An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Tue May 09 05:48:37 2017 +0000
Revision:
87:8d35c74403af
Parent:
86:e30a1f60f783
Child:
88:98bce687e6c0
AEDR-8300, VL6180X, TLC59116; new plunger firing detection

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 82:4f6209cb5c33 262
mjr 2:c174f9ee414a 263
mjr 21:5048e16cc9ef 264 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 265 #include "config.h"
mjr 17:ab3cec0c8bf4 266
mjr 76:7f5912b6340e 267 // forward declarations
mjr 76:7f5912b6340e 268 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 269
mjr 53:9b2611964afc 270 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 273 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 274 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 275 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 276 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 277 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 278 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 279 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 280 // interface.
mjr 53:9b2611964afc 281 //
mjr 53:9b2611964afc 282 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 283 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 284 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 285 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 286 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 287 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 288 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 289 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 292 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 293 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 294 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 295 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 296 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 297 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 298 //
mjr 53:9b2611964afc 299 const char *getOpenSDAID()
mjr 53:9b2611964afc 300 {
mjr 53:9b2611964afc 301 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 302 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 303 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 304
mjr 53:9b2611964afc 305 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 306 }
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 309 //
mjr 53:9b2611964afc 310 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 311 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 312 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 313 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 314 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 315 // want from this.
mjr 53:9b2611964afc 316 //
mjr 53:9b2611964afc 317 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 318 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 319 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 320 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 321 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 322 // macros.
mjr 53:9b2611964afc 323 //
mjr 53:9b2611964afc 324 const char *getBuildID()
mjr 53:9b2611964afc 325 {
mjr 53:9b2611964afc 326 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 327 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 328 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 329
mjr 53:9b2611964afc 330 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 74:822a92bc11d2 333 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 334 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 335 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 336 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 337 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 338 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 339 Timer mainLoopTimer;
mjr 76:7f5912b6340e 340 #endif
mjr 76:7f5912b6340e 341
mjr 53:9b2611964afc 342
mjr 5:a70c0bce770d 343 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 344 //
mjr 38:091e511ce8a0 345 // Forward declarations
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 void setNightMode(bool on);
mjr 38:091e511ce8a0 348 void toggleNightMode();
mjr 38:091e511ce8a0 349
mjr 38:091e511ce8a0 350 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 351 // utilities
mjr 17:ab3cec0c8bf4 352
mjr 77:0b96f6867312 353 // int/float point square of a number
mjr 77:0b96f6867312 354 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 355 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 356
mjr 26:cb71c4af2912 357 // floating point rounding
mjr 26:cb71c4af2912 358 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 359
mjr 17:ab3cec0c8bf4 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 40:cc0d9814522b 363 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 364 // the running state.
mjr 40:cc0d9814522b 365 //
mjr 77:0b96f6867312 366 class ExtTimer: public Timer
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 public:
mjr 77:0b96f6867312 369 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 370
mjr 40:cc0d9814522b 371 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 372 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 373
mjr 40:cc0d9814522b 374 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 private:
mjr 40:cc0d9814522b 377 bool running;
mjr 40:cc0d9814522b 378 };
mjr 40:cc0d9814522b 379
mjr 53:9b2611964afc 380
mjr 53:9b2611964afc 381 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 382 //
mjr 33:d832bcab089e 383 // USB product version number
mjr 5:a70c0bce770d 384 //
mjr 47:df7a88cd249c 385 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 386
mjr 33:d832bcab089e 387 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 388 //
mjr 6:cc35eb643e8f 389 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 #define JOYMAX 4096
mjr 6:cc35eb643e8f 392
mjr 9:fd65b0a94720 393
mjr 17:ab3cec0c8bf4 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 //
mjr 40:cc0d9814522b 396 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 397 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 398 //
mjr 35:e959ffba78fd 399
mjr 35:e959ffba78fd 400 // unsigned 16-bit integer
mjr 35:e959ffba78fd 401 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 402 {
mjr 35:e959ffba78fd 403 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 404 }
mjr 40:cc0d9814522b 405 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 406 {
mjr 40:cc0d9814522b 407 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 408 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 409 }
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 412 {
mjr 35:e959ffba78fd 413 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 414 }
mjr 40:cc0d9814522b 415 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 416 {
mjr 40:cc0d9814522b 417 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 418 }
mjr 35:e959ffba78fd 419
mjr 35:e959ffba78fd 420 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 423 }
mjr 40:cc0d9814522b 424 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 425 {
mjr 40:cc0d9814522b 426 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 427 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 428 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 429 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 430 }
mjr 35:e959ffba78fd 431
mjr 35:e959ffba78fd 432 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 53:9b2611964afc 437 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 438 //
mjr 53:9b2611964afc 439 // The internal mbed PinName format is
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 444 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 445 //
mjr 53:9b2611964afc 446 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 447 // pin name fits in 8 bits:
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 456 {
mjr 53:9b2611964afc 457 if (c == 0xFF)
mjr 53:9b2611964afc 458 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 459 else
mjr 53:9b2611964afc 460 return PinName(
mjr 53:9b2611964afc 461 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 462 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 463 }
mjr 40:cc0d9814522b 464 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 465 {
mjr 53:9b2611964afc 466 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469
mjr 35:e959ffba78fd 470 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 471 //
mjr 38:091e511ce8a0 472 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 473 //
mjr 38:091e511ce8a0 474 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 475 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 476 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 477 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 478 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 479 // SPI capability.
mjr 38:091e511ce8a0 480 //
mjr 38:091e511ce8a0 481 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 482
mjr 73:4e8ce0b18915 483 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 484 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 485 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 486 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 487
mjr 38:091e511ce8a0 488 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 489 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 490 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 491 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 492 {
mjr 73:4e8ce0b18915 493 // remember the new state
mjr 73:4e8ce0b18915 494 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 495
mjr 73:4e8ce0b18915 496 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 497 // applying it to the blue LED
mjr 73:4e8ce0b18915 498 if (diagLEDState == 0)
mjr 77:0b96f6867312 499 {
mjr 77:0b96f6867312 500 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 501 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 502 }
mjr 73:4e8ce0b18915 503
mjr 73:4e8ce0b18915 504 // set the new state
mjr 38:091e511ce8a0 505 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 506 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 507 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 508 }
mjr 38:091e511ce8a0 509
mjr 73:4e8ce0b18915 510 // update the LEDs with the current state
mjr 73:4e8ce0b18915 511 void diagLED(void)
mjr 73:4e8ce0b18915 512 {
mjr 73:4e8ce0b18915 513 diagLED(
mjr 73:4e8ce0b18915 514 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 515 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 516 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 517 }
mjr 73:4e8ce0b18915 518
mjr 38:091e511ce8a0 519 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 520 // an on-board LED segment
mjr 38:091e511ce8a0 521 struct LedSeg
mjr 38:091e511ce8a0 522 {
mjr 38:091e511ce8a0 523 bool r, g, b;
mjr 38:091e511ce8a0 524 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 525
mjr 38:091e511ce8a0 526 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 527 {
mjr 38:091e511ce8a0 528 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 529 // our on-board LED segments
mjr 38:091e511ce8a0 530 int t = pc.typ;
mjr 38:091e511ce8a0 531 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 532 {
mjr 38:091e511ce8a0 533 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 534 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 535 if (pin == LED1)
mjr 38:091e511ce8a0 536 r = true;
mjr 38:091e511ce8a0 537 else if (pin == LED2)
mjr 38:091e511ce8a0 538 g = true;
mjr 38:091e511ce8a0 539 else if (pin == LED3)
mjr 38:091e511ce8a0 540 b = true;
mjr 38:091e511ce8a0 541 }
mjr 38:091e511ce8a0 542 }
mjr 38:091e511ce8a0 543 };
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 546 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 547 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 548 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 549 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 550 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 551 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 552 {
mjr 38:091e511ce8a0 553 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 554 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 555 LedSeg l;
mjr 38:091e511ce8a0 556 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 557 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 558
mjr 38:091e511ce8a0 559 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 560 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 561 // LedWiz use.
mjr 38:091e511ce8a0 562 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 563 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 564 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 565 }
mjr 38:091e511ce8a0 566
mjr 38:091e511ce8a0 567
mjr 38:091e511ce8a0 568 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 569 //
mjr 76:7f5912b6340e 570 // LedWiz emulation
mjr 76:7f5912b6340e 571 //
mjr 76:7f5912b6340e 572
mjr 76:7f5912b6340e 573 // LedWiz output states.
mjr 76:7f5912b6340e 574 //
mjr 76:7f5912b6340e 575 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 576 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 577 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 578 // The two axes are independent.
mjr 76:7f5912b6340e 579 //
mjr 76:7f5912b6340e 580 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 581 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 582 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 583 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 584 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 585 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 586 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 587 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 588
mjr 76:7f5912b6340e 589 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 590 static uint8_t *wizOn;
mjr 76:7f5912b6340e 591
mjr 76:7f5912b6340e 592 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 593 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 594 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 595 //
mjr 76:7f5912b6340e 596 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 597 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 598 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 599 // 130 = flash on / off
mjr 76:7f5912b6340e 600 // 131 = on / ramp down
mjr 76:7f5912b6340e 601 // 132 = ramp up / on
mjr 5:a70c0bce770d 602 //
mjr 76:7f5912b6340e 603 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 604 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 605 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 606 static uint8_t *wizVal;
mjr 76:7f5912b6340e 607
mjr 76:7f5912b6340e 608 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 609 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 610 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 611 // by the extended protocol:
mjr 76:7f5912b6340e 612 //
mjr 76:7f5912b6340e 613 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 614 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 615 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 616 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 617 // if the brightness is non-zero.
mjr 76:7f5912b6340e 618 //
mjr 76:7f5912b6340e 619 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 620 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 621 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 622 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 623 // 0..255 range.
mjr 26:cb71c4af2912 624 //
mjr 76:7f5912b6340e 625 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 626 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 627 // level.
mjr 26:cb71c4af2912 628 //
mjr 76:7f5912b6340e 629 static uint8_t *outLevel;
mjr 76:7f5912b6340e 630
mjr 76:7f5912b6340e 631
mjr 76:7f5912b6340e 632 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 633 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 634 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 635 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 636 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 637 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 638 //
mjr 76:7f5912b6340e 639 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 640 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 641 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 642 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 643 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 644 // at the maximum size.
mjr 76:7f5912b6340e 645 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 646 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 647
mjr 26:cb71c4af2912 648 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 649 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 650 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 651 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 652 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 653
mjr 76:7f5912b6340e 654
mjr 76:7f5912b6340e 655 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 656 //
mjr 76:7f5912b6340e 657 // Output Ports
mjr 76:7f5912b6340e 658 //
mjr 76:7f5912b6340e 659 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 660 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 661 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 662 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 663 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 664 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 665 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 666 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 667 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 668 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 669 // you have to ration pins among features.
mjr 76:7f5912b6340e 670 //
mjr 87:8d35c74403af 671 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 672 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 673 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 674 //
mjr 87:8d35c74403af 675 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 676 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 677 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 678 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 679 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 680 //
mjr 87:8d35c74403af 681 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 682 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 683 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 684 //
mjr 87:8d35c74403af 685 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 686 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 687 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 688 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 689 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 690 // for the chime board outputs.
mjr 76:7f5912b6340e 691 //
mjr 76:7f5912b6340e 692 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 693 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 694 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 695 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 696 //
mjr 76:7f5912b6340e 697 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 698 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 699 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 700 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 701 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 702 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 703 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 704 // of physical devices they're connected to.
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706
mjr 26:cb71c4af2912 707 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 708 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 709 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 710 class LwOut
mjr 6:cc35eb643e8f 711 {
mjr 6:cc35eb643e8f 712 public:
mjr 40:cc0d9814522b 713 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 714 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 715 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 716 };
mjr 26:cb71c4af2912 717
mjr 35:e959ffba78fd 718 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 719 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 720 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 721 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 722 // numbering.
mjr 35:e959ffba78fd 723 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 724 {
mjr 33:d832bcab089e 725 public:
mjr 35:e959ffba78fd 726 LwVirtualOut() { }
mjr 40:cc0d9814522b 727 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 728 };
mjr 26:cb71c4af2912 729
mjr 34:6b981a2afab7 730 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 731 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 732 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 733 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 734 {
mjr 34:6b981a2afab7 735 public:
mjr 34:6b981a2afab7 736 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 737 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 738
mjr 34:6b981a2afab7 739 private:
mjr 53:9b2611964afc 740 // underlying physical output
mjr 34:6b981a2afab7 741 LwOut *out;
mjr 34:6b981a2afab7 742 };
mjr 34:6b981a2afab7 743
mjr 53:9b2611964afc 744 // Global ZB Launch Ball state
mjr 53:9b2611964afc 745 bool zbLaunchOn = false;
mjr 53:9b2611964afc 746
mjr 53:9b2611964afc 747 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 748 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 749 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 750 {
mjr 53:9b2611964afc 751 public:
mjr 53:9b2611964afc 752 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 753 virtual void set(uint8_t val)
mjr 53:9b2611964afc 754 {
mjr 53:9b2611964afc 755 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 756 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 757
mjr 53:9b2611964afc 758 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 759 out->set(val);
mjr 53:9b2611964afc 760 }
mjr 53:9b2611964afc 761
mjr 53:9b2611964afc 762 private:
mjr 53:9b2611964afc 763 // underlying physical or virtual output
mjr 53:9b2611964afc 764 LwOut *out;
mjr 53:9b2611964afc 765 };
mjr 53:9b2611964afc 766
mjr 53:9b2611964afc 767
mjr 40:cc0d9814522b 768 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 769 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 770 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 771 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 772 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 773 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 774 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 775 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 776 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 777 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 778 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 779 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 780 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 781 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 782 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 783 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 784 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 785 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 786 };
mjr 40:cc0d9814522b 787
mjr 40:cc0d9814522b 788 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 789 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 790 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 791 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 792 {
mjr 40:cc0d9814522b 793 public:
mjr 40:cc0d9814522b 794 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 795 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 796
mjr 40:cc0d9814522b 797 private:
mjr 40:cc0d9814522b 798 LwOut *out;
mjr 40:cc0d9814522b 799 };
mjr 40:cc0d9814522b 800
mjr 77:0b96f6867312 801 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 802 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 803 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 804 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 805
mjr 40:cc0d9814522b 806 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 807 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 808 // mode is engaged.
mjr 40:cc0d9814522b 809 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 810 {
mjr 40:cc0d9814522b 811 public:
mjr 40:cc0d9814522b 812 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 813 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 814
mjr 53:9b2611964afc 815 private:
mjr 53:9b2611964afc 816 LwOut *out;
mjr 53:9b2611964afc 817 };
mjr 53:9b2611964afc 818
mjr 53:9b2611964afc 819 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 820 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 821 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 822 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 823 {
mjr 53:9b2611964afc 824 public:
mjr 53:9b2611964afc 825 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 826 virtual void set(uint8_t)
mjr 53:9b2611964afc 827 {
mjr 53:9b2611964afc 828 // ignore the host value and simply show the current
mjr 53:9b2611964afc 829 // night mode setting
mjr 53:9b2611964afc 830 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 831 }
mjr 40:cc0d9814522b 832
mjr 40:cc0d9814522b 833 private:
mjr 40:cc0d9814522b 834 LwOut *out;
mjr 40:cc0d9814522b 835 };
mjr 40:cc0d9814522b 836
mjr 26:cb71c4af2912 837
mjr 35:e959ffba78fd 838 //
mjr 35:e959ffba78fd 839 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 840 // assignments set in config.h.
mjr 33:d832bcab089e 841 //
mjr 35:e959ffba78fd 842 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 843 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 844 {
mjr 35:e959ffba78fd 845 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 846 {
mjr 53:9b2611964afc 847 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 848 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 849 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 850 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 851 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 852 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 853 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 854 }
mjr 35:e959ffba78fd 855 }
mjr 26:cb71c4af2912 856
mjr 40:cc0d9814522b 857 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 858 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 859 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 860 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 861 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 862 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 863 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 864 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 865 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 866 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 867 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 868 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 869 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 870 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 871 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 872 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 873 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 874 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 875 };
mjr 40:cc0d9814522b 876
mjr 40:cc0d9814522b 877 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 878 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 879 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 880 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 881 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 882 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 883 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 884 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 885 // are always 8 bits.
mjr 40:cc0d9814522b 886 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 887 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 888 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 889 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 890 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 891 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 892 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 893 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 894 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 895 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 896 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 897 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 898 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 899 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 900 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 901 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 902 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 903 };
mjr 40:cc0d9814522b 904
mjr 26:cb71c4af2912 905 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 906 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 907 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 908 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 909 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 910 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 911 {
mjr 26:cb71c4af2912 912 public:
mjr 60:f38da020aa13 913 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 914 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 915 {
mjr 26:cb71c4af2912 916 if (val != prv)
mjr 40:cc0d9814522b 917 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 918 }
mjr 60:f38da020aa13 919 uint8_t idx;
mjr 40:cc0d9814522b 920 uint8_t prv;
mjr 26:cb71c4af2912 921 };
mjr 26:cb71c4af2912 922
mjr 40:cc0d9814522b 923 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 924 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 925 {
mjr 40:cc0d9814522b 926 public:
mjr 60:f38da020aa13 927 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 928 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 929 {
mjr 40:cc0d9814522b 930 if (val != prv)
mjr 40:cc0d9814522b 931 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 932 }
mjr 60:f38da020aa13 933 uint8_t idx;
mjr 40:cc0d9814522b 934 uint8_t prv;
mjr 40:cc0d9814522b 935 };
mjr 40:cc0d9814522b 936
mjr 87:8d35c74403af 937 //
mjr 87:8d35c74403af 938 // TLC59116 interface object
mjr 87:8d35c74403af 939 //
mjr 87:8d35c74403af 940 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 941 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 942 {
mjr 87:8d35c74403af 943 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 944 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 945 {
mjr 87:8d35c74403af 946 // set up the interface
mjr 87:8d35c74403af 947 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 948 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 949 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 950 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 951
mjr 87:8d35c74403af 952 // initialize the chips
mjr 87:8d35c74403af 953 tlc59116->init();
mjr 87:8d35c74403af 954 }
mjr 87:8d35c74403af 955 }
mjr 87:8d35c74403af 956
mjr 87:8d35c74403af 957 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 958 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 959 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 960 // (0-15).
mjr 87:8d35c74403af 961 //
mjr 87:8d35c74403af 962 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 963 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 964 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 965 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 966 {
mjr 87:8d35c74403af 967 public:
mjr 87:8d35c74403af 968 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 969 virtual void set(uint8_t val)
mjr 87:8d35c74403af 970 {
mjr 87:8d35c74403af 971 if (val != prv)
mjr 87:8d35c74403af 972 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 973 }
mjr 87:8d35c74403af 974
mjr 87:8d35c74403af 975 protected:
mjr 87:8d35c74403af 976 uint8_t addr;
mjr 87:8d35c74403af 977 uint8_t port;
mjr 87:8d35c74403af 978 uint8_t prv;
mjr 87:8d35c74403af 979 };
mjr 87:8d35c74403af 980
mjr 87:8d35c74403af 981
mjr 87:8d35c74403af 982 //
mjr 34:6b981a2afab7 983 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 984 // config.h.
mjr 87:8d35c74403af 985 //
mjr 35:e959ffba78fd 986 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 987
mjr 35:e959ffba78fd 988 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 989 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 990 {
mjr 35:e959ffba78fd 991 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 992 {
mjr 53:9b2611964afc 993 hc595 = new HC595(
mjr 53:9b2611964afc 994 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 995 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 996 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 997 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 998 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 999 hc595->init();
mjr 35:e959ffba78fd 1000 hc595->update();
mjr 35:e959ffba78fd 1001 }
mjr 35:e959ffba78fd 1002 }
mjr 34:6b981a2afab7 1003
mjr 34:6b981a2afab7 1004 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1005 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1006 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1007 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1008 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1009 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1010 {
mjr 33:d832bcab089e 1011 public:
mjr 60:f38da020aa13 1012 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1013 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1014 {
mjr 34:6b981a2afab7 1015 if (val != prv)
mjr 40:cc0d9814522b 1016 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1017 }
mjr 60:f38da020aa13 1018 uint8_t idx;
mjr 40:cc0d9814522b 1019 uint8_t prv;
mjr 33:d832bcab089e 1020 };
mjr 33:d832bcab089e 1021
mjr 26:cb71c4af2912 1022
mjr 40:cc0d9814522b 1023
mjr 64:ef7ca92dff36 1024 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1025 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1026 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1027 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1028 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1029 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1030 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1031 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1032 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1033 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1034 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1035 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1036 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1037 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1038 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1039 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1040 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1041 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1042 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1043 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1044 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1045 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1046 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1047 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1048 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1049 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1050 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1051 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1052 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1053 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1054 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1055 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1056 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1057 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1058 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1059 };
mjr 26:cb71c4af2912 1060
mjr 64:ef7ca92dff36 1061
mjr 64:ef7ca92dff36 1062 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 1063 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 1064 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 1065 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 1066 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 1067 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1068 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1069 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1070 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1071 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1072 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1073 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1074 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1075 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1076 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1077 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1078 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1079 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1080 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1081 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1082 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1083 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1084 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1085 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1086 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1087 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1088 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1089 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1090 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1091 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1092 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1093 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1094 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1095 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1096 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1097 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1098 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1099 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1100 };
mjr 64:ef7ca92dff36 1101
mjr 77:0b96f6867312 1102 // Polled-update PWM output list
mjr 74:822a92bc11d2 1103 //
mjr 77:0b96f6867312 1104 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1105 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1106 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1107 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1108 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1109 //
mjr 77:0b96f6867312 1110 // Our solution is to simply repeat all PWM updates periodically. If a write
mjr 77:0b96f6867312 1111 // is lost on one cycle, it'll eventually be applied on a subseuqent periodic
mjr 77:0b96f6867312 1112 // update. For low overhead, we do these repeat updates periodically during
mjr 77:0b96f6867312 1113 // the main loop.
mjr 74:822a92bc11d2 1114 //
mjr 77:0b96f6867312 1115 // The mbed library has its own solution to this bug, but it creates a
mjr 77:0b96f6867312 1116 // separate problem of its own. The mbed solution is to write the value
mjr 77:0b96f6867312 1117 // register immediately, and then also reset the "count" register in the
mjr 77:0b96f6867312 1118 // TPM unit containing the output. The count reset truncates the current
mjr 77:0b96f6867312 1119 // PWM cycle, which avoids the hardware problem with more than one write per
mjr 77:0b96f6867312 1120 // cycle. The problem is that the truncated cycle causes visible flicker if
mjr 77:0b96f6867312 1121 // the output is connected to an LED. This is particularly noticeable during
mjr 77:0b96f6867312 1122 // fades, when we're updating the value register repeatedly and rapidly: an
mjr 77:0b96f6867312 1123 // attempt to fade from fully on to fully off causes rapid fluttering and
mjr 77:0b96f6867312 1124 // flashing rather than a smooth brightness fade.
mjr 74:822a92bc11d2 1125 //
mjr 77:0b96f6867312 1126 // The hardware bug is a case of good intentions gone bad. The hardware is
mjr 77:0b96f6867312 1127 // *supposed* to make it easy for software to avoid glitching during PWM
mjr 77:0b96f6867312 1128 // updates, by providing a staging register in front of the real value
mjr 77:0b96f6867312 1129 // register. The software actually writes to the staging register, which
mjr 77:0b96f6867312 1130 // holds updates until the end of the cycle, at which point the hardware
mjr 77:0b96f6867312 1131 // automatically moves the value from the staging register into the real
mjr 77:0b96f6867312 1132 // register. This ensures that the real register is always updated exactly
mjr 77:0b96f6867312 1133 // at a cycle boundary, which in turn ensures that there's no flicker when
mjr 77:0b96f6867312 1134 // values are updated. A great design - except that it doesn't quite work.
mjr 77:0b96f6867312 1135 // The problem is that the staging register actually seems to be implemented
mjr 77:0b96f6867312 1136 // as a one-element FIFO in "stop when full" mode. That is, when you write
mjr 77:0b96f6867312 1137 // the FIFO, it becomes full. When the cycle ends and the hardware reads it
mjr 77:0b96f6867312 1138 // to move the staged value into the real register, the FIFO becomes empty.
mjr 77:0b96f6867312 1139 // But if you try to write the FIFO twice before the hardware reads it and
mjr 77:0b96f6867312 1140 // empties it, the second write fails, leaving the first value in the queue.
mjr 77:0b96f6867312 1141 // There doesn't seem to be any way to clear the FIFO from software, so you
mjr 77:0b96f6867312 1142 // just have to wait for the cycle to end before writing another update.
mjr 77:0b96f6867312 1143 // That more or less defeats the purpose of the staging register, whose whole
mjr 77:0b96f6867312 1144 // point is to free software from worrying about timing considerations with
mjr 77:0b96f6867312 1145 // updates. It frees us of the need to align our timing on cycle boundaries,
mjr 77:0b96f6867312 1146 // but it leaves us with the need to limit writes to once per cycle.
mjr 74:822a92bc11d2 1147 //
mjr 77:0b96f6867312 1148 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1149 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1150 // of polled items.
mjr 74:822a92bc11d2 1151 static int numPolledPwm;
mjr 74:822a92bc11d2 1152 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1153
mjr 74:822a92bc11d2 1154 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1155 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1156 {
mjr 6:cc35eb643e8f 1157 public:
mjr 43:7a6364d82a41 1158 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1159 {
mjr 77:0b96f6867312 1160 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1161 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1162 polledPwm[numPolledPwm++] = this;
mjr 77:0b96f6867312 1163
mjr 77:0b96f6867312 1164 // set the initial value
mjr 77:0b96f6867312 1165 set(initVal);
mjr 43:7a6364d82a41 1166 }
mjr 74:822a92bc11d2 1167
mjr 40:cc0d9814522b 1168 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1169 {
mjr 77:0b96f6867312 1170 // save the new value
mjr 74:822a92bc11d2 1171 this->val = val;
mjr 77:0b96f6867312 1172
mjr 77:0b96f6867312 1173 // commit it to the hardware
mjr 77:0b96f6867312 1174 commit();
mjr 13:72dda449c3c0 1175 }
mjr 74:822a92bc11d2 1176
mjr 74:822a92bc11d2 1177 // handle periodic update polling
mjr 74:822a92bc11d2 1178 void poll()
mjr 74:822a92bc11d2 1179 {
mjr 77:0b96f6867312 1180 commit();
mjr 74:822a92bc11d2 1181 }
mjr 74:822a92bc11d2 1182
mjr 74:822a92bc11d2 1183 protected:
mjr 77:0b96f6867312 1184 virtual void commit()
mjr 74:822a92bc11d2 1185 {
mjr 74:822a92bc11d2 1186 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1187 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1188 }
mjr 74:822a92bc11d2 1189
mjr 77:0b96f6867312 1190 NewPwmOut p;
mjr 77:0b96f6867312 1191 uint8_t val;
mjr 6:cc35eb643e8f 1192 };
mjr 26:cb71c4af2912 1193
mjr 74:822a92bc11d2 1194 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1195 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1196 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1197 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1198 {
mjr 64:ef7ca92dff36 1199 public:
mjr 64:ef7ca92dff36 1200 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1201 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1202 {
mjr 64:ef7ca92dff36 1203 }
mjr 74:822a92bc11d2 1204
mjr 74:822a92bc11d2 1205 protected:
mjr 77:0b96f6867312 1206 virtual void commit()
mjr 64:ef7ca92dff36 1207 {
mjr 74:822a92bc11d2 1208 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1209 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1210 }
mjr 64:ef7ca92dff36 1211 };
mjr 64:ef7ca92dff36 1212
mjr 74:822a92bc11d2 1213 // poll the PWM outputs
mjr 74:822a92bc11d2 1214 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1215 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1216 void pollPwmUpdates()
mjr 74:822a92bc11d2 1217 {
mjr 74:822a92bc11d2 1218 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1219 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1220 {
mjr 74:822a92bc11d2 1221 // time the run for statistics collection
mjr 74:822a92bc11d2 1222 IF_DIAG(
mjr 74:822a92bc11d2 1223 Timer t;
mjr 74:822a92bc11d2 1224 t.start();
mjr 74:822a92bc11d2 1225 )
mjr 74:822a92bc11d2 1226
mjr 74:822a92bc11d2 1227 // poll each output
mjr 74:822a92bc11d2 1228 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1229 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1230
mjr 74:822a92bc11d2 1231 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1232 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1233
mjr 74:822a92bc11d2 1234 // collect statistics
mjr 74:822a92bc11d2 1235 IF_DIAG(
mjr 76:7f5912b6340e 1236 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1237 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1238 )
mjr 74:822a92bc11d2 1239 }
mjr 74:822a92bc11d2 1240 }
mjr 64:ef7ca92dff36 1241
mjr 26:cb71c4af2912 1242 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1243 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1244 {
mjr 6:cc35eb643e8f 1245 public:
mjr 43:7a6364d82a41 1246 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1247 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1248 {
mjr 13:72dda449c3c0 1249 if (val != prv)
mjr 40:cc0d9814522b 1250 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1251 }
mjr 6:cc35eb643e8f 1252 DigitalOut p;
mjr 40:cc0d9814522b 1253 uint8_t prv;
mjr 6:cc35eb643e8f 1254 };
mjr 26:cb71c4af2912 1255
mjr 29:582472d0bc57 1256 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1257 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1258 // port n (0-based).
mjr 35:e959ffba78fd 1259 //
mjr 35:e959ffba78fd 1260 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1261 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1262 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1263 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1264 // 74HC595 ports).
mjr 33:d832bcab089e 1265 static int numOutputs;
mjr 33:d832bcab089e 1266 static LwOut **lwPin;
mjr 33:d832bcab089e 1267
mjr 38:091e511ce8a0 1268 // create a single output pin
mjr 53:9b2611964afc 1269 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1270 {
mjr 38:091e511ce8a0 1271 // get this item's values
mjr 38:091e511ce8a0 1272 int typ = pc.typ;
mjr 38:091e511ce8a0 1273 int pin = pc.pin;
mjr 38:091e511ce8a0 1274 int flags = pc.flags;
mjr 40:cc0d9814522b 1275 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1276 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1277 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1278
mjr 38:091e511ce8a0 1279 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1280 LwOut *lwp;
mjr 38:091e511ce8a0 1281 switch (typ)
mjr 38:091e511ce8a0 1282 {
mjr 38:091e511ce8a0 1283 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1284 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1285 if (pin != 0)
mjr 64:ef7ca92dff36 1286 {
mjr 64:ef7ca92dff36 1287 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1288 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1289 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1290 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1291 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1292 {
mjr 64:ef7ca92dff36 1293 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1294 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1295
mjr 64:ef7ca92dff36 1296 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1297 gamma = false;
mjr 64:ef7ca92dff36 1298 }
mjr 64:ef7ca92dff36 1299 else
mjr 64:ef7ca92dff36 1300 {
mjr 64:ef7ca92dff36 1301 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1302 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1303 }
mjr 64:ef7ca92dff36 1304 }
mjr 48:058ace2aed1d 1305 else
mjr 48:058ace2aed1d 1306 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1307 break;
mjr 38:091e511ce8a0 1308
mjr 38:091e511ce8a0 1309 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1310 // Digital GPIO port
mjr 48:058ace2aed1d 1311 if (pin != 0)
mjr 48:058ace2aed1d 1312 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1313 else
mjr 48:058ace2aed1d 1314 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1315 break;
mjr 38:091e511ce8a0 1316
mjr 38:091e511ce8a0 1317 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1318 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1319 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1320 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1321 {
mjr 40:cc0d9814522b 1322 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1323 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1324 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1325 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1326 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1327 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1328 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1329 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1330 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1331 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1332 // for this unlikely case.
mjr 40:cc0d9814522b 1333 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1334 {
mjr 40:cc0d9814522b 1335 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1336 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1337
mjr 40:cc0d9814522b 1338 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1339 gamma = false;
mjr 40:cc0d9814522b 1340 }
mjr 40:cc0d9814522b 1341 else
mjr 40:cc0d9814522b 1342 {
mjr 40:cc0d9814522b 1343 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1344 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1345 }
mjr 40:cc0d9814522b 1346 }
mjr 38:091e511ce8a0 1347 else
mjr 40:cc0d9814522b 1348 {
mjr 40:cc0d9814522b 1349 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1350 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1351 }
mjr 38:091e511ce8a0 1352 break;
mjr 38:091e511ce8a0 1353
mjr 38:091e511ce8a0 1354 case PortType74HC595:
mjr 87:8d35c74403af 1355 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 1356 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 1357 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1358 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1359 else
mjr 38:091e511ce8a0 1360 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1361 break;
mjr 87:8d35c74403af 1362
mjr 87:8d35c74403af 1363 case PortTypeTLC59116:
mjr 87:8d35c74403af 1364 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 1365 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 1366 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 1367 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 1368 if (tlc59116 != 0)
mjr 87:8d35c74403af 1369 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 1370 break;
mjr 38:091e511ce8a0 1371
mjr 38:091e511ce8a0 1372 case PortTypeVirtual:
mjr 43:7a6364d82a41 1373 case PortTypeDisabled:
mjr 38:091e511ce8a0 1374 default:
mjr 38:091e511ce8a0 1375 // virtual or unknown
mjr 38:091e511ce8a0 1376 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1377 break;
mjr 38:091e511ce8a0 1378 }
mjr 38:091e511ce8a0 1379
mjr 40:cc0d9814522b 1380 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1381 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1382 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1383 if (activeLow)
mjr 38:091e511ce8a0 1384 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1385
mjr 40:cc0d9814522b 1386 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1387 // needs to be
mjr 40:cc0d9814522b 1388 if (noisy)
mjr 40:cc0d9814522b 1389 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1390
mjr 40:cc0d9814522b 1391 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1392 if (gamma)
mjr 40:cc0d9814522b 1393 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1394
mjr 53:9b2611964afc 1395 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1396 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1397 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1398 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1399 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1400
mjr 53:9b2611964afc 1401 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1402 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1403 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1404
mjr 38:091e511ce8a0 1405 // turn it off initially
mjr 38:091e511ce8a0 1406 lwp->set(0);
mjr 38:091e511ce8a0 1407
mjr 38:091e511ce8a0 1408 // return the pin
mjr 38:091e511ce8a0 1409 return lwp;
mjr 38:091e511ce8a0 1410 }
mjr 38:091e511ce8a0 1411
mjr 6:cc35eb643e8f 1412 // initialize the output pin array
mjr 35:e959ffba78fd 1413 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1414 {
mjr 35:e959ffba78fd 1415 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1416 // total number of ports.
mjr 35:e959ffba78fd 1417 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1418 int i;
mjr 35:e959ffba78fd 1419 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1420 {
mjr 35:e959ffba78fd 1421 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1422 {
mjr 35:e959ffba78fd 1423 numOutputs = i;
mjr 34:6b981a2afab7 1424 break;
mjr 34:6b981a2afab7 1425 }
mjr 33:d832bcab089e 1426 }
mjr 33:d832bcab089e 1427
mjr 73:4e8ce0b18915 1428 // allocate the pin array
mjr 73:4e8ce0b18915 1429 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1430
mjr 73:4e8ce0b18915 1431 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1432 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1433
mjr 73:4e8ce0b18915 1434 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1435 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1436 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1437
mjr 73:4e8ce0b18915 1438 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1439 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1440 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1441
mjr 73:4e8ce0b18915 1442 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1443 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1444 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1445
mjr 35:e959ffba78fd 1446 // create the pin interface object for each port
mjr 35:e959ffba78fd 1447 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1448 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1449 }
mjr 6:cc35eb643e8f 1450
mjr 76:7f5912b6340e 1451 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1452 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1453 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1454 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1455 // equivalent to 48.
mjr 40:cc0d9814522b 1456 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1457 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1458 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1459 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1460 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1461 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1462 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1463 255, 255
mjr 40:cc0d9814522b 1464 };
mjr 40:cc0d9814522b 1465
mjr 76:7f5912b6340e 1466 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1467 // level (1..48)
mjr 76:7f5912b6340e 1468 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1469 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1470 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1471 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1472 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1473 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1474 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1475 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1476 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1477 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1478 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1479 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1480 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1481 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1482 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1483 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1484 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1485 };
mjr 76:7f5912b6340e 1486
mjr 74:822a92bc11d2 1487 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1488 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1489 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1490 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1491 //
mjr 74:822a92bc11d2 1492 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1493 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1494 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1495 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1496 //
mjr 74:822a92bc11d2 1497 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1498 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1499 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1500 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1501 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1502 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1503 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1504 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1505 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1506 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1507 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1508 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1509 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1510 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1511 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1512 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1513 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1514 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1515 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1516 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1517
mjr 74:822a92bc11d2 1518 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1519 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1520 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1521 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1522 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1523 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1524 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1525 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1526 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1527 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1528 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1529 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1530 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1531 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1532 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1533 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1534 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1535
mjr 74:822a92bc11d2 1536 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1537 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1538 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1539 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1540 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1541 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1542 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1543 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1544 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1545 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1546 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1547 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1548 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1549 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1550 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1551 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1552 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1553
mjr 74:822a92bc11d2 1554 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1555 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1556 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1557 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1558 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1559 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1560 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1561 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1562 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1563 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1564 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1565 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1566 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1567 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1568 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1569 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1570 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1571 };
mjr 74:822a92bc11d2 1572
mjr 74:822a92bc11d2 1573 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1574 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1575 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1576
mjr 76:7f5912b6340e 1577 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1578 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1579
mjr 76:7f5912b6340e 1580 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1581 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1582 // outputs on each cycle.
mjr 29:582472d0bc57 1583 static void wizPulse()
mjr 29:582472d0bc57 1584 {
mjr 76:7f5912b6340e 1585 // current bank
mjr 76:7f5912b6340e 1586 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1587
mjr 76:7f5912b6340e 1588 // start a timer for statistics collection
mjr 76:7f5912b6340e 1589 IF_DIAG(
mjr 76:7f5912b6340e 1590 Timer t;
mjr 76:7f5912b6340e 1591 t.start();
mjr 76:7f5912b6340e 1592 )
mjr 76:7f5912b6340e 1593
mjr 76:7f5912b6340e 1594 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1595 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1596 //
mjr 76:7f5912b6340e 1597 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1598 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1599 //
mjr 76:7f5912b6340e 1600 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1601 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1602 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1603 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1604 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1605 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1606 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1607 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1608 // current cycle.
mjr 76:7f5912b6340e 1609 //
mjr 76:7f5912b6340e 1610 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1611 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1612 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1613 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1614 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1615 //
mjr 76:7f5912b6340e 1616 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1617 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1618 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1619 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1620 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1621 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1622 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1623 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1624 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1625 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1626 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1627 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1628 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1629 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1630 // bit counts.
mjr 76:7f5912b6340e 1631 //
mjr 76:7f5912b6340e 1632 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1633 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1634 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1635 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1636 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1637 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1638 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1639 // one division for another!
mjr 76:7f5912b6340e 1640 //
mjr 76:7f5912b6340e 1641 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1642 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1643 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1644 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1645 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1646 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1647 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1648 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1649 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1650 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1651 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1652 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1653 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1654 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1655 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1656 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1657 // remainder calculation anyway.
mjr 76:7f5912b6340e 1658 //
mjr 76:7f5912b6340e 1659 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1660 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1661 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1662 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1663 //
mjr 76:7f5912b6340e 1664 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1665 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1666 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1667 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1668 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1669 // the result, since we started with 32.
mjr 76:7f5912b6340e 1670 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1671 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1672 };
mjr 76:7f5912b6340e 1673 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1674
mjr 76:7f5912b6340e 1675 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1676 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1677 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1678 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1679 toPort = numOutputs;
mjr 76:7f5912b6340e 1680
mjr 76:7f5912b6340e 1681 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1682 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1683 {
mjr 76:7f5912b6340e 1684 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1685 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1686 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1687 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1688 if (wizOn[i])
mjr 29:582472d0bc57 1689 {
mjr 76:7f5912b6340e 1690 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 1691 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 1692 {
mjr 76:7f5912b6340e 1693 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 1694 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 1695 }
mjr 29:582472d0bc57 1696 }
mjr 76:7f5912b6340e 1697 }
mjr 76:7f5912b6340e 1698
mjr 34:6b981a2afab7 1699 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1700 if (hc595 != 0)
mjr 35:e959ffba78fd 1701 hc595->update();
mjr 76:7f5912b6340e 1702
mjr 76:7f5912b6340e 1703 // switch to the next bank
mjr 76:7f5912b6340e 1704 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 1705 wizPulseBank = 0;
mjr 76:7f5912b6340e 1706
mjr 76:7f5912b6340e 1707 // collect timing statistics
mjr 76:7f5912b6340e 1708 IF_DIAG(
mjr 76:7f5912b6340e 1709 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 1710 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 1711 )
mjr 1:d913e0afb2ac 1712 }
mjr 38:091e511ce8a0 1713
mjr 76:7f5912b6340e 1714 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 1715 static void updateLwPort(int port)
mjr 38:091e511ce8a0 1716 {
mjr 76:7f5912b6340e 1717 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 1718 if (wizOn[port])
mjr 76:7f5912b6340e 1719 {
mjr 76:7f5912b6340e 1720 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 1721 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 1722 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 1723 // it on the next cycle.
mjr 76:7f5912b6340e 1724 int val = wizVal[port];
mjr 76:7f5912b6340e 1725 if (val <= 49)
mjr 76:7f5912b6340e 1726 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 1727 }
mjr 76:7f5912b6340e 1728 else
mjr 76:7f5912b6340e 1729 {
mjr 76:7f5912b6340e 1730 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 1731 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 1732 }
mjr 73:4e8ce0b18915 1733 }
mjr 73:4e8ce0b18915 1734
mjr 73:4e8ce0b18915 1735 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 1736 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 1737 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 1738 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 1739 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 1740 //
mjr 73:4e8ce0b18915 1741 void allOutputsOff()
mjr 73:4e8ce0b18915 1742 {
mjr 73:4e8ce0b18915 1743 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 1744 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 1745 {
mjr 73:4e8ce0b18915 1746 outLevel[i] = 0;
mjr 73:4e8ce0b18915 1747 wizOn[i] = 0;
mjr 73:4e8ce0b18915 1748 wizVal[i] = 48;
mjr 73:4e8ce0b18915 1749 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 1750 }
mjr 73:4e8ce0b18915 1751
mjr 73:4e8ce0b18915 1752 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 1753 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1754 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 1755
mjr 73:4e8ce0b18915 1756 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 1757 if (hc595 != 0)
mjr 38:091e511ce8a0 1758 hc595->update();
mjr 38:091e511ce8a0 1759 }
mjr 38:091e511ce8a0 1760
mjr 74:822a92bc11d2 1761 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 1762 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 1763 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 1764 // address any port group.
mjr 74:822a92bc11d2 1765 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 1766 {
mjr 76:7f5912b6340e 1767 // update all on/off states in the group
mjr 74:822a92bc11d2 1768 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 1769 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 1770 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 1771 {
mjr 74:822a92bc11d2 1772 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 1773 if (bit == 0x100) {
mjr 74:822a92bc11d2 1774 bit = 1;
mjr 74:822a92bc11d2 1775 ++imsg;
mjr 74:822a92bc11d2 1776 }
mjr 74:822a92bc11d2 1777
mjr 74:822a92bc11d2 1778 // set the on/off state
mjr 76:7f5912b6340e 1779 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 1780
mjr 76:7f5912b6340e 1781 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 1782 updateLwPort(port);
mjr 74:822a92bc11d2 1783 }
mjr 74:822a92bc11d2 1784
mjr 74:822a92bc11d2 1785 // set the flash speed for the port group
mjr 74:822a92bc11d2 1786 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 1787 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 1788
mjr 76:7f5912b6340e 1789 // update 74HC959 outputs
mjr 76:7f5912b6340e 1790 if (hc595 != 0)
mjr 76:7f5912b6340e 1791 hc595->update();
mjr 74:822a92bc11d2 1792 }
mjr 74:822a92bc11d2 1793
mjr 74:822a92bc11d2 1794 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 1795 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 1796 {
mjr 74:822a92bc11d2 1797 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 1798 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 1799 {
mjr 74:822a92bc11d2 1800 // get the value
mjr 74:822a92bc11d2 1801 uint8_t v = data[i];
mjr 74:822a92bc11d2 1802
mjr 74:822a92bc11d2 1803 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 1804 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 1805 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 1806 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 1807 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 1808 // as such.
mjr 74:822a92bc11d2 1809 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 1810 v = 48;
mjr 74:822a92bc11d2 1811
mjr 74:822a92bc11d2 1812 // store it
mjr 76:7f5912b6340e 1813 wizVal[port] = v;
mjr 76:7f5912b6340e 1814
mjr 76:7f5912b6340e 1815 // update the port
mjr 76:7f5912b6340e 1816 updateLwPort(port);
mjr 74:822a92bc11d2 1817 }
mjr 74:822a92bc11d2 1818
mjr 76:7f5912b6340e 1819 // update 74HC595 outputs
mjr 76:7f5912b6340e 1820 if (hc595 != 0)
mjr 76:7f5912b6340e 1821 hc595->update();
mjr 74:822a92bc11d2 1822 }
mjr 74:822a92bc11d2 1823
mjr 77:0b96f6867312 1824 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 1825 //
mjr 77:0b96f6867312 1826 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 1827 //
mjr 77:0b96f6867312 1828
mjr 77:0b96f6867312 1829 // receiver
mjr 77:0b96f6867312 1830 IRReceiver *ir_rx;
mjr 77:0b96f6867312 1831
mjr 77:0b96f6867312 1832 // transmitter
mjr 77:0b96f6867312 1833 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 1834
mjr 77:0b96f6867312 1835 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 1836 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 1837 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 1838 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 1839 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 1840 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 1841 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 1842 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 1843 // configuration slot n
mjr 77:0b96f6867312 1844 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 1845
mjr 78:1e00b3fa11af 1846 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 1847 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 1848 // protocol.
mjr 78:1e00b3fa11af 1849 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 1850
mjr 78:1e00b3fa11af 1851 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 1852 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 1853 // while waiting for the rest.
mjr 78:1e00b3fa11af 1854 static struct
mjr 78:1e00b3fa11af 1855 {
mjr 78:1e00b3fa11af 1856 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 1857 uint64_t code; // code
mjr 78:1e00b3fa11af 1858 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 1859 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 1860 } IRAdHocCmd;
mjr 78:1e00b3fa11af 1861
mjr 77:0b96f6867312 1862
mjr 77:0b96f6867312 1863 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 1864 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 1865 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 1866 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 1867 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 1868 // amount of time.
mjr 77:0b96f6867312 1869 Timer IRTimer;
mjr 77:0b96f6867312 1870
mjr 77:0b96f6867312 1871 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 1872 // The states are:
mjr 77:0b96f6867312 1873 //
mjr 77:0b96f6867312 1874 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 1875 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 1876 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 1877 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 1878 //
mjr 77:0b96f6867312 1879 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 1880 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 1881 // received within a reasonable time.
mjr 77:0b96f6867312 1882 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 1883
mjr 77:0b96f6867312 1884 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 1885 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 1886 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 1887 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 1888 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 1889 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 1890 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 1891 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 1892 IRCommand learnedIRCode;
mjr 77:0b96f6867312 1893
mjr 78:1e00b3fa11af 1894 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 1895 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 1896 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 1897 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 1898 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 1899 // index; 0 represents no command.
mjr 77:0b96f6867312 1900 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 1901
mjr 77:0b96f6867312 1902 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 1903 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 1904 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 1905 // command we received.
mjr 77:0b96f6867312 1906 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 1907
mjr 77:0b96f6867312 1908 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 1909 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 1910 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 1911 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 1912 // distinct key press.
mjr 77:0b96f6867312 1913 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 1914
mjr 78:1e00b3fa11af 1915
mjr 77:0b96f6867312 1916 // initialize
mjr 77:0b96f6867312 1917 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 1918 {
mjr 77:0b96f6867312 1919 PinName pin;
mjr 77:0b96f6867312 1920
mjr 77:0b96f6867312 1921 // start the IR timer
mjr 77:0b96f6867312 1922 IRTimer.start();
mjr 77:0b96f6867312 1923
mjr 77:0b96f6867312 1924 // if there's a transmitter, set it up
mjr 77:0b96f6867312 1925 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 1926 {
mjr 77:0b96f6867312 1927 // no virtual buttons yet
mjr 77:0b96f6867312 1928 int nVirtualButtons = 0;
mjr 77:0b96f6867312 1929 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 1930
mjr 77:0b96f6867312 1931 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 1932 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1933 {
mjr 77:0b96f6867312 1934 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 1935 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 1936 }
mjr 77:0b96f6867312 1937
mjr 77:0b96f6867312 1938 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 1939 // real button inputs
mjr 77:0b96f6867312 1940 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 1941 {
mjr 77:0b96f6867312 1942 // get the button
mjr 77:0b96f6867312 1943 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 1944
mjr 77:0b96f6867312 1945 // check the unshifted button
mjr 77:0b96f6867312 1946 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 1947 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1948 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1949 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1950
mjr 77:0b96f6867312 1951 // check the shifted button
mjr 77:0b96f6867312 1952 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 1953 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1954 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1955 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1956 }
mjr 77:0b96f6867312 1957
mjr 77:0b96f6867312 1958 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 1959 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 1960 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 1961
mjr 77:0b96f6867312 1962 // create the transmitter
mjr 77:0b96f6867312 1963 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 1964
mjr 77:0b96f6867312 1965 // program the commands into the virtual button slots
mjr 77:0b96f6867312 1966 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1967 {
mjr 77:0b96f6867312 1968 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 1969 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 1970 if (vb != 0xFF)
mjr 77:0b96f6867312 1971 {
mjr 77:0b96f6867312 1972 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1973 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 1974 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 1975 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 1976 }
mjr 77:0b96f6867312 1977 }
mjr 77:0b96f6867312 1978 }
mjr 77:0b96f6867312 1979
mjr 77:0b96f6867312 1980 // if there's a receiver, set it up
mjr 77:0b96f6867312 1981 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 1982 {
mjr 77:0b96f6867312 1983 // create the receiver
mjr 77:0b96f6867312 1984 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 1985
mjr 77:0b96f6867312 1986 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 1987 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 1988 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 1989
mjr 77:0b96f6867312 1990 // enable it
mjr 77:0b96f6867312 1991 ir_rx->enable();
mjr 77:0b96f6867312 1992
mjr 77:0b96f6867312 1993 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 1994 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 1995 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 1996 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1997 {
mjr 77:0b96f6867312 1998 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1999 if (cb.protocol != 0
mjr 77:0b96f6867312 2000 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2001 {
mjr 77:0b96f6867312 2002 kbKeys = true;
mjr 77:0b96f6867312 2003 break;
mjr 77:0b96f6867312 2004 }
mjr 77:0b96f6867312 2005 }
mjr 77:0b96f6867312 2006 }
mjr 77:0b96f6867312 2007 }
mjr 77:0b96f6867312 2008
mjr 77:0b96f6867312 2009 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2010 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2011 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2012 {
mjr 77:0b96f6867312 2013 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2014 if (ir_tx != 0)
mjr 77:0b96f6867312 2015 {
mjr 77:0b96f6867312 2016 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2017 int slot = cmd - 1;
mjr 77:0b96f6867312 2018
mjr 77:0b96f6867312 2019 // press or release the virtual button
mjr 77:0b96f6867312 2020 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2021 }
mjr 77:0b96f6867312 2022 }
mjr 77:0b96f6867312 2023
mjr 78:1e00b3fa11af 2024 // Process IR input and output
mjr 77:0b96f6867312 2025 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2026 {
mjr 78:1e00b3fa11af 2027 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2028 if (ir_tx != 0)
mjr 77:0b96f6867312 2029 {
mjr 78:1e00b3fa11af 2030 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2031 // is ready to send, send it.
mjr 78:1e00b3fa11af 2032 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2033 {
mjr 78:1e00b3fa11af 2034 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2035 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2036 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2037 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2038
mjr 78:1e00b3fa11af 2039 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2040 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2041 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2042
mjr 78:1e00b3fa11af 2043 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2044 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2045 }
mjr 77:0b96f6867312 2046 }
mjr 78:1e00b3fa11af 2047
mjr 78:1e00b3fa11af 2048 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2049 if (ir_rx != 0)
mjr 77:0b96f6867312 2050 {
mjr 78:1e00b3fa11af 2051 // Time out any received command
mjr 78:1e00b3fa11af 2052 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2053 {
mjr 80:94dc2946871b 2054 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2055 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2056 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2057 if (t > 200000)
mjr 78:1e00b3fa11af 2058 IRCommandIn = 0;
mjr 80:94dc2946871b 2059 else if (t > 50000)
mjr 78:1e00b3fa11af 2060 IRKeyGap = false;
mjr 78:1e00b3fa11af 2061 }
mjr 78:1e00b3fa11af 2062
mjr 78:1e00b3fa11af 2063 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2064 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2065 {
mjr 78:1e00b3fa11af 2066 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2067 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2068 // limit.
mjr 78:1e00b3fa11af 2069 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2070 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2071 int n;
mjr 78:1e00b3fa11af 2072 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2073
mjr 78:1e00b3fa11af 2074 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2075 if (n != 0)
mjr 78:1e00b3fa11af 2076 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2077
mjr 78:1e00b3fa11af 2078 // check for a command
mjr 78:1e00b3fa11af 2079 IRCommand c;
mjr 78:1e00b3fa11af 2080 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2081 {
mjr 78:1e00b3fa11af 2082 // check the current learning state
mjr 78:1e00b3fa11af 2083 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2084 {
mjr 78:1e00b3fa11af 2085 case 1:
mjr 78:1e00b3fa11af 2086 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2087 // This is it.
mjr 78:1e00b3fa11af 2088 learnedIRCode = c;
mjr 78:1e00b3fa11af 2089
mjr 78:1e00b3fa11af 2090 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2091 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2092 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2093 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2094 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2095 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2096 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2097 break;
mjr 78:1e00b3fa11af 2098
mjr 78:1e00b3fa11af 2099 case 2:
mjr 78:1e00b3fa11af 2100 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2101 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2102 //
mjr 78:1e00b3fa11af 2103 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2104 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2105 //
mjr 78:1e00b3fa11af 2106 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2107 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2108 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2109 // them.
mjr 78:1e00b3fa11af 2110 //
mjr 78:1e00b3fa11af 2111 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2112 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2113 // over.
mjr 78:1e00b3fa11af 2114 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2115 && c.hasDittos
mjr 78:1e00b3fa11af 2116 && c.ditto)
mjr 78:1e00b3fa11af 2117 {
mjr 78:1e00b3fa11af 2118 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2119 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2120 }
mjr 78:1e00b3fa11af 2121 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2122 && c.hasDittos
mjr 78:1e00b3fa11af 2123 && !c.ditto
mjr 78:1e00b3fa11af 2124 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2125 {
mjr 78:1e00b3fa11af 2126 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2127 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2128 // protocol supports them
mjr 78:1e00b3fa11af 2129 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2130 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2131 }
mjr 78:1e00b3fa11af 2132 else
mjr 78:1e00b3fa11af 2133 {
mjr 78:1e00b3fa11af 2134 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2135 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2136 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2137 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2138 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2139 }
mjr 78:1e00b3fa11af 2140 break;
mjr 78:1e00b3fa11af 2141 }
mjr 77:0b96f6867312 2142
mjr 78:1e00b3fa11af 2143 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2144 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2145 // learning mode.
mjr 78:1e00b3fa11af 2146 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2147 {
mjr 78:1e00b3fa11af 2148 // figure the flags:
mjr 78:1e00b3fa11af 2149 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2150 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2151 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2152 flags |= 0x02;
mjr 78:1e00b3fa11af 2153
mjr 78:1e00b3fa11af 2154 // report the code
mjr 78:1e00b3fa11af 2155 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2156
mjr 78:1e00b3fa11af 2157 // exit learning mode
mjr 78:1e00b3fa11af 2158 IRLearningMode = 0;
mjr 77:0b96f6867312 2159 }
mjr 77:0b96f6867312 2160 }
mjr 77:0b96f6867312 2161
mjr 78:1e00b3fa11af 2162 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2163 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2164 {
mjr 78:1e00b3fa11af 2165 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2166 // zero data elements
mjr 78:1e00b3fa11af 2167 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2168
mjr 78:1e00b3fa11af 2169
mjr 78:1e00b3fa11af 2170 // cancel learning mode
mjr 77:0b96f6867312 2171 IRLearningMode = 0;
mjr 77:0b96f6867312 2172 }
mjr 77:0b96f6867312 2173 }
mjr 78:1e00b3fa11af 2174 else
mjr 77:0b96f6867312 2175 {
mjr 78:1e00b3fa11af 2176 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2177 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2178 ir_rx->process();
mjr 78:1e00b3fa11af 2179
mjr 78:1e00b3fa11af 2180 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2181 // have been read.
mjr 78:1e00b3fa11af 2182 IRCommand c;
mjr 78:1e00b3fa11af 2183 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2184 {
mjr 78:1e00b3fa11af 2185 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2186 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2187 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2188 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2189 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2190 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2191 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2192 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2193 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2194 //
mjr 78:1e00b3fa11af 2195 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2196 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2197 // command.
mjr 78:1e00b3fa11af 2198 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2199 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2200 {
mjr 78:1e00b3fa11af 2201 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2202 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2203 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2204 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2205 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2206 if (c.ditto)
mjr 78:1e00b3fa11af 2207 {
mjr 78:1e00b3fa11af 2208 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2209 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2210 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2211 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2212 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2213 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2214 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2215 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2216 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2217 }
mjr 78:1e00b3fa11af 2218 else
mjr 78:1e00b3fa11af 2219 {
mjr 78:1e00b3fa11af 2220 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2221 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2222 // prior command.
mjr 78:1e00b3fa11af 2223 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2224 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2225 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2226
mjr 78:1e00b3fa11af 2227 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2228 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2229 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2230 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2231 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2232 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2233 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2234 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2235 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2236 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2237 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2238 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2239 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2240 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2241 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2242 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2243 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2244 autoRepeat =
mjr 78:1e00b3fa11af 2245 repeat
mjr 78:1e00b3fa11af 2246 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2247 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2248 }
mjr 78:1e00b3fa11af 2249 }
mjr 78:1e00b3fa11af 2250
mjr 78:1e00b3fa11af 2251 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2252 if (repeat)
mjr 78:1e00b3fa11af 2253 {
mjr 78:1e00b3fa11af 2254 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2255 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2256 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2257 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2258 // key press event.
mjr 78:1e00b3fa11af 2259 if (!autoRepeat)
mjr 78:1e00b3fa11af 2260 IRKeyGap = true;
mjr 78:1e00b3fa11af 2261
mjr 78:1e00b3fa11af 2262 // restart the key-up timer
mjr 78:1e00b3fa11af 2263 IRTimer.reset();
mjr 78:1e00b3fa11af 2264 }
mjr 78:1e00b3fa11af 2265 else if (c.ditto)
mjr 78:1e00b3fa11af 2266 {
mjr 78:1e00b3fa11af 2267 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2268 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2269 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2270 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2271 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2272 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2273 // a full command for a new key press.
mjr 78:1e00b3fa11af 2274 IRCommandIn = 0;
mjr 77:0b96f6867312 2275 }
mjr 77:0b96f6867312 2276 else
mjr 77:0b96f6867312 2277 {
mjr 78:1e00b3fa11af 2278 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2279 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2280 // the new command).
mjr 78:1e00b3fa11af 2281 IRCommandIn = 0;
mjr 77:0b96f6867312 2282
mjr 78:1e00b3fa11af 2283 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2284 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2285 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2286 {
mjr 78:1e00b3fa11af 2287 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2288 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2289 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2290 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2291 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2292 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2293 {
mjr 78:1e00b3fa11af 2294 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2295 // remember the starting time.
mjr 78:1e00b3fa11af 2296 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2297 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2298 IRTimer.reset();
mjr 78:1e00b3fa11af 2299
mjr 78:1e00b3fa11af 2300 // no need to keep searching
mjr 78:1e00b3fa11af 2301 break;
mjr 78:1e00b3fa11af 2302 }
mjr 77:0b96f6867312 2303 }
mjr 77:0b96f6867312 2304 }
mjr 77:0b96f6867312 2305 }
mjr 77:0b96f6867312 2306 }
mjr 77:0b96f6867312 2307 }
mjr 77:0b96f6867312 2308 }
mjr 77:0b96f6867312 2309
mjr 74:822a92bc11d2 2310
mjr 11:bd9da7088e6e 2311 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2312 //
mjr 11:bd9da7088e6e 2313 // Button input
mjr 11:bd9da7088e6e 2314 //
mjr 11:bd9da7088e6e 2315
mjr 18:5e890ebd0023 2316 // button state
mjr 18:5e890ebd0023 2317 struct ButtonState
mjr 18:5e890ebd0023 2318 {
mjr 38:091e511ce8a0 2319 ButtonState()
mjr 38:091e511ce8a0 2320 {
mjr 53:9b2611964afc 2321 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2322 virtState = 0;
mjr 53:9b2611964afc 2323 dbState = 0;
mjr 38:091e511ce8a0 2324 pulseState = 0;
mjr 53:9b2611964afc 2325 pulseTime = 0;
mjr 38:091e511ce8a0 2326 }
mjr 35:e959ffba78fd 2327
mjr 53:9b2611964afc 2328 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2329 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2330 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2331 //
mjr 53:9b2611964afc 2332 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2333 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2334 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2335 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2336 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2337 void virtPress(bool on)
mjr 53:9b2611964afc 2338 {
mjr 53:9b2611964afc 2339 // Increment or decrement the current state
mjr 53:9b2611964afc 2340 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2341 }
mjr 53:9b2611964afc 2342
mjr 53:9b2611964afc 2343 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2344 TinyDigitalIn di;
mjr 38:091e511ce8a0 2345
mjr 65:739875521aae 2346 // Time of last pulse state transition.
mjr 65:739875521aae 2347 //
mjr 65:739875521aae 2348 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2349 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2350 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2351 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2352 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2353 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2354 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2355 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2356 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2357 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2358 // This software system can't be fooled that way.)
mjr 65:739875521aae 2359 uint32_t pulseTime;
mjr 18:5e890ebd0023 2360
mjr 65:739875521aae 2361 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2362 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2363 uint8_t cfgIndex;
mjr 53:9b2611964afc 2364
mjr 53:9b2611964afc 2365 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2366 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2367 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2368 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2369 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2370 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2371 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2372 // and physical source states.
mjr 53:9b2611964afc 2373 uint8_t virtState;
mjr 38:091e511ce8a0 2374
mjr 38:091e511ce8a0 2375 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2376 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2377 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2378 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2379 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2380 uint8_t dbState;
mjr 38:091e511ce8a0 2381
mjr 65:739875521aae 2382 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2383 uint8_t physState : 1;
mjr 65:739875521aae 2384
mjr 65:739875521aae 2385 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2386 uint8_t logState : 1;
mjr 65:739875521aae 2387
mjr 79:682ae3171a08 2388 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 2389 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 2390 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 2391 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 2392 uint8_t prevLogState : 1;
mjr 65:739875521aae 2393
mjr 65:739875521aae 2394 // Pulse state
mjr 65:739875521aae 2395 //
mjr 65:739875521aae 2396 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2397 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2398 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2399 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2400 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2401 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2402 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2403 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2404 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2405 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2406 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 2407 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 2408 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2409 //
mjr 38:091e511ce8a0 2410 // Pulse state:
mjr 38:091e511ce8a0 2411 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2412 // 1 -> off
mjr 38:091e511ce8a0 2413 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2414 // 3 -> on
mjr 38:091e511ce8a0 2415 // 4 -> transitioning on-off
mjr 65:739875521aae 2416 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2417
mjr 65:739875521aae 2418 } __attribute__((packed));
mjr 65:739875521aae 2419
mjr 65:739875521aae 2420 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2421 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2422 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2423
mjr 66:2e3583fbd2f4 2424 // Shift button state
mjr 66:2e3583fbd2f4 2425 struct
mjr 66:2e3583fbd2f4 2426 {
mjr 66:2e3583fbd2f4 2427 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 2428 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 2429 // 0 = not shifted
mjr 66:2e3583fbd2f4 2430 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2431 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 2432 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 2433 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 2434 }
mjr 66:2e3583fbd2f4 2435 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2436
mjr 38:091e511ce8a0 2437 // Button data
mjr 38:091e511ce8a0 2438 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2439
mjr 38:091e511ce8a0 2440 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2441 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2442 // modifier keys.
mjr 38:091e511ce8a0 2443 struct
mjr 38:091e511ce8a0 2444 {
mjr 38:091e511ce8a0 2445 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2446 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2447 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2448 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2449 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2450
mjr 38:091e511ce8a0 2451 // Media key state
mjr 38:091e511ce8a0 2452 struct
mjr 38:091e511ce8a0 2453 {
mjr 38:091e511ce8a0 2454 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2455 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2456 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2457
mjr 79:682ae3171a08 2458 // button scan interrupt timer
mjr 79:682ae3171a08 2459 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 2460
mjr 38:091e511ce8a0 2461 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2462 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2463 void scanButtons()
mjr 38:091e511ce8a0 2464 {
mjr 79:682ae3171a08 2465 // schedule the next interrupt
mjr 79:682ae3171a08 2466 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 2467
mjr 38:091e511ce8a0 2468 // scan all button input pins
mjr 73:4e8ce0b18915 2469 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2470 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2471 {
mjr 73:4e8ce0b18915 2472 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2473 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2474 bs->dbState = db;
mjr 73:4e8ce0b18915 2475
mjr 73:4e8ce0b18915 2476 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2477 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2478 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2479 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2480 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2481 db &= stable;
mjr 73:4e8ce0b18915 2482 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2483 bs->physState = !db;
mjr 38:091e511ce8a0 2484 }
mjr 38:091e511ce8a0 2485 }
mjr 38:091e511ce8a0 2486
mjr 38:091e511ce8a0 2487 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2488 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2489 // in the physical button state.
mjr 38:091e511ce8a0 2490 Timer buttonTimer;
mjr 12:669df364a565 2491
mjr 65:739875521aae 2492 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2493 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2494 {
mjr 65:739875521aae 2495 // count it
mjr 65:739875521aae 2496 ++nButtons;
mjr 65:739875521aae 2497
mjr 67:c39e66c4e000 2498 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2499 // keyboard interface
mjr 72:884207c0aab0 2500 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2501 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2502 kbKeys = true;
mjr 65:739875521aae 2503 }
mjr 65:739875521aae 2504
mjr 11:bd9da7088e6e 2505 // initialize the button inputs
mjr 35:e959ffba78fd 2506 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2507 {
mjr 66:2e3583fbd2f4 2508 // presume no shift key
mjr 66:2e3583fbd2f4 2509 shiftButton.index = -1;
mjr 82:4f6209cb5c33 2510 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2511
mjr 65:739875521aae 2512 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2513 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2514 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2515 nButtons = 0;
mjr 65:739875521aae 2516 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2517 {
mjr 65:739875521aae 2518 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2519 if (wirePinName(cfg.button[i].pin) != NC)
mjr