An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Fri Oct 20 06:21:40 2017 +0000
Revision:
91:ae9be42652bf
Parent:
90:aa4e571da8e8
Child:
92:f264fbaa1be5
Add plunger reverse orientation filter

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 87:8d35c74403af 3 // !!! ATTENTION !!!
mjr 87:8d35c74403af 4 // If you've come here on advice in a forum to change a GPIO setting or
mjr 87:8d35c74403af 5 // to #define a macro to enable the expansion boards, >>>STOP NOW<<<. The
mjr 87:8d35c74403af 6 // advice you found is out of date and no longer applies. You don't need
mjr 87:8d35c74403af 7 // to edit this file or recompile the firmware, and you shouldn't. Instead,
mjr 87:8d35c74403af 8 // use the standard firmware, and set options using the Pinscape Config Tool
mjr 87:8d35c74403af 9 // on your Windows PC. All options that were formerly configurable by
mjr 87:8d35c74403af 10 // editing this file can be selected with the Config Tool. That's much
mjr 87:8d35c74403af 11 // cleaner and easier than editing the source code, and it eliminates the
mjr 87:8d35c74403af 12 // problem of re-synchronizing a private copy of the source code with future
mjr 87:8d35c74403af 13 // updates. With the config tool, you only need the standard firmware build,
mjr 87:8d35c74403af 14 // so future updates are a simple matter of downloading the latest version.
mjr 35:e959ffba78fd 15 //
mjr 35:e959ffba78fd 16 //
mjr 87:8d35c74403af 17 // IN THE PAST (but NOT NOW - see above), configuration was handled mostly
mjr 87:8d35c74403af 18 // with #defines and #ifdefs. To customize the setup, you had to create a
mjr 87:8d35c74403af 19 // private forked copy of the source code, edit the constants defined in
mjr 87:8d35c74403af 20 // config.h, and compile a custom binary. That's no longer necessary because
mjr 87:8d35c74403af 21 // the config tool lets you set all configurable options dynamically. Of
mjr 87:8d35c74403af 22 // course, you're still free to create a custom version if you want to add
mjr 87:8d35c74403af 23 // entirely new features or make changes that go beyond the configurable
mjr 87:8d35c74403af 24 // options.
mjr 35:e959ffba78fd 25 //
mjr 87:8d35c74403af 26 #ifndef CONFIG_H
mjr 87:8d35c74403af 27 #define CONFIG_H
mjr 35:e959ffba78fd 28
mjr 90:aa4e571da8e8 29 #include "USBJoystick.h"
mjr 90:aa4e571da8e8 30
mjr 87:8d35c74403af 31
mjr 87:8d35c74403af 32 // TEST SETTINGS - FOR DEBUGGING PURPOSES ONLY. The macros below select
mjr 87:8d35c74403af 33 // special option combinations for debugging purposes.
mjr 55:4db125cd11a0 34 //
mjr 87:8d35c74403af 35 // IMPORTANT! If you're trying to create a custom configuration because
mjr 87:8d35c74403af 36 // you have a pin conflict or because you're using the expansion boards,
mjr 87:8d35c74403af 37 // DON'T modify this file, DON'T use these macros, and DON'T recompile
mjr 87:8d35c74403af 38 // the firmware. Use the Config Tool on your Windows PC instead.
mjr 55:4db125cd11a0 39 #define STANDARD_CONFIG 1 // standard settings, based on v1 base settings
mjr 55:4db125cd11a0 40 #define TEST_CONFIG_EXPAN 0 // configuration for the expansion boards
mjr 80:94dc2946871b 41 #define TEST_KEEP_PRINTF 0 // for debugging purposes, keep printf() enabled
mjr 55:4db125cd11a0 42 // by leaving the SDA UART GPIO pins unallocated
mjr 48:058ace2aed1d 43
mjr 35:e959ffba78fd 44 // Plunger type codes
mjr 35:e959ffba78fd 45 // NOTE! These values are part of the external USB interface. New
mjr 35:e959ffba78fd 46 // values can be added, but the meaning of an existing assigned number
mjr 35:e959ffba78fd 47 // should remain fixed to keep the PC-side config tool compatible across
mjr 35:e959ffba78fd 48 // versions.
mjr 35:e959ffba78fd 49 const int PlungerType_None = 0; // no plunger
mjr 82:4f6209cb5c33 50 const int PlungerType_TSL1410R = 1; // TSL1410R linear image sensor (1280x1 pixels, 400dpi), serial mode, edge detection
mjr 82:4f6209cb5c33 51 const int PlungerType_TSL1412S = 3; // TSL1412S linear image sensor (1536x1 pixels, 400dpi), serial mode, edge detection
mjr 35:e959ffba78fd 52 const int PlungerType_Pot = 5; // potentionmeter
mjr 35:e959ffba78fd 53 const int PlungerType_OptQuad = 6; // AEDR8300 optical quadrature sensor
mjr 35:e959ffba78fd 54 const int PlungerType_MagQuad = 7; // AS5304 magnetic quadrature sensor
mjr 82:4f6209cb5c33 55 const int PlungerType_TSL1401CL = 8; // TSL1401CL linear image sensor (128x1 pixels, 400dpi), bar code sensing
mjr 82:4f6209cb5c33 56 const int PlungerType_VL6180X = 9; // VL6180X time-of-flight distance sensor
mjr 82:4f6209cb5c33 57
mjr 82:4f6209cb5c33 58 // Plunger auto-zero flags
mjr 82:4f6209cb5c33 59 const int PlungerAutoZeroEnabled = 0x01; // auto-zeroing enabled
mjr 21:5048e16cc9ef 60
mjr 35:e959ffba78fd 61 // Accelerometer orientation codes
mjr 35:e959ffba78fd 62 // These values are part of the external USB interface
mjr 35:e959ffba78fd 63 const int OrientationFront = 0; // USB ports pointed toward front of cabinet
mjr 35:e959ffba78fd 64 const int OrientationLeft = 1; // ports pointed toward left side of cabinet
mjr 35:e959ffba78fd 65 const int OrientationRight = 2; // ports pointed toward right side of cabinet
mjr 35:e959ffba78fd 66 const int OrientationRear = 3; // ports pointed toward back of cabinet
mjr 25:e22b88bd783a 67
mjr 77:0b96f6867312 68 // Accelerometer dynamic range codes
mjr 77:0b96f6867312 69 const int AccelRange1G = 0; // +/-1G
mjr 77:0b96f6867312 70 const int AccelRange2G = 1; // +/-2G
mjr 77:0b96f6867312 71 const int AccelRange4G = 2; // +/-4G
mjr 77:0b96f6867312 72 const int AccelRange8G = 3; // +/-8G
mjr 77:0b96f6867312 73
mjr 35:e959ffba78fd 74 // input button types
mjr 53:9b2611964afc 75 const int BtnTypeNone = 0; // unused
mjr 35:e959ffba78fd 76 const int BtnTypeJoystick = 1; // joystick button
mjr 53:9b2611964afc 77 const int BtnTypeKey = 2; // keyboard key
mjr 67:c39e66c4e000 78 const int BtnTypeMedia = 3; // media control key
mjr 38:091e511ce8a0 79
mjr 38:091e511ce8a0 80 // input button flags
mjr 38:091e511ce8a0 81 const uint8_t BtnFlagPulse = 0x01; // pulse mode - reports each change in the physical switch state
mjr 38:091e511ce8a0 82 // as a brief press of the logical button/keyboard key
mjr 40:cc0d9814522b 83
mjr 40:cc0d9814522b 84 // button setup structure
mjr 40:cc0d9814522b 85 struct ButtonCfg
mjr 40:cc0d9814522b 86 {
mjr 66:2e3583fbd2f4 87 // physical GPIO pin - a Wire-to-PinName mapping index
mjr 66:2e3583fbd2f4 88 uint8_t pin;
mjr 66:2e3583fbd2f4 89
mjr 66:2e3583fbd2f4 90 // Key type and value reported to the PC
mjr 40:cc0d9814522b 91 uint8_t typ; // key type reported to PC - a BtnTypeXxx value
mjr 53:9b2611964afc 92 uint8_t val; // key value reported - meaning depends on 'typ' value:
mjr 53:9b2611964afc 93 // none -> no PC input reports (val is unused)
mjr 53:9b2611964afc 94 // joystick -> val is joystick button number (1..32)
mjr 53:9b2611964afc 95 // keyboard -> val is USB scan code
mjr 77:0b96f6867312 96 uint8_t IRCommand; // IR command to send when the button is pressed, as
mjr 77:0b96f6867312 97 // an IR command slot number: 1..MAX_IR_CODES, or 0
mjr 77:0b96f6867312 98 // if no IR command is to be sent
mjr 66:2e3583fbd2f4 99
mjr 66:2e3583fbd2f4 100 // Shifted key type and value. These used when the button is pressed
mjr 66:2e3583fbd2f4 101 // while the Local Shift Button is being held down. We send the key
mjr 66:2e3583fbd2f4 102 // code given here instead of the regular typ/val code in this case.
mjr 66:2e3583fbd2f4 103 // If typ2 is BtnTypeNone, we use the regular typ/val code whether or
mjr 66:2e3583fbd2f4 104 // not the shift button is being held.
mjr 66:2e3583fbd2f4 105 uint8_t typ2; // shifted key type
mjr 66:2e3583fbd2f4 106 uint8_t val2; // shifted key value
mjr 77:0b96f6867312 107 uint8_t IRCommand2; // IR command to send when shifted button is pressed
mjr 66:2e3583fbd2f4 108
mjr 66:2e3583fbd2f4 109 // key flags - a bitwise combination of BtnFlagXxx values
mjr 66:2e3583fbd2f4 110 uint8_t flags;
mjr 40:cc0d9814522b 111
mjr 40:cc0d9814522b 112 void set(uint8_t pin, uint8_t typ, uint8_t val, uint8_t flags = 0)
mjr 40:cc0d9814522b 113 {
mjr 40:cc0d9814522b 114 this->pin = pin;
mjr 40:cc0d9814522b 115 this->typ = typ;
mjr 40:cc0d9814522b 116 this->val = val;
mjr 77:0b96f6867312 117 this->IRCommand = 0;
mjr 40:cc0d9814522b 118 this->flags = flags;
mjr 77:0b96f6867312 119 this->typ2 = 0;
mjr 77:0b96f6867312 120 this->val2 = 0;
mjr 77:0b96f6867312 121 this->IRCommand2 = 0;
mjr 40:cc0d9814522b 122 }
mjr 40:cc0d9814522b 123
mjr 40:cc0d9814522b 124 } __attribute__((packed));
mjr 40:cc0d9814522b 125
mjr 33:d832bcab089e 126
mjr 65:739875521aae 127 // maximum number of input button mappings in configuration
mjr 65:739875521aae 128 const int MAX_BUTTONS = 48;
mjr 65:739875521aae 129
mjr 65:739875521aae 130 // extra slots for virtual buttons (ZB Launch Ball)
mjr 89:c43cd923401c 131 const int VIRTUAL_BUTTONS = 1; // total number of buttons
mjr 89:c43cd923401c 132 const int ZBL_BUTTON_CFG = MAX_BUTTONS; // index of ZB Launch Ball slot
mjr 33:d832bcab089e 133
mjr 35:e959ffba78fd 134 // LedWiz output port type codes
mjr 35:e959ffba78fd 135 // These values are part of the external USB interface
mjr 89:c43cd923401c 136 const int PortTypeDisabled = 0; // port is disabled - not visible to LedWiz/DOF host
mjr 89:c43cd923401c 137 const int PortTypeGPIOPWM = 1; // GPIO port, PWM enabled
mjr 89:c43cd923401c 138 const int PortTypeGPIODig = 2; // GPIO port, digital out
mjr 89:c43cd923401c 139 const int PortTypeTLC5940 = 3; // TLC5940 port
mjr 89:c43cd923401c 140 const int PortType74HC595 = 4; // 74HC595 port
mjr 89:c43cd923401c 141 const int PortTypeVirtual = 5; // Virtual port - visible to host software, but not connected
mjr 89:c43cd923401c 142 // to a physical output
mjr 89:c43cd923401c 143 const int PortTypeTLC59116 = 6; // TLC59116 port
mjr 17:ab3cec0c8bf4 144
mjr 35:e959ffba78fd 145 // LedWiz output port flag bits
mjr 89:c43cd923401c 146 const uint8_t PortFlagActiveLow = 0x01; // physical output is active-low
mjr 89:c43cd923401c 147 const uint8_t PortFlagNoisemaker = 0x02; // noisemaker device - disable when night mode is engaged
mjr 89:c43cd923401c 148 const uint8_t PortFlagGamma = 0x04; // apply gamma correction to this output
mjr 89:c43cd923401c 149 const uint8_t PortFlagFlipperLogic = 0x08; // enable Flipper Logic on the port (timed power limitation)
mjr 35:e959ffba78fd 150
mjr 35:e959ffba78fd 151 // maximum number of output ports
mjr 48:058ace2aed1d 152 const int MAX_OUT_PORTS = 128;
mjr 33:d832bcab089e 153
mjr 38:091e511ce8a0 154 // port configuration data
mjr 38:091e511ce8a0 155 struct LedWizPortCfg
mjr 38:091e511ce8a0 156 {
mjr 89:c43cd923401c 157 // port type: a PortTypeXxx value
mjr 89:c43cd923401c 158 uint8_t typ;
mjr 40:cc0d9814522b 159
mjr 89:c43cd923401c 160 // physical output pin:
mjr 89:c43cd923401c 161 //
mjr 89:c43cd923401c 162 // - for a GPIO port, this is an index in the
mjr 89:c43cd923401c 163 // USB-to-PinName mapping list
mjr 89:c43cd923401c 164 //
mjr 89:c43cd923401c 165 // - for a TLC5940 or 74HC595 port, it's the output
mjr 89:c43cd923401c 166 // number in the overall daisy chain, starting
mjr 89:c43cd923401c 167 // from 0 for OUT0 on the first chip in the chain
mjr 89:c43cd923401c 168 //
mjr 89:c43cd923401c 169 // - for a TLC59116, the high 4 bits are the chip
mjr 89:c43cd923401c 170 // address (the low 4 bits of the address only),
mjr 89:c43cd923401c 171 // and the low 4 bits are the output number on
mjr 89:c43cd923401c 172 // the chip
mjr 89:c43cd923401c 173 //
mjr 89:c43cd923401c 174 // - for inactive and virtual ports, this is unused
mjr 89:c43cd923401c 175 //
mjr 89:c43cd923401c 176 uint8_t pin;
mjr 89:c43cd923401c 177
mjr 89:c43cd923401c 178 // flags: a combination of PortFlagXxx values
mjr 89:c43cd923401c 179 uint8_t flags;
mjr 89:c43cd923401c 180
mjr 89:c43cd923401c 181 // flipper logic properties:
mjr 89:c43cd923401c 182 //
mjr 89:c43cd923401c 183 // - high 4 bits (0xF0) give full-power time in 50ms
mjr 89:c43cd923401c 184 // intervals, starting at 0=50ms
mjr 89:c43cd923401c 185 //
mjr 89:c43cd923401c 186 // - low 4 bits (0x0F) give reduced power level (used
mjr 89:c43cd923401c 187 // after full-power time expires), in 6.66% units
mjr 89:c43cd923401c 188 //
mjr 89:c43cd923401c 189 uint8_t flipperLogic;
mjr 89:c43cd923401c 190
mjr 89:c43cd923401c 191 void set(uint8_t typ, uint8_t pin, uint8_t flags = 0, uint8_t flipperLogic = 0)
mjr 40:cc0d9814522b 192 {
mjr 40:cc0d9814522b 193 this->typ = typ;
mjr 40:cc0d9814522b 194 this->pin = pin;
mjr 40:cc0d9814522b 195 this->flags = flags;
mjr 89:c43cd923401c 196 this->flipperLogic = flipperLogic;
mjr 40:cc0d9814522b 197 }
mjr 40:cc0d9814522b 198
mjr 77:0b96f6867312 199 } __attribute__ ((packed));
mjr 77:0b96f6867312 200
mjr 77:0b96f6867312 201 // IR command configuration flags
mjr 77:0b96f6867312 202 const uint8_t IRFlagTVON = 0x01; // send command at TV ON time
mjr 77:0b96f6867312 203 const uint8_t IRFlagDittos = 0x02; // use "ditto" codes on send
mjr 77:0b96f6867312 204
mjr 77:0b96f6867312 205 // IR command configuration data
mjr 77:0b96f6867312 206 struct IRCommandCfg
mjr 77:0b96f6867312 207 {
mjr 77:0b96f6867312 208 uint8_t flags; // flags: a combination of IRFlagXxx values
mjr 77:0b96f6867312 209 uint8_t keytype; // key type to send when IR command is received
mjr 77:0b96f6867312 210 uint8_t keycode; // key code to send when IR command is received
mjr 77:0b96f6867312 211 uint8_t protocol; // IR protocol ID (see IRRemote/IRProtocolID.h)
mjr 77:0b96f6867312 212 struct
mjr 77:0b96f6867312 213 {
mjr 77:0b96f6867312 214 uint32_t lo; // low 32 bits of code
mjr 77:0b96f6867312 215 uint32_t hi; // high 32 bits of code
mjr 77:0b96f6867312 216 } code; // 64-bit command code (protocol-specific; see IRProtocols.h)
mjr 77:0b96f6867312 217 } __attribute__ ((packed));
mjr 77:0b96f6867312 218
mjr 77:0b96f6867312 219 // Maximum number of IR commands
mjr 77:0b96f6867312 220 const int MAX_IR_CODES = 16;
mjr 38:091e511ce8a0 221
mjr 38:091e511ce8a0 222
mjr 53:9b2611964afc 223 // Convert a physical pin name to a wire pin name
mjr 53:9b2611964afc 224 #define PINNAME_TO_WIRE(p) \
mjr 53:9b2611964afc 225 uint8_t((p) == NC ? 0xFF : \
mjr 53:9b2611964afc 226 (((p) & 0xF000 ) >> (PORT_SHIFT - 5)) | (((p) & 0xFF) >> 2))
mjr 53:9b2611964afc 227
mjr 35:e959ffba78fd 228 struct Config
mjr 35:e959ffba78fd 229 {
mjr 35:e959ffba78fd 230 // set all values to factory defaults
mjr 35:e959ffba78fd 231 void setFactoryDefaults()
mjr 35:e959ffba78fd 232 {
mjr 35:e959ffba78fd 233 // By default, pretend to be LedWiz unit #8. This can be from 1 to 16. Real
mjr 35:e959ffba78fd 234 // LedWiz units have their unit number set at the factory, and the vast majority
mjr 35:e959ffba78fd 235 // are set up as unit #1, since that's the default for anyone who doesn't ask
mjr 35:e959ffba78fd 236 // for a different setting. It seems rare for anyone to use more than one unit
mjr 35:e959ffba78fd 237 // in a pin cab, but for the few who do, the others will probably be numbered
mjr 35:e959ffba78fd 238 // sequentially as #2, #3, etc. It seems safe to assume that no one out there
mjr 48:058ace2aed1d 239 // has a unit #8, so we'll use that as our default. This can be changed from
mjr 48:058ace2aed1d 240 // the config tool, but for the sake of convenience, it's better to pick a
mjr 48:058ace2aed1d 241 // default that most people won't have to change.
mjr 54:fd77a6b2f76c 242 usbVendorID = 0xFAFA; // LedWiz vendor code
mjr 48:058ace2aed1d 243 usbProductID = 0x00F7; // LedWiz product code for unit #8
mjr 61:3c7e6e9ec355 244
mjr 55:4db125cd11a0 245 // Set the default Pinscape unit number to #1. This is a separate identifier
mjr 55:4db125cd11a0 246 // from the LedWiz ID, so you don't have to worry about making this different
mjr 55:4db125cd11a0 247 // from your LedWiz units. Each Pinscape unit should have a unique value for
mjr 55:4db125cd11a0 248 // this ID, though.
mjr 55:4db125cd11a0 249 //
mjr 55:4db125cd11a0 250 // Note that Pinscape unit #1 corresponds to DOF Pinscape #51, PS 2 -> DOF 52,
mjr 55:4db125cd11a0 251 // and so on - just add 50 to get the DOF ID.
mjr 55:4db125cd11a0 252 psUnitNo = 1;
mjr 35:e959ffba78fd 253
mjr 51:57eb311faafa 254 // set a disconnect reboot timeout of 10 seconds by default
mjr 55:4db125cd11a0 255 disconnectRebootTimeout = 10;
mjr 51:57eb311faafa 256
mjr 35:e959ffba78fd 257 // enable joystick reports
mjr 35:e959ffba78fd 258 joystickEnabled = true;
mjr 35:e959ffba78fd 259
mjr 90:aa4e571da8e8 260 // use the XYZ axis format
mjr 90:aa4e571da8e8 261 joystickAxisFormat = USBJoystick::AXIS_FORMAT_XYZ;
mjr 90:aa4e571da8e8 262
mjr 35:e959ffba78fd 263 // assume standard orientation, with USB ports toward front of cabinet
mjr 78:1e00b3fa11af 264 accel.orientation = OrientationFront;
mjr 78:1e00b3fa11af 265
mjr 78:1e00b3fa11af 266 // default dynamic range +/-1G
mjr 78:1e00b3fa11af 267 accel.range = AccelRange1G;
mjr 78:1e00b3fa11af 268
mjr 78:1e00b3fa11af 269 // default auto-centering time
mjr 78:1e00b3fa11af 270 accel.autoCenterTime = 0;
mjr 25:e22b88bd783a 271
mjr 52:8298b2a73eb2 272 // assume a basic setup with no expansion boards
mjr 53:9b2611964afc 273 expan.typ = 0;
mjr 53:9b2611964afc 274 expan.vsn = 0;
mjr 53:9b2611964afc 275 memset(expan.ext, 0, sizeof(expan.ext));
mjr 52:8298b2a73eb2 276
mjr 35:e959ffba78fd 277 // assume no plunger is attached
mjr 77:0b96f6867312 278 plunger.enabled = 0x00;
mjr 35:e959ffba78fd 279 plunger.sensorType = PlungerType_None;
mjr 35:e959ffba78fd 280
mjr 91:ae9be42652bf 281 // no jitter filter
mjr 91:ae9be42652bf 282 plunger.jitterWindow = 0;
mjr 91:ae9be42652bf 283
mjr 91:ae9be42652bf 284 // normal orientation
mjr 91:ae9be42652bf 285 plunger.reverseOrientation = false;
mjr 91:ae9be42652bf 286
mjr 55:4db125cd11a0 287 #if TEST_CONFIG_EXPAN || STANDARD_CONFIG
mjr 77:0b96f6867312 288 plunger.enabled = 0x01;
mjr 82:4f6209cb5c33 289 plunger.sensorType = PlungerType_TSL1410R;
mjr 53:9b2611964afc 290 plunger.sensorPin[0] = PINNAME_TO_WIRE(PTE20); // SI
mjr 53:9b2611964afc 291 plunger.sensorPin[1] = PINNAME_TO_WIRE(PTE21); // SCLK
mjr 53:9b2611964afc 292 plunger.sensorPin[2] = PINNAME_TO_WIRE(PTB0); // AO1 = PTB0 = ADC0_SE8
mjr 53:9b2611964afc 293 plunger.sensorPin[3] = PINNAME_TO_WIRE(PTE22); // AO2 (parallel mode) = PTE22 = ADC0_SE3
mjr 43:7a6364d82a41 294 #endif
mjr 43:7a6364d82a41 295
mjr 48:058ace2aed1d 296 // default plunger calibration button settings
mjr 55:4db125cd11a0 297 plunger.cal.features = 0x03; // 0x01 = enable button, 0x02 = enable indicator lamp
mjr 55:4db125cd11a0 298 plunger.cal.btn = PINNAME_TO_WIRE(PTE29); // button input (DigitalIn port)
mjr 55:4db125cd11a0 299 plunger.cal.led = PINNAME_TO_WIRE(PTE23); // button output (DigitalOut port)
mjr 35:e959ffba78fd 300
mjr 44:b5ac89b9cd5d 301 // set the default plunger calibration
mjr 44:b5ac89b9cd5d 302 plunger.cal.setDefaults();
mjr 35:e959ffba78fd 303
mjr 35:e959ffba78fd 304 // disable the ZB Launch Ball by default
mjr 53:9b2611964afc 305 plunger.zbLaunchBall.port = 0; // 0 = disabled
mjr 65:739875521aae 306 plunger.zbLaunchBall.keytype = BtnTypeKey; // keyboard key
mjr 61:3c7e6e9ec355 307 plunger.zbLaunchBall.keycode = 0x28; // USB keyboard scan code for Enter key
mjr 61:3c7e6e9ec355 308 plunger.zbLaunchBall.pushDistance = 63; // 63/1000 in == .063" == about 1/16"
mjr 35:e959ffba78fd 309
mjr 35:e959ffba78fd 310 // assume no TV ON switch
mjr 53:9b2611964afc 311 TVON.statusPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 312 TVON.latchPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 313 TVON.relayPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 314 TVON.delayTime = 700; // 7 seconds
mjr 55:4db125cd11a0 315
mjr 55:4db125cd11a0 316 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 317 // expansion board TV ON wiring
mjr 53:9b2611964afc 318 TVON.statusPin = PINNAME_TO_WIRE(PTD2);
mjr 53:9b2611964afc 319 TVON.latchPin = PINNAME_TO_WIRE(PTE0);
mjr 53:9b2611964afc 320 TVON.relayPin = PINNAME_TO_WIRE(PTD3);
mjr 53:9b2611964afc 321 TVON.delayTime = 700; // 7 seconds
mjr 38:091e511ce8a0 322 #endif
mjr 53:9b2611964afc 323
mjr 53:9b2611964afc 324 // assume no night mode switch or indicator lamp
mjr 53:9b2611964afc 325 nightMode.btn = 0;
mjr 53:9b2611964afc 326 nightMode.flags = 0;
mjr 53:9b2611964afc 327 nightMode.port = 0;
mjr 35:e959ffba78fd 328
mjr 35:e959ffba78fd 329 // assume no TLC5940 chips
mjr 35:e959ffba78fd 330 tlc5940.nchips = 0;
mjr 55:4db125cd11a0 331
mjr 55:4db125cd11a0 332 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 333 // for expansion board testing purposes, assume the common setup
mjr 55:4db125cd11a0 334 // with one main board and one power board
mjr 48:058ace2aed1d 335 tlc5940.nchips = 4;
mjr 38:091e511ce8a0 336 #endif
mjr 38:091e511ce8a0 337
mjr 55:4db125cd11a0 338 // Default TLC5940 pin assignments. Note that it's harmless to set
mjr 55:4db125cd11a0 339 // these to valid pins even if no TLC5940 chips are actually present,
mjr 55:4db125cd11a0 340 // since the main program won't allocate the connections if 'nchips'
mjr 55:4db125cd11a0 341 // is zero. This means that the pins are free to be used for other
mjr 55:4db125cd11a0 342 // purposes (such as output ports) if not using TLC5940 chips.
mjr 53:9b2611964afc 343 tlc5940.sin = PINNAME_TO_WIRE(PTC6);
mjr 53:9b2611964afc 344 tlc5940.sclk = PINNAME_TO_WIRE(PTC5);
mjr 53:9b2611964afc 345 tlc5940.xlat = PINNAME_TO_WIRE(PTC10);
mjr 59:94eb9265b6d7 346 tlc5940.blank = PINNAME_TO_WIRE(PTC7);
mjr 59:94eb9265b6d7 347 #if TEST_KEEP_PRINTF
mjr 59:94eb9265b6d7 348 tlc5940.gsclk = PINNAME_TO_WIRE(PTA13); // PTA1 is reserved for SDA printf()
mjr 59:94eb9265b6d7 349 #else
mjr 53:9b2611964afc 350 tlc5940.gsclk = PINNAME_TO_WIRE(PTA1);
mjr 59:94eb9265b6d7 351 #endif
mjr 35:e959ffba78fd 352
mjr 35:e959ffba78fd 353 // assume no 74HC595 chips
mjr 35:e959ffba78fd 354 hc595.nchips = 0;
mjr 55:4db125cd11a0 355
mjr 55:4db125cd11a0 356 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 357 // for expansion board testing purposes, assume one chime board
mjr 48:058ace2aed1d 358 hc595.nchips = 1;
mjr 40:cc0d9814522b 359 #endif
mjr 40:cc0d9814522b 360
mjr 55:4db125cd11a0 361 // Default 74HC595 pin assignments. As with the TLC5940 pins, it's
mjr 55:4db125cd11a0 362 // harmless to assign pins here even if no 74HC595 chips are used,
mjr 55:4db125cd11a0 363 // since the main program won't actually allocate the pins if 'nchips'
mjr 55:4db125cd11a0 364 // is zero.
mjr 53:9b2611964afc 365 hc595.sin = PINNAME_TO_WIRE(PTA5);
mjr 53:9b2611964afc 366 hc595.sclk = PINNAME_TO_WIRE(PTA4);
mjr 53:9b2611964afc 367 hc595.latch = PINNAME_TO_WIRE(PTA12);
mjr 53:9b2611964afc 368 hc595.ena = PINNAME_TO_WIRE(PTD4);
mjr 38:091e511ce8a0 369
mjr 87:8d35c74403af 370 // disable all TLC59116 chips by default
mjr 87:8d35c74403af 371 tlc59116.chipMask = 0;
mjr 87:8d35c74403af 372
mjr 87:8d35c74403af 373 // Default TLC59116 pin assignments
mjr 87:8d35c74403af 374 tlc59116.sda = PINNAME_TO_WIRE(PTC6);
mjr 87:8d35c74403af 375 tlc59116.scl = PINNAME_TO_WIRE(PTC5);
mjr 87:8d35c74403af 376 tlc59116.reset = PINNAME_TO_WIRE(PTC10);
mjr 77:0b96f6867312 377
mjr 77:0b96f6867312 378 // Default IR hardware pin assignments. On the expansion boards,
mjr 77:0b96f6867312 379 // the sensor is connected to PTA13, and the emitter LED is on PTC9.
mjr 77:0b96f6867312 380 #if TEST_CONFIG_EXPAN
mjr 77:0b96f6867312 381 IR.sensor = PINNAME_TO_WIRE(PTA13);
mjr 77:0b96f6867312 382 IR.emitter = PINNAME_TO_WIRE(PTC9);
mjr 77:0b96f6867312 383 #else
mjr 77:0b96f6867312 384 IR.sensor = PINNAME_TO_WIRE(NC);
mjr 77:0b96f6867312 385 IR.emitter = PINNAME_TO_WIRE(NC);
mjr 77:0b96f6867312 386 #endif
mjr 77:0b96f6867312 387
mjr 77:0b96f6867312 388 // clear out all IR slots
mjr 77:0b96f6867312 389 memset(IRCommand, 0, sizeof(IRCommand));
mjr 77:0b96f6867312 390 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 391 {
mjr 77:0b96f6867312 392 IRCommand[i].protocol = 0;
mjr 77:0b96f6867312 393 IRCommand[i].keytype = BtnTypeNone;
mjr 77:0b96f6867312 394 }
mjr 77:0b96f6867312 395
mjr 35:e959ffba78fd 396 // initially configure with no LedWiz output ports
mjr 35:e959ffba78fd 397 outPort[0].typ = PortTypeDisabled;
mjr 66:2e3583fbd2f4 398
mjr 66:2e3583fbd2f4 399 // initially configure with no shift key
mjr 78:1e00b3fa11af 400 shiftButton.idx = 0;
mjr 78:1e00b3fa11af 401 shiftButton.mode = 0;
mjr 53:9b2611964afc 402
mjr 35:e959ffba78fd 403 // initially configure with no input buttons
mjr 35:e959ffba78fd 404 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 53:9b2611964afc 405 button[i].set(PINNAME_TO_WIRE(NC), BtnTypeNone, 0);
mjr 38:091e511ce8a0 406
mjr 55:4db125cd11a0 407 #if STANDARD_CONFIG | TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 408 // For the standard configuration, assign 24 input ports to
mjr 55:4db125cd11a0 409 // joystick buttons 1-24. Assign the same GPIO pins used
mjr 55:4db125cd11a0 410 // in the original v1 default configuration. For expansion
mjr 55:4db125cd11a0 411 // board testing purposes, also assign the input ports, with
mjr 55:4db125cd11a0 412 // the noted differences.
mjr 38:091e511ce8a0 413 for (int i = 0 ; i < 24 ; ++i) {
mjr 55:4db125cd11a0 414 static const int bp[] = {
mjr 53:9b2611964afc 415 PINNAME_TO_WIRE(PTC2), // 1
mjr 53:9b2611964afc 416 PINNAME_TO_WIRE(PTB3), // 2
mjr 53:9b2611964afc 417 PINNAME_TO_WIRE(PTB2), // 3
mjr 53:9b2611964afc 418 PINNAME_TO_WIRE(PTB1), // 4
mjr 53:9b2611964afc 419 PINNAME_TO_WIRE(PTE30), // 5
mjr 48:058ace2aed1d 420 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 421 PINNAME_TO_WIRE(PTC11), // 6 - expansion boards use PTC11 for this, since PTE22
mjr 55:4db125cd11a0 422 // is reserved for a plunger connection
mjr 55:4db125cd11a0 423 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 424 PINNAME_TO_WIRE(PTE22), // 6 - original standalone setup uses PTE22
mjr 48:058ace2aed1d 425 #endif
mjr 53:9b2611964afc 426 PINNAME_TO_WIRE(PTE5), // 7
mjr 53:9b2611964afc 427 PINNAME_TO_WIRE(PTE4), // 8
mjr 53:9b2611964afc 428 PINNAME_TO_WIRE(PTE3), // 9
mjr 53:9b2611964afc 429 PINNAME_TO_WIRE(PTE2), // 10
mjr 53:9b2611964afc 430 PINNAME_TO_WIRE(PTB11), // 11
mjr 53:9b2611964afc 431 PINNAME_TO_WIRE(PTB10), // 12
mjr 53:9b2611964afc 432 PINNAME_TO_WIRE(PTB9), // 13
mjr 53:9b2611964afc 433 PINNAME_TO_WIRE(PTB8), // 14
mjr 53:9b2611964afc 434 PINNAME_TO_WIRE(PTC12), // 15
mjr 53:9b2611964afc 435 PINNAME_TO_WIRE(PTC13), // 16
mjr 53:9b2611964afc 436 PINNAME_TO_WIRE(PTC16), // 17
mjr 53:9b2611964afc 437 PINNAME_TO_WIRE(PTC17), // 18
mjr 53:9b2611964afc 438 PINNAME_TO_WIRE(PTA16), // 19
mjr 53:9b2611964afc 439 PINNAME_TO_WIRE(PTA17), // 20
mjr 53:9b2611964afc 440 PINNAME_TO_WIRE(PTE31), // 21
mjr 53:9b2611964afc 441 PINNAME_TO_WIRE(PTD6), // 22
mjr 53:9b2611964afc 442 PINNAME_TO_WIRE(PTD7), // 23
mjr 53:9b2611964afc 443 PINNAME_TO_WIRE(PTE1) // 24
mjr 40:cc0d9814522b 444 };
mjr 48:058ace2aed1d 445 button[i].set(bp[i],
mjr 48:058ace2aed1d 446 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 447 // For expansion board testing only, assign the inputs
mjr 55:4db125cd11a0 448 // to keyboard keys A, B, etc. This isn't useful; it's
mjr 55:4db125cd11a0 449 // just for testing purposes. Note that the USB key code
mjr 55:4db125cd11a0 450 // for "A" is 4, "B" is 5, and so on sequentially through
mjr 55:4db125cd11a0 451 // the alphabet.
mjr 55:4db125cd11a0 452 BtnTypeKey, i+4);
mjr 55:4db125cd11a0 453 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 454 // For the standard configuration, assign the input to
mjr 55:4db125cd11a0 455 // joystick buttons 1-24, as in the original v1 default
mjr 55:4db125cd11a0 456 // configuration.
mjr 55:4db125cd11a0 457 BtnTypeJoystick, i+1);
mjr 48:058ace2aed1d 458 #endif
mjr 48:058ace2aed1d 459
mjr 38:091e511ce8a0 460 }
mjr 38:091e511ce8a0 461 #endif
mjr 38:091e511ce8a0 462
mjr 55:4db125cd11a0 463 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 464 // For testing purposes, configure the basic complement of
mjr 55:4db125cd11a0 465 // expansion board ports. AS MENTIONED ABOVE, THIS IS PURELY FOR
mjr 55:4db125cd11a0 466 // TESTING. DON'T USE THIS METHOD TO CONFIGURE YOUR EXPANSION
mjr 55:4db125cd11a0 467 // BOARDS FOR ACTUAL DEPLOYMENT. It's much easier and cleaner
mjr 55:4db125cd11a0 468 // to use the unmodified standard build, and customize your
mjr 55:4db125cd11a0 469 // installation with the Pinscape Config Tool on Windows.
mjr 40:cc0d9814522b 470 //
mjr 55:4db125cd11a0 471 // For this testing setup, we'll configure one main board, one
mjr 55:4db125cd11a0 472 // power board, and one chime board. The *physical* ports on
mjr 55:4db125cd11a0 473 // the board are shown below. The logical (LedWiz/DOF) numbering
mjr 55:4db125cd11a0 474 // ISN'T sequential through the physical ports, because we want
mjr 55:4db125cd11a0 475 // to arrange the DOF ports so that the most important and most
mjr 55:4db125cd11a0 476 // common toys are assigned to ports 1-32. Those ports are
mjr 55:4db125cd11a0 477 // special because they're accessible to ALL software on the PC,
mjr 55:4db125cd11a0 478 // including older LedWiz-only software such as Future Pinball.
mjr 55:4db125cd11a0 479 // Ports above 32 are accessible only to modern DOF software,
mjr 55:4db125cd11a0 480 // like Visual Pinball and PinballX.
mjr 40:cc0d9814522b 481 //
mjr 40:cc0d9814522b 482 // Main board
mjr 40:cc0d9814522b 483 // TLC ports 0-15 -> flashers
mjr 40:cc0d9814522b 484 // TLC ports 16 -> strobe
mjr 40:cc0d9814522b 485 // TLC ports 17-31 -> flippers
mjr 40:cc0d9814522b 486 // Dig GPIO PTC8 -> knocker (timer-protected outputs)
mjr 40:cc0d9814522b 487 //
mjr 40:cc0d9814522b 488 // Power board:
mjr 40:cc0d9814522b 489 // TLC ports 32-63 -> general purpose outputs
mjr 40:cc0d9814522b 490 //
mjr 40:cc0d9814522b 491 // Chime board:
mjr 40:cc0d9814522b 492 // HC595 ports 0-7 -> timer-protected outputs
mjr 40:cc0d9814522b 493 //
mjr 38:091e511ce8a0 494 {
mjr 38:091e511ce8a0 495 int n = 0;
mjr 40:cc0d9814522b 496
mjr 40:cc0d9814522b 497 // 1-15 = flashers (TLC ports 0-15)
mjr 40:cc0d9814522b 498 // 16 = strobe (TLC port 15)
mjr 40:cc0d9814522b 499 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 500 outPort[n++].set(PortTypeTLC5940, i, PortFlagGamma);
mjr 40:cc0d9814522b 501
mjr 53:9b2611964afc 502 // 17 = knocker (PTC8)
mjr 53:9b2611964afc 503 outPort[n++].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8));
mjr 35:e959ffba78fd 504
mjr 40:cc0d9814522b 505 // 18-49 = power board outputs 1-32 (TLC ports 32-63)
mjr 40:cc0d9814522b 506 for (int i = 0 ; i < 32 ; ++i)
mjr 40:cc0d9814522b 507 outPort[n++].set(PortTypeTLC5940, i+32);
mjr 40:cc0d9814522b 508
mjr 40:cc0d9814522b 509 // 50-65 = flipper RGB (TLC ports 16-31)
mjr 40:cc0d9814522b 510 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 511 outPort[n++].set(PortTypeTLC5940, i+16, PortFlagGamma);
mjr 59:94eb9265b6d7 512
mjr 40:cc0d9814522b 513 // 66-73 = chime board ports 1-8 (74HC595 ports 0-7)
mjr 40:cc0d9814522b 514 for (int i = 0 ; i < 8 ; ++i)
mjr 40:cc0d9814522b 515 outPort[n++].set(PortType74HC595, i);
mjr 59:94eb9265b6d7 516
mjr 40:cc0d9814522b 517 // set Disabled to signify end of configured outputs
mjr 38:091e511ce8a0 518 outPort[n].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 519 }
mjr 38:091e511ce8a0 520 #endif
mjr 48:058ace2aed1d 521
mjr 55:4db125cd11a0 522 #if STANDARD_CONFIG
mjr 55:4db125cd11a0 523 //
mjr 55:4db125cd11a0 524 // For the standard build, set up the original complement
mjr 55:4db125cd11a0 525 // of 22 ports from the v1 default onfiguration.
mjr 55:4db125cd11a0 526 //
mjr 55:4db125cd11a0 527 // IMPORTANT! As mentioned above, don't edit this file to
mjr 55:4db125cd11a0 528 // customize this for your machine. Instead, use the unmodified
mjr 55:4db125cd11a0 529 // standard build, and customize your installation using the
mjr 55:4db125cd11a0 530 // Pinscape Config Tool on Windows.
mjr 55:4db125cd11a0 531 //
mjr 48:058ace2aed1d 532 #if TEST_KEEP_PRINTF
mjr 55:4db125cd11a0 533 outPort[ 0].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 1 = NC to keep debug printf (PTA1 is SDA UART)
mjr 55:4db125cd11a0 534 outPort[ 1].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 2 = NC to keep debug printf (PTA2 is SDA UART)
mjr 48:058ace2aed1d 535 #else
mjr 53:9b2611964afc 536 outPort[ 0].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA1)); // port 1 = PTA1
mjr 53:9b2611964afc 537 outPort[ 1].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA2)); // port 2 = PTA2
mjr 48:058ace2aed1d 538 #endif
mjr 53:9b2611964afc 539 outPort[ 2].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD4)); // port 3 = PTD4
mjr 53:9b2611964afc 540 outPort[ 3].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA12)); // port 4 = PTA12
mjr 53:9b2611964afc 541 outPort[ 4].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA4)); // port 5 = PTA4
mjr 53:9b2611964afc 542 outPort[ 5].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA5)); // port 6 = PTA5
mjr 53:9b2611964afc 543 outPort[ 6].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA13)); // port 7 = PTA13
mjr 53:9b2611964afc 544 outPort[ 7].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD5)); // port 8 = PTD5
mjr 53:9b2611964afc 545 outPort[ 8].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD0)); // port 9 = PTD0
mjr 53:9b2611964afc 546 outPort[ 9].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD3)); // port 10 = PTD3
mjr 53:9b2611964afc 547 outPort[10].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTD2)); // port 11 = PTD2
mjr 53:9b2611964afc 548 outPort[11].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8)); // port 12 = PTC8
mjr 53:9b2611964afc 549 outPort[12].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC9)); // port 13 = PTC9
mjr 53:9b2611964afc 550 outPort[13].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC7)); // port 14 = PTC7
mjr 53:9b2611964afc 551 outPort[14].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC0)); // port 15 = PTC0
mjr 53:9b2611964afc 552 outPort[15].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC3)); // port 16 = PTC3
mjr 53:9b2611964afc 553 outPort[16].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC4)); // port 17 = PTC4
mjr 53:9b2611964afc 554 outPort[17].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC5)); // port 18 = PTC5
mjr 53:9b2611964afc 555 outPort[18].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC6)); // port 19 = PTC6
mjr 53:9b2611964afc 556 outPort[19].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC10)); // port 20 = PTC10
mjr 53:9b2611964afc 557 outPort[20].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC11)); // port 21 = PTC11
mjr 53:9b2611964afc 558 outPort[21].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTE0)); // port 22 = PTE0
mjr 48:058ace2aed1d 559 #endif
mjr 35:e959ffba78fd 560 }
mjr 35:e959ffba78fd 561
mjr 35:e959ffba78fd 562 // --- USB DEVICE CONFIGURATION ---
mjr 35:e959ffba78fd 563
mjr 35:e959ffba78fd 564 // USB device identification - vendor ID and product ID. For LedLWiz
mjr 35:e959ffba78fd 565 // emulation, use vendor ID 0xFAFA and product ID 0x00EF + unit#, where
mjr 35:e959ffba78fd 566 // unit# is the nominal LedWiz unit number from 1 to 16. Alternatively,
mjr 35:e959ffba78fd 567 // if LedWiz emulation isn't desired or causes any driver conflicts on
mjr 35:e959ffba78fd 568 // the host, we have a private Pinscape assignment as vendor ID 0x1209
mjr 35:e959ffba78fd 569 // and product ID 0xEAEA (registered with http://pid.codes, a registry
mjr 35:e959ffba78fd 570 // for open-source USB projects).
mjr 35:e959ffba78fd 571 uint16_t usbVendorID;
mjr 35:e959ffba78fd 572 uint16_t usbProductID;
mjr 35:e959ffba78fd 573
mjr 35:e959ffba78fd 574 // Pinscape Controller unit number. This is the nominal unit number,
mjr 35:e959ffba78fd 575 // from 1 to 16. We report this in the status query; DOF uses it to
mjr 53:9b2611964afc 576 // distinguish among Pinscape units. Note that this doesn't affect
mjr 35:e959ffba78fd 577 // the LedWiz unit numbering, which is implied by the USB Product ID.
mjr 35:e959ffba78fd 578 uint8_t psUnitNo;
mjr 35:e959ffba78fd 579
mjr 35:e959ffba78fd 580 // Are joystick reports enabled? Joystick reports can be turned off, to
mjr 35:e959ffba78fd 581 // use the device as purely an output controller.
mjr 77:0b96f6867312 582 uint8_t joystickEnabled;
mjr 35:e959ffba78fd 583
mjr 90:aa4e571da8e8 584 // Joystick axis report format, as a USBJoystick::AXIS_FORMAT_xxx value.
mjr 90:aa4e571da8e8 585 uint8_t joystickAxisFormat;
mjr 90:aa4e571da8e8 586
mjr 51:57eb311faafa 587 // Timeout for rebooting the KL25Z when the connection is lost. On some
mjr 51:57eb311faafa 588 // hosts, the mbed USB stack has problems reconnecting after an initial
mjr 51:57eb311faafa 589 // connection is dropped. As a workaround, we can automatically reboot
mjr 51:57eb311faafa 590 // the KL25Z when it detects that it's no longer connected, after the
mjr 51:57eb311faafa 591 // interval set here expires. The timeout is in seconds; setting this
mjr 51:57eb311faafa 592 // to 0 disables the automatic reboot.
mjr 51:57eb311faafa 593 uint8_t disconnectRebootTimeout;
mjr 35:e959ffba78fd 594
mjr 35:e959ffba78fd 595 // --- ACCELEROMETER ---
mjr 78:1e00b3fa11af 596 struct
mjr 78:1e00b3fa11af 597 {
mjr 78:1e00b3fa11af 598 // accelerometer orientation (OrientationXxx value)
mjr 78:1e00b3fa11af 599 uint8_t orientation;
mjr 35:e959ffba78fd 600
mjr 78:1e00b3fa11af 601 // dynamic range (AccelRangeXxx value)
mjr 78:1e00b3fa11af 602 uint8_t range;
mjr 77:0b96f6867312 603
mjr 78:1e00b3fa11af 604 // Auto-centering mode:
mjr 78:1e00b3fa11af 605 // 0 = auto-centering on, 5-second timer
mjr 78:1e00b3fa11af 606 // 1-60 = auto-centering on with the given timer in seconds
mjr 78:1e00b3fa11af 607 // 255 = auto-centering off
mjr 78:1e00b3fa11af 608 uint8_t autoCenterTime;
mjr 78:1e00b3fa11af 609
mjr 78:1e00b3fa11af 610 } accel;
mjr 35:e959ffba78fd 611
mjr 35:e959ffba78fd 612
mjr 52:8298b2a73eb2 613 // --- EXPANSION BOARDS ---
mjr 52:8298b2a73eb2 614 struct
mjr 52:8298b2a73eb2 615 {
mjr 53:9b2611964afc 616 uint8_t typ; // expansion board set type:
mjr 53:9b2611964afc 617 // 1 -> Pinscape expansion boards
mjr 53:9b2611964afc 618 uint8_t vsn; // board set interface version
mjr 53:9b2611964afc 619 uint8_t ext[3]; // board set type-specific extended data
mjr 52:8298b2a73eb2 620
mjr 52:8298b2a73eb2 621 } expan;
mjr 52:8298b2a73eb2 622
mjr 52:8298b2a73eb2 623
mjr 35:e959ffba78fd 624 // --- PLUNGER CONFIGURATION ---
mjr 35:e959ffba78fd 625 struct
mjr 35:e959ffba78fd 626 {
mjr 77:0b96f6867312 627 // Plunger enabled/disabled. Note that we use the status flag
mjr 77:0b96f6867312 628 // bit 0x01 if enabled, 0x00 if disabled. This conveniently
mjr 77:0b96f6867312 629 // can be tested as though it's a bool, but should always be
mjr 77:0b96f6867312 630 // stored as 0x01 or 0x00 so that it can be OR'ed into the
mjr 77:0b96f6867312 631 // status report flag bits.
mjr 77:0b96f6867312 632 uint8_t enabled;
mjr 33:d832bcab089e 633
mjr 35:e959ffba78fd 634 // plunger sensor type
mjr 77:0b96f6867312 635 uint8_t sensorType;
mjr 35:e959ffba78fd 636
mjr 35:e959ffba78fd 637 // Plunger sensor pins. To accommodate a wide range of sensor types,
mjr 35:e959ffba78fd 638 // we keep a generic list of 4 pin assignments. The use of each pin
mjr 35:e959ffba78fd 639 // varies by sensor. The lists below are in order of the generic
mjr 35:e959ffba78fd 640 // pins; NC means that the pin isn't used by the sensor. Each pin's
mjr 35:e959ffba78fd 641 // GPIO usage is also listed. Certain usages limit which physical
mjr 35:e959ffba78fd 642 // pins can be assigned (e.g., AnalogIn or PwmOut).
mjr 35:e959ffba78fd 643 //
mjr 82:4f6209cb5c33 644 // TSL1410R/1412S/1401CL: SI (GPIO), CLK (GPIO), AO (AnalogIn), NC
mjr 35:e959ffba78fd 645 // Potentiometer: AO (AnalogIn), NC, NC, NC
mjr 35:e959ffba78fd 646 // AEDR8300: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 647 // AS5304: A (InterruptIn), B (InterruptIn), NC, NC
mjr 82:4f6209cb5c33 648 // VL6180X: SDA (GPIO), SCL (GPIO), GPIO0/CE (GPIO)
mjr 53:9b2611964afc 649 //
mjr 53:9b2611964afc 650 // Note! These are stored in uint8_t WIRE format, not PinName format.
mjr 53:9b2611964afc 651 uint8_t sensorPin[4];
mjr 35:e959ffba78fd 652
mjr 82:4f6209cb5c33 653 // Automatic zeroing. If enabled, we'll reset the plunger position to
mjr 82:4f6209cb5c33 654 // the park position after a period of inactivity. This only applies
mjr 82:4f6209cb5c33 655 // to certain sensor types; sensors that don't use it simply ignore it.
mjr 82:4f6209cb5c33 656 struct
mjr 82:4f6209cb5c33 657 {
mjr 82:4f6209cb5c33 658 uint8_t flags; // flags bits - combination of PlungerAutoZeroXxx flags
mjr 82:4f6209cb5c33 659 uint8_t t; // inactivity time in seconds
mjr 82:4f6209cb5c33 660 } autoZero;
mjr 82:4f6209cb5c33 661
mjr 85:3c28aee81cde 662 // Jitter filter. This is the size of the hysteresis window, in joystick
mjr 85:3c28aee81cde 663 // units (-4095..+4095). One joystick unit is approximately 1/10000" of
mjr 85:3c28aee81cde 664 // physical travel. Zero disables the jitter filter.
mjr 85:3c28aee81cde 665 uint16_t jitterWindow;
mjr 85:3c28aee81cde 666
mjr 91:ae9be42652bf 667 // Plunger sensor reverse orientation flags. This is a bit mask:
mjr 91:ae9be42652bf 668 //
mjr 91:ae9be42652bf 669 // 0x01 = Reverse orientation enabled. We invert the plunger sensor
mjr 91:ae9be42652bf 670 // readings, as though the sensor were physically flipped
mjr 91:ae9be42652bf 671 // around. This can be used to correct for installing the
mjr 91:ae9be42652bf 672 // sensor backwards without having to change the hardware.
mjr 91:ae9be42652bf 673 //
mjr 91:ae9be42652bf 674 // 0x80 = READ-ONLY feature flag. This always reads as set if the
mjr 91:ae9be42652bf 675 // feature is enabled. Note that the USB data exchanger always
mjr 91:ae9be42652bf 676 // sets the bit on read, so it's not necessary to actually
mjr 91:ae9be42652bf 677 // store it.
mjr 91:ae9be42652bf 678 //
mjr 91:ae9be42652bf 679 uint8_t reverseOrientation;
mjr 91:ae9be42652bf 680
mjr 87:8d35c74403af 681 // bar code sensor parameters
mjr 87:8d35c74403af 682 struct
mjr 87:8d35c74403af 683 {
mjr 87:8d35c74403af 684 uint16_t startPix; // starting pixel offset
mjr 87:8d35c74403af 685 } barCode;
mjr 87:8d35c74403af 686
mjr 53:9b2611964afc 687 // ZB LAUNCH BALL button setup.
mjr 35:e959ffba78fd 688 //
mjr 35:e959ffba78fd 689 // This configures the "ZB Launch Ball" feature in DOF, based on Zeb's (of
mjr 35:e959ffba78fd 690 // zebsboards.com) scheme for using a mechanical plunger as a Launch button.
mjr 35:e959ffba78fd 691 // Set the port to 0 to disable the feature.
mjr 35:e959ffba78fd 692 //
mjr 35:e959ffba78fd 693 // The port number is an LedWiz port number that we monitor for activation.
mjr 53:9b2611964afc 694 // This port isn't meant to be connected to a physical device, although it
mjr 53:9b2611964afc 695 // can be if desired. It's primarily to let the host tell the controller
mjr 53:9b2611964afc 696 // when the ZB Launch feature is active. The port numbering starts at 1;
mjr 53:9b2611964afc 697 // set this to zero to disable the feature.
mjr 35:e959ffba78fd 698 //
mjr 53:9b2611964afc 699 // The key type and code has the same meaning as for a button mapping. This
mjr 53:9b2611964afc 700 // sets the key input sent to the PC when the plunger triggers a launch when
mjr 53:9b2611964afc 701 // the mode is active. For example, set keytype=2 and keycode=0x28 to send
mjr 53:9b2611964afc 702 // the Enter key (which is the key almost all PC pinball software uses for
mjr 53:9b2611964afc 703 // plunger and Launch button input).
mjr 35:e959ffba78fd 704 //
mjr 40:cc0d9814522b 705 // The "push distance" is the distance, in 1/1000 inch units, for registering a
mjr 40:cc0d9814522b 706 // push on the plunger as a button push. If the player pushes the plunger
mjr 40:cc0d9814522b 707 // forward of the rest position by this amount, we'll treat it as pushing the
mjr 40:cc0d9814522b 708 // button, even if the player didn't pull back the plunger first. This lets
mjr 40:cc0d9814522b 709 // the player treat the plunger knob as a button for games where it's meaningful
mjr 35:e959ffba78fd 710 // to hold down the Launch button for specific intervals (e.g., "Championship
mjr 35:e959ffba78fd 711 // Pub").
mjr 35:e959ffba78fd 712 struct
mjr 35:e959ffba78fd 713 {
mjr 53:9b2611964afc 714 uint8_t port;
mjr 53:9b2611964afc 715 uint8_t keytype;
mjr 53:9b2611964afc 716 uint8_t keycode;
mjr 53:9b2611964afc 717 uint16_t pushDistance;
mjr 35:e959ffba78fd 718
mjr 35:e959ffba78fd 719 } zbLaunchBall;
mjr 35:e959ffba78fd 720
mjr 35:e959ffba78fd 721 // --- PLUNGER CALIBRATION ---
mjr 35:e959ffba78fd 722 struct
mjr 35:e959ffba78fd 723 {
mjr 35:e959ffba78fd 724 // has the plunger been calibrated?
mjr 53:9b2611964afc 725 bool calibrated;
mjr 55:4db125cd11a0 726
mjr 55:4db125cd11a0 727 // Feature enable mask:
mjr 55:4db125cd11a0 728 //
mjr 55:4db125cd11a0 729 // 0x01 = calibration button enabled
mjr 55:4db125cd11a0 730 // 0x02 = indicator light enabled
mjr 55:4db125cd11a0 731 uint8_t features;
mjr 35:e959ffba78fd 732
mjr 35:e959ffba78fd 733 // calibration button switch pin
mjr 53:9b2611964afc 734 uint8_t btn;
mjr 35:e959ffba78fd 735
mjr 35:e959ffba78fd 736 // calibration button indicator light pin
mjr 53:9b2611964afc 737 uint8_t led;
mjr 35:e959ffba78fd 738
mjr 48:058ace2aed1d 739 // Plunger calibration min, zero, and max. These are in terms of the
mjr 48:058ace2aed1d 740 // unsigned 16-bit scale (0x0000..0xffff) that we use for the raw sensor
mjr 48:058ace2aed1d 741 // readings.
mjr 48:058ace2aed1d 742 //
mjr 48:058ace2aed1d 743 // The zero point is the rest position (aka park position), where the
mjr 48:058ace2aed1d 744 // plunger is in equilibrium between the main spring and the barrel
mjr 48:058ace2aed1d 745 // spring. In the standard setup, the plunger can travel a small
mjr 48:058ace2aed1d 746 // distance forward of the rest position, because the barrel spring
mjr 48:058ace2aed1d 747 // can be compressed a bit. The minimum is the maximum forward point
mjr 48:058ace2aed1d 748 // where the barrel spring can't be compressed any further.
mjr 48:058ace2aed1d 749 uint16_t min;
mjr 48:058ace2aed1d 750 uint16_t zero;
mjr 48:058ace2aed1d 751 uint16_t max;
mjr 52:8298b2a73eb2 752
mjr 52:8298b2a73eb2 753 // Measured release time, in milliseconds.
mjr 52:8298b2a73eb2 754 uint8_t tRelease;
mjr 35:e959ffba78fd 755
mjr 44:b5ac89b9cd5d 756 // Reset the plunger calibration
mjr 44:b5ac89b9cd5d 757 void setDefaults()
mjr 35:e959ffba78fd 758 {
mjr 44:b5ac89b9cd5d 759 calibrated = false; // not calibrated
mjr 48:058ace2aed1d 760 min = 0; // assume we can go all the way forward...
mjr 48:058ace2aed1d 761 max = 0xffff; // ...and all the way back
mjr 48:058ace2aed1d 762 zero = max/6; // the rest position is usually around 1/2" back = 1/6 of total travel
mjr 52:8298b2a73eb2 763 tRelease = 65; // standard 65ms release time
mjr 44:b5ac89b9cd5d 764 }
mjr 44:b5ac89b9cd5d 765
mjr 44:b5ac89b9cd5d 766 // Begin calibration. This sets each limit to the worst
mjr 44:b5ac89b9cd5d 767 // case point - for example, we set the retracted position
mjr 44:b5ac89b9cd5d 768 // to all the way forward. Each actual reading that comes
mjr 44:b5ac89b9cd5d 769 // in is then checked against the current limit, and if it's
mjr 44:b5ac89b9cd5d 770 // outside of the limit, we reset the limit to the new reading.
mjr 44:b5ac89b9cd5d 771 void begin()
mjr 44:b5ac89b9cd5d 772 {
mjr 48:058ace2aed1d 773 min = 0; // we don't calibrate the maximum forward position, so keep this at zero
mjr 48:058ace2aed1d 774 zero = 0xffff; // set the zero position all the way back
mjr 48:058ace2aed1d 775 max = 0; // set the retracted position all the way forward
mjr 52:8298b2a73eb2 776 tRelease = 65; // revert to a default release time
mjr 35:e959ffba78fd 777 }
mjr 17:ab3cec0c8bf4 778
mjr 35:e959ffba78fd 779 } cal;
mjr 18:5e890ebd0023 780
mjr 35:e959ffba78fd 781 } plunger;
mjr 29:582472d0bc57 782
mjr 35:e959ffba78fd 783
mjr 35:e959ffba78fd 784 // --- TV ON SWITCH ---
mjr 35:e959ffba78fd 785 //
mjr 35:e959ffba78fd 786 // To use the TV ON switch feature, the special power sensing circuitry
mjr 35:e959ffba78fd 787 // implemented on the Expansion Board must be attached (or an equivalent
mjr 35:e959ffba78fd 788 // circuit, as described in the Build Guide). The circuitry lets us
mjr 35:e959ffba78fd 789 // detect power state changes on the secondary power supply.
mjr 35:e959ffba78fd 790 struct
mjr 35:e959ffba78fd 791 {
mjr 35:e959ffba78fd 792 // PSU2 power status sense (DigitalIn pin). This pin goes LOW when the
mjr 35:e959ffba78fd 793 // secondary power supply is turned off, and remains LOW until the LATCH
mjr 35:e959ffba78fd 794 // pin is raised high AND the secondary PSU is turned on. Once HIGH,
mjr 35:e959ffba78fd 795 // it remains HIGH as long as the secondary PSU is on.
mjr 53:9b2611964afc 796 uint8_t statusPin;
mjr 35:e959ffba78fd 797
mjr 35:e959ffba78fd 798 // PSU2 power status latch (DigitalOut pin)
mjr 53:9b2611964afc 799 uint8_t latchPin;
mjr 35:e959ffba78fd 800
mjr 35:e959ffba78fd 801 // TV ON relay pin (DigitalOut pin). This pin controls the TV switch
mjr 35:e959ffba78fd 802 // relay. Raising the pin HIGH turns the relay ON (energizes the coil).
mjr 53:9b2611964afc 803 uint8_t relayPin;
mjr 35:e959ffba78fd 804
mjr 40:cc0d9814522b 805 // TV ON delay time, in 1/100 second units. This is the interval between
mjr 40:cc0d9814522b 806 // sensing that the secondary power supply has turned on and pulsing the
mjr 40:cc0d9814522b 807 // TV ON switch relay.
mjr 40:cc0d9814522b 808 int delayTime;
mjr 35:e959ffba78fd 809
mjr 35:e959ffba78fd 810 } TVON;
mjr 35:e959ffba78fd 811
mjr 53:9b2611964afc 812 // --- Night Mode ---
mjr 53:9b2611964afc 813 struct
mjr 53:9b2611964afc 814 {
mjr 55:4db125cd11a0 815 uint8_t btn; // night mode button number (1..MAX_BUTTONS, 0 = no button)
mjr 53:9b2611964afc 816 uint8_t flags; // flags:
mjr 53:9b2611964afc 817 // 0x01 = on/off switch (if not set, it's a momentary button)
mjr 55:4db125cd11a0 818 uint8_t port; // indicator output port number (1..MAX_OUT_PORTS, 0 = no indicator)
mjr 53:9b2611964afc 819 } nightMode;
mjr 53:9b2611964afc 820
mjr 29:582472d0bc57 821
mjr 35:e959ffba78fd 822 // --- TLC5940NT PWM Controller Chip Setup ---
mjr 35:e959ffba78fd 823 struct
mjr 35:e959ffba78fd 824 {
mjr 35:e959ffba78fd 825 // number of TLC5940NT chips connected in daisy chain
mjr 87:8d35c74403af 826 uint8_t nchips;
mjr 35:e959ffba78fd 827
mjr 53:9b2611964afc 828 // pin connections (wire pin IDs)
mjr 53:9b2611964afc 829 uint8_t sin; // Serial data - must connect to SPIO MOSI -> PTC6 or PTD2
mjr 53:9b2611964afc 830 uint8_t sclk; // Serial clock - must connect to SPIO SCLK -> PTC5 or PTD1
mjr 35:e959ffba78fd 831 // (but don't use PTD1, since it's hard-wired to the on-board blue LED)
mjr 53:9b2611964afc 832 uint8_t xlat; // XLAT (latch) signal - connect to any GPIO pin
mjr 53:9b2611964afc 833 uint8_t blank; // BLANK signal - connect to any GPIO pin
mjr 53:9b2611964afc 834 uint8_t gsclk; // Grayscale clock - must connect to a PWM-out capable pin
mjr 29:582472d0bc57 835
mjr 35:e959ffba78fd 836 } tlc5940;
mjr 35:e959ffba78fd 837
mjr 35:e959ffba78fd 838
mjr 35:e959ffba78fd 839 // --- 74HC595 Shift Register Setup ---
mjr 35:e959ffba78fd 840 struct
mjr 35:e959ffba78fd 841 {
mjr 35:e959ffba78fd 842 // number of 74HC595 chips attached in daisy chain
mjr 87:8d35c74403af 843 uint8_t nchips;
mjr 35:e959ffba78fd 844
mjr 35:e959ffba78fd 845 // pin connections
mjr 53:9b2611964afc 846 uint8_t sin; // Serial data - use any GPIO pin
mjr 53:9b2611964afc 847 uint8_t sclk; // Serial clock - use any GPIO pin
mjr 53:9b2611964afc 848 uint8_t latch; // Latch - use any GPIO pin
mjr 53:9b2611964afc 849 uint8_t ena; // Enable signal - use any GPIO pin
mjr 35:e959ffba78fd 850
mjr 35:e959ffba78fd 851 } hc595;
mjr 77:0b96f6867312 852
mjr 87:8d35c74403af 853 // --- TLC59116 PWM Controller Chip Setup --
mjr 87:8d35c74403af 854 struct
mjr 87:8d35c74403af 855 {
mjr 87:8d35c74403af 856 // Chip mask. Each bit represents an enabled chip at the
mjr 87:8d35c74403af 857 // corresponding 4-bit address (i.e., bit 1<<addr represents
mjr 87:8d35c74403af 858 // the chip at 'addr').
mjr 87:8d35c74403af 859 uint16_t chipMask;
mjr 87:8d35c74403af 860
mjr 87:8d35c74403af 861 // pin connections
mjr 87:8d35c74403af 862 uint8_t sda; // I2C SDA
mjr 87:8d35c74403af 863 uint8_t scl; // I2C SCL
mjr 87:8d35c74403af 864 uint8_t reset; // !RESET (hardware reset line, active low)
mjr 87:8d35c74403af 865
mjr 87:8d35c74403af 866 } tlc59116;
mjr 87:8d35c74403af 867
mjr 77:0b96f6867312 868
mjr 77:0b96f6867312 869 // --- IR Remote Control Hardware Setup ---
mjr 77:0b96f6867312 870 struct
mjr 77:0b96f6867312 871 {
mjr 77:0b96f6867312 872 // sensor (receiver) GPIO input pin; must be interrupt-capable
mjr 77:0b96f6867312 873 uint8_t sensor;
mjr 77:0b96f6867312 874
mjr 77:0b96f6867312 875 // IR emitter LED GPIO output pin; must be PWM-capable
mjr 77:0b96f6867312 876 uint8_t emitter;
mjr 77:0b96f6867312 877 } IR;
mjr 77:0b96f6867312 878
mjr 77:0b96f6867312 879
mjr 35:e959ffba78fd 880 // --- Button Input Setup ---
mjr 65:739875521aae 881 ButtonCfg button[MAX_BUTTONS + VIRTUAL_BUTTONS] __attribute__((packed));
mjr 66:2e3583fbd2f4 882
mjr 78:1e00b3fa11af 883 // Shift button. This can be used to give each physical button a
mjr 78:1e00b3fa11af 884 // second meaning.
mjr 78:1e00b3fa11af 885 struct
mjr 78:1e00b3fa11af 886 {
mjr 78:1e00b3fa11af 887 // Shift button index, 1..MAX_BUTTONS. If this is zero, there's
mjr 78:1e00b3fa11af 888 // no shift button.
mjr 78:1e00b3fa11af 889 uint8_t idx;
mjr 78:1e00b3fa11af 890
mjr 78:1e00b3fa11af 891 // Shift button mode. If the shift button has a key mapping or
mjr 78:1e00b3fa11af 892 // IR command assigned, this determines what happens when the
mjr 78:1e00b3fa11af 893 // shift button is pressed in combination with another key.
mjr 78:1e00b3fa11af 894 //
mjr 78:1e00b3fa11af 895 // 0 = Shift OR Key mode. In this mode, when you initially press
mjr 78:1e00b3fa11af 896 // the shift button, nothing happens. Instead, we wait to see if
mjr 78:1e00b3fa11af 897 // any other buttons are pressed. If so, we use the shifted meaning
mjr 78:1e00b3fa11af 898 // of the other button, and we DON'T send the shift button's key or
mjr 78:1e00b3fa11af 899 // IR command at all.
mjr 78:1e00b3fa11af 900 //
mjr 78:1e00b3fa11af 901 // 1 = Shift AND Key mode. In this mode, the shift button acts like
mjr 78:1e00b3fa11af 902 // any other button: its assigned key is sent to the PC as soon as
mjr 78:1e00b3fa11af 903 // you press it. If you also press another button while the shift
mjr 78:1e00b3fa11af 904 // button is down, the shifted meaning of the other button is used.
mjr 78:1e00b3fa11af 905 //
mjr 78:1e00b3fa11af 906 // Mode 0, the "OR" mode, is the default. This allows a button with
mjr 78:1e00b3fa11af 907 // a key assignment to do double duty as the shift button without
mjr 78:1e00b3fa11af 908 // creating any confusing situations where the shift button's own
mjr 78:1e00b3fa11af 909 // key is also sent to the PC during shift usage.
mjr 78:1e00b3fa11af 910 uint8_t mode;
mjr 78:1e00b3fa11af 911
mjr 78:1e00b3fa11af 912 } shiftButton;
mjr 17:ab3cec0c8bf4 913
mjr 35:e959ffba78fd 914 // --- LedWiz Output Port Setup ---
mjr 77:0b96f6867312 915 LedWizPortCfg outPort[MAX_OUT_PORTS] __attribute__ ((packed)); // LedWiz & extended output ports
mjr 48:058ace2aed1d 916
mjr 77:0b96f6867312 917 // --- IR Command Slots ---
mjr 77:0b96f6867312 918 IRCommandCfg IRCommand[MAX_IR_CODES] __attribute__ ((packed));
mjr 17:ab3cec0c8bf4 919 };
mjr 17:ab3cec0c8bf4 920
mjr 35:e959ffba78fd 921 #endif