An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Fri Apr 14 17:56:54 2017 +0000
Revision:
85:3c28aee81cde
Parent:
82:4f6209cb5c33
Child:
87:8d35c74403af
Save config updates before slight rearrangement;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 55:4db125cd11a0 3 // New for 2016: dynamic configuration! To configure the controller,
mjr 55:4db125cd11a0 4 // connect the KL25Z to your PC, install the STANDARD pre-compiled .bin
mjr 55:4db125cd11a0 5 // file, and run the Windows config tool. There's no need (as there was in
mjr 55:4db125cd11a0 6 // the past) to edit the source code or to compile a custom version of the
mjr 55:4db125cd11a0 7 // binary just to customize setup options.
mjr 35:e959ffba78fd 8 //
mjr 55:4db125cd11a0 9 // In earlier versions, configuration was handled mostly with #ifdef and
mjr 55:4db125cd11a0 10 // similar constructs. To customize the setup, you had to create a private
mjr 55:4db125cd11a0 11 // forked copy of the source code, edit the constants defined in config.h,
mjr 55:4db125cd11a0 12 // and compile a custom binary. That's no longer necessary!
mjr 35:e959ffba78fd 13 //
mjr 35:e959ffba78fd 14 // The new approach is to do everything (or as much as possible, anyway)
mjr 35:e959ffba78fd 15 // via the Windows config tool. You shouldn't have to recompile a custom
mjr 35:e959ffba78fd 16 // version just to make a configurable change. Of course, you're still free
mjr 55:4db125cd11a0 17 // to create a custom version if you want to add entirely new features or
mjr 55:4db125cd11a0 18 // make changes that go beyond what the setup tool exposes.
mjr 35:e959ffba78fd 19 //
mjr 35:e959ffba78fd 20
mjr 55:4db125cd11a0 21 // Pre-packaged configuration selection.
mjr 55:4db125cd11a0 22 //
mjr 55:4db125cd11a0 23 // IMPORTANT! If you just want to create a custom configuration, DON'T
mjr 55:4db125cd11a0 24 // modify this file, DON'T use these macros, and DON'T compiler on mbed.
mjr 55:4db125cd11a0 25 // Instead, use the unmodified standard build and configure your system
mjr 55:4db125cd11a0 26 // using the Pinscape Config Tool on Windows. That's easier and better
mjr 55:4db125cd11a0 27 // because the config tool will be able to back up your settings to a
mjr 55:4db125cd11a0 28 // local file on your PC, and will automatically preserve your settings
mjr 55:4db125cd11a0 29 // across upgrades. You won't have to worry about merging your changes
mjr 55:4db125cd11a0 30 // into every update of the repository source code, since you'll never
mjr 55:4db125cd11a0 31 // have to change the source code.
mjr 55:4db125cd11a0 32 //
mjr 55:4db125cd11a0 33 // The different configurations here are purely for testing purposes.
mjr 55:4db125cd11a0 34 // The standard build uses the STANDARD_CONFIG settings, which are the
mjr 55:4db125cd11a0 35 // same as the original version where you had to modify config.h by hand
mjr 55:4db125cd11a0 36 // to customize your system.
mjr 55:4db125cd11a0 37 //
mjr 55:4db125cd11a0 38 #define STANDARD_CONFIG 1 // standard settings, based on v1 base settings
mjr 55:4db125cd11a0 39 #define TEST_CONFIG_EXPAN 0 // configuration for the expansion boards
mjr 80:94dc2946871b 40 #define TEST_KEEP_PRINTF 0 // for debugging purposes, keep printf() enabled
mjr 55:4db125cd11a0 41 // by leaving the SDA UART GPIO pins unallocated
mjr 48:058ace2aed1d 42
mjr 17:ab3cec0c8bf4 43
mjr 25:e22b88bd783a 44 #ifndef CONFIG_H
mjr 25:e22b88bd783a 45 #define CONFIG_H
mjr 17:ab3cec0c8bf4 46
mjr 35:e959ffba78fd 47 // Plunger type codes
mjr 35:e959ffba78fd 48 // NOTE! These values are part of the external USB interface. New
mjr 35:e959ffba78fd 49 // values can be added, but the meaning of an existing assigned number
mjr 35:e959ffba78fd 50 // should remain fixed to keep the PC-side config tool compatible across
mjr 35:e959ffba78fd 51 // versions.
mjr 35:e959ffba78fd 52 const int PlungerType_None = 0; // no plunger
mjr 82:4f6209cb5c33 53 const int PlungerType_TSL1410R = 1; // TSL1410R linear image sensor (1280x1 pixels, 400dpi), serial mode, edge detection
mjr 82:4f6209cb5c33 54 const int PlungerType_TSL1412S = 3; // TSL1412S linear image sensor (1536x1 pixels, 400dpi), serial mode, edge detection
mjr 35:e959ffba78fd 55 const int PlungerType_Pot = 5; // potentionmeter
mjr 35:e959ffba78fd 56 const int PlungerType_OptQuad = 6; // AEDR8300 optical quadrature sensor
mjr 35:e959ffba78fd 57 const int PlungerType_MagQuad = 7; // AS5304 magnetic quadrature sensor
mjr 82:4f6209cb5c33 58 const int PlungerType_TSL1401CL = 8; // TSL1401CL linear image sensor (128x1 pixels, 400dpi), bar code sensing
mjr 82:4f6209cb5c33 59 const int PlungerType_VL6180X = 9; // VL6180X time-of-flight distance sensor
mjr 82:4f6209cb5c33 60
mjr 82:4f6209cb5c33 61 // Plunger auto-zero flags
mjr 82:4f6209cb5c33 62 const int PlungerAutoZeroEnabled = 0x01; // auto-zeroing enabled
mjr 21:5048e16cc9ef 63
mjr 35:e959ffba78fd 64 // Accelerometer orientation codes
mjr 35:e959ffba78fd 65 // These values are part of the external USB interface
mjr 35:e959ffba78fd 66 const int OrientationFront = 0; // USB ports pointed toward front of cabinet
mjr 35:e959ffba78fd 67 const int OrientationLeft = 1; // ports pointed toward left side of cabinet
mjr 35:e959ffba78fd 68 const int OrientationRight = 2; // ports pointed toward right side of cabinet
mjr 35:e959ffba78fd 69 const int OrientationRear = 3; // ports pointed toward back of cabinet
mjr 25:e22b88bd783a 70
mjr 77:0b96f6867312 71 // Accelerometer dynamic range codes
mjr 77:0b96f6867312 72 const int AccelRange1G = 0; // +/-1G
mjr 77:0b96f6867312 73 const int AccelRange2G = 1; // +/-2G
mjr 77:0b96f6867312 74 const int AccelRange4G = 2; // +/-4G
mjr 77:0b96f6867312 75 const int AccelRange8G = 3; // +/-8G
mjr 77:0b96f6867312 76
mjr 35:e959ffba78fd 77 // input button types
mjr 53:9b2611964afc 78 const int BtnTypeNone = 0; // unused
mjr 35:e959ffba78fd 79 const int BtnTypeJoystick = 1; // joystick button
mjr 53:9b2611964afc 80 const int BtnTypeKey = 2; // keyboard key
mjr 67:c39e66c4e000 81 const int BtnTypeMedia = 3; // media control key
mjr 38:091e511ce8a0 82
mjr 38:091e511ce8a0 83 // input button flags
mjr 38:091e511ce8a0 84 const uint8_t BtnFlagPulse = 0x01; // pulse mode - reports each change in the physical switch state
mjr 38:091e511ce8a0 85 // as a brief press of the logical button/keyboard key
mjr 40:cc0d9814522b 86
mjr 40:cc0d9814522b 87 // button setup structure
mjr 40:cc0d9814522b 88 struct ButtonCfg
mjr 40:cc0d9814522b 89 {
mjr 66:2e3583fbd2f4 90 // physical GPIO pin - a Wire-to-PinName mapping index
mjr 66:2e3583fbd2f4 91 uint8_t pin;
mjr 66:2e3583fbd2f4 92
mjr 66:2e3583fbd2f4 93 // Key type and value reported to the PC
mjr 40:cc0d9814522b 94 uint8_t typ; // key type reported to PC - a BtnTypeXxx value
mjr 53:9b2611964afc 95 uint8_t val; // key value reported - meaning depends on 'typ' value:
mjr 53:9b2611964afc 96 // none -> no PC input reports (val is unused)
mjr 53:9b2611964afc 97 // joystick -> val is joystick button number (1..32)
mjr 53:9b2611964afc 98 // keyboard -> val is USB scan code
mjr 77:0b96f6867312 99 uint8_t IRCommand; // IR command to send when the button is pressed, as
mjr 77:0b96f6867312 100 // an IR command slot number: 1..MAX_IR_CODES, or 0
mjr 77:0b96f6867312 101 // if no IR command is to be sent
mjr 66:2e3583fbd2f4 102
mjr 66:2e3583fbd2f4 103 // Shifted key type and value. These used when the button is pressed
mjr 66:2e3583fbd2f4 104 // while the Local Shift Button is being held down. We send the key
mjr 66:2e3583fbd2f4 105 // code given here instead of the regular typ/val code in this case.
mjr 66:2e3583fbd2f4 106 // If typ2 is BtnTypeNone, we use the regular typ/val code whether or
mjr 66:2e3583fbd2f4 107 // not the shift button is being held.
mjr 66:2e3583fbd2f4 108 uint8_t typ2; // shifted key type
mjr 66:2e3583fbd2f4 109 uint8_t val2; // shifted key value
mjr 77:0b96f6867312 110 uint8_t IRCommand2; // IR command to send when shifted button is pressed
mjr 66:2e3583fbd2f4 111
mjr 66:2e3583fbd2f4 112 // key flags - a bitwise combination of BtnFlagXxx values
mjr 66:2e3583fbd2f4 113 uint8_t flags;
mjr 40:cc0d9814522b 114
mjr 40:cc0d9814522b 115 void set(uint8_t pin, uint8_t typ, uint8_t val, uint8_t flags = 0)
mjr 40:cc0d9814522b 116 {
mjr 40:cc0d9814522b 117 this->pin = pin;
mjr 40:cc0d9814522b 118 this->typ = typ;
mjr 40:cc0d9814522b 119 this->val = val;
mjr 77:0b96f6867312 120 this->IRCommand = 0;
mjr 40:cc0d9814522b 121 this->flags = flags;
mjr 77:0b96f6867312 122 this->typ2 = 0;
mjr 77:0b96f6867312 123 this->val2 = 0;
mjr 77:0b96f6867312 124 this->IRCommand2 = 0;
mjr 40:cc0d9814522b 125 }
mjr 40:cc0d9814522b 126
mjr 40:cc0d9814522b 127 } __attribute__((packed));
mjr 40:cc0d9814522b 128
mjr 33:d832bcab089e 129
mjr 65:739875521aae 130 // maximum number of input button mappings in configuration
mjr 65:739875521aae 131 const int MAX_BUTTONS = 48;
mjr 65:739875521aae 132
mjr 65:739875521aae 133 // extra slots for virtual buttons (ZB Launch Ball)
mjr 65:739875521aae 134 const int VIRTUAL_BUTTONS = 1; // total number of buttons
mjr 65:739875521aae 135 const int ZBL_BUTTON_CFG = MAX_BUTTONS; // index of ZB Launch Ball slot
mjr 33:d832bcab089e 136
mjr 35:e959ffba78fd 137 // LedWiz output port type codes
mjr 35:e959ffba78fd 138 // These values are part of the external USB interface
mjr 35:e959ffba78fd 139 const int PortTypeDisabled = 0; // port is disabled - not visible to LedWiz/DOF host
mjr 35:e959ffba78fd 140 const int PortTypeGPIOPWM = 1; // GPIO port, PWM enabled
mjr 35:e959ffba78fd 141 const int PortTypeGPIODig = 2; // GPIO port, digital out
mjr 35:e959ffba78fd 142 const int PortTypeTLC5940 = 3; // TLC5940 port
mjr 35:e959ffba78fd 143 const int PortType74HC595 = 4; // 74HC595 port
mjr 53:9b2611964afc 144 const int PortTypeVirtual = 5; // Virtual port - visible to host software, but not connected
mjr 53:9b2611964afc 145 // to a physical output
mjr 17:ab3cec0c8bf4 146
mjr 35:e959ffba78fd 147 // LedWiz output port flag bits
mjr 38:091e511ce8a0 148 const uint8_t PortFlagActiveLow = 0x01; // physical output is active-low
mjr 38:091e511ce8a0 149 const uint8_t PortFlagNoisemaker = 0x02; // noisemaker device - disable when night mode is engaged
mjr 40:cc0d9814522b 150 const uint8_t PortFlagGamma = 0x04; // apply gamma correction to this output
mjr 35:e959ffba78fd 151
mjr 35:e959ffba78fd 152 // maximum number of output ports
mjr 48:058ace2aed1d 153 const int MAX_OUT_PORTS = 128;
mjr 33:d832bcab089e 154
mjr 38:091e511ce8a0 155 // port configuration data
mjr 38:091e511ce8a0 156 struct LedWizPortCfg
mjr 38:091e511ce8a0 157 {
mjr 38:091e511ce8a0 158 uint8_t typ; // port type: a PortTypeXxx value
mjr 38:091e511ce8a0 159 uint8_t pin; // physical output pin: for a GPIO port, this is an index in the
mjr 38:091e511ce8a0 160 // USB-to-PinName mapping list; for a TLC5940 or 74HC595 port, it's
mjr 38:091e511ce8a0 161 // the output number, starting from 0 for OUT0 on the first chip in
mjr 38:091e511ce8a0 162 // the daisy chain. For inactive and virtual ports, it's unused.
mjr 38:091e511ce8a0 163 uint8_t flags; // flags: a combination of PortFlagXxx values
mjr 40:cc0d9814522b 164
mjr 40:cc0d9814522b 165 void set(uint8_t typ, uint8_t pin, uint8_t flags = 0)
mjr 40:cc0d9814522b 166 {
mjr 40:cc0d9814522b 167 this->typ = typ;
mjr 40:cc0d9814522b 168 this->pin = pin;
mjr 40:cc0d9814522b 169 this->flags = flags;
mjr 40:cc0d9814522b 170 }
mjr 40:cc0d9814522b 171
mjr 77:0b96f6867312 172 } __attribute__ ((packed));
mjr 77:0b96f6867312 173
mjr 77:0b96f6867312 174 // IR command configuration flags
mjr 77:0b96f6867312 175 const uint8_t IRFlagTVON = 0x01; // send command at TV ON time
mjr 77:0b96f6867312 176 const uint8_t IRFlagDittos = 0x02; // use "ditto" codes on send
mjr 77:0b96f6867312 177
mjr 77:0b96f6867312 178 // IR command configuration data
mjr 77:0b96f6867312 179 struct IRCommandCfg
mjr 77:0b96f6867312 180 {
mjr 77:0b96f6867312 181 uint8_t flags; // flags: a combination of IRFlagXxx values
mjr 77:0b96f6867312 182 uint8_t keytype; // key type to send when IR command is received
mjr 77:0b96f6867312 183 uint8_t keycode; // key code to send when IR command is received
mjr 77:0b96f6867312 184 uint8_t protocol; // IR protocol ID (see IRRemote/IRProtocolID.h)
mjr 77:0b96f6867312 185 struct
mjr 77:0b96f6867312 186 {
mjr 77:0b96f6867312 187 uint32_t lo; // low 32 bits of code
mjr 77:0b96f6867312 188 uint32_t hi; // high 32 bits of code
mjr 77:0b96f6867312 189 } code; // 64-bit command code (protocol-specific; see IRProtocols.h)
mjr 77:0b96f6867312 190 } __attribute__ ((packed));
mjr 77:0b96f6867312 191
mjr 77:0b96f6867312 192 // Maximum number of IR commands
mjr 77:0b96f6867312 193 const int MAX_IR_CODES = 16;
mjr 38:091e511ce8a0 194
mjr 38:091e511ce8a0 195
mjr 53:9b2611964afc 196 // Convert a physical pin name to a wire pin name
mjr 53:9b2611964afc 197 #define PINNAME_TO_WIRE(p) \
mjr 53:9b2611964afc 198 uint8_t((p) == NC ? 0xFF : \
mjr 53:9b2611964afc 199 (((p) & 0xF000 ) >> (PORT_SHIFT - 5)) | (((p) & 0xFF) >> 2))
mjr 53:9b2611964afc 200
mjr 35:e959ffba78fd 201 struct Config
mjr 35:e959ffba78fd 202 {
mjr 35:e959ffba78fd 203 // set all values to factory defaults
mjr 35:e959ffba78fd 204 void setFactoryDefaults()
mjr 35:e959ffba78fd 205 {
mjr 35:e959ffba78fd 206 // By default, pretend to be LedWiz unit #8. This can be from 1 to 16. Real
mjr 35:e959ffba78fd 207 // LedWiz units have their unit number set at the factory, and the vast majority
mjr 35:e959ffba78fd 208 // are set up as unit #1, since that's the default for anyone who doesn't ask
mjr 35:e959ffba78fd 209 // for a different setting. It seems rare for anyone to use more than one unit
mjr 35:e959ffba78fd 210 // in a pin cab, but for the few who do, the others will probably be numbered
mjr 35:e959ffba78fd 211 // sequentially as #2, #3, etc. It seems safe to assume that no one out there
mjr 48:058ace2aed1d 212 // has a unit #8, so we'll use that as our default. This can be changed from
mjr 48:058ace2aed1d 213 // the config tool, but for the sake of convenience, it's better to pick a
mjr 48:058ace2aed1d 214 // default that most people won't have to change.
mjr 54:fd77a6b2f76c 215 usbVendorID = 0xFAFA; // LedWiz vendor code
mjr 48:058ace2aed1d 216 usbProductID = 0x00F7; // LedWiz product code for unit #8
mjr 61:3c7e6e9ec355 217
mjr 55:4db125cd11a0 218 // Set the default Pinscape unit number to #1. This is a separate identifier
mjr 55:4db125cd11a0 219 // from the LedWiz ID, so you don't have to worry about making this different
mjr 55:4db125cd11a0 220 // from your LedWiz units. Each Pinscape unit should have a unique value for
mjr 55:4db125cd11a0 221 // this ID, though.
mjr 55:4db125cd11a0 222 //
mjr 55:4db125cd11a0 223 // Note that Pinscape unit #1 corresponds to DOF Pinscape #51, PS 2 -> DOF 52,
mjr 55:4db125cd11a0 224 // and so on - just add 50 to get the DOF ID.
mjr 55:4db125cd11a0 225 psUnitNo = 1;
mjr 35:e959ffba78fd 226
mjr 51:57eb311faafa 227 // set a disconnect reboot timeout of 10 seconds by default
mjr 55:4db125cd11a0 228 disconnectRebootTimeout = 10;
mjr 51:57eb311faafa 229
mjr 35:e959ffba78fd 230 // enable joystick reports
mjr 35:e959ffba78fd 231 joystickEnabled = true;
mjr 35:e959ffba78fd 232
mjr 35:e959ffba78fd 233 // assume standard orientation, with USB ports toward front of cabinet
mjr 78:1e00b3fa11af 234 accel.orientation = OrientationFront;
mjr 78:1e00b3fa11af 235
mjr 78:1e00b3fa11af 236 // default dynamic range +/-1G
mjr 78:1e00b3fa11af 237 accel.range = AccelRange1G;
mjr 78:1e00b3fa11af 238
mjr 78:1e00b3fa11af 239 // default auto-centering time
mjr 78:1e00b3fa11af 240 accel.autoCenterTime = 0;
mjr 25:e22b88bd783a 241
mjr 52:8298b2a73eb2 242 // assume a basic setup with no expansion boards
mjr 53:9b2611964afc 243 expan.typ = 0;
mjr 53:9b2611964afc 244 expan.vsn = 0;
mjr 53:9b2611964afc 245 memset(expan.ext, 0, sizeof(expan.ext));
mjr 52:8298b2a73eb2 246
mjr 35:e959ffba78fd 247 // assume no plunger is attached
mjr 77:0b96f6867312 248 plunger.enabled = 0x00;
mjr 35:e959ffba78fd 249 plunger.sensorType = PlungerType_None;
mjr 35:e959ffba78fd 250
mjr 55:4db125cd11a0 251 #if TEST_CONFIG_EXPAN || STANDARD_CONFIG
mjr 77:0b96f6867312 252 plunger.enabled = 0x01;
mjr 82:4f6209cb5c33 253 plunger.sensorType = PlungerType_TSL1410R;
mjr 53:9b2611964afc 254 plunger.sensorPin[0] = PINNAME_TO_WIRE(PTE20); // SI
mjr 53:9b2611964afc 255 plunger.sensorPin[1] = PINNAME_TO_WIRE(PTE21); // SCLK
mjr 53:9b2611964afc 256 plunger.sensorPin[2] = PINNAME_TO_WIRE(PTB0); // AO1 = PTB0 = ADC0_SE8
mjr 53:9b2611964afc 257 plunger.sensorPin[3] = PINNAME_TO_WIRE(PTE22); // AO2 (parallel mode) = PTE22 = ADC0_SE3
mjr 43:7a6364d82a41 258 #endif
mjr 43:7a6364d82a41 259
mjr 48:058ace2aed1d 260 // default plunger calibration button settings
mjr 55:4db125cd11a0 261 plunger.cal.features = 0x03; // 0x01 = enable button, 0x02 = enable indicator lamp
mjr 55:4db125cd11a0 262 plunger.cal.btn = PINNAME_TO_WIRE(PTE29); // button input (DigitalIn port)
mjr 55:4db125cd11a0 263 plunger.cal.led = PINNAME_TO_WIRE(PTE23); // button output (DigitalOut port)
mjr 35:e959ffba78fd 264
mjr 44:b5ac89b9cd5d 265 // set the default plunger calibration
mjr 44:b5ac89b9cd5d 266 plunger.cal.setDefaults();
mjr 35:e959ffba78fd 267
mjr 35:e959ffba78fd 268 // disable the ZB Launch Ball by default
mjr 53:9b2611964afc 269 plunger.zbLaunchBall.port = 0; // 0 = disabled
mjr 65:739875521aae 270 plunger.zbLaunchBall.keytype = BtnTypeKey; // keyboard key
mjr 61:3c7e6e9ec355 271 plunger.zbLaunchBall.keycode = 0x28; // USB keyboard scan code for Enter key
mjr 61:3c7e6e9ec355 272 plunger.zbLaunchBall.pushDistance = 63; // 63/1000 in == .063" == about 1/16"
mjr 35:e959ffba78fd 273
mjr 35:e959ffba78fd 274 // assume no TV ON switch
mjr 53:9b2611964afc 275 TVON.statusPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 276 TVON.latchPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 277 TVON.relayPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 278 TVON.delayTime = 700; // 7 seconds
mjr 55:4db125cd11a0 279
mjr 55:4db125cd11a0 280 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 281 // expansion board TV ON wiring
mjr 53:9b2611964afc 282 TVON.statusPin = PINNAME_TO_WIRE(PTD2);
mjr 53:9b2611964afc 283 TVON.latchPin = PINNAME_TO_WIRE(PTE0);
mjr 53:9b2611964afc 284 TVON.relayPin = PINNAME_TO_WIRE(PTD3);
mjr 53:9b2611964afc 285 TVON.delayTime = 700; // 7 seconds
mjr 38:091e511ce8a0 286 #endif
mjr 53:9b2611964afc 287
mjr 53:9b2611964afc 288 // assume no night mode switch or indicator lamp
mjr 53:9b2611964afc 289 nightMode.btn = 0;
mjr 53:9b2611964afc 290 nightMode.flags = 0;
mjr 53:9b2611964afc 291 nightMode.port = 0;
mjr 35:e959ffba78fd 292
mjr 35:e959ffba78fd 293 // assume no TLC5940 chips
mjr 35:e959ffba78fd 294 tlc5940.nchips = 0;
mjr 55:4db125cd11a0 295
mjr 55:4db125cd11a0 296 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 297 // for expansion board testing purposes, assume the common setup
mjr 55:4db125cd11a0 298 // with one main board and one power board
mjr 48:058ace2aed1d 299 tlc5940.nchips = 4;
mjr 38:091e511ce8a0 300 #endif
mjr 38:091e511ce8a0 301
mjr 55:4db125cd11a0 302 // Default TLC5940 pin assignments. Note that it's harmless to set
mjr 55:4db125cd11a0 303 // these to valid pins even if no TLC5940 chips are actually present,
mjr 55:4db125cd11a0 304 // since the main program won't allocate the connections if 'nchips'
mjr 55:4db125cd11a0 305 // is zero. This means that the pins are free to be used for other
mjr 55:4db125cd11a0 306 // purposes (such as output ports) if not using TLC5940 chips.
mjr 53:9b2611964afc 307 tlc5940.sin = PINNAME_TO_WIRE(PTC6);
mjr 53:9b2611964afc 308 tlc5940.sclk = PINNAME_TO_WIRE(PTC5);
mjr 53:9b2611964afc 309 tlc5940.xlat = PINNAME_TO_WIRE(PTC10);
mjr 59:94eb9265b6d7 310 tlc5940.blank = PINNAME_TO_WIRE(PTC7);
mjr 59:94eb9265b6d7 311 #if TEST_KEEP_PRINTF
mjr 59:94eb9265b6d7 312 tlc5940.gsclk = PINNAME_TO_WIRE(PTA13); // PTA1 is reserved for SDA printf()
mjr 59:94eb9265b6d7 313 #else
mjr 53:9b2611964afc 314 tlc5940.gsclk = PINNAME_TO_WIRE(PTA1);
mjr 59:94eb9265b6d7 315 #endif
mjr 35:e959ffba78fd 316
mjr 35:e959ffba78fd 317 // assume no 74HC595 chips
mjr 35:e959ffba78fd 318 hc595.nchips = 0;
mjr 55:4db125cd11a0 319
mjr 55:4db125cd11a0 320 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 321 // for expansion board testing purposes, assume one chime board
mjr 48:058ace2aed1d 322 hc595.nchips = 1;
mjr 40:cc0d9814522b 323 #endif
mjr 40:cc0d9814522b 324
mjr 55:4db125cd11a0 325 // Default 74HC595 pin assignments. As with the TLC5940 pins, it's
mjr 55:4db125cd11a0 326 // harmless to assign pins here even if no 74HC595 chips are used,
mjr 55:4db125cd11a0 327 // since the main program won't actually allocate the pins if 'nchips'
mjr 55:4db125cd11a0 328 // is zero.
mjr 53:9b2611964afc 329 hc595.sin = PINNAME_TO_WIRE(PTA5);
mjr 53:9b2611964afc 330 hc595.sclk = PINNAME_TO_WIRE(PTA4);
mjr 53:9b2611964afc 331 hc595.latch = PINNAME_TO_WIRE(PTA12);
mjr 53:9b2611964afc 332 hc595.ena = PINNAME_TO_WIRE(PTD4);
mjr 38:091e511ce8a0 333
mjr 77:0b96f6867312 334
mjr 77:0b96f6867312 335 // Default IR hardware pin assignments. On the expansion boards,
mjr 77:0b96f6867312 336 // the sensor is connected to PTA13, and the emitter LED is on PTC9.
mjr 77:0b96f6867312 337 #if TEST_CONFIG_EXPAN
mjr 77:0b96f6867312 338 IR.sensor = PINNAME_TO_WIRE(PTA13);
mjr 77:0b96f6867312 339 IR.emitter = PINNAME_TO_WIRE(PTC9);
mjr 77:0b96f6867312 340 #else
mjr 77:0b96f6867312 341 IR.sensor = PINNAME_TO_WIRE(NC);
mjr 77:0b96f6867312 342 IR.emitter = PINNAME_TO_WIRE(NC);
mjr 77:0b96f6867312 343 #endif
mjr 77:0b96f6867312 344
mjr 77:0b96f6867312 345 // clear out all IR slots
mjr 77:0b96f6867312 346 memset(IRCommand, 0, sizeof(IRCommand));
mjr 77:0b96f6867312 347 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 348 {
mjr 77:0b96f6867312 349 IRCommand[i].protocol = 0;
mjr 77:0b96f6867312 350 IRCommand[i].keytype = BtnTypeNone;
mjr 77:0b96f6867312 351 }
mjr 77:0b96f6867312 352
mjr 35:e959ffba78fd 353 // initially configure with no LedWiz output ports
mjr 35:e959ffba78fd 354 outPort[0].typ = PortTypeDisabled;
mjr 66:2e3583fbd2f4 355
mjr 66:2e3583fbd2f4 356 // initially configure with no shift key
mjr 78:1e00b3fa11af 357 shiftButton.idx = 0;
mjr 78:1e00b3fa11af 358 shiftButton.mode = 0;
mjr 53:9b2611964afc 359
mjr 35:e959ffba78fd 360 // initially configure with no input buttons
mjr 35:e959ffba78fd 361 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 53:9b2611964afc 362 button[i].set(PINNAME_TO_WIRE(NC), BtnTypeNone, 0);
mjr 38:091e511ce8a0 363
mjr 55:4db125cd11a0 364 #if STANDARD_CONFIG | TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 365 // For the standard configuration, assign 24 input ports to
mjr 55:4db125cd11a0 366 // joystick buttons 1-24. Assign the same GPIO pins used
mjr 55:4db125cd11a0 367 // in the original v1 default configuration. For expansion
mjr 55:4db125cd11a0 368 // board testing purposes, also assign the input ports, with
mjr 55:4db125cd11a0 369 // the noted differences.
mjr 38:091e511ce8a0 370 for (int i = 0 ; i < 24 ; ++i) {
mjr 55:4db125cd11a0 371 static const int bp[] = {
mjr 53:9b2611964afc 372 PINNAME_TO_WIRE(PTC2), // 1
mjr 53:9b2611964afc 373 PINNAME_TO_WIRE(PTB3), // 2
mjr 53:9b2611964afc 374 PINNAME_TO_WIRE(PTB2), // 3
mjr 53:9b2611964afc 375 PINNAME_TO_WIRE(PTB1), // 4
mjr 53:9b2611964afc 376 PINNAME_TO_WIRE(PTE30), // 5
mjr 48:058ace2aed1d 377 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 378 PINNAME_TO_WIRE(PTC11), // 6 - expansion boards use PTC11 for this, since PTE22
mjr 55:4db125cd11a0 379 // is reserved for a plunger connection
mjr 55:4db125cd11a0 380 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 381 PINNAME_TO_WIRE(PTE22), // 6 - original standalone setup uses PTE22
mjr 48:058ace2aed1d 382 #endif
mjr 53:9b2611964afc 383 PINNAME_TO_WIRE(PTE5), // 7
mjr 53:9b2611964afc 384 PINNAME_TO_WIRE(PTE4), // 8
mjr 53:9b2611964afc 385 PINNAME_TO_WIRE(PTE3), // 9
mjr 53:9b2611964afc 386 PINNAME_TO_WIRE(PTE2), // 10
mjr 53:9b2611964afc 387 PINNAME_TO_WIRE(PTB11), // 11
mjr 53:9b2611964afc 388 PINNAME_TO_WIRE(PTB10), // 12
mjr 53:9b2611964afc 389 PINNAME_TO_WIRE(PTB9), // 13
mjr 53:9b2611964afc 390 PINNAME_TO_WIRE(PTB8), // 14
mjr 53:9b2611964afc 391 PINNAME_TO_WIRE(PTC12), // 15
mjr 53:9b2611964afc 392 PINNAME_TO_WIRE(PTC13), // 16
mjr 53:9b2611964afc 393 PINNAME_TO_WIRE(PTC16), // 17
mjr 53:9b2611964afc 394 PINNAME_TO_WIRE(PTC17), // 18
mjr 53:9b2611964afc 395 PINNAME_TO_WIRE(PTA16), // 19
mjr 53:9b2611964afc 396 PINNAME_TO_WIRE(PTA17), // 20
mjr 53:9b2611964afc 397 PINNAME_TO_WIRE(PTE31), // 21
mjr 53:9b2611964afc 398 PINNAME_TO_WIRE(PTD6), // 22
mjr 53:9b2611964afc 399 PINNAME_TO_WIRE(PTD7), // 23
mjr 53:9b2611964afc 400 PINNAME_TO_WIRE(PTE1) // 24
mjr 40:cc0d9814522b 401 };
mjr 48:058ace2aed1d 402 button[i].set(bp[i],
mjr 48:058ace2aed1d 403 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 404 // For expansion board testing only, assign the inputs
mjr 55:4db125cd11a0 405 // to keyboard keys A, B, etc. This isn't useful; it's
mjr 55:4db125cd11a0 406 // just for testing purposes. Note that the USB key code
mjr 55:4db125cd11a0 407 // for "A" is 4, "B" is 5, and so on sequentially through
mjr 55:4db125cd11a0 408 // the alphabet.
mjr 55:4db125cd11a0 409 BtnTypeKey, i+4);
mjr 55:4db125cd11a0 410 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 411 // For the standard configuration, assign the input to
mjr 55:4db125cd11a0 412 // joystick buttons 1-24, as in the original v1 default
mjr 55:4db125cd11a0 413 // configuration.
mjr 55:4db125cd11a0 414 BtnTypeJoystick, i+1);
mjr 48:058ace2aed1d 415 #endif
mjr 48:058ace2aed1d 416
mjr 38:091e511ce8a0 417 }
mjr 38:091e511ce8a0 418 #endif
mjr 38:091e511ce8a0 419
mjr 55:4db125cd11a0 420 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 421 // For testing purposes, configure the basic complement of
mjr 55:4db125cd11a0 422 // expansion board ports. AS MENTIONED ABOVE, THIS IS PURELY FOR
mjr 55:4db125cd11a0 423 // TESTING. DON'T USE THIS METHOD TO CONFIGURE YOUR EXPANSION
mjr 55:4db125cd11a0 424 // BOARDS FOR ACTUAL DEPLOYMENT. It's much easier and cleaner
mjr 55:4db125cd11a0 425 // to use the unmodified standard build, and customize your
mjr 55:4db125cd11a0 426 // installation with the Pinscape Config Tool on Windows.
mjr 40:cc0d9814522b 427 //
mjr 55:4db125cd11a0 428 // For this testing setup, we'll configure one main board, one
mjr 55:4db125cd11a0 429 // power board, and one chime board. The *physical* ports on
mjr 55:4db125cd11a0 430 // the board are shown below. The logical (LedWiz/DOF) numbering
mjr 55:4db125cd11a0 431 // ISN'T sequential through the physical ports, because we want
mjr 55:4db125cd11a0 432 // to arrange the DOF ports so that the most important and most
mjr 55:4db125cd11a0 433 // common toys are assigned to ports 1-32. Those ports are
mjr 55:4db125cd11a0 434 // special because they're accessible to ALL software on the PC,
mjr 55:4db125cd11a0 435 // including older LedWiz-only software such as Future Pinball.
mjr 55:4db125cd11a0 436 // Ports above 32 are accessible only to modern DOF software,
mjr 55:4db125cd11a0 437 // like Visual Pinball and PinballX.
mjr 40:cc0d9814522b 438 //
mjr 40:cc0d9814522b 439 // Main board
mjr 40:cc0d9814522b 440 // TLC ports 0-15 -> flashers
mjr 40:cc0d9814522b 441 // TLC ports 16 -> strobe
mjr 40:cc0d9814522b 442 // TLC ports 17-31 -> flippers
mjr 40:cc0d9814522b 443 // Dig GPIO PTC8 -> knocker (timer-protected outputs)
mjr 40:cc0d9814522b 444 //
mjr 40:cc0d9814522b 445 // Power board:
mjr 40:cc0d9814522b 446 // TLC ports 32-63 -> general purpose outputs
mjr 40:cc0d9814522b 447 //
mjr 40:cc0d9814522b 448 // Chime board:
mjr 40:cc0d9814522b 449 // HC595 ports 0-7 -> timer-protected outputs
mjr 40:cc0d9814522b 450 //
mjr 38:091e511ce8a0 451 {
mjr 38:091e511ce8a0 452 int n = 0;
mjr 40:cc0d9814522b 453
mjr 40:cc0d9814522b 454 // 1-15 = flashers (TLC ports 0-15)
mjr 40:cc0d9814522b 455 // 16 = strobe (TLC port 15)
mjr 40:cc0d9814522b 456 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 457 outPort[n++].set(PortTypeTLC5940, i, PortFlagGamma);
mjr 40:cc0d9814522b 458
mjr 53:9b2611964afc 459 // 17 = knocker (PTC8)
mjr 53:9b2611964afc 460 outPort[n++].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8));
mjr 35:e959ffba78fd 461
mjr 40:cc0d9814522b 462 // 18-49 = power board outputs 1-32 (TLC ports 32-63)
mjr 40:cc0d9814522b 463 for (int i = 0 ; i < 32 ; ++i)
mjr 40:cc0d9814522b 464 outPort[n++].set(PortTypeTLC5940, i+32);
mjr 40:cc0d9814522b 465
mjr 40:cc0d9814522b 466 // 50-65 = flipper RGB (TLC ports 16-31)
mjr 40:cc0d9814522b 467 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 468 outPort[n++].set(PortTypeTLC5940, i+16, PortFlagGamma);
mjr 59:94eb9265b6d7 469
mjr 40:cc0d9814522b 470 // 66-73 = chime board ports 1-8 (74HC595 ports 0-7)
mjr 40:cc0d9814522b 471 for (int i = 0 ; i < 8 ; ++i)
mjr 40:cc0d9814522b 472 outPort[n++].set(PortType74HC595, i);
mjr 59:94eb9265b6d7 473
mjr 40:cc0d9814522b 474 // set Disabled to signify end of configured outputs
mjr 38:091e511ce8a0 475 outPort[n].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 476 }
mjr 38:091e511ce8a0 477 #endif
mjr 48:058ace2aed1d 478
mjr 55:4db125cd11a0 479 #if STANDARD_CONFIG
mjr 55:4db125cd11a0 480 //
mjr 55:4db125cd11a0 481 // For the standard build, set up the original complement
mjr 55:4db125cd11a0 482 // of 22 ports from the v1 default onfiguration.
mjr 55:4db125cd11a0 483 //
mjr 55:4db125cd11a0 484 // IMPORTANT! As mentioned above, don't edit this file to
mjr 55:4db125cd11a0 485 // customize this for your machine. Instead, use the unmodified
mjr 55:4db125cd11a0 486 // standard build, and customize your installation using the
mjr 55:4db125cd11a0 487 // Pinscape Config Tool on Windows.
mjr 55:4db125cd11a0 488 //
mjr 48:058ace2aed1d 489 #if TEST_KEEP_PRINTF
mjr 55:4db125cd11a0 490 outPort[ 0].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 1 = NC to keep debug printf (PTA1 is SDA UART)
mjr 55:4db125cd11a0 491 outPort[ 1].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 2 = NC to keep debug printf (PTA2 is SDA UART)
mjr 48:058ace2aed1d 492 #else
mjr 53:9b2611964afc 493 outPort[ 0].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA1)); // port 1 = PTA1
mjr 53:9b2611964afc 494 outPort[ 1].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA2)); // port 2 = PTA2
mjr 48:058ace2aed1d 495 #endif
mjr 53:9b2611964afc 496 outPort[ 2].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD4)); // port 3 = PTD4
mjr 53:9b2611964afc 497 outPort[ 3].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA12)); // port 4 = PTA12
mjr 53:9b2611964afc 498 outPort[ 4].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA4)); // port 5 = PTA4
mjr 53:9b2611964afc 499 outPort[ 5].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA5)); // port 6 = PTA5
mjr 53:9b2611964afc 500 outPort[ 6].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA13)); // port 7 = PTA13
mjr 53:9b2611964afc 501 outPort[ 7].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD5)); // port 8 = PTD5
mjr 53:9b2611964afc 502 outPort[ 8].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD0)); // port 9 = PTD0
mjr 53:9b2611964afc 503 outPort[ 9].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD3)); // port 10 = PTD3
mjr 53:9b2611964afc 504 outPort[10].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTD2)); // port 11 = PTD2
mjr 53:9b2611964afc 505 outPort[11].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8)); // port 12 = PTC8
mjr 53:9b2611964afc 506 outPort[12].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC9)); // port 13 = PTC9
mjr 53:9b2611964afc 507 outPort[13].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC7)); // port 14 = PTC7
mjr 53:9b2611964afc 508 outPort[14].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC0)); // port 15 = PTC0
mjr 53:9b2611964afc 509 outPort[15].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC3)); // port 16 = PTC3
mjr 53:9b2611964afc 510 outPort[16].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC4)); // port 17 = PTC4
mjr 53:9b2611964afc 511 outPort[17].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC5)); // port 18 = PTC5
mjr 53:9b2611964afc 512 outPort[18].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC6)); // port 19 = PTC6
mjr 53:9b2611964afc 513 outPort[19].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC10)); // port 20 = PTC10
mjr 53:9b2611964afc 514 outPort[20].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC11)); // port 21 = PTC11
mjr 53:9b2611964afc 515 outPort[21].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTE0)); // port 22 = PTE0
mjr 48:058ace2aed1d 516 #endif
mjr 35:e959ffba78fd 517 }
mjr 35:e959ffba78fd 518
mjr 35:e959ffba78fd 519 // --- USB DEVICE CONFIGURATION ---
mjr 35:e959ffba78fd 520
mjr 35:e959ffba78fd 521 // USB device identification - vendor ID and product ID. For LedLWiz
mjr 35:e959ffba78fd 522 // emulation, use vendor ID 0xFAFA and product ID 0x00EF + unit#, where
mjr 35:e959ffba78fd 523 // unit# is the nominal LedWiz unit number from 1 to 16. Alternatively,
mjr 35:e959ffba78fd 524 // if LedWiz emulation isn't desired or causes any driver conflicts on
mjr 35:e959ffba78fd 525 // the host, we have a private Pinscape assignment as vendor ID 0x1209
mjr 35:e959ffba78fd 526 // and product ID 0xEAEA (registered with http://pid.codes, a registry
mjr 35:e959ffba78fd 527 // for open-source USB projects).
mjr 35:e959ffba78fd 528 uint16_t usbVendorID;
mjr 35:e959ffba78fd 529 uint16_t usbProductID;
mjr 35:e959ffba78fd 530
mjr 35:e959ffba78fd 531 // Pinscape Controller unit number. This is the nominal unit number,
mjr 35:e959ffba78fd 532 // from 1 to 16. We report this in the status query; DOF uses it to
mjr 53:9b2611964afc 533 // distinguish among Pinscape units. Note that this doesn't affect
mjr 35:e959ffba78fd 534 // the LedWiz unit numbering, which is implied by the USB Product ID.
mjr 35:e959ffba78fd 535 uint8_t psUnitNo;
mjr 35:e959ffba78fd 536
mjr 35:e959ffba78fd 537 // Are joystick reports enabled? Joystick reports can be turned off, to
mjr 35:e959ffba78fd 538 // use the device as purely an output controller.
mjr 77:0b96f6867312 539 uint8_t joystickEnabled;
mjr 35:e959ffba78fd 540
mjr 51:57eb311faafa 541 // Timeout for rebooting the KL25Z when the connection is lost. On some
mjr 51:57eb311faafa 542 // hosts, the mbed USB stack has problems reconnecting after an initial
mjr 51:57eb311faafa 543 // connection is dropped. As a workaround, we can automatically reboot
mjr 51:57eb311faafa 544 // the KL25Z when it detects that it's no longer connected, after the
mjr 51:57eb311faafa 545 // interval set here expires. The timeout is in seconds; setting this
mjr 51:57eb311faafa 546 // to 0 disables the automatic reboot.
mjr 51:57eb311faafa 547 uint8_t disconnectRebootTimeout;
mjr 35:e959ffba78fd 548
mjr 35:e959ffba78fd 549 // --- ACCELEROMETER ---
mjr 78:1e00b3fa11af 550 struct
mjr 78:1e00b3fa11af 551 {
mjr 78:1e00b3fa11af 552 // accelerometer orientation (OrientationXxx value)
mjr 78:1e00b3fa11af 553 uint8_t orientation;
mjr 35:e959ffba78fd 554
mjr 78:1e00b3fa11af 555 // dynamic range (AccelRangeXxx value)
mjr 78:1e00b3fa11af 556 uint8_t range;
mjr 77:0b96f6867312 557
mjr 78:1e00b3fa11af 558 // Auto-centering mode:
mjr 78:1e00b3fa11af 559 // 0 = auto-centering on, 5-second timer
mjr 78:1e00b3fa11af 560 // 1-60 = auto-centering on with the given timer in seconds
mjr 78:1e00b3fa11af 561 // 255 = auto-centering off
mjr 78:1e00b3fa11af 562 uint8_t autoCenterTime;
mjr 78:1e00b3fa11af 563
mjr 78:1e00b3fa11af 564 } accel;
mjr 35:e959ffba78fd 565
mjr 35:e959ffba78fd 566
mjr 52:8298b2a73eb2 567 // --- EXPANSION BOARDS ---
mjr 52:8298b2a73eb2 568 struct
mjr 52:8298b2a73eb2 569 {
mjr 53:9b2611964afc 570 uint8_t typ; // expansion board set type:
mjr 53:9b2611964afc 571 // 1 -> Pinscape expansion boards
mjr 53:9b2611964afc 572 uint8_t vsn; // board set interface version
mjr 53:9b2611964afc 573 uint8_t ext[3]; // board set type-specific extended data
mjr 52:8298b2a73eb2 574
mjr 52:8298b2a73eb2 575 } expan;
mjr 52:8298b2a73eb2 576
mjr 52:8298b2a73eb2 577
mjr 35:e959ffba78fd 578 // --- PLUNGER CONFIGURATION ---
mjr 35:e959ffba78fd 579 struct
mjr 35:e959ffba78fd 580 {
mjr 77:0b96f6867312 581 // Plunger enabled/disabled. Note that we use the status flag
mjr 77:0b96f6867312 582 // bit 0x01 if enabled, 0x00 if disabled. This conveniently
mjr 77:0b96f6867312 583 // can be tested as though it's a bool, but should always be
mjr 77:0b96f6867312 584 // stored as 0x01 or 0x00 so that it can be OR'ed into the
mjr 77:0b96f6867312 585 // status report flag bits.
mjr 77:0b96f6867312 586 uint8_t enabled;
mjr 33:d832bcab089e 587
mjr 35:e959ffba78fd 588 // plunger sensor type
mjr 77:0b96f6867312 589 uint8_t sensorType;
mjr 35:e959ffba78fd 590
mjr 35:e959ffba78fd 591 // Plunger sensor pins. To accommodate a wide range of sensor types,
mjr 35:e959ffba78fd 592 // we keep a generic list of 4 pin assignments. The use of each pin
mjr 35:e959ffba78fd 593 // varies by sensor. The lists below are in order of the generic
mjr 35:e959ffba78fd 594 // pins; NC means that the pin isn't used by the sensor. Each pin's
mjr 35:e959ffba78fd 595 // GPIO usage is also listed. Certain usages limit which physical
mjr 35:e959ffba78fd 596 // pins can be assigned (e.g., AnalogIn or PwmOut).
mjr 35:e959ffba78fd 597 //
mjr 82:4f6209cb5c33 598 // TSL1410R/1412S/1401CL: SI (GPIO), CLK (GPIO), AO (AnalogIn), NC
mjr 35:e959ffba78fd 599 // Potentiometer: AO (AnalogIn), NC, NC, NC
mjr 35:e959ffba78fd 600 // AEDR8300: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 601 // AS5304: A (InterruptIn), B (InterruptIn), NC, NC
mjr 82:4f6209cb5c33 602 // VL6180X: SDA (GPIO), SCL (GPIO), GPIO0/CE (GPIO)
mjr 53:9b2611964afc 603 //
mjr 53:9b2611964afc 604 // Note! These are stored in uint8_t WIRE format, not PinName format.
mjr 53:9b2611964afc 605 uint8_t sensorPin[4];
mjr 35:e959ffba78fd 606
mjr 82:4f6209cb5c33 607 // Automatic zeroing. If enabled, we'll reset the plunger position to
mjr 82:4f6209cb5c33 608 // the park position after a period of inactivity. This only applies
mjr 82:4f6209cb5c33 609 // to certain sensor types; sensors that don't use it simply ignore it.
mjr 82:4f6209cb5c33 610 struct
mjr 82:4f6209cb5c33 611 {
mjr 82:4f6209cb5c33 612 uint8_t flags; // flags bits - combination of PlungerAutoZeroXxx flags
mjr 82:4f6209cb5c33 613 uint8_t t; // inactivity time in seconds
mjr 82:4f6209cb5c33 614 } autoZero;
mjr 82:4f6209cb5c33 615
mjr 85:3c28aee81cde 616 // Jitter filter. This is the size of the hysteresis window, in joystick
mjr 85:3c28aee81cde 617 // units (-4095..+4095). One joystick unit is approximately 1/10000" of
mjr 85:3c28aee81cde 618 // physical travel. Zero disables the jitter filter.
mjr 85:3c28aee81cde 619 uint16_t jitterWindow;
mjr 85:3c28aee81cde 620
mjr 53:9b2611964afc 621 // ZB LAUNCH BALL button setup.
mjr 35:e959ffba78fd 622 //
mjr 35:e959ffba78fd 623 // This configures the "ZB Launch Ball" feature in DOF, based on Zeb's (of
mjr 35:e959ffba78fd 624 // zebsboards.com) scheme for using a mechanical plunger as a Launch button.
mjr 35:e959ffba78fd 625 // Set the port to 0 to disable the feature.
mjr 35:e959ffba78fd 626 //
mjr 35:e959ffba78fd 627 // The port number is an LedWiz port number that we monitor for activation.
mjr 53:9b2611964afc 628 // This port isn't meant to be connected to a physical device, although it
mjr 53:9b2611964afc 629 // can be if desired. It's primarily to let the host tell the controller
mjr 53:9b2611964afc 630 // when the ZB Launch feature is active. The port numbering starts at 1;
mjr 53:9b2611964afc 631 // set this to zero to disable the feature.
mjr 35:e959ffba78fd 632 //
mjr 53:9b2611964afc 633 // The key type and code has the same meaning as for a button mapping. This
mjr 53:9b2611964afc 634 // sets the key input sent to the PC when the plunger triggers a launch when
mjr 53:9b2611964afc 635 // the mode is active. For example, set keytype=2 and keycode=0x28 to send
mjr 53:9b2611964afc 636 // the Enter key (which is the key almost all PC pinball software uses for
mjr 53:9b2611964afc 637 // plunger and Launch button input).
mjr 35:e959ffba78fd 638 //
mjr 40:cc0d9814522b 639 // The "push distance" is the distance, in 1/1000 inch units, for registering a
mjr 40:cc0d9814522b 640 // push on the plunger as a button push. If the player pushes the plunger
mjr 40:cc0d9814522b 641 // forward of the rest position by this amount, we'll treat it as pushing the
mjr 40:cc0d9814522b 642 // button, even if the player didn't pull back the plunger first. This lets
mjr 40:cc0d9814522b 643 // the player treat the plunger knob as a button for games where it's meaningful
mjr 35:e959ffba78fd 644 // to hold down the Launch button for specific intervals (e.g., "Championship
mjr 35:e959ffba78fd 645 // Pub").
mjr 35:e959ffba78fd 646 struct
mjr 35:e959ffba78fd 647 {
mjr 53:9b2611964afc 648 uint8_t port;
mjr 53:9b2611964afc 649 uint8_t keytype;
mjr 53:9b2611964afc 650 uint8_t keycode;
mjr 53:9b2611964afc 651 uint16_t pushDistance;
mjr 35:e959ffba78fd 652
mjr 35:e959ffba78fd 653 } zbLaunchBall;
mjr 35:e959ffba78fd 654
mjr 35:e959ffba78fd 655 // --- PLUNGER CALIBRATION ---
mjr 35:e959ffba78fd 656 struct
mjr 35:e959ffba78fd 657 {
mjr 35:e959ffba78fd 658 // has the plunger been calibrated?
mjr 53:9b2611964afc 659 bool calibrated;
mjr 55:4db125cd11a0 660
mjr 55:4db125cd11a0 661 // Feature enable mask:
mjr 55:4db125cd11a0 662 //
mjr 55:4db125cd11a0 663 // 0x01 = calibration button enabled
mjr 55:4db125cd11a0 664 // 0x02 = indicator light enabled
mjr 55:4db125cd11a0 665 uint8_t features;
mjr 35:e959ffba78fd 666
mjr 35:e959ffba78fd 667 // calibration button switch pin
mjr 53:9b2611964afc 668 uint8_t btn;
mjr 35:e959ffba78fd 669
mjr 35:e959ffba78fd 670 // calibration button indicator light pin
mjr 53:9b2611964afc 671 uint8_t led;
mjr 35:e959ffba78fd 672
mjr 48:058ace2aed1d 673 // Plunger calibration min, zero, and max. These are in terms of the
mjr 48:058ace2aed1d 674 // unsigned 16-bit scale (0x0000..0xffff) that we use for the raw sensor
mjr 48:058ace2aed1d 675 // readings.
mjr 48:058ace2aed1d 676 //
mjr 48:058ace2aed1d 677 // The zero point is the rest position (aka park position), where the
mjr 48:058ace2aed1d 678 // plunger is in equilibrium between the main spring and the barrel
mjr 48:058ace2aed1d 679 // spring. In the standard setup, the plunger can travel a small
mjr 48:058ace2aed1d 680 // distance forward of the rest position, because the barrel spring
mjr 48:058ace2aed1d 681 // can be compressed a bit. The minimum is the maximum forward point
mjr 48:058ace2aed1d 682 // where the barrel spring can't be compressed any further.
mjr 48:058ace2aed1d 683 uint16_t min;
mjr 48:058ace2aed1d 684 uint16_t zero;
mjr 48:058ace2aed1d 685 uint16_t max;
mjr 52:8298b2a73eb2 686
mjr 52:8298b2a73eb2 687 // Measured release time, in milliseconds.
mjr 52:8298b2a73eb2 688 uint8_t tRelease;
mjr 35:e959ffba78fd 689
mjr 44:b5ac89b9cd5d 690 // Reset the plunger calibration
mjr 44:b5ac89b9cd5d 691 void setDefaults()
mjr 35:e959ffba78fd 692 {
mjr 44:b5ac89b9cd5d 693 calibrated = false; // not calibrated
mjr 48:058ace2aed1d 694 min = 0; // assume we can go all the way forward...
mjr 48:058ace2aed1d 695 max = 0xffff; // ...and all the way back
mjr 48:058ace2aed1d 696 zero = max/6; // the rest position is usually around 1/2" back = 1/6 of total travel
mjr 52:8298b2a73eb2 697 tRelease = 65; // standard 65ms release time
mjr 44:b5ac89b9cd5d 698 }
mjr 44:b5ac89b9cd5d 699
mjr 44:b5ac89b9cd5d 700 // Begin calibration. This sets each limit to the worst
mjr 44:b5ac89b9cd5d 701 // case point - for example, we set the retracted position
mjr 44:b5ac89b9cd5d 702 // to all the way forward. Each actual reading that comes
mjr 44:b5ac89b9cd5d 703 // in is then checked against the current limit, and if it's
mjr 44:b5ac89b9cd5d 704 // outside of the limit, we reset the limit to the new reading.
mjr 44:b5ac89b9cd5d 705 void begin()
mjr 44:b5ac89b9cd5d 706 {
mjr 48:058ace2aed1d 707 min = 0; // we don't calibrate the maximum forward position, so keep this at zero
mjr 48:058ace2aed1d 708 zero = 0xffff; // set the zero position all the way back
mjr 48:058ace2aed1d 709 max = 0; // set the retracted position all the way forward
mjr 52:8298b2a73eb2 710 tRelease = 65; // revert to a default release time
mjr 35:e959ffba78fd 711 }
mjr 17:ab3cec0c8bf4 712
mjr 35:e959ffba78fd 713 } cal;
mjr 18:5e890ebd0023 714
mjr 35:e959ffba78fd 715 } plunger;
mjr 29:582472d0bc57 716
mjr 35:e959ffba78fd 717
mjr 35:e959ffba78fd 718 // --- TV ON SWITCH ---
mjr 35:e959ffba78fd 719 //
mjr 35:e959ffba78fd 720 // To use the TV ON switch feature, the special power sensing circuitry
mjr 35:e959ffba78fd 721 // implemented on the Expansion Board must be attached (or an equivalent
mjr 35:e959ffba78fd 722 // circuit, as described in the Build Guide). The circuitry lets us
mjr 35:e959ffba78fd 723 // detect power state changes on the secondary power supply.
mjr 35:e959ffba78fd 724 struct
mjr 35:e959ffba78fd 725 {
mjr 35:e959ffba78fd 726 // PSU2 power status sense (DigitalIn pin). This pin goes LOW when the
mjr 35:e959ffba78fd 727 // secondary power supply is turned off, and remains LOW until the LATCH
mjr 35:e959ffba78fd 728 // pin is raised high AND the secondary PSU is turned on. Once HIGH,
mjr 35:e959ffba78fd 729 // it remains HIGH as long as the secondary PSU is on.
mjr 53:9b2611964afc 730 uint8_t statusPin;
mjr 35:e959ffba78fd 731
mjr 35:e959ffba78fd 732 // PSU2 power status latch (DigitalOut pin)
mjr 53:9b2611964afc 733 uint8_t latchPin;
mjr 35:e959ffba78fd 734
mjr 35:e959ffba78fd 735 // TV ON relay pin (DigitalOut pin). This pin controls the TV switch
mjr 35:e959ffba78fd 736 // relay. Raising the pin HIGH turns the relay ON (energizes the coil).
mjr 53:9b2611964afc 737 uint8_t relayPin;
mjr 35:e959ffba78fd 738
mjr 40:cc0d9814522b 739 // TV ON delay time, in 1/100 second units. This is the interval between
mjr 40:cc0d9814522b 740 // sensing that the secondary power supply has turned on and pulsing the
mjr 40:cc0d9814522b 741 // TV ON switch relay.
mjr 40:cc0d9814522b 742 int delayTime;
mjr 35:e959ffba78fd 743
mjr 35:e959ffba78fd 744 } TVON;
mjr 35:e959ffba78fd 745
mjr 53:9b2611964afc 746 // --- Night Mode ---
mjr 53:9b2611964afc 747 struct
mjr 53:9b2611964afc 748 {
mjr 55:4db125cd11a0 749 uint8_t btn; // night mode button number (1..MAX_BUTTONS, 0 = no button)
mjr 53:9b2611964afc 750 uint8_t flags; // flags:
mjr 53:9b2611964afc 751 // 0x01 = on/off switch (if not set, it's a momentary button)
mjr 55:4db125cd11a0 752 uint8_t port; // indicator output port number (1..MAX_OUT_PORTS, 0 = no indicator)
mjr 53:9b2611964afc 753 } nightMode;
mjr 53:9b2611964afc 754
mjr 29:582472d0bc57 755
mjr 35:e959ffba78fd 756 // --- TLC5940NT PWM Controller Chip Setup ---
mjr 35:e959ffba78fd 757 struct
mjr 35:e959ffba78fd 758 {
mjr 35:e959ffba78fd 759 // number of TLC5940NT chips connected in daisy chain
mjr 35:e959ffba78fd 760 int nchips;
mjr 35:e959ffba78fd 761
mjr 53:9b2611964afc 762 // pin connections (wire pin IDs)
mjr 53:9b2611964afc 763 uint8_t sin; // Serial data - must connect to SPIO MOSI -> PTC6 or PTD2
mjr 53:9b2611964afc 764 uint8_t sclk; // Serial clock - must connect to SPIO SCLK -> PTC5 or PTD1
mjr 35:e959ffba78fd 765 // (but don't use PTD1, since it's hard-wired to the on-board blue LED)
mjr 53:9b2611964afc 766 uint8_t xlat; // XLAT (latch) signal - connect to any GPIO pin
mjr 53:9b2611964afc 767 uint8_t blank; // BLANK signal - connect to any GPIO pin
mjr 53:9b2611964afc 768 uint8_t gsclk; // Grayscale clock - must connect to a PWM-out capable pin
mjr 29:582472d0bc57 769
mjr 35:e959ffba78fd 770 } tlc5940;
mjr 35:e959ffba78fd 771
mjr 35:e959ffba78fd 772
mjr 35:e959ffba78fd 773 // --- 74HC595 Shift Register Setup ---
mjr 35:e959ffba78fd 774 struct
mjr 35:e959ffba78fd 775 {
mjr 35:e959ffba78fd 776 // number of 74HC595 chips attached in daisy chain
mjr 35:e959ffba78fd 777 int nchips;
mjr 35:e959ffba78fd 778
mjr 35:e959ffba78fd 779 // pin connections
mjr 53:9b2611964afc 780 uint8_t sin; // Serial data - use any GPIO pin
mjr 53:9b2611964afc 781 uint8_t sclk; // Serial clock - use any GPIO pin
mjr 53:9b2611964afc 782 uint8_t latch; // Latch - use any GPIO pin
mjr 53:9b2611964afc 783 uint8_t ena; // Enable signal - use any GPIO pin
mjr 35:e959ffba78fd 784
mjr 35:e959ffba78fd 785 } hc595;
mjr 77:0b96f6867312 786
mjr 77:0b96f6867312 787
mjr 77:0b96f6867312 788 // --- IR Remote Control Hardware Setup ---
mjr 77:0b96f6867312 789 struct
mjr 77:0b96f6867312 790 {
mjr 77:0b96f6867312 791 // sensor (receiver) GPIO input pin; must be interrupt-capable
mjr 77:0b96f6867312 792 uint8_t sensor;
mjr 77:0b96f6867312 793
mjr 77:0b96f6867312 794 // IR emitter LED GPIO output pin; must be PWM-capable
mjr 77:0b96f6867312 795 uint8_t emitter;
mjr 77:0b96f6867312 796 } IR;
mjr 77:0b96f6867312 797
mjr 77:0b96f6867312 798
mjr 35:e959ffba78fd 799 // --- Button Input Setup ---
mjr 65:739875521aae 800 ButtonCfg button[MAX_BUTTONS + VIRTUAL_BUTTONS] __attribute__((packed));
mjr 66:2e3583fbd2f4 801
mjr 78:1e00b3fa11af 802 // Shift button. This can be used to give each physical button a
mjr 78:1e00b3fa11af 803 // second meaning.
mjr 78:1e00b3fa11af 804 struct
mjr 78:1e00b3fa11af 805 {
mjr 78:1e00b3fa11af 806 // Shift button index, 1..MAX_BUTTONS. If this is zero, there's
mjr 78:1e00b3fa11af 807 // no shift button.
mjr 78:1e00b3fa11af 808 uint8_t idx;
mjr 78:1e00b3fa11af 809
mjr 78:1e00b3fa11af 810 // Shift button mode. If the shift button has a key mapping or
mjr 78:1e00b3fa11af 811 // IR command assigned, this determines what happens when the
mjr 78:1e00b3fa11af 812 // shift button is pressed in combination with another key.
mjr 78:1e00b3fa11af 813 //
mjr 78:1e00b3fa11af 814 // 0 = Shift OR Key mode. In this mode, when you initially press
mjr 78:1e00b3fa11af 815 // the shift button, nothing happens. Instead, we wait to see if
mjr 78:1e00b3fa11af 816 // any other buttons are pressed. If so, we use the shifted meaning
mjr 78:1e00b3fa11af 817 // of the other button, and we DON'T send the shift button's key or
mjr 78:1e00b3fa11af 818 // IR command at all.
mjr 78:1e00b3fa11af 819 //
mjr 78:1e00b3fa11af 820 // 1 = Shift AND Key mode. In this mode, the shift button acts like
mjr 78:1e00b3fa11af 821 // any other button: its assigned key is sent to the PC as soon as
mjr 78:1e00b3fa11af 822 // you press it. If you also press another button while the shift
mjr 78:1e00b3fa11af 823 // button is down, the shifted meaning of the other button is used.
mjr 78:1e00b3fa11af 824 //
mjr 78:1e00b3fa11af 825 // Mode 0, the "OR" mode, is the default. This allows a button with
mjr 78:1e00b3fa11af 826 // a key assignment to do double duty as the shift button without
mjr 78:1e00b3fa11af 827 // creating any confusing situations where the shift button's own
mjr 78:1e00b3fa11af 828 // key is also sent to the PC during shift usage.
mjr 78:1e00b3fa11af 829 uint8_t mode;
mjr 78:1e00b3fa11af 830
mjr 78:1e00b3fa11af 831 } shiftButton;
mjr 17:ab3cec0c8bf4 832
mjr 35:e959ffba78fd 833 // --- LedWiz Output Port Setup ---
mjr 77:0b96f6867312 834 LedWizPortCfg outPort[MAX_OUT_PORTS] __attribute__ ((packed)); // LedWiz & extended output ports
mjr 48:058ace2aed1d 835
mjr 77:0b96f6867312 836 // --- IR Command Slots ---
mjr 77:0b96f6867312 837 IRCommandCfg IRCommand[MAX_IR_CODES] __attribute__ ((packed));
mjr 17:ab3cec0c8bf4 838 };
mjr 17:ab3cec0c8bf4 839
mjr 35:e959ffba78fd 840 #endif