF -> NC |
mjr | 53:9b2611964afc | 459 | else |
mjr | 53:9b2611964afc | 460 | return PinName( |
mjr | 53:9b2611964afc | 461 | (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port |
mjr | 53:9b2611964afc | 462 | | (int(c & 0x1F) << 2)); // bottom five bits are pin |
mjr | 40:cc0d9814522b | 463 | } |
mjr | 40:cc0d9814522b | 464 | inline void pinNameWire(uint8_t *b, PinName n) |
mjr | 40:cc0d9814522b | 465 | { |
mjr | 53:9b2611964afc | 466 | *b = PINNAME_TO_WIRE(n); |
mjr | 35:e959ffba78fd | 467 | } |
mjr | 35:e959ffba78fd | 468 | |
mjr | 35:e959ffba78fd | 469 | |
mjr | 35:e959ffba78fd | 470 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 471 | // |
mjr | 38:091e511ce8a0 | 472 | // On-board RGB LED elements - we use these for diagnostic displays. |
mjr | 38:091e511ce8a0 | 473 | // |
mjr | 38:091e511ce8a0 | 474 | // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1, |
mjr | 38:091e511ce8a0 | 475 | // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard |
mjr | 38:091e511ce8a0 | 476 | // input or a device output). This is kind of unfortunate in that it's |
mjr | 38:091e511ce8a0 | 477 | // one of only two ports exposed on the jumper pins that can be muxed to |
mjr | 38:091e511ce8a0 | 478 | // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the |
mjr | 38:091e511ce8a0 | 479 | // SPI capability. |
mjr | 38:091e511ce8a0 | 480 | // |
mjr | 38:091e511ce8a0 | 481 | DigitalOut *ledR, *ledG, *ledB; |
mjr | 38:091e511ce8a0 | 482 | |
mjr | 73:4e8ce0b18915 | 483 | // Power on timer state for diagnostics. We flash the blue LED when |
mjr | 77:0b96f6867312 | 484 | // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also |
mjr | 77:0b96f6867312 | 485 | // show red when transmitting an LED signal, indicated by state 4. |
mjr | 73:4e8ce0b18915 | 486 | uint8_t powerTimerDiagState = 0; |
mjr | 73:4e8ce0b18915 | 487 | |
mjr | 38:091e511ce8a0 | 488 | // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is |
mjr | 38:091e511ce8a0 | 489 | // on, and -1 is no change (leaves the current setting intact). |
mjr | 73:4e8ce0b18915 | 490 | static uint8_t diagLEDState = 0; |
mjr | 38:091e511ce8a0 | 491 | void diagLED(int r, int g, int b) |
mjr | 38:091e511ce8a0 | 492 | { |
mjr | 73:4e8ce0b18915 | 493 | // remember the new state |
mjr | 73:4e8ce0b18915 | 494 | diagLEDState = r | (g << 1) | (b << 2); |
mjr | 73:4e8ce0b18915 | 495 | |
mjr | 73:4e8ce0b18915 | 496 | // if turning everything off, use the power timer state instead, |
mjr | 73:4e8ce0b18915 | 497 | // applying it to the blue LED |
mjr | 73:4e8ce0b18915 | 498 | if (diagLEDState == 0) |
mjr | 77:0b96f6867312 | 499 | { |
mjr | 77:0b96f6867312 | 500 | b = (powerTimerDiagState == 2 || powerTimerDiagState == 3); |
mjr | 77:0b96f6867312 | 501 | r = (powerTimerDiagState == 4); |
mjr | 77:0b96f6867312 | 502 | } |
mjr | 73:4e8ce0b18915 | 503 | |
mjr | 73:4e8ce0b18915 | 504 | // set the new state |
mjr | 38:091e511ce8a0 | 505 | if (ledR != 0 && r != -1) ledR->write(!r); |
mjr | 38:091e511ce8a0 | 506 | if (ledG != 0 && g != -1) ledG->write(!g); |
mjr | 38:091e511ce8a0 | 507 | if (ledB != 0 && b != -1) ledB->write(!b); |
mjr | 38:091e511ce8a0 | 508 | } |
mjr | 38:091e511ce8a0 | 509 | |
mjr | 73:4e8ce0b18915 | 510 | // update the LEDs with the current state |
mjr | 73:4e8ce0b18915 | 511 | void diagLED(void) |
mjr | 73:4e8ce0b18915 | 512 | { |
mjr | 73:4e8ce0b18915 | 513 | diagLED( |
mjr | 73:4e8ce0b18915 | 514 | diagLEDState & 0x01, |
mjr | 73:4e8ce0b18915 | 515 | (diagLEDState >> 1) & 0x01, |
mjr | 77:0b96f6867312 | 516 | (diagLEDState >> 2) & 0x01); |
mjr | 73:4e8ce0b18915 | 517 | } |
mjr | 73:4e8ce0b18915 | 518 | |
mjr | 38:091e511ce8a0 | 519 | // check an output port assignment to see if it conflicts with |
mjr | 38:091e511ce8a0 | 520 | // an on-board LED segment |
mjr | 38:091e511ce8a0 | 521 | struct LedSeg |
mjr | 38:091e511ce8a0 | 522 | { |
mjr | 38:091e511ce8a0 | 523 | bool r, g, b; |
mjr | 38:091e511ce8a0 | 524 | LedSeg() { r = g = b = false; } |
mjr | 38:091e511ce8a0 | 525 | |
mjr | 38:091e511ce8a0 | 526 | void check(LedWizPortCfg &pc) |
mjr | 38:091e511ce8a0 | 527 | { |
mjr | 38:091e511ce8a0 | 528 | // if it's a GPIO, check to see if it's assigned to one of |
mjr | 38:091e511ce8a0 | 529 | // our on-board LED segments |
mjr | 38:091e511ce8a0 | 530 | int t = pc.typ; |
mjr | 38:091e511ce8a0 | 531 | if (t == PortTypeGPIOPWM || t == PortTypeGPIODig) |
mjr | 38:091e511ce8a0 | 532 | { |
mjr | 38:091e511ce8a0 | 533 | // it's a GPIO port - check for a matching pin assignment |
mjr | 38:091e511ce8a0 | 534 | PinName pin = wirePinName(pc.pin); |
mjr | 38:091e511ce8a0 | 535 | if (pin == LED1) |
mjr | 38:091e511ce8a0 | 536 | r = true; |
mjr | 38:091e511ce8a0 | 537 | else if (pin == LED2) |
mjr | 38:091e511ce8a0 | 538 | g = true; |
mjr | 38:091e511ce8a0 | 539 | else if (pin == LED3) |
mjr | 38:091e511ce8a0 | 540 | b = true; |
mjr | 38:091e511ce8a0 | 541 | } |
mjr | 38:091e511ce8a0 | 542 | } |
mjr | 38:091e511ce8a0 | 543 | }; |
mjr | 38:091e511ce8a0 | 544 | |
mjr | 38:091e511ce8a0 | 545 | // Initialize the diagnostic LEDs. By default, we use the on-board |
mjr | 38:091e511ce8a0 | 546 | // RGB LED to display the microcontroller status. However, we allow |
mjr | 38:091e511ce8a0 | 547 | // the user to commandeer the on-board LED as an LedWiz output device, |
mjr | 38:091e511ce8a0 | 548 | // which can be useful for testing a new installation. So we'll check |
mjr | 38:091e511ce8a0 | 549 | // for LedWiz outputs assigned to the on-board LED segments, and turn |
mjr | 38:091e511ce8a0 | 550 | // off the diagnostic use for any so assigned. |
mjr | 38:091e511ce8a0 | 551 | void initDiagLEDs(Config &cfg) |
mjr | 38:091e511ce8a0 | 552 | { |
mjr | 38:091e511ce8a0 | 553 | // run through the configuration list and cross off any of the |
mjr | 38:091e511ce8a0 | 554 | // LED segments assigned to LedWiz ports |
mjr | 38:091e511ce8a0 | 555 | LedSeg l; |
mjr | 38:091e511ce8a0 | 556 | for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i) |
mjr | 38:091e511ce8a0 | 557 | l.check(cfg.outPort[i]); |
mjr | 38:091e511ce8a0 | 558 | |
mjr | 38:091e511ce8a0 | 559 | // We now know which segments are taken for LedWiz use and which |
mjr | 38:091e511ce8a0 | 560 | // are free. Create diagnostic ports for the ones not claimed for |
mjr | 38:091e511ce8a0 | 561 | // LedWiz use. |
mjr | 38:091e511ce8a0 | 562 | if (!l.r) ledR = new DigitalOut(LED1, 1); |
mjr | 38:091e511ce8a0 | 563 | if (!l.g) ledG = new DigitalOut(LED2, 1); |
mjr | 38:091e511ce8a0 | 564 | if (!l.b) ledB = new DigitalOut(LED3, 1); |
mjr | 38:091e511ce8a0 | 565 | } |
mjr | 38:091e511ce8a0 | 566 | |
mjr | 38:091e511ce8a0 | 567 | |
mjr | 38:091e511ce8a0 | 568 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 569 | // |
mjr | 76:7f5912b6340e | 570 | // LedWiz emulation |
mjr | 76:7f5912b6340e | 571 | // |
mjr | 76:7f5912b6340e | 572 | |
mjr | 76:7f5912b6340e | 573 | // LedWiz output states. |
mjr | 76:7f5912b6340e | 574 | // |
mjr | 76:7f5912b6340e | 575 | // The LedWiz protocol has two separate control axes for each output. |
mjr | 76:7f5912b6340e | 576 | // One axis is its on/off state; the other is its "profile" state, which |
mjr | 76:7f5912b6340e | 577 | // is either a fixed brightness or a blinking pattern for the light. |
mjr | 76:7f5912b6340e | 578 | // The two axes are independent. |
mjr | 76:7f5912b6340e | 579 | // |
mjr | 76:7f5912b6340e | 580 | // Even though the original LedWiz protocol can only access 32 ports, we |
mjr | 76:7f5912b6340e | 581 | // maintain LedWiz state for every port, even if we have more than 32. Our |
mjr | 76:7f5912b6340e | 582 | // extended protocol allows the client to send LedWiz-style messages that |
mjr | 76:7f5912b6340e | 583 | // control any set of ports. A replacement LEDWIZ.DLL can make a single |
mjr | 76:7f5912b6340e | 584 | // Pinscape unit look like multiple virtual LedWiz units to legacy clients, |
mjr | 76:7f5912b6340e | 585 | // allowing them to control all of our ports. The clients will still be |
mjr | 76:7f5912b6340e | 586 | // using LedWiz-style states to control the ports, so we need to support |
mjr | 76:7f5912b6340e | 587 | // the LedWiz scheme with separate on/off and brightness control per port. |
mjr | 76:7f5912b6340e | 588 | |
mjr | 76:7f5912b6340e | 589 | // On/off state for each LedWiz output |
mjr | 76:7f5912b6340e | 590 | static uint8_t *wizOn; |
mjr | 76:7f5912b6340e | 591 | |
mjr | 76:7f5912b6340e | 592 | // LedWiz "Profile State" (the LedWiz brightness level or blink mode) |
mjr | 76:7f5912b6340e | 593 | // for each LedWiz output. If the output was last updated through an |
mjr | 76:7f5912b6340e | 594 | // LedWiz protocol message, it will have one of these values: |
mjr | 76:7f5912b6340e | 595 | // |
mjr | 76:7f5912b6340e | 596 | // 0-48 = fixed brightness 0% to 100% |
mjr | 76:7f5912b6340e | 597 | // 49 = fixed brightness 100% (equivalent to 48) |
mjr | 76:7f5912b6340e | 598 | // 129 = ramp up / ramp down |
mjr | 76:7f5912b6340e | 599 | // 130 = flash on / off |
mjr | 76:7f5912b6340e | 600 | // 131 = on / ramp down |
mjr | 76:7f5912b6340e | 601 | // 132 = ramp up / on |
mjr | 5:a70c0bce770d | 602 | // |
mjr | 76:7f5912b6340e | 603 | // (Note that value 49 isn't documented in the LedWiz spec, but real |
mjr | 76:7f5912b6340e | 604 | // LedWiz units treat it as equivalent to 48, and some PC software uses |
mjr | 76:7f5912b6340e | 605 | // it, so we need to accept it for compatibility.) |
mjr | 76:7f5912b6340e | 606 | static uint8_t *wizVal; |
mjr | 76:7f5912b6340e | 607 | |
mjr | 76:7f5912b6340e | 608 | // Current actual brightness for each output. This is a simple linear |
mjr | 76:7f5912b6340e | 609 | // value on a 0..255 scale. This is EITHER the linear brightness computed |
mjr | 76:7f5912b6340e | 610 | // from the LedWiz setting for the port, OR the 0..255 value set explicitly |
mjr | 76:7f5912b6340e | 611 | // by the extended protocol: |
mjr | 76:7f5912b6340e | 612 | // |
mjr | 76:7f5912b6340e | 613 | // - If the last command that updated the port was an extended protocol |
mjr | 76:7f5912b6340e | 614 | // SET BRIGHTNESS command, this is the value set by that command. In |
mjr | 76:7f5912b6340e | 615 | // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise; |
mjr | 76:7f5912b6340e | 616 | // and wizVal[port] is set to the brightness rescaled to the 0..48 range |
mjr | 76:7f5912b6340e | 617 | // if the brightness is non-zero. |
mjr | 76:7f5912b6340e | 618 | // |
mjr | 76:7f5912b6340e | 619 | // - If the last command that updated the port was an LedWiz command |
mjr | 76:7f5912b6340e | 620 | // (SBA/PBA/SBX/PBX), this contains the brightness value computed from |
mjr | 76:7f5912b6340e | 621 | // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is |
mjr | 76:7f5912b6340e | 622 | // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the |
mjr | 76:7f5912b6340e | 623 | // 0..255 range. |
mjr | 26:cb71c4af2912 | 624 | // |
mjr | 76:7f5912b6340e | 625 | // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is |
mjr | 76:7f5912b6340e | 626 | // also updated continuously to reflect the current flashing brightness |
mjr | 76:7f5912b6340e | 627 | // level. |
mjr | 26:cb71c4af2912 | 628 | // |
mjr | 76:7f5912b6340e | 629 | static uint8_t *outLevel; |
mjr | 76:7f5912b6340e | 630 | |
mjr | 76:7f5912b6340e | 631 | |
mjr | 76:7f5912b6340e | 632 | // LedWiz flash speed. This is a value from 1 to 7 giving the pulse |
mjr | 76:7f5912b6340e | 633 | // rate for lights in blinking states. The LedWiz API doesn't document |
mjr | 76:7f5912b6340e | 634 | // what the numbers mean in real time units, but by observation, the |
mjr | 76:7f5912b6340e | 635 | // "speed" setting represents the period of the flash cycle in 0.25s |
mjr | 76:7f5912b6340e | 636 | // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz. |
mjr | 76:7f5912b6340e | 637 | // The period is the full cycle time of the flash waveform. |
mjr | 76:7f5912b6340e | 638 | // |
mjr | 76:7f5912b6340e | 639 | // Each bank of 32 lights has its independent own pulse rate, so we need |
mjr | 76:7f5912b6340e | 640 | // one entry per bank. Each bank has 32 outputs, so we need a total of |
mjr | 76:7f5912b6340e | 641 | // ceil(number_of_physical_outputs/32) entries. Note that we could allocate |
mjr | 76:7f5912b6340e | 642 | // this dynamically once we know the number of actual outputs, but the |
mjr | 76:7f5912b6340e | 643 | // upper limit is low enough that it's more efficient to use a fixed array |
mjr | 76:7f5912b6340e | 644 | // at the maximum size. |
mjr | 76:7f5912b6340e | 645 | static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32; |
mjr | 76:7f5912b6340e | 646 | static uint8_t wizSpeed[MAX_LW_BANKS]; |
mjr | 29:582472d0bc57 | 647 | |
mjr | 26:cb71c4af2912 | 648 | // Current starting output index for "PBA" messages from the PC (using |
mjr | 26:cb71c4af2912 | 649 | // the LedWiz USB protocol). Each PBA message implicitly uses the |
mjr | 26:cb71c4af2912 | 650 | // current index as the starting point for the ports referenced in |
mjr | 26:cb71c4af2912 | 651 | // the message, and increases it (by 8) for the next call. |
mjr | 0:5acbbe3f4cf4 | 652 | static int pbaIdx = 0; |
mjr | 0:5acbbe3f4cf4 | 653 | |
mjr | 76:7f5912b6340e | 654 | |
mjr | 76:7f5912b6340e | 655 | // --------------------------------------------------------------------------- |
mjr | 76:7f5912b6340e | 656 | // |
mjr | 76:7f5912b6340e | 657 | // Output Ports |
mjr | 76:7f5912b6340e | 658 | // |
mjr | 76:7f5912b6340e | 659 | // There are two way to connect outputs. First, you can use the on-board |
mjr | 76:7f5912b6340e | 660 | // GPIO ports to implement device outputs: each LedWiz software port is |
mjr | 76:7f5912b6340e | 661 | // connected to a physical GPIO pin on the KL25Z. This has some pretty |
mjr | 76:7f5912b6340e | 662 | // strict limits, though. The KL25Z only has 10 PWM channels, so only 10 |
mjr | 76:7f5912b6340e | 663 | // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off. |
mjr | 76:7f5912b6340e | 664 | // The KL25Z also simply doesn't have enough exposed GPIO ports overall to |
mjr | 76:7f5912b6340e | 665 | // support all of the features the software supports. The software allows |
mjr | 76:7f5912b6340e | 666 | // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5 |
mjr | 76:7f5912b6340e | 667 | // GPIO pins), and various other external devices. The KL25Z only exposes |
mjr | 76:7f5912b6340e | 668 | // about 50 GPIO pins. So if you want to do everything with GPIO ports, |
mjr | 76:7f5912b6340e | 669 | // you have to ration pins among features. |
mjr | 76:7f5912b6340e | 670 | // |
mjr | 87:8d35c74403af | 671 | // To overcome some of these limitations, we also support several external |
mjr | 76:7f5912b6340e | 672 | // peripheral controllers that allow adding many more outputs, using only |
mjr | 87:8d35c74403af | 673 | // a small number of GPIO pins to interface with the peripherals: |
mjr | 87:8d35c74403af | 674 | // |
mjr | 87:8d35c74403af | 675 | // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with |
mjr | 87:8d35c74403af | 676 | // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The |
mjr | 87:8d35c74403af | 677 | // chips connect via 5 GPIO pins, and since they're daisy-chainable, |
mjr | 87:8d35c74403af | 678 | // one set of 5 pins can control any number of the chips. So this chip |
mjr | 87:8d35c74403af | 679 | // effectively converts 5 GPIO pins into almost any number of PWM outputs. |
mjr | 87:8d35c74403af | 680 | // |
mjr | 87:8d35c74403af | 681 | // - TLC59116 PWM controller chips. These are similar to the TLC5940 but |
mjr | 87:8d35c74403af | 682 | // a newer generation with an improved design. These use an I2C bus, |
mjr | 87:8d35c74403af | 683 | // allowing up to 14 chips to be connected via 3 GPIO pins. |
mjr | 87:8d35c74403af | 684 | // |
mjr | 87:8d35c74403af | 685 | // - 74HC595 shift register chips. These provide 8 digital (on/off only) |
mjr | 87:8d35c74403af | 686 | // outputs per chip. These need 4 GPIO pins, and like the other can be |
mjr | 87:8d35c74403af | 687 | // daisy chained to add more outputs without using more GPIO pins. These |
mjr | 87:8d35c74403af | 688 | // are advantageous for outputs that don't require PWM, since the data |
mjr | 87:8d35c74403af | 689 | // transfer sizes are so much smaller. The expansion boards use these |
mjr | 87:8d35c74403af | 690 | // for the chime board outputs. |
mjr | 76:7f5912b6340e | 691 | // |
mjr | 76:7f5912b6340e | 692 | // Direct GPIO output ports and peripheral controllers can be mixed and |
mjr | 76:7f5912b6340e | 693 | // matched in one system. The assignment of pins to ports and the |
mjr | 76:7f5912b6340e | 694 | // configuration of peripheral controllers is all handled in the software |
mjr | 76:7f5912b6340e | 695 | // setup, so a physical system can be expanded and updated at any time. |
mjr | 76:7f5912b6340e | 696 | // |
mjr | 76:7f5912b6340e | 697 | // To handle the diversity of output port types, we start with an abstract |
mjr | 76:7f5912b6340e | 698 | // base class for outputs. Each type of physical output interface has a |
mjr | 76:7f5912b6340e | 699 | // concrete subclass. During initialization, we create the appropriate |
mjr | 76:7f5912b6340e | 700 | // subclass for each software port, mapping it to the assigned GPIO pin |
mjr | 76:7f5912b6340e | 701 | // or peripheral port. Most of the rest of the software only cares about |
mjr | 76:7f5912b6340e | 702 | // the abstract interface, so once the subclassed port objects are set up, |
mjr | 76:7f5912b6340e | 703 | // the rest of the system can control the ports without knowing which types |
mjr | 76:7f5912b6340e | 704 | // of physical devices they're connected to. |
mjr | 76:7f5912b6340e | 705 | |
mjr | 76:7f5912b6340e | 706 | |
mjr | 26:cb71c4af2912 | 707 | // Generic LedWiz output port interface. We create a cover class to |
mjr | 26:cb71c4af2912 | 708 | // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external |
mjr | 26:cb71c4af2912 | 709 | // TLC5940 outputs, and give them all a common interface. |
mjr | 6:cc35eb643e8f | 710 | class LwOut |
mjr | 6:cc35eb643e8f | 711 | { |
mjr | 6:cc35eb643e8f | 712 | public: |
mjr | 40:cc0d9814522b | 713 | // Set the output intensity. 'val' is 0 for fully off, 255 for |
mjr | 40:cc0d9814522b | 714 | // fully on, with values in between signifying lower intensity. |
mjr | 40:cc0d9814522b | 715 | virtual void set(uint8_t val) = 0; |
mjr | 6:cc35eb643e8f | 716 | }; |
mjr | 26:cb71c4af2912 | 717 | |
mjr | 35:e959ffba78fd | 718 | // LwOut class for virtual ports. This type of port is visible to |
mjr | 35:e959ffba78fd | 719 | // the host software, but isn't connected to any physical output. |
mjr | 35:e959ffba78fd | 720 | // This can be used for special software-only ports like the ZB |
mjr | 35:e959ffba78fd | 721 | // Launch Ball output, or simply for placeholders in the LedWiz port |
mjr | 35:e959ffba78fd | 722 | // numbering. |
mjr | 35:e959ffba78fd | 723 | class LwVirtualOut: public LwOut |
mjr | 33:d832bcab089e | 724 | { |
mjr | 33:d832bcab089e | 725 | public: |
mjr | 35:e959ffba78fd | 726 | LwVirtualOut() { } |
mjr | 40:cc0d9814522b | 727 | virtual void set(uint8_t ) { } |
mjr | 33:d832bcab089e | 728 | }; |
mjr | 26:cb71c4af2912 | 729 | |
mjr | 34:6b981a2afab7 | 730 | // Active Low out. For any output marked as active low, we layer this |
mjr | 34:6b981a2afab7 | 731 | // on top of the physical pin interface. This simply inverts the value of |
mjr | 40:cc0d9814522b | 732 | // the output value, so that 255 means fully off and 0 means fully on. |
mjr | 34:6b981a2afab7 | 733 | class LwInvertedOut: public LwOut |
mjr | 34:6b981a2afab7 | 734 | { |
mjr | 34:6b981a2afab7 | 735 | public: |
mjr | 34:6b981a2afab7 | 736 | LwInvertedOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 737 | virtual void set(uint8_t val) { out->set(255 - val); } |
mjr | 34:6b981a2afab7 | 738 | |
mjr | 34:6b981a2afab7 | 739 | private: |
mjr | 53:9b2611964afc | 740 | // underlying physical output |
mjr | 34:6b981a2afab7 | 741 | LwOut *out; |
mjr | 34:6b981a2afab7 | 742 | }; |
mjr | 34:6b981a2afab7 | 743 | |
mjr | 53:9b2611964afc | 744 | // Global ZB Launch Ball state |
mjr | 53:9b2611964afc | 745 | bool zbLaunchOn = false; |
mjr | 53:9b2611964afc | 746 | |
mjr | 53:9b2611964afc | 747 | // ZB Launch Ball output. This is layered on a port (physical or virtual) |
mjr | 53:9b2611964afc | 748 | // to track the ZB Launch Ball signal. |
mjr | 53:9b2611964afc | 749 | class LwZbLaunchOut: public LwOut |
mjr | 53:9b2611964afc | 750 | { |
mjr | 53:9b2611964afc | 751 | public: |
mjr | 53:9b2611964afc | 752 | LwZbLaunchOut(LwOut *o) : out(o) { } |
mjr | 53:9b2611964afc | 753 | virtual void set(uint8_t val) |
mjr | 53:9b2611964afc | 754 | { |
mjr | 53:9b2611964afc | 755 | // update the global ZB Launch Ball state |
mjr | 53:9b2611964afc | 756 | zbLaunchOn = (val != 0); |
mjr | 53:9b2611964afc | 757 | |
mjr | 53:9b2611964afc | 758 | // pass it along to the underlying port, in case it's a physical output |
mjr | 53:9b2611964afc | 759 | out->set(val); |
mjr | 53:9b2611964afc | 760 | } |
mjr | 53:9b2611964afc | 761 | |
mjr | 53:9b2611964afc | 762 | private: |
mjr | 53:9b2611964afc | 763 | // underlying physical or virtual output |
mjr | 53:9b2611964afc | 764 | LwOut *out; |
mjr | 53:9b2611964afc | 765 | }; |
mjr | 53:9b2611964afc | 766 | |
mjr | 53:9b2611964afc | 767 | |
mjr | 40:cc0d9814522b | 768 | // Gamma correction table for 8-bit input values |
mjr | 87:8d35c74403af | 769 | static const uint8_t dof_to_gamma_8bit[] = { |
mjr | 40:cc0d9814522b | 770 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
mjr | 40:cc0d9814522b | 771 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 772 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, |
mjr | 40:cc0d9814522b | 773 | 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, |
mjr | 40:cc0d9814522b | 774 | 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, |
mjr | 40:cc0d9814522b | 775 | 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, |
mjr | 40:cc0d9814522b | 776 | 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, |
mjr | 40:cc0d9814522b | 777 | 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, |
mjr | 40:cc0d9814522b | 778 | 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, |
mjr | 40:cc0d9814522b | 779 | 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, |
mjr | 40:cc0d9814522b | 780 | 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, |
mjr | 40:cc0d9814522b | 781 | 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114, |
mjr | 40:cc0d9814522b | 782 | 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142, |
mjr | 40:cc0d9814522b | 783 | 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175, |
mjr | 40:cc0d9814522b | 784 | 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, |
mjr | 40:cc0d9814522b | 785 | 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255 |
mjr | 40:cc0d9814522b | 786 | }; |
mjr | 40:cc0d9814522b | 787 | |
mjr | 40:cc0d9814522b | 788 | // Gamma-corrected out. This is a filter object that we layer on top |
mjr | 40:cc0d9814522b | 789 | // of a physical pin interface. This applies gamma correction to the |
mjr | 40:cc0d9814522b | 790 | // input value and then passes it along to the underlying pin object. |
mjr | 40:cc0d9814522b | 791 | class LwGammaOut: public LwOut |
mjr | 40:cc0d9814522b | 792 | { |
mjr | 40:cc0d9814522b | 793 | public: |
mjr | 40:cc0d9814522b | 794 | LwGammaOut(LwOut *o) : out(o) { } |
mjr | 87:8d35c74403af | 795 | virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); } |
mjr | 40:cc0d9814522b | 796 | |
mjr | 40:cc0d9814522b | 797 | private: |
mjr | 40:cc0d9814522b | 798 | LwOut *out; |
mjr | 40:cc0d9814522b | 799 | }; |
mjr | 40:cc0d9814522b | 800 | |
mjr | 77:0b96f6867312 | 801 | // Global night mode flag. To minimize overhead when reporting |
mjr | 77:0b96f6867312 | 802 | // the status, we set this to the status report flag bit for |
mjr | 77:0b96f6867312 | 803 | // night mode, 0x02, when engaged. |
mjr | 77:0b96f6867312 | 804 | static uint8_t nightMode = 0x00; |
mjr | 53:9b2611964afc | 805 | |
mjr | 40:cc0d9814522b | 806 | // Noisy output. This is a filter object that we layer on top of |
mjr | 40:cc0d9814522b | 807 | // a physical pin output. This filter disables the port when night |
mjr | 40:cc0d9814522b | 808 | // mode is engaged. |
mjr | 40:cc0d9814522b | 809 | class LwNoisyOut: public LwOut |
mjr | 40:cc0d9814522b | 810 | { |
mjr | 40:cc0d9814522b | 811 | public: |
mjr | 40:cc0d9814522b | 812 | LwNoisyOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 813 | virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); } |
mjr | 40:cc0d9814522b | 814 | |
mjr | 53:9b2611964afc | 815 | private: |
mjr | 53:9b2611964afc | 816 | LwOut *out; |
mjr | 53:9b2611964afc | 817 | }; |
mjr | 53:9b2611964afc | 818 | |
mjr | 53:9b2611964afc | 819 | // Night Mode indicator output. This is a filter object that we |
mjr | 53:9b2611964afc | 820 | // layer on top of a physical pin output. This filter ignores the |
mjr | 53:9b2611964afc | 821 | // host value and simply shows the night mode status. |
mjr | 53:9b2611964afc | 822 | class LwNightModeIndicatorOut: public LwOut |
mjr | 53:9b2611964afc | 823 | { |
mjr | 53:9b2611964afc | 824 | public: |
mjr | 53:9b2611964afc | 825 | LwNightModeIndicatorOut(LwOut *o) : out(o) { } |
mjr | 53:9b2611964afc | 826 | virtual void set(uint8_t) |
mjr | 53:9b2611964afc | 827 | { |
mjr | 53:9b2611964afc | 828 | // ignore the host value and simply show the current |
mjr | 53:9b2611964afc | 829 | // night mode setting |
mjr | 53:9b2611964afc | 830 | out->set(nightMode ? 255 : 0); |
mjr | 53:9b2611964afc | 831 | } |
mjr | 40:cc0d9814522b | 832 | |
mjr | 40:cc0d9814522b | 833 | private: |
mjr | 40:cc0d9814522b | 834 | LwOut *out; |
mjr | 40:cc0d9814522b | 835 | }; |
mjr | 40:cc0d9814522b | 836 | |
mjr | 26:cb71c4af2912 | 837 | |
mjr | 35:e959ffba78fd | 838 | // |
mjr | 35:e959ffba78fd | 839 | // The TLC5940 interface object. We'll set this up with the port |
mjr | 35:e959ffba78fd | 840 | // assignments set in config.h. |
mjr | 33:d832bcab089e | 841 | // |
mjr | 35:e959ffba78fd | 842 | TLC5940 *tlc5940 = 0; |
mjr | 35:e959ffba78fd | 843 | void init_tlc5940(Config &cfg) |
mjr | 35:e959ffba78fd | 844 | { |
mjr | 35:e959ffba78fd | 845 | if (cfg.tlc5940.nchips != 0) |
mjr | 35:e959ffba78fd | 846 | { |
mjr | 53:9b2611964afc | 847 | tlc5940 = new TLC5940( |
mjr | 53:9b2611964afc | 848 | wirePinName(cfg.tlc5940.sclk), |
mjr | 53:9b2611964afc | 849 | wirePinName(cfg.tlc5940.sin), |
mjr | 53:9b2611964afc | 850 | wirePinName(cfg.tlc5940.gsclk), |
mjr | 53:9b2611964afc | 851 | wirePinName(cfg.tlc5940.blank), |
mjr | 53:9b2611964afc | 852 | wirePinName(cfg.tlc5940.xlat), |
mjr | 53:9b2611964afc | 853 | cfg.tlc5940.nchips); |
mjr | 35:e959ffba78fd | 854 | } |
mjr | 35:e959ffba78fd | 855 | } |
mjr | 26:cb71c4af2912 | 856 | |
mjr | 40:cc0d9814522b | 857 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level |
mjr | 40:cc0d9814522b | 858 | static const uint16_t dof_to_tlc[] = { |
mjr | 40:cc0d9814522b | 859 | 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241, |
mjr | 40:cc0d9814522b | 860 | 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498, |
mjr | 40:cc0d9814522b | 861 | 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755, |
mjr | 40:cc0d9814522b | 862 | 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012, |
mjr | 40:cc0d9814522b | 863 | 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269, |
mjr | 40:cc0d9814522b | 864 | 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526, |
mjr | 40:cc0d9814522b | 865 | 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783, |
mjr | 40:cc0d9814522b | 866 | 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039, |
mjr | 40:cc0d9814522b | 867 | 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296, |
mjr | 40:cc0d9814522b | 868 | 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553, |
mjr | 40:cc0d9814522b | 869 | 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810, |
mjr | 40:cc0d9814522b | 870 | 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067, |
mjr | 40:cc0d9814522b | 871 | 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324, |
mjr | 40:cc0d9814522b | 872 | 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581, |
mjr | 40:cc0d9814522b | 873 | 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838, |
mjr | 40:cc0d9814522b | 874 | 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095 |
mjr | 40:cc0d9814522b | 875 | }; |
mjr | 40:cc0d9814522b | 876 | |
mjr | 40:cc0d9814522b | 877 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with |
mjr | 40:cc0d9814522b | 878 | // gamma correction. Note that the output layering scheme can handle |
mjr | 40:cc0d9814522b | 879 | // this without a separate table, by first applying gamma to the DOF |
mjr | 40:cc0d9814522b | 880 | // level to produce an 8-bit gamma-corrected value, then convert that |
mjr | 40:cc0d9814522b | 881 | // to the 12-bit TLC5940 value. But we get better precision by doing |
mjr | 40:cc0d9814522b | 882 | // the gamma correction in the 12-bit TLC5940 domain. We can only |
mjr | 40:cc0d9814522b | 883 | // get the 12-bit domain by combining both steps into one layering |
mjr | 40:cc0d9814522b | 884 | // object, though, since the intermediate values in the layering system |
mjr | 40:cc0d9814522b | 885 | // are always 8 bits. |
mjr | 40:cc0d9814522b | 886 | static const uint16_t dof_to_gamma_tlc[] = { |
mjr | 40:cc0d9814522b | 887 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 888 | 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11, |
mjr | 40:cc0d9814522b | 889 | 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36, |
mjr | 40:cc0d9814522b | 890 | 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82, |
mjr | 40:cc0d9814522b | 891 | 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154, |
mjr | 40:cc0d9814522b | 892 | 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258, |
mjr | 40:cc0d9814522b | 893 | 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399, |
mjr | 40:cc0d9814522b | 894 | 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582, |
mjr | 40:cc0d9814522b | 895 | 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811, |
mjr | 40:cc0d9814522b | 896 | 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091, |
mjr | 40:cc0d9814522b | 897 | 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427, |
mjr | 40:cc0d9814522b | 898 | 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823, |
mjr | 40:cc0d9814522b | 899 | 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284, |
mjr | 40:cc0d9814522b | 900 | 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813, |
mjr | 40:cc0d9814522b | 901 | 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416, |
mjr | 40:cc0d9814522b | 902 | 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095 |
mjr | 40:cc0d9814522b | 903 | }; |
mjr | 40:cc0d9814522b | 904 | |
mjr | 26:cb71c4af2912 | 905 | // LwOut class for TLC5940 outputs. These are fully PWM capable. |
mjr | 26:cb71c4af2912 | 906 | // The 'idx' value in the constructor is the output index in the |
mjr | 26:cb71c4af2912 | 907 | // daisy-chained TLC5940 array. 0 is output #0 on the first chip, |
mjr | 26:cb71c4af2912 | 908 | // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is |
mjr | 26:cb71c4af2912 | 909 | // #0 on the second chip, 32 is #0 on the third chip, etc. |
mjr | 26:cb71c4af2912 | 910 | class Lw5940Out: public LwOut |
mjr | 26:cb71c4af2912 | 911 | { |
mjr | 26:cb71c4af2912 | 912 | public: |
mjr | 60:f38da020aa13 | 913 | Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 914 | virtual void set(uint8_t val) |
mjr | 26:cb71c4af2912 | 915 | { |
mjr | 26:cb71c4af2912 | 916 | if (val != prv) |
mjr | 40:cc0d9814522b | 917 | tlc5940->set(idx, dof_to_tlc[prv = val]); |
mjr | 26:cb71c4af2912 | 918 | } |
mjr | 60:f38da020aa13 | 919 | uint8_t idx; |
mjr | 40:cc0d9814522b | 920 | uint8_t prv; |
mjr | 26:cb71c4af2912 | 921 | }; |
mjr | 26:cb71c4af2912 | 922 | |
mjr | 40:cc0d9814522b | 923 | // LwOut class for TLC5940 gamma-corrected outputs. |
mjr | 40:cc0d9814522b | 924 | class Lw5940GammaOut: public LwOut |
mjr | 40:cc0d9814522b | 925 | { |
mjr | 40:cc0d9814522b | 926 | public: |
mjr | 60:f38da020aa13 | 927 | Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 928 | virtual void set(uint8_t val) |
mjr | 40:cc0d9814522b | 929 | { |
mjr | 40:cc0d9814522b | 930 | if (val != prv) |
mjr | 40:cc0d9814522b | 931 | tlc5940->set(idx, dof_to_gamma_tlc[prv = val]); |
mjr | 40:cc0d9814522b | 932 | } |
mjr | 60:f38da020aa13 | 933 | uint8_t idx; |
mjr | 40:cc0d9814522b | 934 | uint8_t prv; |
mjr | 40:cc0d9814522b | 935 | }; |
mjr | 40:cc0d9814522b | 936 | |
mjr | 87:8d35c74403af | 937 | // |
mjr | 87:8d35c74403af | 938 | // TLC59116 interface object |
mjr | 87:8d35c74403af | 939 | // |
mjr | 87:8d35c74403af | 940 | TLC59116 *tlc59116 = 0; |
mjr | 87:8d35c74403af | 941 | void init_tlc59116(Config &cfg) |
mjr | 87:8d35c74403af | 942 | { |
mjr | 87:8d35c74403af | 943 | // Create the interface if any chips are enabled |
mjr | 87:8d35c74403af | 944 | if (cfg.tlc59116.chipMask != 0) |
mjr | 87:8d35c74403af | 945 | { |
mjr | 87:8d35c74403af | 946 | // set up the interface |
mjr | 87:8d35c74403af | 947 | tlc59116 = new TLC59116( |
mjr | 87:8d35c74403af | 948 | wirePinName(cfg.tlc59116.sda), |
mjr | 87:8d35c74403af | 949 | wirePinName(cfg.tlc59116.scl), |
mjr | 87:8d35c74403af | 950 | wirePinName(cfg.tlc59116.reset)); |
mjr | 87:8d35c74403af | 951 | |
mjr | 87:8d35c74403af | 952 | // initialize the chips |
mjr | 87:8d35c74403af | 953 | tlc59116->init(); |
mjr | 87:8d35c74403af | 954 | } |
mjr | 87:8d35c74403af | 955 | } |
mjr | 87:8d35c74403af | 956 | |
mjr | 87:8d35c74403af | 957 | // LwOut class for TLC59116 outputs. The 'addr' value in the constructor |
mjr | 87:8d35c74403af | 958 | // is low 4 bits of the chip's I2C address; this is the part of the address |
mjr | 87:8d35c74403af | 959 | // that's configurable per chip. 'port' is the output number on the chip |
mjr | 87:8d35c74403af | 960 | // (0-15). |
mjr | 87:8d35c74403af | 961 | // |
mjr | 87:8d35c74403af | 962 | // Note that we don't need a separate gamma-corrected subclass for this |
mjr | 87:8d35c74403af | 963 | // output type, since there's no loss of precision with the standard layered |
mjr | 87:8d35c74403af | 964 | // gamma (it emits 8-bit values, and we take 8-bit inputs). |
mjr | 87:8d35c74403af | 965 | class Lw59116Out: public LwOut |
mjr | 87:8d35c74403af | 966 | { |
mjr | 87:8d35c74403af | 967 | public: |
mjr | 87:8d35c74403af | 968 | Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; } |
mjr | 87:8d35c74403af | 969 | virtual void set(uint8_t val) |
mjr | 87:8d35c74403af | 970 | { |
mjr | 87:8d35c74403af | 971 | if (val != prv) |
mjr | 87:8d35c74403af | 972 | tlc59116->set(addr, port, prv = val); |
mjr | 87:8d35c74403af | 973 | } |
mjr | 87:8d35c74403af | 974 | |
mjr | 87:8d35c74403af | 975 | protected: |
mjr | 87:8d35c74403af | 976 | uint8_t addr; |
mjr | 87:8d35c74403af | 977 | uint8_t port; |
mjr | 87:8d35c74403af | 978 | uint8_t prv; |
mjr | 87:8d35c74403af | 979 | }; |
mjr | 87:8d35c74403af | 980 | |
mjr | 87:8d35c74403af | 981 | |
mjr | 87:8d35c74403af | 982 | // |
mjr | 34:6b981a2afab7 | 983 | // 74HC595 interface object. Set this up with the port assignments in |
mjr | 34:6b981a2afab7 | 984 | // config.h. |
mjr | 87:8d35c74403af | 985 | // |
mjr | 35:e959ffba78fd | 986 | HC595 *hc595 = 0; |
mjr | 35:e959ffba78fd | 987 | |
mjr | 35:e959ffba78fd | 988 | // initialize the 74HC595 interface |
mjr | 35:e959ffba78fd | 989 | void init_hc595(Config &cfg) |
mjr | 35:e959ffba78fd | 990 | { |
mjr | 35:e959ffba78fd | 991 | if (cfg.hc595.nchips != 0) |
mjr | 35:e959ffba78fd | 992 | { |
mjr | 53:9b2611964afc | 993 | hc595 = new HC595( |
mjr | 53:9b2611964afc | 994 | wirePinName(cfg.hc595.nchips), |
mjr | 53:9b2611964afc | 995 | wirePinName(cfg.hc595.sin), |
mjr | 53:9b2611964afc | 996 | wirePinName(cfg.hc595.sclk), |
mjr | 53:9b2611964afc | 997 | wirePinName(cfg.hc595.latch), |
mjr | 53:9b2611964afc | 998 | wirePinName(cfg.hc595.ena)); |
mjr | 35:e959ffba78fd | 999 | hc595->init(); |
mjr | 35:e959ffba78fd | 1000 | hc595->update(); |
mjr | 35:e959ffba78fd | 1001 | } |
mjr | 35:e959ffba78fd | 1002 | } |
mjr | 34:6b981a2afab7 | 1003 | |
mjr | 34:6b981a2afab7 | 1004 | // LwOut class for 74HC595 outputs. These are simple digial outs. |
mjr | 34:6b981a2afab7 | 1005 | // The 'idx' value in the constructor is the output index in the |
mjr | 34:6b981a2afab7 | 1006 | // daisy-chained 74HC595 array. 0 is output #0 on the first chip, |
mjr | 34:6b981a2afab7 | 1007 | // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is |
mjr | 34:6b981a2afab7 | 1008 | // #0 on the second chip, etc. |
mjr | 34:6b981a2afab7 | 1009 | class Lw595Out: public LwOut |
mjr | 33:d832bcab089e | 1010 | { |
mjr | 33:d832bcab089e | 1011 | public: |
mjr | 60:f38da020aa13 | 1012 | Lw595Out(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 1013 | virtual void set(uint8_t val) |
mjr | 34:6b981a2afab7 | 1014 | { |
mjr | 34:6b981a2afab7 | 1015 | if (val != prv) |
mjr | 40:cc0d9814522b | 1016 | hc595->set(idx, (prv = val) == 0 ? 0 : 1); |
mjr | 34:6b981a2afab7 | 1017 | } |
mjr | 60:f38da020aa13 | 1018 | uint8_t idx; |
mjr | 40:cc0d9814522b | 1019 | uint8_t prv; |
mjr | 33:d832bcab089e | 1020 | }; |
mjr | 33:d832bcab089e | 1021 | |
mjr | 26:cb71c4af2912 | 1022 | |
mjr | 40:cc0d9814522b | 1023 | |
mjr | 64:ef7ca92dff36 | 1024 | // Conversion table - 8-bit DOF output level to PWM duty cycle, |
mjr | 64:ef7ca92dff36 | 1025 | // normalized to 0.0 to 1.0 scale. |
mjr | 74:822a92bc11d2 | 1026 | static const float dof_to_pwm[] = { |
mjr | 64:ef7ca92dff36 | 1027 | 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f, |
mjr | 64:ef7ca92dff36 | 1028 | 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f, |
mjr | 64:ef7ca92dff36 | 1029 | 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f, |
mjr | 64:ef7ca92dff36 | 1030 | 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f, |
mjr | 64:ef7ca92dff36 | 1031 | 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f, |
mjr | 64:ef7ca92dff36 | 1032 | 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f, |
mjr | 64:ef7ca92dff36 | 1033 | 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f, |
mjr | 64:ef7ca92dff36 | 1034 | 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f, |
mjr | 64:ef7ca92dff36 | 1035 | 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f, |
mjr | 64:ef7ca92dff36 | 1036 | 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f, |
mjr | 64:ef7ca92dff36 | 1037 | 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f, |
mjr | 64:ef7ca92dff36 | 1038 | 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f, |
mjr | 64:ef7ca92dff36 | 1039 | 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f, |
mjr | 64:ef7ca92dff36 | 1040 | 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f, |
mjr | 64:ef7ca92dff36 | 1041 | 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f, |
mjr | 64:ef7ca92dff36 | 1042 | 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f, |
mjr | 64:ef7ca92dff36 | 1043 | 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f, |
mjr | 64:ef7ca92dff36 | 1044 | 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f, |
mjr | 64:ef7ca92dff36 | 1045 | 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f, |
mjr | 64:ef7ca92dff36 | 1046 | 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f, |
mjr | 64:ef7ca92dff36 | 1047 | 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f, |
mjr | 64:ef7ca92dff36 | 1048 | 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f, |
mjr | 64:ef7ca92dff36 | 1049 | 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f, |
mjr | 64:ef7ca92dff36 | 1050 | 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f, |
mjr | 64:ef7ca92dff36 | 1051 | 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f, |
mjr | 64:ef7ca92dff36 | 1052 | 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f, |
mjr | 64:ef7ca92dff36 | 1053 | 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f, |
mjr | 64:ef7ca92dff36 | 1054 | 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f, |
mjr | 64:ef7ca92dff36 | 1055 | 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f, |
mjr | 64:ef7ca92dff36 | 1056 | 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f, |
mjr | 64:ef7ca92dff36 | 1057 | 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f, |
mjr | 64:ef7ca92dff36 | 1058 | 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f |
mjr | 40:cc0d9814522b | 1059 | }; |
mjr | 26:cb71c4af2912 | 1060 | |
mjr | 64:ef7ca92dff36 | 1061 | |
mjr | 64:ef7ca92dff36 | 1062 | // Conversion table for 8-bit DOF level to pulse width in microseconds, |
mjr | 64:ef7ca92dff36 | 1063 | // with gamma correction. We could use the layered gamma output on top |
mjr | 64:ef7ca92dff36 | 1064 | // of the regular LwPwmOut class for this, but we get better precision |
mjr | 64:ef7ca92dff36 | 1065 | // with a dedicated table, because we apply gamma correction to the |
mjr | 64:ef7ca92dff36 | 1066 | // 32-bit microsecond values rather than the 8-bit DOF levels. |
mjr | 64:ef7ca92dff36 | 1067 | static const float dof_to_gamma_pwm[] = { |
mjr | 64:ef7ca92dff36 | 1068 | 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f, |
mjr | 64:ef7ca92dff36 | 1069 | 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f, |
mjr | 64:ef7ca92dff36 | 1070 | 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f, |
mjr | 64:ef7ca92dff36 | 1071 | 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f, |
mjr | 64:ef7ca92dff36 | 1072 | 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f, |
mjr | 64:ef7ca92dff36 | 1073 | 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f, |
mjr | 64:ef7ca92dff36 | 1074 | 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f, |
mjr | 64:ef7ca92dff36 | 1075 | 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f, |
mjr | 64:ef7ca92dff36 | 1076 | 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f, |
mjr | 64:ef7ca92dff36 | 1077 | 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f, |
mjr | 64:ef7ca92dff36 | 1078 | 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f, |
mjr | 64:ef7ca92dff36 | 1079 | 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f, |
mjr | 64:ef7ca92dff36 | 1080 | 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f, |
mjr | 64:ef7ca92dff36 | 1081 | 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f, |
mjr | 64:ef7ca92dff36 | 1082 | 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f, |
mjr | 64:ef7ca92dff36 | 1083 | 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f, |
mjr | 64:ef7ca92dff36 | 1084 | 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f, |
mjr | 64:ef7ca92dff36 | 1085 | 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f, |
mjr | 64:ef7ca92dff36 | 1086 | 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f, |
mjr | 64:ef7ca92dff36 | 1087 | 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f, |
mjr | 64:ef7ca92dff36 | 1088 | 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f, |
mjr | 64:ef7ca92dff36 | 1089 | 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f, |
mjr | 64:ef7ca92dff36 | 1090 | 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f, |
mjr | 64:ef7ca92dff36 | 1091 | 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f, |
mjr | 64:ef7ca92dff36 | 1092 | 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f, |
mjr | 64:ef7ca92dff36 | 1093 | 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f, |
mjr | 64:ef7ca92dff36 | 1094 | 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f, |
mjr | 64:ef7ca92dff36 | 1095 | 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f, |
mjr | 64:ef7ca92dff36 | 1096 | 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f, |
mjr | 64:ef7ca92dff36 | 1097 | 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f, |
mjr | 64:ef7ca92dff36 | 1098 | 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f, |
mjr | 64:ef7ca92dff36 | 1099 | 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f |
mjr | 64:ef7ca92dff36 | 1100 | }; |
mjr | 64:ef7ca92dff36 | 1101 | |
mjr | 77:0b96f6867312 | 1102 | // Polled-update PWM output list |
mjr | 74:822a92bc11d2 | 1103 | // |
mjr | 77:0b96f6867312 | 1104 | // This is a workaround for a KL25Z hardware bug/limitation. The bug (more |
mjr | 77:0b96f6867312 | 1105 | // about this below) is that we can't write to a PWM output "value" register |
mjr | 77:0b96f6867312 | 1106 | // more than once per PWM cycle; if we do, outputs after the first are lost. |
mjr | 77:0b96f6867312 | 1107 | // The value register controls the duty cycle, so it's what you have to write |
mjr | 77:0b96f6867312 | 1108 | // if you want to update the brightness of an output. |
mjr | 74:822a92bc11d2 | 1109 | // |
mjr | 77:0b96f6867312 | 1110 | // Our solution is to simply repeat all PWM updates periodically. If a write |
mjr | 77:0b96f6867312 | 1111 | // is lost on one cycle, it'll eventually be applied on a subseuqent periodic |
mjr | 77:0b96f6867312 | 1112 | // update. For low overhead, we do these repeat updates periodically during |
mjr | 77:0b96f6867312 | 1113 | // the main loop. |
mjr | 74:822a92bc11d2 | 1114 | // |
mjr | 77:0b96f6867312 | 1115 | // The mbed library has its own solution to this bug, but it creates a |
mjr | 77:0b96f6867312 | 1116 | // separate problem of its own. The mbed solution is to write the value |
mjr | 77:0b96f6867312 | 1117 | // register immediately, and then also reset the "count" register in the |
mjr | 77:0b96f6867312 | 1118 | // TPM unit containing the output. The count reset truncates the current |
mjr | 77:0b96f6867312 | 1119 | // PWM cycle, which avoids the hardware problem with more than one write per |
mjr | 77:0b96f6867312 | 1120 | // cycle. The problem is that the truncated cycle causes visible flicker if |
mjr | 77:0b96f6867312 | 1121 | // the output is connected to an LED. This is particularly noticeable during |
mjr | 77:0b96f6867312 | 1122 | // fades, when we're updating the value register repeatedly and rapidly: an |
mjr | 77:0b96f6867312 | 1123 | // attempt to fade from fully on to fully off causes rapid fluttering and |
mjr | 77:0b96f6867312 | 1124 | // flashing rather than a smooth brightness fade. |
mjr | 74:822a92bc11d2 | 1125 | // |
mjr | 77:0b96f6867312 | 1126 | // The hardware bug is a case of good intentions gone bad. The hardware is |
mjr | 77:0b96f6867312 | 1127 | // *supposed* to make it easy for software to avoid glitching during PWM |
mjr | 77:0b96f6867312 | 1128 | // updates, by providing a staging register in front of the real value |
mjr | 77:0b96f6867312 | 1129 | // register. The software actually writes to the staging register, which |
mjr | 77:0b96f6867312 | 1130 | // holds updates until the end of the cycle, at which point the hardware |
mjr | 77:0b96f6867312 | 1131 | // automatically moves the value from the staging register into the real |
mjr | 77:0b96f6867312 | 1132 | // register. This ensures that the real register is always updated exactly |
mjr | 77:0b96f6867312 | 1133 | // at a cycle boundary, which in turn ensures that there's no flicker when |
mjr | 77:0b96f6867312 | 1134 | // values are updated. A great design - except that it doesn't quite work. |
mjr | 77:0b96f6867312 | 1135 | // The problem is that the staging register actually seems to be implemented |
mjr | 77:0b96f6867312 | 1136 | // as a one-element FIFO in "stop when full" mode. That is, when you write |
mjr | 77:0b96f6867312 | 1137 | // the FIFO, it becomes full. When the cycle ends and the hardware reads it |
mjr | 77:0b96f6867312 | 1138 | // to move the staged value into the real register, the FIFO becomes empty. |
mjr | 77:0b96f6867312 | 1139 | // But if you try to write the FIFO twice before the hardware reads it and |
mjr | 77:0b96f6867312 | 1140 | // empties it, the second write fails, leaving the first value in the queue. |
mjr | 77:0b96f6867312 | 1141 | // There doesn't seem to be any way to clear the FIFO from software, so you |
mjr | 77:0b96f6867312 | 1142 | // just have to wait for the cycle to end before writing another update. |
mjr | 77:0b96f6867312 | 1143 | // That more or less defeats the purpose of the staging register, whose whole |
mjr | 77:0b96f6867312 | 1144 | // point is to free software from worrying about timing considerations with |
mjr | 77:0b96f6867312 | 1145 | // updates. It frees us of the need to align our timing on cycle boundaries, |
mjr | 77:0b96f6867312 | 1146 | // but it leaves us with the need to limit writes to once per cycle. |
mjr | 74:822a92bc11d2 | 1147 | // |
mjr | 77:0b96f6867312 | 1148 | // So here we have our list of PWM outputs that need to be polled for updates. |
mjr | 77:0b96f6867312 | 1149 | // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set |
mjr | 77:0b96f6867312 | 1150 | // of polled items. |
mjr | 74:822a92bc11d2 | 1151 | static int numPolledPwm; |
mjr | 74:822a92bc11d2 | 1152 | static class LwPwmOut *polledPwm[10]; |
mjr | 74:822a92bc11d2 | 1153 | |
mjr | 74:822a92bc11d2 | 1154 | // LwOut class for a PWM-capable GPIO port. |
mjr | 6:cc35eb643e8f | 1155 | class LwPwmOut: public LwOut |
mjr | 6:cc35eb643e8f | 1156 | { |
mjr | 6:cc35eb643e8f | 1157 | public: |
mjr | 43:7a6364d82a41 | 1158 | LwPwmOut(PinName pin, uint8_t initVal) : p(pin) |
mjr | 43:7a6364d82a41 | 1159 | { |
mjr | 77:0b96f6867312 | 1160 | // add myself to the list of polled outputs for periodic updates |
mjr | 77:0b96f6867312 | 1161 | if (numPolledPwm < countof(polledPwm)) |
mjr | 74:822a92bc11d2 | 1162 | polledPwm[numPolledPwm++] = this; |
mjr | 77:0b96f6867312 | 1163 | |
mjr | 77:0b96f6867312 | 1164 | // set the initial value |
mjr | 77:0b96f6867312 | 1165 | set(initVal); |
mjr | 43:7a6364d82a41 | 1166 | } |
mjr | 74:822a92bc11d2 | 1167 | |
mjr | 40:cc0d9814522b | 1168 | virtual void set(uint8_t val) |
mjr | 74:822a92bc11d2 | 1169 | { |
mjr | 77:0b96f6867312 | 1170 | // save the new value |
mjr | 74:822a92bc11d2 | 1171 | this->val = val; |
mjr | 77:0b96f6867312 | 1172 | |
mjr | 77:0b96f6867312 | 1173 | // commit it to the hardware |
mjr | 77:0b96f6867312 | 1174 | commit(); |
mjr | 13:72dda449c3c0 | 1175 | } |
mjr | 74:822a92bc11d2 | 1176 | |
mjr | 74:822a92bc11d2 | 1177 | // handle periodic update polling |
mjr | 74:822a92bc11d2 | 1178 | void poll() |
mjr | 74:822a92bc11d2 | 1179 | { |
mjr | 77:0b96f6867312 | 1180 | commit(); |
mjr | 74:822a92bc11d2 | 1181 | } |
mjr | 74:822a92bc11d2 | 1182 | |
mjr | 74:822a92bc11d2 | 1183 | protected: |
mjr | 77:0b96f6867312 | 1184 | virtual void commit() |
mjr | 74:822a92bc11d2 | 1185 | { |
mjr | 74:822a92bc11d2 | 1186 | // write the current value to the PWM controller if it's changed |
mjr | 77:0b96f6867312 | 1187 | p.glitchFreeWrite(dof_to_pwm[val]); |
mjr | 74:822a92bc11d2 | 1188 | } |
mjr | 74:822a92bc11d2 | 1189 | |
mjr | 77:0b96f6867312 | 1190 | NewPwmOut p; |
mjr | 77:0b96f6867312 | 1191 | uint8_t val; |
mjr | 6:cc35eb643e8f | 1192 | }; |
mjr | 26:cb71c4af2912 | 1193 | |
mjr | 74:822a92bc11d2 | 1194 | // Gamma corrected PWM GPIO output. This works exactly like the regular |
mjr | 74:822a92bc11d2 | 1195 | // PWM output, but translates DOF values through the gamma-corrected |
mjr | 74:822a92bc11d2 | 1196 | // table instead of the regular linear table. |
mjr | 64:ef7ca92dff36 | 1197 | class LwPwmGammaOut: public LwPwmOut |
mjr | 64:ef7ca92dff36 | 1198 | { |
mjr | 64:ef7ca92dff36 | 1199 | public: |
mjr | 64:ef7ca92dff36 | 1200 | LwPwmGammaOut(PinName pin, uint8_t initVal) |
mjr | 64:ef7ca92dff36 | 1201 | : LwPwmOut(pin, initVal) |
mjr | 64:ef7ca92dff36 | 1202 | { |
mjr | 64:ef7ca92dff36 | 1203 | } |
mjr | 74:822a92bc11d2 | 1204 | |
mjr | 74:822a92bc11d2 | 1205 | protected: |
mjr | 77:0b96f6867312 | 1206 | virtual void commit() |
mjr | 64:ef7ca92dff36 | 1207 | { |
mjr | 74:822a92bc11d2 | 1208 | // write the current value to the PWM controller if it's changed |
mjr | 77:0b96f6867312 | 1209 | p.glitchFreeWrite(dof_to_gamma_pwm[val]); |
mjr | 64:ef7ca92dff36 | 1210 | } |
mjr | 64:ef7ca92dff36 | 1211 | }; |
mjr | 64:ef7ca92dff36 | 1212 | |
mjr | 74:822a92bc11d2 | 1213 | // poll the PWM outputs |
mjr | 74:822a92bc11d2 | 1214 | Timer polledPwmTimer; |
mjr | 76:7f5912b6340e | 1215 | uint64_t polledPwmTotalTime, polledPwmRunCount; |
mjr | 74:822a92bc11d2 | 1216 | void pollPwmUpdates() |
mjr | 74:822a92bc11d2 | 1217 | { |
mjr | 74:822a92bc11d2 | 1218 | // if it's been at least 25ms since the last update, do another update |
mjr | 74:822a92bc11d2 | 1219 | if (polledPwmTimer.read_us() >= 25000) |
mjr | 74:822a92bc11d2 | 1220 | { |
mjr | 74:822a92bc11d2 | 1221 | // time the run for statistics collection |
mjr | 74:822a92bc11d2 | 1222 | IF_DIAG( |
mjr | 74:822a92bc11d2 | 1223 | Timer t; |
mjr | 74:822a92bc11d2 | 1224 | t.start(); |
mjr | 74:822a92bc11d2 | 1225 | ) |
mjr | 74:822a92bc11d2 | 1226 | |
mjr | 74:822a92bc11d2 | 1227 | // poll each output |
mjr | 74:822a92bc11d2 | 1228 | for (int i = numPolledPwm ; i > 0 ; ) |
mjr | 74:822a92bc11d2 | 1229 | polledPwm[--i]->poll(); |
mjr | 74:822a92bc11d2 | 1230 | |
mjr | 74:822a92bc11d2 | 1231 | // reset the timer for the next cycle |
mjr | 74:822a92bc11d2 | 1232 | polledPwmTimer.reset(); |
mjr | 74:822a92bc11d2 | 1233 | |
mjr | 74:822a92bc11d2 | 1234 | // collect statistics |
mjr | 74:822a92bc11d2 | 1235 | IF_DIAG( |
mjr | 76:7f5912b6340e | 1236 | polledPwmTotalTime += t.read_us(); |
mjr | 74:822a92bc11d2 | 1237 | polledPwmRunCount += 1; |
mjr | 74:822a92bc11d2 | 1238 | ) |
mjr | 74:822a92bc11d2 | 1239 | } |
mjr | 74:822a92bc11d2 | 1240 | } |
mjr | 64:ef7ca92dff36 | 1241 | |
mjr | 26:cb71c4af2912 | 1242 | // LwOut class for a Digital-Only (Non-PWM) GPIO port |
mjr | 6:cc35eb643e8f | 1243 | class LwDigOut: public LwOut |
mjr | 6:cc35eb643e8f | 1244 | { |
mjr | 6:cc35eb643e8f | 1245 | public: |
mjr | 43:7a6364d82a41 | 1246 | LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; } |
mjr | 40:cc0d9814522b | 1247 | virtual void set(uint8_t val) |
mjr | 13:72dda449c3c0 | 1248 | { |
mjr | 13:72dda449c3c0 | 1249 | if (val != prv) |
mjr | 40:cc0d9814522b | 1250 | p.write((prv = val) == 0 ? 0 : 1); |
mjr | 13:72dda449c3c0 | 1251 | } |
mjr | 6:cc35eb643e8f | 1252 | DigitalOut p; |
mjr | 40:cc0d9814522b | 1253 | uint8_t prv; |
mjr | 6:cc35eb643e8f | 1254 | }; |
mjr | 26:cb71c4af2912 | 1255 | |
mjr | 29:582472d0bc57 | 1256 | // Array of output physical pin assignments. This array is indexed |
mjr | 29:582472d0bc57 | 1257 | // by LedWiz logical port number - lwPin[n] is the maping for LedWiz |
mjr | 35:e959ffba78fd | 1258 | // port n (0-based). |
mjr | 35:e959ffba78fd | 1259 | // |
mjr | 35:e959ffba78fd | 1260 | // Each pin is handled by an interface object for the physical output |
mjr | 35:e959ffba78fd | 1261 | // type for the port, as set in the configuration. The interface |
mjr | 35:e959ffba78fd | 1262 | // objects handle the specifics of addressing the different hardware |
mjr | 35:e959ffba78fd | 1263 | // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and |
mjr | 35:e959ffba78fd | 1264 | // 74HC595 ports). |
mjr | 33:d832bcab089e | 1265 | static int numOutputs; |
mjr | 33:d832bcab089e | 1266 | static LwOut **lwPin; |
mjr | 33:d832bcab089e | 1267 | |
mjr | 38:091e511ce8a0 | 1268 | // create a single output pin |
mjr | 53:9b2611964afc | 1269 | LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg) |
mjr | 38:091e511ce8a0 | 1270 | { |
mjr | 38:091e511ce8a0 | 1271 | // get this item's values |
mjr | 38:091e511ce8a0 | 1272 | int typ = pc.typ; |
mjr | 38:091e511ce8a0 | 1273 | int pin = pc.pin; |
mjr | 38:091e511ce8a0 | 1274 | int flags = pc.flags; |
mjr | 40:cc0d9814522b | 1275 | int noisy = flags & PortFlagNoisemaker; |
mjr | 38:091e511ce8a0 | 1276 | int activeLow = flags & PortFlagActiveLow; |
mjr | 40:cc0d9814522b | 1277 | int gamma = flags & PortFlagGamma; |
mjr | 38:091e511ce8a0 | 1278 | |
mjr | 38:091e511ce8a0 | 1279 | // create the pin interface object according to the port type |
mjr | 38:091e511ce8a0 | 1280 | LwOut *lwp; |
mjr | 38:091e511ce8a0 | 1281 | switch (typ) |
mjr | 38:091e511ce8a0 | 1282 | { |
mjr | 38:091e511ce8a0 | 1283 | case PortTypeGPIOPWM: |
mjr | 48:058ace2aed1d | 1284 | // PWM GPIO port - assign if we have a valid pin |
mjr | 48:058ace2aed1d | 1285 | if (pin != 0) |
mjr | 64:ef7ca92dff36 | 1286 | { |
mjr | 64:ef7ca92dff36 | 1287 | // If gamma correction is to be used, and we're not inverting the output, |
mjr | 64:ef7ca92dff36 | 1288 | // use the combined Pwmout + Gamma output class; otherwise use the plain |
mjr | 64:ef7ca92dff36 | 1289 | // PwmOut class. We can't use the combined class for inverted outputs |
mjr | 64:ef7ca92dff36 | 1290 | // because we have to apply gamma correction before the inversion. |
mjr | 64:ef7ca92dff36 | 1291 | if (gamma && !activeLow) |
mjr | 64:ef7ca92dff36 | 1292 | { |
mjr | 64:ef7ca92dff36 | 1293 | // use the gamma-corrected PwmOut type |
mjr | 64:ef7ca92dff36 | 1294 | lwp = new LwPwmGammaOut(wirePinName(pin), 0); |
mjr | 64:ef7ca92dff36 | 1295 | |
mjr | 64:ef7ca92dff36 | 1296 | // don't apply further gamma correction to this output |
mjr | 64:ef7ca92dff36 | 1297 | gamma = false; |
mjr | 64:ef7ca92dff36 | 1298 | } |
mjr | 64:ef7ca92dff36 | 1299 | else |
mjr | 64:ef7ca92dff36 | 1300 | { |
mjr | 64:ef7ca92dff36 | 1301 | // no gamma correction - use the standard PwmOut class |
mjr | 64:ef7ca92dff36 | 1302 | lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 64:ef7ca92dff36 | 1303 | } |
mjr | 64:ef7ca92dff36 | 1304 | } |
mjr | 48:058ace2aed1d | 1305 | else |
mjr | 48:058ace2aed1d | 1306 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1307 | break; |
mjr | 38:091e511ce8a0 | 1308 | |
mjr | 38:091e511ce8a0 | 1309 | case PortTypeGPIODig: |
mjr | 38:091e511ce8a0 | 1310 | // Digital GPIO port |
mjr | 48:058ace2aed1d | 1311 | if (pin != 0) |
mjr | 48:058ace2aed1d | 1312 | lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 48:058ace2aed1d | 1313 | else |
mjr | 48:058ace2aed1d | 1314 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1315 | break; |
mjr | 38:091e511ce8a0 | 1316 | |
mjr | 38:091e511ce8a0 | 1317 | case PortTypeTLC5940: |
mjr | 38:091e511ce8a0 | 1318 | // TLC5940 port (if we don't have a TLC controller object, or it's not a valid |
mjr | 38:091e511ce8a0 | 1319 | // output port number on the chips we have, create a virtual port) |
mjr | 38:091e511ce8a0 | 1320 | if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16) |
mjr | 40:cc0d9814522b | 1321 | { |
mjr | 40:cc0d9814522b | 1322 | // If gamma correction is to be used, and we're not inverting the output, |
mjr | 40:cc0d9814522b | 1323 | // use the combined TLC4950 + Gamma output class. Otherwise use the plain |
mjr | 40:cc0d9814522b | 1324 | // TLC5940 output. We skip the combined class if the output is inverted |
mjr | 40:cc0d9814522b | 1325 | // because we need to apply gamma BEFORE the inversion to get the right |
mjr | 40:cc0d9814522b | 1326 | // results, but the combined class would apply it after because of the |
mjr | 40:cc0d9814522b | 1327 | // layering scheme - the combined class is a physical device output class, |
mjr | 40:cc0d9814522b | 1328 | // and a physical device output class is necessarily at the bottom of |
mjr | 40:cc0d9814522b | 1329 | // the stack. We don't have a combined inverted+gamma+TLC class, because |
mjr | 40:cc0d9814522b | 1330 | // inversion isn't recommended for TLC5940 chips in the first place, so |
mjr | 40:cc0d9814522b | 1331 | // it's not worth the extra memory footprint to have a dedicated table |
mjr | 40:cc0d9814522b | 1332 | // for this unlikely case. |
mjr | 40:cc0d9814522b | 1333 | if (gamma && !activeLow) |
mjr | 40:cc0d9814522b | 1334 | { |
mjr | 40:cc0d9814522b | 1335 | // use the gamma-corrected 5940 output mapper |
mjr | 40:cc0d9814522b | 1336 | lwp = new Lw5940GammaOut(pin); |
mjr | 40:cc0d9814522b | 1337 | |
mjr | 40:cc0d9814522b | 1338 | // DON'T apply further gamma correction to this output |
mjr | 40:cc0d9814522b | 1339 | gamma = false; |
mjr | 40:cc0d9814522b | 1340 | } |
mjr | 40:cc0d9814522b | 1341 | else |
mjr | 40:cc0d9814522b | 1342 | { |
mjr | 40:cc0d9814522b | 1343 | // no gamma - use the plain (linear) 5940 output class |
mjr | 40:cc0d9814522b | 1344 | lwp = new Lw5940Out(pin); |
mjr | 40:cc0d9814522b | 1345 | } |
mjr | 40:cc0d9814522b | 1346 | } |
mjr | 38:091e511ce8a0 | 1347 | else |
mjr | 40:cc0d9814522b | 1348 | { |
mjr | 40:cc0d9814522b | 1349 | // no TLC5940 chips, or invalid port number - use a virtual out |
mjr | 38:091e511ce8a0 | 1350 | lwp = new LwVirtualOut(); |
mjr | 40:cc0d9814522b | 1351 | } |
mjr | 38:091e511ce8a0 | 1352 | break; |
mjr | 38:091e511ce8a0 | 1353 | |
mjr | 38:091e511ce8a0 | 1354 | case PortType74HC595: |
mjr | 87:8d35c74403af | 1355 | // 74HC595 port (if we don't have an HC595 controller object, or it's not |
mjr | 87:8d35c74403af | 1356 | // a valid output number, create a virtual port) |
mjr | 38:091e511ce8a0 | 1357 | if (hc595 != 0 && pin < cfg.hc595.nchips*8) |
mjr | 38:091e511ce8a0 | 1358 | lwp = new Lw595Out(pin); |
mjr | 38:091e511ce8a0 | 1359 | else |
mjr | 38:091e511ce8a0 | 1360 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1361 | break; |
mjr | 87:8d35c74403af | 1362 | |
mjr | 87:8d35c74403af | 1363 | case PortTypeTLC59116: |
mjr | 87:8d35c74403af | 1364 | // TLC59116 port. The pin number in the config encodes the chip address |
mjr | 87:8d35c74403af | 1365 | // in the high 4 bits and the output number on the chip in the low 4 bits. |
mjr | 87:8d35c74403af | 1366 | // There's no gamma-corrected version of this output handler, so we don't |
mjr | 87:8d35c74403af | 1367 | // need to worry about that here; just use the layered gamma as needed. |
mjr | 87:8d35c74403af | 1368 | if (tlc59116 != 0) |
mjr | 87:8d35c74403af | 1369 | lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F); |
mjr | 87:8d35c74403af | 1370 | break; |
mjr | 38:091e511ce8a0 | 1371 | |
mjr | 38:091e511ce8a0 | 1372 | case PortTypeVirtual: |
mjr | 43:7a6364d82a41 | 1373 | case PortTypeDisabled: |
mjr | 38:091e511ce8a0 | 1374 | default: |
mjr | 38:091e511ce8a0 | 1375 | // virtual or unknown |
mjr | 38:091e511ce8a0 | 1376 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1377 | break; |
mjr | 38:091e511ce8a0 | 1378 | } |
mjr | 38:091e511ce8a0 | 1379 | |
mjr | 40:cc0d9814522b | 1380 | // If it's Active Low, layer on an inverter. Note that an inverter |
mjr | 40:cc0d9814522b | 1381 | // needs to be the bottom-most layer, since all of the other filters |
mjr | 40:cc0d9814522b | 1382 | // assume that they're working with normal (non-inverted) values. |
mjr | 38:091e511ce8a0 | 1383 | if (activeLow) |
mjr | 38:091e511ce8a0 | 1384 | lwp = new LwInvertedOut(lwp); |
mjr | 40:cc0d9814522b | 1385 | |
mjr | 40:cc0d9814522b | 1386 | // If it's a noisemaker, layer on a night mode switch. Note that this |
mjr | 40:cc0d9814522b | 1387 | // needs to be |
mjr | 40:cc0d9814522b | 1388 | if (noisy) |
mjr | 40:cc0d9814522b | 1389 | lwp = new LwNoisyOut(lwp); |
mjr | 40:cc0d9814522b | 1390 | |
mjr | 40:cc0d9814522b | 1391 | // If it's gamma-corrected, layer on a gamma corrector |
mjr | 40:cc0d9814522b | 1392 | if (gamma) |
mjr | 40:cc0d9814522b | 1393 | lwp = new LwGammaOut(lwp); |
mjr | 53:9b2611964afc | 1394 | |
mjr | 53:9b2611964afc | 1395 | // If this is the ZB Launch Ball port, layer a monitor object. Note |
mjr | 64:ef7ca92dff36 | 1396 | // that the nominal port numbering in the config starts at 1, but we're |
mjr | 53:9b2611964afc | 1397 | // using an array index, so test against portno+1. |
mjr | 53:9b2611964afc | 1398 | if (portno + 1 == cfg.plunger.zbLaunchBall.port) |
mjr | 53:9b2611964afc | 1399 | lwp = new LwZbLaunchOut(lwp); |
mjr | 53:9b2611964afc | 1400 | |
mjr | 53:9b2611964afc | 1401 | // If this is the Night Mode indicator port, layer a night mode object. |
mjr | 53:9b2611964afc | 1402 | if (portno + 1 == cfg.nightMode.port) |
mjr | 53:9b2611964afc | 1403 | lwp = new LwNightModeIndicatorOut(lwp); |
mjr | 38:091e511ce8a0 | 1404 | |
mjr | 38:091e511ce8a0 | 1405 | // turn it off initially |
mjr | 38:091e511ce8a0 | 1406 | lwp->set(0); |
mjr | 38:091e511ce8a0 | 1407 | |
mjr | 38:091e511ce8a0 | 1408 | // return the pin |
mjr | 38:091e511ce8a0 | 1409 | return lwp; |
mjr | 38:091e511ce8a0 | 1410 | } |
mjr | 38:091e511ce8a0 | 1411 | |
mjr | 6:cc35eb643e8f | 1412 | // initialize the output pin array |
mjr | 35:e959ffba78fd | 1413 | void initLwOut(Config &cfg) |
mjr | 6:cc35eb643e8f | 1414 | { |
mjr | 35:e959ffba78fd | 1415 | // Count the outputs. The first disabled output determines the |
mjr | 35:e959ffba78fd | 1416 | // total number of ports. |
mjr | 35:e959ffba78fd | 1417 | numOutputs = MAX_OUT_PORTS; |
mjr | 33:d832bcab089e | 1418 | int i; |
mjr | 35:e959ffba78fd | 1419 | for (i = 0 ; i < MAX_OUT_PORTS ; ++i) |
mjr | 6:cc35eb643e8f | 1420 | { |
mjr | 35:e959ffba78fd | 1421 | if (cfg.outPort[i].typ == PortTypeDisabled) |
mjr | 34:6b981a2afab7 | 1422 | { |
mjr | 35:e959ffba78fd | 1423 | numOutputs = i; |
mjr | 34:6b981a2afab7 | 1424 | break; |
mjr | 34:6b981a2afab7 | 1425 | } |
mjr | 33:d832bcab089e | 1426 | } |
mjr | 33:d832bcab089e | 1427 | |
mjr | 73:4e8ce0b18915 | 1428 | // allocate the pin array |
mjr | 73:4e8ce0b18915 | 1429 | lwPin = new LwOut*[numOutputs]; |
mjr | 35:e959ffba78fd | 1430 | |
mjr | 73:4e8ce0b18915 | 1431 | // Allocate the current brightness array |
mjr | 73:4e8ce0b18915 | 1432 | outLevel = new uint8_t[numOutputs]; |
mjr | 33:d832bcab089e | 1433 | |
mjr | 73:4e8ce0b18915 | 1434 | // allocate the LedWiz output state arrays |
mjr | 73:4e8ce0b18915 | 1435 | wizOn = new uint8_t[numOutputs]; |
mjr | 73:4e8ce0b18915 | 1436 | wizVal = new uint8_t[numOutputs]; |
mjr | 73:4e8ce0b18915 | 1437 | |
mjr | 73:4e8ce0b18915 | 1438 | // initialize all LedWiz outputs to off and brightness 48 |
mjr | 73:4e8ce0b18915 | 1439 | memset(wizOn, 0, numOutputs); |
mjr | 73:4e8ce0b18915 | 1440 | memset(wizVal, 48, numOutputs); |
mjr | 73:4e8ce0b18915 | 1441 | |
mjr | 73:4e8ce0b18915 | 1442 | // set all LedWiz virtual unit flash speeds to 2 |
mjr | 73:4e8ce0b18915 | 1443 | for (i = 0 ; i < countof(wizSpeed) ; ++i) |
mjr | 73:4e8ce0b18915 | 1444 | wizSpeed[i] = 2; |
mjr | 33:d832bcab089e | 1445 | |
mjr | 35:e959ffba78fd | 1446 | // create the pin interface object for each port |
mjr | 35:e959ffba78fd | 1447 | for (i = 0 ; i < numOutputs ; ++i) |
mjr | 53:9b2611964afc | 1448 | lwPin[i] = createLwPin(i, cfg.outPort[i], cfg); |
mjr | 6:cc35eb643e8f | 1449 | } |
mjr | 6:cc35eb643e8f | 1450 | |
mjr | 76:7f5912b6340e | 1451 | // Translate an LedWiz brightness level (0..49) to a DOF brightness |
mjr | 76:7f5912b6340e | 1452 | // level (0..255). Note that brightness level 49 isn't actually valid, |
mjr | 76:7f5912b6340e | 1453 | // according to the LedWiz API documentation, but many clients use it |
mjr | 76:7f5912b6340e | 1454 | // anyway, and the real LedWiz accepts it and seems to treat it as |
mjr | 76:7f5912b6340e | 1455 | // equivalent to 48. |
mjr | 40:cc0d9814522b | 1456 | static const uint8_t lw_to_dof[] = { |
mjr | 40:cc0d9814522b | 1457 | 0, 5, 11, 16, 21, 27, 32, 37, |
mjr | 40:cc0d9814522b | 1458 | 43, 48, 53, 58, 64, 69, 74, 80, |
mjr | 40:cc0d9814522b | 1459 | 85, 90, 96, 101, 106, 112, 117, 122, |
mjr | 40:cc0d9814522b | 1460 | 128, 133, 138, 143, 149, 154, 159, 165, |
mjr | 40:cc0d9814522b | 1461 | 170, 175, 181, 186, 191, 197, 202, 207, |
mjr | 40:cc0d9814522b | 1462 | 213, 218, 223, 228, 234, 239, 244, 250, |
mjr | 40:cc0d9814522b | 1463 | 255, 255 |
mjr | 40:cc0d9814522b | 1464 | }; |
mjr | 40:cc0d9814522b | 1465 | |
mjr | 76:7f5912b6340e | 1466 | // Translate a DOF brightness level (0..255) to an LedWiz brightness |
mjr | 76:7f5912b6340e | 1467 | // level (1..48) |
mjr | 76:7f5912b6340e | 1468 | static const uint8_t dof_to_lw[] = { |
mjr | 76:7f5912b6340e | 1469 | 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, |
mjr | 76:7f5912b6340e | 1470 | 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, |
mjr | 76:7f5912b6340e | 1471 | 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, |
mjr | 76:7f5912b6340e | 1472 | 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, |
mjr | 76:7f5912b6340e | 1473 | 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, |
mjr | 76:7f5912b6340e | 1474 | 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, |
mjr | 76:7f5912b6340e | 1475 | 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, |
mjr | 76:7f5912b6340e | 1476 | 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, |
mjr | 76:7f5912b6340e | 1477 | 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27, |
mjr | 76:7f5912b6340e | 1478 | 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30, |
mjr | 76:7f5912b6340e | 1479 | 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33, |
mjr | 76:7f5912b6340e | 1480 | 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36, |
mjr | 76:7f5912b6340e | 1481 | 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39, |
mjr | 76:7f5912b6340e | 1482 | 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42, |
mjr | 76:7f5912b6340e | 1483 | 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45, |
mjr | 76:7f5912b6340e | 1484 | 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48 |
mjr | 76:7f5912b6340e | 1485 | }; |
mjr | 76:7f5912b6340e | 1486 | |
mjr | 74:822a92bc11d2 | 1487 | // LedWiz flash cycle tables. For efficiency, we use a lookup table |
mjr | 74:822a92bc11d2 | 1488 | // rather than calculating these on the fly. The flash cycles are |
mjr | 74:822a92bc11d2 | 1489 | // generated by the following formulas, where 'c' is the current |
mjr | 74:822a92bc11d2 | 1490 | // cycle counter, from 0 to 255: |
mjr | 74:822a92bc11d2 | 1491 | // |
mjr | 74:822a92bc11d2 | 1492 | // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2) |
mjr | 74:822a92bc11d2 | 1493 | // mode 130 = flash on/off = (c < 128 ? 255 : 0) |
mjr | 74:822a92bc11d2 | 1494 | // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2) |
mjr | 74:822a92bc11d2 | 1495 | // mode 132 = ramp up/on = (c < 128 ? c*2 : 255) |
mjr | 74:822a92bc11d2 | 1496 | // |
mjr | 74:822a92bc11d2 | 1497 | // To look up the current output value for a given mode and a given |
mjr | 74:822a92bc11d2 | 1498 | // cycle counter 'c', index the table with ((mode-129)*256)+c. |
mjr | 74:822a92bc11d2 | 1499 | static const uint8_t wizFlashLookup[] = { |
mjr | 74:822a92bc11d2 | 1500 | // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2) |
mjr | 74:822a92bc11d2 | 1501 | 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f, |
mjr | 74:822a92bc11d2 | 1502 | 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f, |
mjr | 74:822a92bc11d2 | 1503 | 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f, |
mjr | 74:822a92bc11d2 | 1504 | 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f, |
mjr | 74:822a92bc11d2 | 1505 | 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f, |
mjr | 74:822a92bc11d2 | 1506 | 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf, |
mjr | 74:822a92bc11d2 | 1507 | 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf, |
mjr | 74:822a92bc11d2 | 1508 | 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff, |
mjr | 74:822a92bc11d2 | 1509 | 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0, |
mjr | 74:822a92bc11d2 | 1510 | 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0, |
mjr | 74:822a92bc11d2 | 1511 | 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0, |
mjr | 74:822a92bc11d2 | 1512 | 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80, |
mjr | 74:822a92bc11d2 | 1513 | 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60, |
mjr | 74:822a92bc11d2 | 1514 | 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40, |
mjr | 74:822a92bc11d2 | 1515 | 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20, |
mjr | 74:822a92bc11d2 | 1516 | 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00, |
mjr | 74:822a92bc11d2 | 1517 | |
mjr | 74:822a92bc11d2 | 1518 | // mode 130 = flash on/off = (c < 128 ? 255 : 0) |
mjr | 74:822a92bc11d2 | 1519 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1520 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1521 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1522 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1523 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1524 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1525 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1526 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1527 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1528 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1529 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1530 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1531 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1532 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1533 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1534 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 1535 | |
mjr | 74:822a92bc11d2 | 1536 | // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2 |
mjr | 74:822a92bc11d2 | 1537 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1538 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1539 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1540 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1541 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1542 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1543 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1544 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1545 | 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0, |
mjr | 74:822a92bc11d2 | 1546 | 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0, |
mjr | 74:822a92bc11d2 | 1547 | 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0, |
mjr | 74:822a92bc11d2 | 1548 | 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80, |
mjr | 74:822a92bc11d2 | 1549 | 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60, |
mjr | 74:822a92bc11d2 | 1550 | 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40, |
mjr | 74:822a92bc11d2 | 1551 | 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20, |
mjr | 74:822a92bc11d2 | 1552 | 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00, |
mjr | 74:822a92bc11d2 | 1553 | |
mjr | 74:822a92bc11d2 | 1554 | // mode 132 = ramp up/on = c < 128 ? c*2 : 255 |
mjr | 74:822a92bc11d2 | 1555 | 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e, |
mjr | 74:822a92bc11d2 | 1556 | 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e, |
mjr | 74:822a92bc11d2 | 1557 | 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e, |
mjr | 74:822a92bc11d2 | 1558 | 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e, |
mjr | 74:822a92bc11d2 | 1559 | 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e, |
mjr | 74:822a92bc11d2 | 1560 | 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe, |
mjr | 74:822a92bc11d2 | 1561 | 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde, |
mjr | 74:822a92bc11d2 | 1562 | 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe, |
mjr | 74:822a92bc11d2 | 1563 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1564 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1565 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1566 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1567 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1568 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1569 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 1570 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff |
mjr | 74:822a92bc11d2 | 1571 | }; |
mjr | 74:822a92bc11d2 | 1572 | |
mjr | 74:822a92bc11d2 | 1573 | // LedWiz flash cycle timer. This runs continuously. On each update, |
mjr | 74:822a92bc11d2 | 1574 | // we use this to figure out where we are on the cycle for each bank. |
mjr | 74:822a92bc11d2 | 1575 | Timer wizCycleTimer; |
mjr | 74:822a92bc11d2 | 1576 | |
mjr | 76:7f5912b6340e | 1577 | // timing statistics for wizPulse() |
mjr | 76:7f5912b6340e | 1578 | uint64_t wizPulseTotalTime, wizPulseRunCount; |
mjr | 76:7f5912b6340e | 1579 | |
mjr | 76:7f5912b6340e | 1580 | // LedWiz flash timer pulse. The main loop calls this on each cycle |
mjr | 76:7f5912b6340e | 1581 | // to update outputs using LedWiz flash modes. We do one bank of 32 |
mjr | 76:7f5912b6340e | 1582 | // outputs on each cycle. |
mjr | 29:582472d0bc57 | 1583 | static void wizPulse() |
mjr | 29:582472d0bc57 | 1584 | { |
mjr | 76:7f5912b6340e | 1585 | // current bank |
mjr | 76:7f5912b6340e | 1586 | static int wizPulseBank = 0; |
mjr | 76:7f5912b6340e | 1587 | |
mjr | 76:7f5912b6340e | 1588 | // start a timer for statistics collection |
mjr | 76:7f5912b6340e | 1589 | IF_DIAG( |
mjr | 76:7f5912b6340e | 1590 | Timer t; |
mjr | 76:7f5912b6340e | 1591 | t.start(); |
mjr | 76:7f5912b6340e | 1592 | ) |
mjr | 76:7f5912b6340e | 1593 | |
mjr | 76:7f5912b6340e | 1594 | // Update the current bank's cycle counter: figure the current |
mjr | 76:7f5912b6340e | 1595 | // phase of the LedWiz pulse cycle for this bank. |
mjr | 76:7f5912b6340e | 1596 | // |
mjr | 76:7f5912b6340e | 1597 | // The LedWiz speed setting gives the flash period in 0.25s units |
mjr | 76:7f5912b6340e | 1598 | // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s). |
mjr | 76:7f5912b6340e | 1599 | // |
mjr | 76:7f5912b6340e | 1600 | // What we're after here is the "phase", which is to say the point |
mjr | 76:7f5912b6340e | 1601 | // in the current cycle. If we assume that the cycle has been running |
mjr | 76:7f5912b6340e | 1602 | // continuously since some arbitrary time zero in the past, we can |
mjr | 76:7f5912b6340e | 1603 | // figure where we are in the current cycle by dividing the time since |
mjr | 76:7f5912b6340e | 1604 | // that zero by the cycle period and taking the remainder. E.g., if |
mjr | 76:7f5912b6340e | 1605 | // the cycle time is 5 seconds, and the time since t-zero is 17 seconds, |
mjr | 76:7f5912b6340e | 1606 | // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds |
mjr | 76:7f5912b6340e | 1607 | // into the current 5-second cycle, or 2/5 of the way through the |
mjr | 76:7f5912b6340e | 1608 | // current cycle. |
mjr | 76:7f5912b6340e | 1609 | // |
mjr | 76:7f5912b6340e | 1610 | // We do this calculation on every iteration of the main loop, so we |
mjr | 76:7f5912b6340e | 1611 | // want it to be very fast. To streamline it, we'll use some tricky |
mjr | 76:7f5912b6340e | 1612 | // integer arithmetic. The result will be the same as the straightforward |
mjr | 76:7f5912b6340e | 1613 | // remainder and fraction calculation we just explained, but we'll get |
mjr | 76:7f5912b6340e | 1614 | // there by less-than-obvious means. |
mjr | 76:7f5912b6340e | 1615 | // |
mjr | 76:7f5912b6340e | 1616 | // Rather than finding the phase as a continuous quantity or floating |
mjr | 76:7f5912b6340e | 1617 | // point number, we'll quantize it. We'll divide each cycle into 256 |
mjr | 76:7f5912b6340e | 1618 | // time units, or quanta. Each quantum is 1/256 of the cycle length, |
mjr | 76:7f5912b6340e | 1619 | // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of |
mjr | 76:7f5912b6340e | 1620 | // a second, or about 3.9ms. If we express the time since t-zero in |
mjr | 76:7f5912b6340e | 1621 | // these units, the time period of one cycle is exactly 256 units, so |
mjr | 76:7f5912b6340e | 1622 | // we can calculate our point in the cycle by taking the remainder of |
mjr | 76:7f5912b6340e | 1623 | // the time (in our funny units) divided by 256. The special thing |
mjr | 76:7f5912b6340e | 1624 | // about making the cycle time equal to 256 units is that "x % 256" |
mjr | 76:7f5912b6340e | 1625 | // is exactly the same as "x & 255", which is a much faster operation |
mjr | 76:7f5912b6340e | 1626 | // than division on ARM M0+: this CPU has no hardware DIVIDE operation, |
mjr | 76:7f5912b6340e | 1627 | // so an integer division takes about 5us. The bit mask operation, in |
mjr | 76:7f5912b6340e | 1628 | // contrast, takes only about 60ns - about 100x faster. 5us doesn't |
mjr | 76:7f5912b6340e | 1629 | // sound like much, but we do this on every main loop, so every little |
mjr | 76:7f5912b6340e | 1630 | // bit counts. |
mjr | 76:7f5912b6340e | 1631 | // |
mjr | 76:7f5912b6340e | 1632 | // The snag is that our system timer gives us the elapsed time in |
mjr | 76:7f5912b6340e | 1633 | // microseconds. We still need to convert this to our special quanta |
mjr | 76:7f5912b6340e | 1634 | // of 256 units per cycle. The straightforward way to do that is by |
mjr | 76:7f5912b6340e | 1635 | // dividing by (microseconds per quantum). E.g., for LedWiz speed 4, |
mjr | 76:7f5912b6340e | 1636 | // we decided that our quantum was 1/256 of a second, or 3906us, so |
mjr | 76:7f5912b6340e | 1637 | // dividing the current system time in microseconds by 3906 will give |
mjr | 76:7f5912b6340e | 1638 | // us the time in our quantum units. But now we've just substituted |
mjr | 76:7f5912b6340e | 1639 | // one division for another! |
mjr | 76:7f5912b6340e | 1640 | // |
mjr | 76:7f5912b6340e | 1641 | // This is where our really tricky integer math comes in. Dividing |
mjr | 76:7f5912b6340e | 1642 | // by X is the same as multiplying by 1/X. In integer math, 1/3906 |
mjr | 76:7f5912b6340e | 1643 | // is zero, so that won't work. But we can get around that by doing |
mjr | 76:7f5912b6340e | 1644 | // the integer math as "fixed point" arithmetic instead. It's still |
mjr | 76:7f5912b6340e | 1645 | // actually carried out as integer operations, but we'll scale our |
mjr | 76:7f5912b6340e | 1646 | // integers by a scaling factor, then take out the scaling factor |
mjr | 76:7f5912b6340e | 1647 | // later to get the final result. The scaling factor we'll use is |
mjr | 76:7f5912b6340e | 1648 | // 2^24. So we're going to calculate (time * 2^24/3906), then divide |
mjr | 76:7f5912b6340e | 1649 | // the result by 2^24 to get the final answer. I know it seems like |
mjr | 76:7f5912b6340e | 1650 | // we're substituting one division for another yet again, but this |
mjr | 76:7f5912b6340e | 1651 | // time's the charm, because dividing by 2^24 is a bit shift operation, |
mjr | 76:7f5912b6340e | 1652 | // which is another single-cycle operation on M0+. You might also |
mjr | 76:7f5912b6340e | 1653 | // wonder how all these tricks don't cause overflows or underflows |
mjr | 76:7f5912b6340e | 1654 | // or what not. Well, the multiply by 2^24/3906 will cause an |
mjr | 76:7f5912b6340e | 1655 | // overflow, but we don't care, because the overflow will all be in |
mjr | 76:7f5912b6340e | 1656 | // the high-order bits that we're going to discard in the final |
mjr | 76:7f5912b6340e | 1657 | // remainder calculation anyway. |
mjr | 76:7f5912b6340e | 1658 | // |
mjr | 76:7f5912b6340e | 1659 | // Each entry in the array below represents 2^24/N for the corresponding |
mjr | 76:7f5912b6340e | 1660 | // LedWiz speed, where N is the number of time quanta per cycle at that |
mjr | 76:7f5912b6340e | 1661 | // speed. The time quanta are chosen such that 256 quanta add up to |
mjr | 76:7f5912b6340e | 1662 | // approximately (LedWiz speed setting * 0.25s). |
mjr | 76:7f5912b6340e | 1663 | // |
mjr | 76:7f5912b6340e | 1664 | // Note that the calculation has an implicit bit mask (result & 0xFF) |
mjr | 76:7f5912b6340e | 1665 | // to get the final result mod 256. But we don't have to actually |
mjr | 76:7f5912b6340e | 1666 | // do that work because we're using 32-bit ints and a 2^24 fixed |
mjr | 76:7f5912b6340e | 1667 | // point base (X in the narrative above). The final shift right by |
mjr | 76:7f5912b6340e | 1668 | // 24 bits to divide out the base will leave us with only 8 bits in |
mjr | 76:7f5912b6340e | 1669 | // the result, since we started with 32. |
mjr | 76:7f5912b6340e | 1670 | static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed |
mjr | 76:7f5912b6340e | 1671 | 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454 |
mjr | 76:7f5912b6340e | 1672 | }; |
mjr | 76:7f5912b6340e | 1673 | int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24); |
mjr | 76:7f5912b6340e | 1674 | |
mjr | 76:7f5912b6340e | 1675 | // get the range of 32 output sin this bank |
mjr | 76:7f5912b6340e | 1676 | int fromPort = wizPulseBank*32; |
mjr | 76:7f5912b6340e | 1677 | int toPort = fromPort+32; |
mjr | 76:7f5912b6340e | 1678 | if (toPort > numOutputs) |
mjr | 76:7f5912b6340e | 1679 | toPort = numOutputs; |
mjr | 76:7f5912b6340e | 1680 | |
mjr | 76:7f5912b6340e | 1681 | // update all outputs set to flashing values |
mjr | 76:7f5912b6340e | 1682 | for (int i = fromPort ; i < toPort ; ++i) |
mjr | 73:4e8ce0b18915 | 1683 | { |
mjr | 76:7f5912b6340e | 1684 | // Update the port only if the LedWiz SBA switch for the port is on |
mjr | 76:7f5912b6340e | 1685 | // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132. |
mjr | 76:7f5912b6340e | 1686 | // These modes and only these modes have the high bit (0x80) set, so |
mjr | 76:7f5912b6340e | 1687 | // we can test for them simply by testing the high bit. |
mjr | 76:7f5912b6340e | 1688 | if (wizOn[i]) |
mjr | 29:582472d0bc57 | 1689 | { |
mjr | 76:7f5912b6340e | 1690 | uint8_t val = wizVal[i]; |
mjr | 76:7f5912b6340e | 1691 | if ((val & 0x80) != 0) |
mjr | 29:582472d0bc57 | 1692 | { |
mjr | 76:7f5912b6340e | 1693 | // ook up the value for the mode at the cycle time |
mjr | 76:7f5912b6340e | 1694 | lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]); |
mjr | 29:582472d0bc57 | 1695 | } |
mjr | 29:582472d0bc57 | 1696 | } |
mjr | 76:7f5912b6340e | 1697 | } |
mjr | 76:7f5912b6340e | 1698 | |
mjr | 34:6b981a2afab7 | 1699 | // flush changes to 74HC595 chips, if attached |
mjr | 35:e959ffba78fd | 1700 | if (hc595 != 0) |
mjr | 35:e959ffba78fd | 1701 | hc595->update(); |
mjr | 76:7f5912b6340e | 1702 | |
mjr | 76:7f5912b6340e | 1703 | // switch to the next bank |
mjr | 76:7f5912b6340e | 1704 | if (++wizPulseBank >= MAX_LW_BANKS) |
mjr | 76:7f5912b6340e | 1705 | wizPulseBank = 0; |
mjr | 76:7f5912b6340e | 1706 | |
mjr | 76:7f5912b6340e | 1707 | // collect timing statistics |
mjr | 76:7f5912b6340e | 1708 | IF_DIAG( |
mjr | 76:7f5912b6340e | 1709 | wizPulseTotalTime += t.read_us(); |
mjr | 76:7f5912b6340e | 1710 | wizPulseRunCount += 1; |
mjr | 76:7f5912b6340e | 1711 | ) |
mjr | 1:d913e0afb2ac | 1712 | } |
mjr | 38:091e511ce8a0 | 1713 | |
mjr | 76:7f5912b6340e | 1714 | // Update a port to reflect its new LedWiz SBA+PBA setting. |
mjr | 76:7f5912b6340e | 1715 | static void updateLwPort(int port) |
mjr | 38:091e511ce8a0 | 1716 | { |
mjr | 76:7f5912b6340e | 1717 | // check if the SBA switch is on or off |
mjr | 76:7f5912b6340e | 1718 | if (wizOn[port]) |
mjr | 76:7f5912b6340e | 1719 | { |
mjr | 76:7f5912b6340e | 1720 | // It's on. If the port is a valid static brightness level, |
mjr | 76:7f5912b6340e | 1721 | // set the output port to match. Otherwise leave it as is: |
mjr | 76:7f5912b6340e | 1722 | // if it's a flashing mode, the flash mode pulse will update |
mjr | 76:7f5912b6340e | 1723 | // it on the next cycle. |
mjr | 76:7f5912b6340e | 1724 | int val = wizVal[port]; |
mjr | 76:7f5912b6340e | 1725 | if (val <= 49) |
mjr | 76:7f5912b6340e | 1726 | lwPin[port]->set(outLevel[port] = lw_to_dof[val]); |
mjr | 76:7f5912b6340e | 1727 | } |
mjr | 76:7f5912b6340e | 1728 | else |
mjr | 76:7f5912b6340e | 1729 | { |
mjr | 76:7f5912b6340e | 1730 | // the port is off - set absolute brightness zero |
mjr | 76:7f5912b6340e | 1731 | lwPin[port]->set(outLevel[port] = 0); |
mjr | 76:7f5912b6340e | 1732 | } |
mjr | 73:4e8ce0b18915 | 1733 | } |
mjr | 73:4e8ce0b18915 | 1734 | |
mjr | 73:4e8ce0b18915 | 1735 | // Turn off all outputs and restore everything to the default LedWiz |
mjr | 73:4e8ce0b18915 | 1736 | // state. This sets outputs #1-32 to LedWiz profile value 48 (full |
mjr | 73:4e8ce0b18915 | 1737 | // brightness) and switch state Off, sets all extended outputs (#33 |
mjr | 73:4e8ce0b18915 | 1738 | // and above) to zero brightness, and sets the LedWiz flash rate to 2. |
mjr | 73:4e8ce0b18915 | 1739 | // This effectively restores the power-on conditions. |
mjr | 73:4e8ce0b18915 | 1740 | // |
mjr | 73:4e8ce0b18915 | 1741 | void allOutputsOff() |
mjr | 73:4e8ce0b18915 | 1742 | { |
mjr | 73:4e8ce0b18915 | 1743 | // reset all LedWiz outputs to OFF/48 |
mjr | 73:4e8ce0b18915 | 1744 | for (int i = 0 ; i < numOutputs ; ++i) |
mjr | 73:4e8ce0b18915 | 1745 | { |
mjr | 73:4e8ce0b18915 | 1746 | outLevel[i] = 0; |
mjr | 73:4e8ce0b18915 | 1747 | wizOn[i] = 0; |
mjr | 73:4e8ce0b18915 | 1748 | wizVal[i] = 48; |
mjr | 73:4e8ce0b18915 | 1749 | lwPin[i]->set(0); |
mjr | 73:4e8ce0b18915 | 1750 | } |
mjr | 73:4e8ce0b18915 | 1751 | |
mjr | 73:4e8ce0b18915 | 1752 | // restore default LedWiz flash rate |
mjr | 73:4e8ce0b18915 | 1753 | for (int i = 0 ; i < countof(wizSpeed) ; ++i) |
mjr | 73:4e8ce0b18915 | 1754 | wizSpeed[i] = 2; |
mjr | 38:091e511ce8a0 | 1755 | |
mjr | 73:4e8ce0b18915 | 1756 | // flush changes to hc595, if applicable |
mjr | 38:091e511ce8a0 | 1757 | if (hc595 != 0) |
mjr | 38:091e511ce8a0 | 1758 | hc595->update(); |
mjr | 38:091e511ce8a0 | 1759 | } |
mjr | 38:091e511ce8a0 | 1760 | |
mjr | 74:822a92bc11d2 | 1761 | // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32, |
mjr | 74:822a92bc11d2 | 1762 | // 1 for ports 33-64, etc. Original protocol SBA messages always |
mjr | 74:822a92bc11d2 | 1763 | // address port group 0; our private SBX extension messages can |
mjr | 74:822a92bc11d2 | 1764 | // address any port group. |
mjr | 74:822a92bc11d2 | 1765 | void sba_sbx(int portGroup, const uint8_t *data) |
mjr | 74:822a92bc11d2 | 1766 | { |
mjr | 76:7f5912b6340e | 1767 | // update all on/off states in the group |
mjr | 74:822a92bc11d2 | 1768 | for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ; |
mjr | 74:822a92bc11d2 | 1769 | i < 32 && port < numOutputs ; |
mjr | 74:822a92bc11d2 | 1770 | ++i, bit <<= 1, ++port) |
mjr | 74:822a92bc11d2 | 1771 | { |
mjr | 74:822a92bc11d2 | 1772 | // figure the on/off state bit for this output |
mjr | 74:822a92bc11d2 | 1773 | if (bit == 0x100) { |
mjr | 74:822a92bc11d2 | 1774 | bit = 1; |
mjr | 74:822a92bc11d2 | 1775 | ++imsg; |
mjr | 74:822a92bc11d2 | 1776 | } |
mjr | 74:822a92bc11d2 | 1777 | |
mjr | 74:822a92bc11d2 | 1778 | // set the on/off state |
mjr | 76:7f5912b6340e | 1779 | bool on = wizOn[port] = ((data[imsg] & bit) != 0); |
mjr | 76:7f5912b6340e | 1780 | |
mjr | 76:7f5912b6340e | 1781 | // set the output port brightness to match the new setting |
mjr | 76:7f5912b6340e | 1782 | updateLwPort(port); |
mjr | 74:822a92bc11d2 | 1783 | } |
mjr | 74:822a92bc11d2 | 1784 | |
mjr | 74:822a92bc11d2 | 1785 | // set the flash speed for the port group |
mjr | 74:822a92bc11d2 | 1786 | if (portGroup < countof(wizSpeed)) |
mjr | 74:822a92bc11d2 | 1787 | wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]); |
mjr | 74:822a92bc11d2 | 1788 | |
mjr | 76:7f5912b6340e | 1789 | // update 74HC959 outputs |
mjr | 76:7f5912b6340e | 1790 | if (hc595 != 0) |
mjr | 76:7f5912b6340e | 1791 | hc595->update(); |
mjr | 74:822a92bc11d2 | 1792 | } |
mjr | 74:822a92bc11d2 | 1793 | |
mjr | 74:822a92bc11d2 | 1794 | // Carry out a PBA or PBX message. |
mjr | 74:822a92bc11d2 | 1795 | void pba_pbx(int basePort, const uint8_t *data) |
mjr | 74:822a92bc11d2 | 1796 | { |
mjr | 74:822a92bc11d2 | 1797 | // update each wizVal entry from the brightness data |
mjr | 76:7f5912b6340e | 1798 | for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port) |
mjr | 74:822a92bc11d2 | 1799 | { |
mjr | 74:822a92bc11d2 | 1800 | // get the value |
mjr | 74:822a92bc11d2 | 1801 | uint8_t v = data[i]; |
mjr | 74:822a92bc11d2 | 1802 | |
mjr | 74:822a92bc11d2 | 1803 | // Validate it. The legal values are 0..49 for brightness |
mjr | 74:822a92bc11d2 | 1804 | // levels, and 128..132 for flash modes. Set anything invalid |
mjr | 74:822a92bc11d2 | 1805 | // to full brightness (48) instead. Note that 49 isn't actually |
mjr | 74:822a92bc11d2 | 1806 | // a valid documented value, but in practice some clients send |
mjr | 74:822a92bc11d2 | 1807 | // this to mean 100% brightness, and the real LedWiz treats it |
mjr | 74:822a92bc11d2 | 1808 | // as such. |
mjr | 74:822a92bc11d2 | 1809 | if ((v > 49 && v < 129) || v > 132) |
mjr | 74:822a92bc11d2 | 1810 | v = 48; |
mjr | 74:822a92bc11d2 | 1811 | |
mjr | 74:822a92bc11d2 | 1812 | // store it |
mjr | 76:7f5912b6340e | 1813 | wizVal[port] = v; |
mjr | 76:7f5912b6340e | 1814 | |
mjr | 76:7f5912b6340e | 1815 | // update the port |
mjr | 76:7f5912b6340e | 1816 | updateLwPort(port); |
mjr | 74:822a92bc11d2 | 1817 | } |
mjr | 74:822a92bc11d2 | 1818 | |
mjr | 76:7f5912b6340e | 1819 | // update 74HC595 outputs |
mjr | 76:7f5912b6340e | 1820 | if (hc595 != 0) |
mjr | 76:7f5912b6340e | 1821 | hc595->update(); |
mjr | 74:822a92bc11d2 | 1822 | } |
mjr | 74:822a92bc11d2 | 1823 | |
mjr | 77:0b96f6867312 | 1824 | // --------------------------------------------------------------------------- |
mjr | 77:0b96f6867312 | 1825 | // |
mjr | 77:0b96f6867312 | 1826 | // IR Remote Control transmitter & receiver |
mjr | 77:0b96f6867312 | 1827 | // |
mjr | 77:0b96f6867312 | 1828 | |
mjr | 77:0b96f6867312 | 1829 | // receiver |
mjr | 77:0b96f6867312 | 1830 | IRReceiver *ir_rx; |
mjr | 77:0b96f6867312 | 1831 | |
mjr | 77:0b96f6867312 | 1832 | // transmitter |
mjr | 77:0b96f6867312 | 1833 | IRTransmitter *ir_tx; |
mjr | 77:0b96f6867312 | 1834 | |
mjr | 77:0b96f6867312 | 1835 | // Mapping from IR commands slots in the configuration to "virtual button" |
mjr | 77:0b96f6867312 | 1836 | // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage, |
mjr | 77:0b96f6867312 | 1837 | // we only create virtual buttons on the transmitter object for code slots |
mjr | 77:0b96f6867312 | 1838 | // that are configured for transmission, which includes slots used for TV |
mjr | 77:0b96f6867312 | 1839 | // ON commands and slots that can be triggered by button presses. This |
mjr | 77:0b96f6867312 | 1840 | // means that virtual button numbers won't necessarily match the config |
mjr | 77:0b96f6867312 | 1841 | // slot numbers. This table provides the mapping: |
mjr | 77:0b96f6867312 | 1842 | // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for |
mjr | 77:0b96f6867312 | 1843 | // configuration slot n |
mjr | 77:0b96f6867312 | 1844 | uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES]; |
mjr | 78:1e00b3fa11af | 1845 | |
mjr | 78:1e00b3fa11af | 1846 | // IR transmitter virtual button number for ad hoc IR command. We allocate |
mjr | 78:1e00b3fa11af | 1847 | // one virtual button for sending ad hoc IR codes, such as through the USB |
mjr | 78:1e00b3fa11af | 1848 | // protocol. |
mjr | 78:1e00b3fa11af | 1849 | uint8_t IRAdHocBtn; |
mjr | 78:1e00b3fa11af | 1850 | |
mjr | 78:1e00b3fa11af | 1851 | // Staging area for ad hoc IR commands. It takes multiple messages |
mjr | 78:1e00b3fa11af | 1852 | // to fill out an IR command, so we store the partial command here |
mjr | 78:1e00b3fa11af | 1853 | // while waiting for the rest. |
mjr | 78:1e00b3fa11af | 1854 | static struct |
mjr | 78:1e00b3fa11af | 1855 | { |
mjr | 78:1e00b3fa11af | 1856 | uint8_t protocol; // protocol ID |
mjr | 78:1e00b3fa11af | 1857 | uint64_t code; // code |
mjr | 78:1e00b3fa11af | 1858 | uint8_t dittos : 1; // using dittos? |
mjr | 78:1e00b3fa11af | 1859 | uint8_t ready : 1; // do we have a code ready to transmit? |
mjr | 78:1e00b3fa11af | 1860 | } IRAdHocCmd; |
mjr | 78:1e00b3fa11af | 1861 | |
mjr | 77:0b96f6867312 | 1862 | |
mjr | 77:0b96f6867312 | 1863 | // IR mode timer. In normal mode, this is the time since the last |
mjr | 77:0b96f6867312 | 1864 | // command received; we use this to handle commands with timed effects, |
mjr | 77:0b96f6867312 | 1865 | // such as sending a key to the PC. In learning mode, this is the time |
mjr | 77:0b96f6867312 | 1866 | // since we activated learning mode, which we use to automatically end |
mjr | 77:0b96f6867312 | 1867 | // learning mode if a decodable command isn't received within a reasonable |
mjr | 77:0b96f6867312 | 1868 | // amount of time. |
mjr | 77:0b96f6867312 | 1869 | Timer IRTimer; |
mjr | 77:0b96f6867312 | 1870 | |
mjr | 77:0b96f6867312 | 1871 | // IR Learning Mode. The PC enters learning mode via special function 65 12. |
mjr | 77:0b96f6867312 | 1872 | // The states are: |
mjr | 77:0b96f6867312 | 1873 | // |
mjr | 77:0b96f6867312 | 1874 | // 0 -> normal operation (not in learning mode) |
mjr | 77:0b96f6867312 | 1875 | // 1 -> learning mode; reading raw codes, no command read yet |
mjr | 77:0b96f6867312 | 1876 | // 2 -> learning mode; command received, awaiting auto-repeat |
mjr | 77:0b96f6867312 | 1877 | // 3 -> learning mode; done, command and repeat mode decoded |
mjr | 77:0b96f6867312 | 1878 | // |
mjr | 77:0b96f6867312 | 1879 | // When we enter learning mode, we reset IRTimer to keep track of how long |
mjr | 77:0b96f6867312 | 1880 | // we've been in the mode. This allows the mode to time out if no code is |
mjr | 77:0b96f6867312 | 1881 | // received within a reasonable time. |
mjr | 77:0b96f6867312 | 1882 | uint8_t IRLearningMode = 0; |
mjr | 77:0b96f6867312 | 1883 | |
mjr | 77:0b96f6867312 | 1884 | // Learning mode command received. This stores the first decoded command |
mjr | 77:0b96f6867312 | 1885 | // when in learning mode. For some protocols, we can't just report the |
mjr | 77:0b96f6867312 | 1886 | // first command we receive, because we need to wait for an auto-repeat to |
mjr | 77:0b96f6867312 | 1887 | // determine what format the remote uses for repeats. This stores the first |
mjr | 77:0b96f6867312 | 1888 | // command while we await a repeat. This is necessary for protocols that |
mjr | 77:0b96f6867312 | 1889 | // have "dittos", since some remotes for such protocols use the dittos and |
mjr | 77:0b96f6867312 | 1890 | // some don't; the only way to find out is to read a repeat code and see if |
mjr | 77:0b96f6867312 | 1891 | // it's a ditto or just a repeat of the full code. |
mjr | 77:0b96f6867312 | 1892 | IRCommand learnedIRCode; |
mjr | 77:0b96f6867312 | 1893 | |
mjr | 78:1e00b3fa11af | 1894 | // IR command received, as a config slot index, 1..MAX_IR_CODES. |
mjr | 77:0b96f6867312 | 1895 | // When we receive a command that matches one of our programmed commands, |
mjr | 77:0b96f6867312 | 1896 | // we note the slot here. We also reset the IR timer so that we know how |
mjr | 77:0b96f6867312 | 1897 | // long it's been since the command came in. This lets us handle commands |
mjr | 77:0b96f6867312 | 1898 | // with timed effects, such as PC key input. Note that this is a 1-based |
mjr | 77:0b96f6867312 | 1899 | // index; 0 represents no command. |
mjr | 77:0b96f6867312 | 1900 | uint8_t IRCommandIn = 0; |
mjr | 77:0b96f6867312 | 1901 | |
mjr | 77:0b96f6867312 | 1902 | // "Toggle bit" of last command. Some IR protocols have a toggle bit |
mjr | 77:0b96f6867312 | 1903 | // that distinguishes an auto-repeating key from a key being pressed |
mjr | 77:0b96f6867312 | 1904 | // several times in a row. This records the toggle bit of the last |
mjr | 77:0b96f6867312 | 1905 | // command we received. |
mjr | 77:0b96f6867312 | 1906 | uint8_t lastIRToggle = 0; |
mjr | 77:0b96f6867312 | 1907 | |
mjr | 77:0b96f6867312 | 1908 | // Are we in a gap between successive key presses? When we detect that a |
mjr | 77:0b96f6867312 | 1909 | // key is being pressed multiple times rather than auto-repeated (which we |
mjr | 77:0b96f6867312 | 1910 | // can detect via a toggle bit in some protocols), we'll briefly stop sending |
mjr | 77:0b96f6867312 | 1911 | // the associated key to the PC, so that the PC likewise recognizes the |
mjr | 77:0b96f6867312 | 1912 | // distinct key press. |
mjr | 77:0b96f6867312 | 1913 | uint8_t IRKeyGap = false; |
mjr | 77:0b96f6867312 | 1914 | |
mjr | 78:1e00b3fa11af | 1915 | |
mjr | 77:0b96f6867312 | 1916 | // initialize |
mjr | 77:0b96f6867312 | 1917 | void init_IR(Config &cfg, bool &kbKeys) |
mjr | 77:0b96f6867312 | 1918 | { |
mjr | 77:0b96f6867312 | 1919 | PinName pin; |
mjr | 77:0b96f6867312 | 1920 | |
mjr | 77:0b96f6867312 | 1921 | // start the IR timer |
mjr | 77:0b96f6867312 | 1922 | IRTimer.start(); |
mjr | 77:0b96f6867312 | 1923 | |
mjr | 77:0b96f6867312 | 1924 | // if there's a transmitter, set it up |
mjr | 77:0b96f6867312 | 1925 | if ((pin = wirePinName(cfg.IR.emitter)) != NC) |
mjr | 77:0b96f6867312 | 1926 | { |
mjr | 77:0b96f6867312 | 1927 | // no virtual buttons yet |
mjr | 77:0b96f6867312 | 1928 | int nVirtualButtons = 0; |
mjr | 77:0b96f6867312 | 1929 | memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton)); |
mjr | 77:0b96f6867312 | 1930 | |
mjr | 77:0b96f6867312 | 1931 | // assign virtual buttons slots for TV ON codes |
mjr | 77:0b96f6867312 | 1932 | for (int i = 0 ; i < MAX_IR_CODES ; ++i) |
mjr | 77:0b96f6867312 | 1933 | { |
mjr | 77:0b96f6867312 | 1934 | if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0) |
mjr | 77:0b96f6867312 | 1935 | IRConfigSlotToVirtualButton[i] = nVirtualButtons++; |
mjr | 77:0b96f6867312 | 1936 | } |
mjr | 77:0b96f6867312 | 1937 | |
mjr | 77:0b96f6867312 | 1938 | // assign virtual buttons for codes that can be triggered by |
mjr | 77:0b96f6867312 | 1939 | // real button inputs |
mjr | 77:0b96f6867312 | 1940 | for (int i = 0 ; i < MAX_BUTTONS ; ++i) |
mjr | 77:0b96f6867312 | 1941 | { |
mjr | 77:0b96f6867312 | 1942 | // get the button |
mjr | 77:0b96f6867312 | 1943 | ButtonCfg &b = cfg.button[i]; |
mjr | 77:0b96f6867312 | 1944 | |
mjr | 77:0b96f6867312 | 1945 | // check the unshifted button |
mjr | 77:0b96f6867312 | 1946 | int c = b.IRCommand - 1; |
mjr | 77:0b96f6867312 | 1947 | if (c >= 0 && c < MAX_IR_CODES |
mjr | 77:0b96f6867312 | 1948 | && IRConfigSlotToVirtualButton[c] == 0xFF) |
mjr | 77:0b96f6867312 | 1949 | IRConfigSlotToVirtualButton[c] = nVirtualButtons++; |
mjr | 77:0b96f6867312 | 1950 | |
mjr | 77:0b96f6867312 | 1951 | // check the shifted button |
mjr | 77:0b96f6867312 | 1952 | c = b.IRCommand2 - 1; |
mjr | 77:0b96f6867312 | 1953 | if (c >= 0 && c < MAX_IR_CODES |
mjr | 77:0b96f6867312 | 1954 | && IRConfigSlotToVirtualButton[c] == 0xFF) |
mjr | 77:0b96f6867312 | 1955 | IRConfigSlotToVirtualButton[c] = nVirtualButtons++; |
mjr | 77:0b96f6867312 | 1956 | } |
mjr | 77:0b96f6867312 | 1957 | |
mjr | 77:0b96f6867312 | 1958 | // allocate an additional virtual button for transmitting ad hoc |
mjr | 77:0b96f6867312 | 1959 | // codes, such as for the "send code" USB API function |
mjr | 78:1e00b3fa11af | 1960 | IRAdHocBtn = nVirtualButtons++; |
mjr | 77:0b96f6867312 | 1961 | |
mjr | 77:0b96f6867312 | 1962 | // create the transmitter |
mjr | 77:0b96f6867312 | 1963 | ir_tx = new IRTransmitter(pin, nVirtualButtons); |
mjr | 77:0b96f6867312 | 1964 | |
mjr | 77:0b96f6867312 | 1965 | // program the commands into the virtual button slots |
mjr | 77:0b96f6867312 | 1966 | for (int i = 0 ; i < MAX_IR_CODES ; ++i) |
mjr | 77:0b96f6867312 | 1967 | { |
mjr | 77:0b96f6867312 | 1968 | // if this slot is assigned to a virtual button, program it |
mjr | 77:0b96f6867312 | 1969 | int vb = IRConfigSlotToVirtualButton[i]; |
mjr | 77:0b96f6867312 | 1970 | if (vb != 0xFF) |
mjr | 77:0b96f6867312 | 1971 | { |
mjr | 77:0b96f6867312 | 1972 | IRCommandCfg &cb = cfg.IRCommand[i]; |
mjr | 77:0b96f6867312 | 1973 | uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32); |
mjr | 77:0b96f6867312 | 1974 | bool dittos = (cb.flags & IRFlagDittos) != 0; |
mjr | 77:0b96f6867312 | 1975 | ir_tx->programButton(vb, cb.protocol, dittos, code); |
mjr | 77:0b96f6867312 | 1976 | } |
mjr | 77:0b96f6867312 | 1977 | } |
mjr | 77:0b96f6867312 | 1978 | } |
mjr | 77:0b96f6867312 | 1979 | |
mjr | 77:0b96f6867312 | 1980 | // if there's a receiver, set it up |
mjr | 77:0b96f6867312 | 1981 | if ((pin = wirePinName(cfg.IR.sensor)) != NC) |
mjr | 77:0b96f6867312 | 1982 | { |
mjr | 77:0b96f6867312 | 1983 | // create the receiver |
mjr | 77:0b96f6867312 | 1984 | ir_rx = new IRReceiver(pin, 32); |
mjr | 77:0b96f6867312 | 1985 | |
mjr | 77:0b96f6867312 | 1986 | // connect the transmitter (if any) to the receiver, so that |
mjr | 77:0b96f6867312 | 1987 | // the receiver can suppress reception of our own transmissions |
mjr | 77:0b96f6867312 | 1988 | ir_rx->setTransmitter(ir_tx); |
mjr | 77:0b96f6867312 | 1989 | |
mjr | 77:0b96f6867312 | 1990 | // enable it |
mjr | 77:0b96f6867312 | 1991 | ir_rx->enable(); |
mjr | 77:0b96f6867312 | 1992 | |
mjr | 77:0b96f6867312 | 1993 | // Check the IR command slots to see if any slots are configured |
mjr | 77:0b96f6867312 | 1994 | // to send a keyboard key on receiving an IR command. If any are, |
mjr | 77:0b96f6867312 | 1995 | // tell the caller that we need a USB keyboard interface. |
mjr | 77:0b96f6867312 | 1996 | for (int i = 0 ; i < MAX_IR_CODES ; ++i) |
mjr | 77:0b96f6867312 | 1997 | { |
mjr | 77:0b96f6867312 | 1998 | IRCommandCfg &cb = cfg.IRCommand[i]; |
mjr | 77:0b96f6867312 | 1999 | if (cb.protocol != 0 |
mjr | 77:0b96f6867312 | 2000 | && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia)) |
mjr | 77:0b96f6867312 | 2001 | { |
mjr | 77:0b96f6867312 | 2002 | kbKeys = true; |
mjr | 77:0b96f6867312 | 2003 | break; |
mjr | 77:0b96f6867312 | 2004 | } |
mjr | 77:0b96f6867312 | 2005 | } |
mjr | 77:0b96f6867312 | 2006 | } |
mjr | 77:0b96f6867312 | 2007 | } |
mjr | 77:0b96f6867312 | 2008 | |
mjr | 77:0b96f6867312 | 2009 | // Press or release a button with an assigned IR function. 'cmd' |
mjr | 77:0b96f6867312 | 2010 | // is the command slot number (1..MAX_IR_CODES) assigned to the button. |
mjr | 77:0b96f6867312 | 2011 | void IR_buttonChange(uint8_t cmd, bool pressed) |
mjr | 77:0b96f6867312 | 2012 | { |
mjr | 77:0b96f6867312 | 2013 | // only proceed if there's an IR transmitter attached |
mjr | 77:0b96f6867312 | 2014 | if (ir_tx != 0) |
mjr | 77:0b96f6867312 | 2015 | { |
mjr | 77:0b96f6867312 | 2016 | // adjust the command slot to a zero-based index |
mjr | 77:0b96f6867312 | 2017 | int slot = cmd - 1; |
mjr | 77:0b96f6867312 | 2018 | |
mjr | 77:0b96f6867312 | 2019 | // press or release the virtual button |
mjr | 77:0b96f6867312 | 2020 | ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed); |
mjr | 77:0b96f6867312 | 2021 | } |
mjr | 77:0b96f6867312 | 2022 | } |
mjr | 77:0b96f6867312 | 2023 | |
mjr | 78:1e00b3fa11af | 2024 | // Process IR input and output |
mjr | 77:0b96f6867312 | 2025 | void process_IR(Config &cfg, USBJoystick &js) |
mjr | 77:0b96f6867312 | 2026 | { |
mjr | 78:1e00b3fa11af | 2027 | // check for transmitter tasks, if there's a transmitter |
mjr | 78:1e00b3fa11af | 2028 | if (ir_tx != 0) |
mjr | 77:0b96f6867312 | 2029 | { |
mjr | 78:1e00b3fa11af | 2030 | // If we're not currently sending, and an ad hoc IR command |
mjr | 78:1e00b3fa11af | 2031 | // is ready to send, send it. |
mjr | 78:1e00b3fa11af | 2032 | if (!ir_tx->isSending() && IRAdHocCmd.ready) |
mjr | 78:1e00b3fa11af | 2033 | { |
mjr | 78:1e00b3fa11af | 2034 | // program the command into the transmitter virtual button |
mjr | 78:1e00b3fa11af | 2035 | // that we reserved for ad hoc commands |
mjr | 78:1e00b3fa11af | 2036 | ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol, |
mjr | 78:1e00b3fa11af | 2037 | IRAdHocCmd.dittos, IRAdHocCmd.code); |
mjr | 78:1e00b3fa11af | 2038 | |
mjr | 78:1e00b3fa11af | 2039 | // send the command - just pulse the button to send it once |
mjr | 78:1e00b3fa11af | 2040 | ir_tx->pushButton(IRAdHocBtn, true); |
mjr | 78:1e00b3fa11af | 2041 | ir_tx->pushButton(IRAdHocBtn, false); |
mjr | 78:1e00b3fa11af | 2042 | |
mjr | 78:1e00b3fa11af | 2043 | // we've sent the command, so clear the 'ready' flag |
mjr | 78:1e00b3fa11af | 2044 | IRAdHocCmd.ready = false; |
mjr | 78:1e00b3fa11af | 2045 | } |
mjr | 77:0b96f6867312 | 2046 | } |
mjr | 78:1e00b3fa11af | 2047 | |
mjr | 78:1e00b3fa11af | 2048 | // check for receiver tasks, if there's a receiver |
mjr | 78:1e00b3fa11af | 2049 | if (ir_rx != 0) |
mjr | 77:0b96f6867312 | 2050 | { |
mjr | 78:1e00b3fa11af | 2051 | // Time out any received command |
mjr | 78:1e00b3fa11af | 2052 | if (IRCommandIn != 0) |
mjr | 78:1e00b3fa11af | 2053 | { |
mjr | 80:94dc2946871b | 2054 | // Time out commands after 200ms without a repeat signal. |
mjr | 80:94dc2946871b | 2055 | // Time out the inter-key gap after 50ms. |
mjr | 78:1e00b3fa11af | 2056 | uint32_t t = IRTimer.read_us(); |
mjr | 80:94dc2946871b | 2057 | if (t > 200000) |
mjr | 78:1e00b3fa11af | 2058 | IRCommandIn = 0; |
mjr | 80:94dc2946871b | 2059 | else if (t > 50000) |
mjr | 78:1e00b3fa11af | 2060 | IRKeyGap = false; |
mjr | 78:1e00b3fa11af | 2061 | } |
mjr | 78:1e00b3fa11af | 2062 | |
mjr | 78:1e00b3fa11af | 2063 | // Check if we're in learning mode |
mjr | 78:1e00b3fa11af | 2064 | if (IRLearningMode != 0) |
mjr | 78:1e00b3fa11af | 2065 | { |
mjr | 78:1e00b3fa11af | 2066 | // Learning mode. Read raw inputs from the IR sensor and |
mjr | 78:1e00b3fa11af | 2067 | // forward them to the PC via USB reports, up to the report |
mjr | 78:1e00b3fa11af | 2068 | // limit. |
mjr | 78:1e00b3fa11af | 2069 | const int nmax = USBJoystick::maxRawIR; |
mjr | 78:1e00b3fa11af | 2070 | uint16_t raw[nmax]; |
mjr | 78:1e00b3fa11af | 2071 | int n; |
mjr | 78:1e00b3fa11af | 2072 | for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ; |
mjr | 77:0b96f6867312 | 2073 | |
mjr | 78:1e00b3fa11af | 2074 | // if we read any raw samples, report them |
mjr | 78:1e00b3fa11af | 2075 | if (n != 0) |
mjr | 78:1e00b3fa11af | 2076 | js.reportRawIR(n, raw); |
mjr | 77:0b96f6867312 | 2077 | |
mjr | 78:1e00b3fa11af | 2078 | // check for a command |
mjr | 78:1e00b3fa11af | 2079 | IRCommand c; |
mjr | 78:1e00b3fa11af | 2080 | if (ir_rx->readCommand(c)) |
mjr | 78:1e00b3fa11af | 2081 | { |
mjr | 78:1e00b3fa11af | 2082 | // check the current learning state |
mjr | 78:1e00b3fa11af | 2083 | switch (IRLearningMode) |
mjr | 78:1e00b3fa11af | 2084 | { |
mjr | 78:1e00b3fa11af | 2085 | case 1: |
mjr | 78:1e00b3fa11af | 2086 | // Initial state, waiting for the first decoded command. |
mjr | 78:1e00b3fa11af | 2087 | // This is it. |
mjr | 78:1e00b3fa11af | 2088 | learnedIRCode = c; |
mjr | 78:1e00b3fa11af | 2089 | |
mjr | 78:1e00b3fa11af | 2090 | // Check if we need additional information. If the |
mjr | 78:1e00b3fa11af | 2091 | // protocol supports dittos, we have to wait for a repeat |
mjr | 78:1e00b3fa11af | 2092 | // to see if the remote actually uses the dittos, since |
mjr | 78:1e00b3fa11af | 2093 | // some implementations of such protocols use the dittos |
mjr | 78:1e00b3fa11af | 2094 | // while others just send repeated full codes. Otherwise, |
mjr | 78:1e00b3fa11af | 2095 | // all we need is the initial code, so we're done. |
mjr | 78:1e00b3fa11af | 2096 | IRLearningMode = (c.hasDittos ? 2 : 3); |
mjr | 78:1e00b3fa11af | 2097 | break; |
mjr | 78:1e00b3fa11af | 2098 | |
mjr | 78:1e00b3fa11af | 2099 | case 2: |
mjr | 78:1e00b3fa11af | 2100 | // Code received, awaiting auto-repeat information. If |
mjr | 78:1e00b3fa11af | 2101 | // the protocol has dittos, check to see if we got a ditto: |
mjr | 78:1e00b3fa11af | 2102 | // |
mjr | 78:1e00b3fa11af | 2103 | // - If we received a ditto in the same protocol as the |
mjr | 78:1e00b3fa11af | 2104 | // prior command, the remote uses dittos. |
mjr | 78:1e00b3fa11af | 2105 | // |
mjr | 78:1e00b3fa11af | 2106 | // - If we received a repeat of the prior command (not a |
mjr | 78:1e00b3fa11af | 2107 | // ditto, but a repeat of the full code), the remote |
mjr | 78:1e00b3fa11af | 2108 | // doesn't use dittos even though the protocol supports |
mjr | 78:1e00b3fa11af | 2109 | // them. |
mjr | 78:1e00b3fa11af | 2110 | // |
mjr | 78:1e00b3fa11af | 2111 | // - Otherwise, it's not an auto-repeat at all, so we |
mjr | 78:1e00b3fa11af | 2112 | // can't decide one way or the other on dittos: start |
mjr | 78:1e00b3fa11af | 2113 | // over. |
mjr | 78:1e00b3fa11af | 2114 | if (c.proId == learnedIRCode.proId |
mjr | 78:1e00b3fa11af | 2115 | && c.hasDittos |
mjr | 78:1e00b3fa11af | 2116 | && c.ditto) |
mjr | 78:1e00b3fa11af | 2117 | { |
mjr | 78:1e00b3fa11af | 2118 | // success - the remote uses dittos |
mjr | 78:1e00b3fa11af | 2119 | IRLearningMode = 3; |
mjr | 78:1e00b3fa11af | 2120 | } |
mjr | 78:1e00b3fa11af | 2121 | else if (c.proId == learnedIRCode.proId |
mjr | 78:1e00b3fa11af | 2122 | && c.hasDittos |
mjr | 78:1e00b3fa11af | 2123 | && !c.ditto |
mjr | 78:1e00b3fa11af | 2124 | && c.code == learnedIRCode.code) |
mjr | 78:1e00b3fa11af | 2125 | { |
mjr | 78:1e00b3fa11af | 2126 | // success - it's a repeat of the last code, so |
mjr | 78:1e00b3fa11af | 2127 | // the remote doesn't use dittos even though the |
mjr | 78:1e00b3fa11af | 2128 | // protocol supports them |
mjr | 78:1e00b3fa11af | 2129 | learnedIRCode.hasDittos = false; |
mjr | 78:1e00b3fa11af | 2130 | IRLearningMode = 3; |
mjr | 78:1e00b3fa11af | 2131 | } |
mjr | 78:1e00b3fa11af | 2132 | else |
mjr | 78:1e00b3fa11af | 2133 | { |
mjr | 78:1e00b3fa11af | 2134 | // It's not a ditto and not a full repeat of the |
mjr | 78:1e00b3fa11af | 2135 | // last code, so it's either a new key, or some kind |
mjr | 78:1e00b3fa11af | 2136 | // of multi-code key encoding that we don't recognize. |
mjr | 78:1e00b3fa11af | 2137 | // We can't use this code, so start over. |
mjr | 78:1e00b3fa11af | 2138 | IRLearningMode = 1; |
mjr | 78:1e00b3fa11af | 2139 | } |
mjr | 78:1e00b3fa11af | 2140 | break; |
mjr | 78:1e00b3fa11af | 2141 | } |
mjr | 77:0b96f6867312 | 2142 | |
mjr | 78:1e00b3fa11af | 2143 | // If we ended in state 3, we've successfully decoded |
mjr | 78:1e00b3fa11af | 2144 | // the transmission. Report the decoded data and terminate |
mjr | 78:1e00b3fa11af | 2145 | // learning mode. |
mjr | 78:1e00b3fa11af | 2146 | if (IRLearningMode == 3) |
mjr | 77:0b96f6867312 | 2147 | { |
mjr | 78:1e00b3fa11af | 2148 | // figure the flags: |
mjr | 78:1e00b3fa11af | 2149 | // 0x02 -> dittos |
mjr | 78:1e00b3fa11af | 2150 | uint8_t flags = 0; |
mjr | 78:1e00b3fa11af | 2151 | if (learnedIRCode.hasDittos) |
mjr | 78:1e00b3fa11af | 2152 | flags |= 0x02; |
mjr | 78:1e00b3fa11af | 2153 | |
mjr | 78:1e00b3fa11af | 2154 | // report the code |
mjr | 78:1e00b3fa11af | 2155 | js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code); |
mjr | 78:1e00b3fa11af | 2156 | |
mjr | 78:1e00b3fa11af | 2157 | // exit learning mode |
mjr | 78:1e00b3fa11af | 2158 | IRLearningMode = 0; |
mjr | 77:0b96f6867312 | 2159 | } |
mjr | 77:0b96f6867312 | 2160 | } |
mjr | 77:0b96f6867312 | 2161 | |
mjr | 78:1e00b3fa11af | 2162 | // time out of IR learning mode if it's been too long |
mjr | 78:1e00b3fa11af | 2163 | if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L) |
mjr | 77:0b96f6867312 | 2164 | { |
mjr | 78:1e00b3fa11af | 2165 | // report the termination by sending a raw IR report with |
mjr | 78:1e00b3fa11af | 2166 | // zero data elements |
mjr | 78:1e00b3fa11af | 2167 | js.reportRawIR(0, 0); |
mjr | 78:1e00b3fa11af | 2168 | |
mjr | 78:1e00b3fa11af | 2169 | |
mjr | 78:1e00b3fa11af | 2170 | // cancel learning mode |
mjr | 77:0b96f6867312 | 2171 | IRLearningMode = 0; |
mjr | 77:0b96f6867312 | 2172 | } |
mjr | 77:0b96f6867312 | 2173 | } |
mjr | 78:1e00b3fa11af | 2174 | else |
mjr | 77:0b96f6867312 | 2175 | { |
mjr | 78:1e00b3fa11af | 2176 | // Not in learning mode. We don't care about the raw signals; |
mjr | 78:1e00b3fa11af | 2177 | // just run them through the protocol decoders. |
mjr | 78:1e00b3fa11af | 2178 | ir_rx->process(); |
mjr | 78:1e00b3fa11af | 2179 | |
mjr | 78:1e00b3fa11af | 2180 | // Check for decoded commands. Keep going until all commands |
mjr | 78:1e00b3fa11af | 2181 | // have been read. |
mjr | 78:1e00b3fa11af | 2182 | IRCommand c; |
mjr | 78:1e00b3fa11af | 2183 | while (ir_rx->readCommand(c)) |
mjr | 77:0b96f6867312 | 2184 | { |
mjr | 78:1e00b3fa11af | 2185 | // We received a decoded command. Determine if it's a repeat, |
mjr | 78:1e00b3fa11af | 2186 | // and if so, try to determine whether it's an auto-repeat (due |
mjr | 78:1e00b3fa11af | 2187 | // to the remote key being held down) or a distinct new press |
mjr | 78:1e00b3fa11af | 2188 | // on the same key as last time. The distinction is significant |
mjr | 78:1e00b3fa11af | 2189 | // because it affects the auto-repeat behavior of the PC key |
mjr | 78:1e00b3fa11af | 2190 | // input. An auto-repeat represents a key being held down on |
mjr | 78:1e00b3fa11af | 2191 | // the remote, which we want to translate to a (virtual) key |
mjr | 78:1e00b3fa11af | 2192 | // being held down on the PC keyboard; a distinct key press on |
mjr | 78:1e00b3fa11af | 2193 | // the remote translates to a distinct key press on the PC. |
mjr | 78:1e00b3fa11af | 2194 | // |
mjr | 78:1e00b3fa11af | 2195 | // It can only be a repeat if there's a prior command that |
mjr | 78:1e00b3fa11af | 2196 | // hasn't timed out yet, so start by checking for a previous |
mjr | 78:1e00b3fa11af | 2197 | // command. |
mjr | 78:1e00b3fa11af | 2198 | bool repeat = false, autoRepeat = false; |
mjr | 78:1e00b3fa11af | 2199 | if (IRCommandIn != 0) |
mjr | 77:0b96f6867312 | 2200 | { |
mjr | 78:1e00b3fa11af | 2201 | // We have a command in progress. Check to see if the |
mjr | 78:1e00b3fa11af | 2202 | // new command is a repeat of the previous command. Check |
mjr | 78:1e00b3fa11af | 2203 | // first to see if it's a "ditto", which explicitly represents |
mjr | 78:1e00b3fa11af | 2204 | // an auto-repeat of the last command. |
mjr | 78:1e00b3fa11af | 2205 | IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1]; |
mjr | 78:1e00b3fa11af | 2206 | if (c.ditto) |
mjr | 78:1e00b3fa11af | 2207 | { |
mjr | 78:1e00b3fa11af | 2208 | // We received a ditto. Dittos are always auto- |
mjr | 78:1e00b3fa11af | 2209 | // repeats, so it's an auto-repeat as long as the |
mjr | 78:1e00b3fa11af | 2210 | // ditto is in the same protocol as the last command. |
mjr | 78:1e00b3fa11af | 2211 | // If the ditto is in a new protocol, the ditto can't |
mjr | 78:1e00b3fa11af | 2212 | // be for the last command we saw, because a ditto |
mjr | 78:1e00b3fa11af | 2213 | // never changes protocols from its antecedent. In |
mjr | 78:1e00b3fa11af | 2214 | // such a case, we must have missed the antecedent |
mjr | 78:1e00b3fa11af | 2215 | // command and thus don't know what's being repeated. |
mjr | 78:1e00b3fa11af | 2216 | repeat = autoRepeat = (c.proId == cmdcfg.protocol); |
mjr | 78:1e00b3fa11af | 2217 | } |
mjr | 78:1e00b3fa11af | 2218 | else |
mjr | 78:1e00b3fa11af | 2219 | { |
mjr | 78:1e00b3fa11af | 2220 | // It's not a ditto. The new command is a repeat if |
mjr | 78:1e00b3fa11af | 2221 | // it matches the protocol and command code of the |
mjr | 78:1e00b3fa11af | 2222 | // prior command. |
mjr | 78:1e00b3fa11af | 2223 | repeat = (c.proId == cmdcfg.protocol |
mjr | 78:1e00b3fa11af | 2224 | && uint32_t(c.code) == cmdcfg.code.lo |
mjr | 78:1e00b3fa11af | 2225 | && uint32_t(c.code >> 32) == cmdcfg.code.hi); |
mjr | 78:1e00b3fa11af | 2226 | |
mjr | 78:1e00b3fa11af | 2227 | // If the command is a repeat, try to determine whether |
mjr | 78:1e00b3fa11af | 2228 | // it's an auto-repeat or a new press on the same key. |
mjr | 78:1e00b3fa11af | 2229 | // If the protocol uses dittos, it's definitely a new |
mjr | 78:1e00b3fa11af | 2230 | // key press, because an auto-repeat would have used a |
mjr | 78:1e00b3fa11af | 2231 | // ditto. For a protocol that doesn't use dittos, both |
mjr | 78:1e00b3fa11af | 2232 | // an auto-repeat and a new key press just send the key |
mjr | 78:1e00b3fa11af | 2233 | // code again, so we can't tell the difference based on |
mjr | 78:1e00b3fa11af | 2234 | // that alone. But if the protocol has a toggle bit, we |
mjr | 78:1e00b3fa11af | 2235 | // can tell by the toggle bit value: a new key press has |
mjr | 78:1e00b3fa11af | 2236 | // the opposite toggle value as the last key press, while |
mjr | 78:1e00b3fa11af | 2237 | // an auto-repeat has the same toggle. Note that if the |
mjr | 78:1e00b3fa11af | 2238 | // protocol doesn't use toggle bits, the toggle value |
mjr | 78:1e00b3fa11af | 2239 | // will always be the same, so we'll simply always treat |
mjr | 78:1e00b3fa11af | 2240 | // any repeat as an auto-repeat. Many protocols simply |
mjr | 78:1e00b3fa11af | 2241 | // provide no way to distinguish the two, so in such |
mjr | 78:1e00b3fa11af | 2242 | // cases it's consistent with the native implementations |
mjr | 78:1e00b3fa11af | 2243 | // to treat any repeat as an auto-repeat. |
mjr | 78:1e00b3fa11af | 2244 | autoRepeat = |
mjr | 78:1e00b3fa11af | 2245 | repeat |
mjr | 78:1e00b3fa11af | 2246 | && !(cmdcfg.flags & IRFlagDittos) |
mjr | 78:1e00b3fa11af | 2247 | && c.toggle == lastIRToggle; |
mjr | 78:1e00b3fa11af | 2248 | } |
mjr | 78:1e00b3fa11af | 2249 | } |
mjr | 78:1e00b3fa11af | 2250 | |
mjr | 78:1e00b3fa11af | 2251 | // Check to see if it's a repeat of any kind |
mjr | 78:1e00b3fa11af | 2252 | if (repeat) |
mjr | 78:1e00b3fa11af | 2253 | { |
mjr | 78:1e00b3fa11af | 2254 | // It's a repeat. If it's not an auto-repeat, it's a |
mjr | 78:1e00b3fa11af | 2255 | // new distinct key press, so we need to send the PC a |
mjr | 78:1e00b3fa11af | 2256 | // momentary gap where we're not sending the same key, |
mjr | 78:1e00b3fa11af | 2257 | // so that the PC also recognizes this as a distinct |
mjr | 78:1e00b3fa11af | 2258 | // key press event. |
mjr | 78:1e00b3fa11af | 2259 | if (!autoRepeat) |
mjr | 78:1e00b3fa11af | 2260 | IRKeyGap = true; |
mjr | 78:1e00b3fa11af | 2261 | |
mjr | 78:1e00b3fa11af | 2262 | // restart the key-up timer |
mjr | 78:1e00b3fa11af | 2263 | IRTimer.reset(); |
mjr | 78:1e00b3fa11af | 2264 | } |
mjr | 78:1e00b3fa11af | 2265 | else if (c.ditto) |
mjr | 78:1e00b3fa11af | 2266 | { |
mjr | 78:1e00b3fa11af | 2267 | // It's a ditto, but not a repeat of the last command. |
mjr | 78:1e00b3fa11af | 2268 | // But a ditto doesn't contain any information of its own |
mjr | 78:1e00b3fa11af | 2269 | // on the command being repeated, so given that it's not |
mjr | 78:1e00b3fa11af | 2270 | // our last command, we can't infer what command the ditto |
mjr | 78:1e00b3fa11af | 2271 | // is for and thus can't make sense of it. We have to |
mjr | 78:1e00b3fa11af | 2272 | // simply ignore it and wait for the sender to start with |
mjr | 78:1e00b3fa11af | 2273 | // a full command for a new key press. |
mjr | 78:1e00b3fa11af | 2274 | IRCommandIn = 0; |
mjr | 77:0b96f6867312 | 2275 | } |
mjr | 77:0b96f6867312 | 2276 | else |
mjr | 77:0b96f6867312 | 2277 | { |
mjr | 78:1e00b3fa11af | 2278 | // It's not a repeat, so the last command is no longer |
mjr | 78:1e00b3fa11af | 2279 | // in effect (regardless of whether we find a match for |
mjr | 78:1e00b3fa11af | 2280 | // the new command). |
mjr | 78:1e00b3fa11af | 2281 | IRCommandIn = 0; |
mjr | 77:0b96f6867312 | 2282 | |
mjr | 78:1e00b3fa11af | 2283 | // Check to see if we recognize the new command, by |
mjr | 78:1e00b3fa11af | 2284 | // searching for a match in our learned code list. |
mjr | 78:1e00b3fa11af | 2285 | for (int i = 0 ; i < MAX_IR_CODES ; ++i) |
mjr | 77:0b96f6867312 | 2286 | { |
mjr | 78:1e00b3fa11af | 2287 | // if the protocol and command code from the code |
mjr | 78:1e00b3fa11af | 2288 | // list both match the input, it's a match |
mjr | 78:1e00b3fa11af | 2289 | IRCommandCfg &cmdcfg = cfg.IRCommand[i]; |
mjr | 78:1e00b3fa11af | 2290 | if (cmdcfg.protocol == c.proId |
mjr | 78:1e00b3fa11af | 2291 | && cmdcfg.code.lo == uint32_t(c.code) |
mjr | 78:1e00b3fa11af | 2292 | && cmdcfg.code.hi == uint32_t(c.code >> 32)) |
mjr | 78:1e00b3fa11af | 2293 | { |
mjr | 78:1e00b3fa11af | 2294 | // Found it! Make this the last command, and |
mjr | 78:1e00b3fa11af | 2295 | // remember the starting time. |
mjr | 78:1e00b3fa11af | 2296 | IRCommandIn = i + 1; |
mjr | 78:1e00b3fa11af | 2297 | lastIRToggle = c.toggle; |
mjr | 78:1e00b3fa11af | 2298 | IRTimer.reset(); |
mjr | 78:1e00b3fa11af | 2299 | |
mjr | 78:1e00b3fa11af | 2300 | // no need to keep searching |
mjr | 78:1e00b3fa11af | 2301 | break; |
mjr | 78:1e00b3fa11af | 2302 | } |
mjr | 77:0b96f6867312 | 2303 | } |
mjr | 77:0b96f6867312 | 2304 | } |
mjr | 77:0b96f6867312 | 2305 | } |
mjr | 77:0b96f6867312 | 2306 | } |
mjr | 77:0b96f6867312 | 2307 | } |
mjr | 77:0b96f6867312 | 2308 | } |
mjr | 77:0b96f6867312 | 2309 | |
mjr | 74:822a92bc11d2 | 2310 | |
mjr | 11:bd9da7088e6e | 2311 | // --------------------------------------------------------------------------- |
mjr | 11:bd9da7088e6e | 2312 | // |
mjr | 11:bd9da7088e6e | 2313 | // Button input |
mjr | 11:bd9da7088e6e | 2314 | // |
mjr | 11:bd9da7088e6e | 2315 | |
mjr | 18:5e890ebd0023 | 2316 | // button state |
mjr | 18:5e890ebd0023 | 2317 | struct ButtonState |
mjr | 18:5e890ebd0023 | 2318 | { |
mjr | 38:091e511ce8a0 | 2319 | ButtonState() |
mjr | 38:091e511ce8a0 | 2320 | { |
mjr | 53:9b2611964afc | 2321 | physState = logState = prevLogState = 0; |
mjr | 53:9b2611964afc | 2322 | virtState = 0; |
mjr | 53:9b2611964afc | 2323 | dbState = 0; |
mjr | 38:091e511ce8a0 | 2324 | pulseState = 0; |
mjr | 53:9b2611964afc | 2325 | pulseTime = 0; |
mjr | 38:091e511ce8a0 | 2326 | } |
mjr | 35:e959ffba78fd | 2327 | |
mjr | 53:9b2611964afc | 2328 | // "Virtually" press or un-press the button. This can be used to |
mjr | 53:9b2611964afc | 2329 | // control the button state via a software (virtual) source, such as |
mjr | 53:9b2611964afc | 2330 | // the ZB Launch Ball feature. |
mjr | 53:9b2611964afc | 2331 | // |
mjr | 53:9b2611964afc | 2332 | // To allow sharing of one button by multiple virtual sources, each |
mjr | 53:9b2611964afc | 2333 | // virtual source must keep track of its own state internally, and |
mjr | 53:9b2611964afc | 2334 | // only call this routine to CHANGE the state. This is because calls |
mjr | 53:9b2611964afc | 2335 | // to this routine are additive: turning the button ON twice will |
mjr | 53:9b2611964afc | 2336 | // require turning it OFF twice before it actually turns off. |
mjr | 53:9b2611964afc | 2337 | void virtPress(bool on) |
mjr | 53:9b2611964afc | 2338 | { |
mjr | 53:9b2611964afc | 2339 | // Increment or decrement the current state |
mjr | 53:9b2611964afc | 2340 | virtState += on ? 1 : -1; |
mjr | 53:9b2611964afc | 2341 | } |
mjr | 53:9b2611964afc | 2342 | |
mjr | 53:9b2611964afc | 2343 | // DigitalIn for the button, if connected to a physical input |
mjr | 73:4e8ce0b18915 | 2344 | TinyDigitalIn di; |
mjr | 38:091e511ce8a0 | 2345 | |
mjr | 65:739875521aae | 2346 | // Time of last pulse state transition. |
mjr | 65:739875521aae | 2347 | // |
mjr | 65:739875521aae | 2348 | // Each state change sticks for a minimum period; when the timer expires, |
mjr | 65:739875521aae | 2349 | // if the underlying physical switch is in a different state, we switch |
mjr | 65:739875521aae | 2350 | // to the next state and restart the timer. pulseTime is the time remaining |
mjr | 65:739875521aae | 2351 | // remaining before we can make another state transition, in microseconds. |
mjr | 65:739875521aae | 2352 | // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...; |
mjr | 65:739875521aae | 2353 | // this guarantees that the parity of the pulse count always matches the |
mjr | 65:739875521aae | 2354 | // current physical switch state when the latter is stable, which makes |
mjr | 65:739875521aae | 2355 | // it impossible to "trick" the host by rapidly toggling the switch state. |
mjr | 65:739875521aae | 2356 | // (On my original Pinscape cabinet, I had a hardware pulse generator |
mjr | 65:739875521aae | 2357 | // for coin door, and that *was* possible to trick by rapid toggling. |
mjr | 65:739875521aae | 2358 | // This software system can't be fooled that way.) |
mjr | 65:739875521aae | 2359 | uint32_t pulseTime; |
mjr | 18:5e890ebd0023 | 2360 | |
mjr | 65:739875521aae | 2361 | // Config key index. This points to the ButtonCfg structure in the |
mjr | 65:739875521aae | 2362 | // configuration that contains the PC key mapping for the button. |
mjr | 65:739875521aae | 2363 | uint8_t cfgIndex; |
mjr | 53:9b2611964afc | 2364 | |
mjr | 53:9b2611964afc | 2365 | // Virtual press state. This is used to simulate pressing the button via |
mjr | 53:9b2611964afc | 2366 | // software inputs rather than physical inputs. To allow one button to be |
mjr | 53:9b2611964afc | 2367 | // controlled by mulitple software sources, each source should keep track |
mjr | 53:9b2611964afc | 2368 | // of its own virtual state for the button independently, and then INCREMENT |
mjr | 53:9b2611964afc | 2369 | // this variable when the source's state transitions from off to on, and |
mjr | 53:9b2611964afc | 2370 | // DECREMENT it when the source's state transitions from on to off. That |
mjr | 53:9b2611964afc | 2371 | // will make the button's pressed state the logical OR of all of the virtual |
mjr | 53:9b2611964afc | 2372 | // and physical source states. |
mjr | 53:9b2611964afc | 2373 | uint8_t virtState; |
mjr | 38:091e511ce8a0 | 2374 | |
mjr | 38:091e511ce8a0 | 2375 | // Debounce history. On each scan, we shift in a 1 bit to the lsb if |
mjr | 38:091e511ce8a0 | 2376 | // the physical key is reporting ON, and shift in a 0 bit if the physical |
mjr | 38:091e511ce8a0 | 2377 | // key is reporting OFF. We consider the key to have a new stable state |
mjr | 38:091e511ce8a0 | 2378 | // if we have N consecutive 0's or 1's in the low N bits (where N is |
mjr | 38:091e511ce8a0 | 2379 | // a parameter that determines how long we wait for transients to settle). |
mjr | 53:9b2611964afc | 2380 | uint8_t dbState; |
mjr | 38:091e511ce8a0 | 2381 | |
mjr | 65:739875521aae | 2382 | // current PHYSICAL on/off state, after debouncing |
mjr | 65:739875521aae | 2383 | uint8_t physState : 1; |
mjr | 65:739875521aae | 2384 | |
mjr | 65:739875521aae | 2385 | // current LOGICAL on/off state as reported to the host. |
mjr | 65:739875521aae | 2386 | uint8_t logState : 1; |
mjr | 65:739875521aae | 2387 | |
mjr | 79:682ae3171a08 | 2388 | // Previous logical on/off state, when keys were last processed for USB |
mjr | 79:682ae3171a08 | 2389 | // reports and local effects. This lets us detect edges (transitions) |
mjr | 79:682ae3171a08 | 2390 | // in the logical state, for effects that are triggered when the state |
mjr | 79:682ae3171a08 | 2391 | // changes rather than merely by the button being on or off. |
mjr | 65:739875521aae | 2392 | uint8_t prevLogState : 1; |
mjr | 65:739875521aae | 2393 | |
mjr | 65:739875521aae | 2394 | // Pulse state |
mjr | 65:739875521aae | 2395 | // |
mjr | 65:739875521aae | 2396 | // A button in pulse mode (selected via the config flags for the button) |
mjr | 65:739875521aae | 2397 | // transmits a brief logical button press and release each time the attached |
mjr | 65:739875521aae | 2398 | // physical switch changes state. This is useful for cases where the host |
mjr | 65:739875521aae | 2399 | // expects a key press for each change in the state of the physical switch. |
mjr | 65:739875521aae | 2400 | // The canonical example is the Coin Door switch in VPinMAME, which requires |
mjr | 65:739875521aae | 2401 | // pressing the END key to toggle the open/closed state. This software design |
mjr | 65:739875521aae | 2402 | // isn't easily implemented in a physical coin door, though; the simplest |
mjr | 65:739875521aae | 2403 | // physical sensor for the coin door state is a switch that's on when the |
mjr | 65:739875521aae | 2404 | // door is open and off when the door is closed (or vice versa, but in either |
mjr | 65:739875521aae | 2405 | // case, the switch state corresponds to the current state of the door at any |
mjr | 65:739875521aae | 2406 | // given time, rather than pulsing on state changes). The "pulse mode" |
mjr | 79:682ae3171a08 | 2407 | // option bridges this gap by generating a toggle key event each time |
mjr | 65:739875521aae | 2408 | // there's a change to the physical switch's state. |
mjr | 38:091e511ce8a0 | 2409 | // |
mjr | 38:091e511ce8a0 | 2410 | // Pulse state: |
mjr | 38:091e511ce8a0 | 2411 | // 0 -> not a pulse switch - logical key state equals physical switch state |
mjr | 38:091e511ce8a0 | 2412 | // 1 -> off |
mjr | 38:091e511ce8a0 | 2413 | // 2 -> transitioning off-on |
mjr | 38:091e511ce8a0 | 2414 | // 3 -> on |
mjr | 38:091e511ce8a0 | 2415 | // 4 -> transitioning on-off |
mjr | 65:739875521aae | 2416 | uint8_t pulseState : 3; // 5 states -> we need 3 bits |
mjr | 65:739875521aae | 2417 | |
mjr | 65:739875521aae | 2418 | } __attribute__((packed)); |
mjr | 65:739875521aae | 2419 | |
mjr | 65:739875521aae | 2420 | ButtonState *buttonState; // live button slots, allocated on startup |
mjr | 65:739875521aae | 2421 | int8_t nButtons; // number of live button slots allocated |
mjr | 65:739875521aae | 2422 | int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused |
mjr | 18:5e890ebd0023 | 2423 | |
mjr | 66:2e3583fbd2f4 | 2424 | // Shift button state |
mjr | 66:2e3583fbd2f4 | 2425 | struct |
mjr | 66:2e3583fbd2f4 | 2426 | { |
mjr | 66:2e3583fbd2f4 | 2427 | int8_t index; // buttonState[] index of shift button; -1 if none |
mjr | 78:1e00b3fa11af | 2428 | uint8_t state; // current state, for "Key OR Shift" mode: |
mjr | 66:2e3583fbd2f4 | 2429 | // 0 = not shifted |
mjr | 66:2e3583fbd2f4 | 2430 | // 1 = shift button down, no key pressed yet |
mjr | 66:2e3583fbd2f4 | 2431 | // 2 = shift button down, key pressed |
mjr | 78:1e00b3fa11af | 2432 | // 3 = released, sending pulsed keystroke |
mjr | 78:1e00b3fa11af | 2433 | uint32_t pulseTime; // time remaining in pulsed keystroke (state 3) |
mjr | 66:2e3583fbd2f4 | 2434 | } |
mjr | 66:2e3583fbd2f4 | 2435 | __attribute__((packed)) shiftButton; |
mjr | 38:091e511ce8a0 | 2436 | |
mjr | 38:091e511ce8a0 | 2437 | // Button data |
mjr | 38:091e511ce8a0 | 2438 | uint32_t jsButtons = 0; |
mjr | 38:091e511ce8a0 | 2439 | |
mjr | 38:091e511ce8a0 | 2440 | // Keyboard report state. This tracks the USB keyboard state. We can |
mjr | 38:091e511ce8a0 | 2441 | // report at most 6 simultaneous non-modifier keys here, plus the 8 |
mjr | 38:091e511ce8a0 | 2442 | // modifier keys. |
mjr | 38:091e511ce8a0 | 2443 | struct |
mjr | 38:091e511ce8a0 | 2444 | { |
mjr | 38:091e511ce8a0 | 2445 | bool changed; // flag: changed since last report sent |
mjr | 48:058ace2aed1d | 2446 | uint8_t nkeys; // number of active keys in the list |
mjr | 38:091e511ce8a0 | 2447 | uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask, |
mjr | 38:091e511ce8a0 | 2448 | // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes |
mjr | 38:091e511ce8a0 | 2449 | } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } }; |
mjr | 38:091e511ce8a0 | 2450 | |
mjr | 38:091e511ce8a0 | 2451 | // Media key state |
mjr | 38:091e511ce8a0 | 2452 | struct |
mjr | 38:091e511ce8a0 | 2453 | { |
mjr | 38:091e511ce8a0 | 2454 | bool changed; // flag: changed since last report sent |
mjr | 38:091e511ce8a0 | 2455 | uint8_t data; // key state byte for USB reports |
mjr | 38:091e511ce8a0 | 2456 | } mediaState = { false, 0 }; |
mjr | 38:091e511ce8a0 | 2457 | |
mjr | 79:682ae3171a08 | 2458 | // button scan interrupt timer |
mjr | 79:682ae3171a08 | 2459 | Timeout scanButtonsTimeout; |
mjr | 38:091e511ce8a0 | 2460 | |
mjr | 38:091e511ce8a0 | 2461 | // Button scan interrupt handler. We call this periodically via |
mjr | 38:091e511ce8a0 | 2462 | // a timer interrupt to scan the physical button states. |
mjr | 38:091e511ce8a0 | 2463 | void scanButtons() |
mjr | 38:091e511ce8a0 | 2464 | { |
mjr | 79:682ae3171a08 | 2465 | // schedule the next interrupt |
mjr | 79:682ae3171a08 | 2466 | scanButtonsTimeout.attach_us(&scanButtons, 1000); |
mjr | 79:682ae3171a08 | 2467 | |
mjr | 38:091e511ce8a0 | 2468 | // scan all button input pins |
mjr | 73:4e8ce0b18915 | 2469 | ButtonState *bs = buttonState, *last = bs + nButtons; |
mjr | 73:4e8ce0b18915 | 2470 | for ( ; bs < last ; ++bs) |
mjr | 38:091e511ce8a0 | 2471 | { |
mjr | 73:4e8ce0b18915 | 2472 | // Shift the new state into the debounce history |
mjr | 73:4e8ce0b18915 | 2473 | uint8_t db = (bs->dbState << 1) | bs->di.read(); |
mjr | 73:4e8ce0b18915 | 2474 | bs->dbState = db; |
mjr | 73:4e8ce0b18915 | 2475 | |
mjr | 73:4e8ce0b18915 | 2476 | // If we have all 0's or 1's in the history for the required |
mjr | 73:4e8ce0b18915 | 2477 | // debounce period, the key state is stable, so apply the new |
mjr | 73:4e8ce0b18915 | 2478 | // physical state. Note that the pins are active low, so the |
mjr | 73:4e8ce0b18915 | 2479 | // new button on/off state is the inverse of the GPIO state. |
mjr | 73:4e8ce0b18915 | 2480 | const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings |
mjr | 73:4e8ce0b18915 | 2481 | db &= stable; |
mjr | 73:4e8ce0b18915 | 2482 | if (db == 0 || db == stable) |
mjr | 73:4e8ce0b18915 | 2483 | bs->physState = !db; |
mjr | 38:091e511ce8a0 | 2484 | } |
mjr | 38:091e511ce8a0 | 2485 | } |
mjr | 38:091e511ce8a0 | 2486 | |
mjr | 38:091e511ce8a0 | 2487 | // Button state transition timer. This is used for pulse buttons, to |
mjr | 38:091e511ce8a0 | 2488 | // control the timing of the logical key presses generated by transitions |
mjr | 38:091e511ce8a0 | 2489 | // in the physical button state. |
mjr | 38:091e511ce8a0 | 2490 | Timer buttonTimer; |
mjr | 12:669df364a565 | 2491 | |
mjr | 65:739875521aae | 2492 | // Count a button during the initial setup scan |
mjr | 72:884207c0aab0 | 2493 | void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys) |
mjr | 65:739875521aae | 2494 | { |
mjr | 65:739875521aae | 2495 | // count it |
mjr | 65:739875521aae | 2496 | ++nButtons; |
mjr | 65:739875521aae | 2497 | |
mjr | 67:c39e66c4e000 | 2498 | // if it's a keyboard key or media key, note that we need a USB |
mjr | 67:c39e66c4e000 | 2499 | // keyboard interface |
mjr | 72:884207c0aab0 | 2500 | if (typ == BtnTypeKey || typ == BtnTypeMedia |
mjr | 72:884207c0aab0 | 2501 | || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia) |
mjr | 65:739875521aae | 2502 | kbKeys = true; |
mjr | 65:739875521aae | 2503 | } |
mjr | 65:739875521aae | 2504 | |
mjr | 11:bd9da7088e6e | 2505 | // initialize the button inputs |
mjr | 35:e959ffba78fd | 2506 | void initButtons(Config &cfg, bool &kbKeys) |
mjr | 11:bd9da7088e6e | 2507 | { |
mjr | 66:2e3583fbd2f4 | 2508 | // presume no shift key |
mjr | 66:2e3583fbd2f4 | 2509 | shiftButton.index = -1; |
mjr | 82:4f6209cb5c33 | 2510 | shiftButton.state = 0; |
mjr | 66:2e3583fbd2f4 | 2511 | |
mjr | 65:739875521aae | 2512 | // Count up how many button slots we'll need to allocate. Start |
mjr | 65:739875521aae | 2513 | // with assigned buttons from the configuration, noting that we |
mjr | 65:739875521aae | 2514 | // only need to create slots for buttons that are actually wired. |
mjr | 65:739875521aae | 2515 | nButtons = 0; |
mjr | 65:739875521aae | 2516 | for (int i = 0 ; i < MAX_BUTTONS ; ++i) |
mjr | 65:739875521aae | 2517 | { |
mjr | 65:739875521aae | 2518 | // it's valid if it's wired to a real input pin |
mjr | 65:739875521aae | 2519 | if (wirePinName(cfg.button[i].pin) != NC) |
mjr |