An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Sun Feb 07 03:07:11 2016 +0000
Revision:
44:b5ac89b9cd5d
Parent:
43:7a6364d82a41
Child:
48:058ace2aed1d
Work in progress on CCD speed-ups

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 35:e959ffba78fd 3 // New for 2016: dynamic configuration! To configure the controller, connect
mjr 35:e959ffba78fd 4 // the KL25Z to your PC, install the .bin file, and run the Windows config tool.
mjr 35:e959ffba78fd 5 // There's no need (as there was in the past) to edit this file or to compile a
mjr 35:e959ffba78fd 6 // custom version of the binary (.bin) to customize setup options.
mjr 35:e959ffba78fd 7 //
mjr 35:e959ffba78fd 8 // In earlier versions, configuration was largely handled with compile-time
mjr 35:e959ffba78fd 9 // constants. To customize the setup, you had to create a private forked copy
mjr 35:e959ffba78fd 10 // of the source code, edit the constants defined in config.h, and compile a
mjr 35:e959ffba78fd 11 // custom binary. That's no longer necessary!
mjr 35:e959ffba78fd 12 //
mjr 35:e959ffba78fd 13 // The new approach is to do everything (or as much as possible, anyway)
mjr 35:e959ffba78fd 14 // via the Windows config tool. You shouldn't have to recompile a custom
mjr 35:e959ffba78fd 15 // version just to make a configurable change. Of course, you're still free
mjr 35:e959ffba78fd 16 // to create a custom version if you need to add or change features in ways
mjr 35:e959ffba78fd 17 // that weren't anticipated in the original design.
mjr 35:e959ffba78fd 18 //
mjr 35:e959ffba78fd 19
mjr 17:ab3cec0c8bf4 20
mjr 25:e22b88bd783a 21 #ifndef CONFIG_H
mjr 25:e22b88bd783a 22 #define CONFIG_H
mjr 17:ab3cec0c8bf4 23
mjr 33:d832bcab089e 24
mjr 35:e959ffba78fd 25 // Plunger type codes
mjr 35:e959ffba78fd 26 // NOTE! These values are part of the external USB interface. New
mjr 35:e959ffba78fd 27 // values can be added, but the meaning of an existing assigned number
mjr 35:e959ffba78fd 28 // should remain fixed to keep the PC-side config tool compatible across
mjr 35:e959ffba78fd 29 // versions.
mjr 35:e959ffba78fd 30 const int PlungerType_None = 0; // no plunger
mjr 35:e959ffba78fd 31 const int PlungerType_TSL1410RS = 1; // TSL1410R linear image sensor (1280x1 pixels, 400dpi), serial mode
mjr 35:e959ffba78fd 32 const int PlungerType_TSL1410RP = 2; // TSL1410R, parallel mode (reads the two sensor sections concurrently)
mjr 35:e959ffba78fd 33 const int PlungerType_TSL1412RS = 3; // TSL1412R linear image sensor (1536x1 pixels, 400dpi), serial mode
mjr 35:e959ffba78fd 34 const int PlungerType_TSL1412RP = 4; // TSL1412R, parallel mode
mjr 35:e959ffba78fd 35 const int PlungerType_Pot = 5; // potentionmeter
mjr 35:e959ffba78fd 36 const int PlungerType_OptQuad = 6; // AEDR8300 optical quadrature sensor
mjr 35:e959ffba78fd 37 const int PlungerType_MagQuad = 7; // AS5304 magnetic quadrature sensor
mjr 21:5048e16cc9ef 38
mjr 35:e959ffba78fd 39 // Accelerometer orientation codes
mjr 35:e959ffba78fd 40 // These values are part of the external USB interface
mjr 35:e959ffba78fd 41 const int OrientationFront = 0; // USB ports pointed toward front of cabinet
mjr 35:e959ffba78fd 42 const int OrientationLeft = 1; // ports pointed toward left side of cabinet
mjr 35:e959ffba78fd 43 const int OrientationRight = 2; // ports pointed toward right side of cabinet
mjr 35:e959ffba78fd 44 const int OrientationRear = 3; // ports pointed toward back of cabinet
mjr 25:e22b88bd783a 45
mjr 35:e959ffba78fd 46 // input button types
mjr 35:e959ffba78fd 47 const int BtnTypeJoystick = 1; // joystick button
mjr 35:e959ffba78fd 48 const int BtnTypeKey = 2; // regular keyboard key
mjr 35:e959ffba78fd 49 const int BtnTypeModKey = 3; // keyboard modifier key (shift, ctrl, etc)
mjr 35:e959ffba78fd 50 const int BtnTypeMedia = 4; // media control key (volume up/down, etc)
mjr 38:091e511ce8a0 51 const int BtnTypeSpecial = 5; // special button (night mode switch, etc)
mjr 38:091e511ce8a0 52
mjr 38:091e511ce8a0 53 // input button flags
mjr 38:091e511ce8a0 54 const uint8_t BtnFlagPulse = 0x01; // pulse mode - reports each change in the physical switch state
mjr 38:091e511ce8a0 55 // as a brief press of the logical button/keyboard key
mjr 40:cc0d9814522b 56
mjr 40:cc0d9814522b 57 // button setup structure
mjr 40:cc0d9814522b 58 struct ButtonCfg
mjr 40:cc0d9814522b 59 {
mjr 40:cc0d9814522b 60 uint8_t pin; // physical input GPIO pin - a USB-to-PinName mapping index
mjr 40:cc0d9814522b 61 uint8_t typ; // key type reported to PC - a BtnTypeXxx value
mjr 40:cc0d9814522b 62 uint8_t val; // key value reported - meaning depends on 'typ' value
mjr 40:cc0d9814522b 63 uint8_t flags; // key flags - a bitwise combination of BtnFlagXxx values
mjr 40:cc0d9814522b 64
mjr 40:cc0d9814522b 65 void set(uint8_t pin, uint8_t typ, uint8_t val, uint8_t flags = 0)
mjr 40:cc0d9814522b 66 {
mjr 40:cc0d9814522b 67 this->pin = pin;
mjr 40:cc0d9814522b 68 this->typ = typ;
mjr 40:cc0d9814522b 69 this->val = val;
mjr 40:cc0d9814522b 70 this->flags = flags;
mjr 40:cc0d9814522b 71 }
mjr 40:cc0d9814522b 72
mjr 40:cc0d9814522b 73 } __attribute__((packed));
mjr 40:cc0d9814522b 74
mjr 33:d832bcab089e 75
mjr 35:e959ffba78fd 76 // maximum number of input button mappings
mjr 35:e959ffba78fd 77 const int MAX_BUTTONS = 32;
mjr 33:d832bcab089e 78
mjr 35:e959ffba78fd 79 // LedWiz output port type codes
mjr 35:e959ffba78fd 80 // These values are part of the external USB interface
mjr 35:e959ffba78fd 81 const int PortTypeDisabled = 0; // port is disabled - not visible to LedWiz/DOF host
mjr 35:e959ffba78fd 82 const int PortTypeGPIOPWM = 1; // GPIO port, PWM enabled
mjr 35:e959ffba78fd 83 const int PortTypeGPIODig = 2; // GPIO port, digital out
mjr 35:e959ffba78fd 84 const int PortTypeTLC5940 = 3; // TLC5940 port
mjr 35:e959ffba78fd 85 const int PortType74HC595 = 4; // 74HC595 port
mjr 35:e959ffba78fd 86 const int PortTypeVirtual = 5; // Virtual port - visible to host software, but not connected to a physical output
mjr 17:ab3cec0c8bf4 87
mjr 35:e959ffba78fd 88 // LedWiz output port flag bits
mjr 38:091e511ce8a0 89 const uint8_t PortFlagActiveLow = 0x01; // physical output is active-low
mjr 38:091e511ce8a0 90 const uint8_t PortFlagNoisemaker = 0x02; // noisemaker device - disable when night mode is engaged
mjr 40:cc0d9814522b 91 const uint8_t PortFlagGamma = 0x04; // apply gamma correction to this output
mjr 35:e959ffba78fd 92
mjr 35:e959ffba78fd 93 // maximum number of output ports
mjr 35:e959ffba78fd 94 const int MAX_OUT_PORTS = 203;
mjr 33:d832bcab089e 95
mjr 38:091e511ce8a0 96 // port configuration data
mjr 38:091e511ce8a0 97 struct LedWizPortCfg
mjr 38:091e511ce8a0 98 {
mjr 38:091e511ce8a0 99 uint8_t typ; // port type: a PortTypeXxx value
mjr 38:091e511ce8a0 100 uint8_t pin; // physical output pin: for a GPIO port, this is an index in the
mjr 38:091e511ce8a0 101 // USB-to-PinName mapping list; for a TLC5940 or 74HC595 port, it's
mjr 38:091e511ce8a0 102 // the output number, starting from 0 for OUT0 on the first chip in
mjr 38:091e511ce8a0 103 // the daisy chain. For inactive and virtual ports, it's unused.
mjr 38:091e511ce8a0 104 uint8_t flags; // flags: a combination of PortFlagXxx values
mjr 40:cc0d9814522b 105
mjr 40:cc0d9814522b 106 void set(uint8_t typ, uint8_t pin, uint8_t flags = 0)
mjr 40:cc0d9814522b 107 {
mjr 40:cc0d9814522b 108 this->typ = typ;
mjr 40:cc0d9814522b 109 this->pin = pin;
mjr 40:cc0d9814522b 110 this->flags = flags;
mjr 40:cc0d9814522b 111 }
mjr 40:cc0d9814522b 112
mjr 38:091e511ce8a0 113 } __attribute__((packed));
mjr 38:091e511ce8a0 114
mjr 38:091e511ce8a0 115
mjr 35:e959ffba78fd 116 struct Config
mjr 35:e959ffba78fd 117 {
mjr 35:e959ffba78fd 118 // set all values to factory defaults
mjr 35:e959ffba78fd 119 void setFactoryDefaults()
mjr 35:e959ffba78fd 120 {
mjr 35:e959ffba78fd 121 // By default, pretend to be LedWiz unit #8. This can be from 1 to 16. Real
mjr 35:e959ffba78fd 122 // LedWiz units have their unit number set at the factory, and the vast majority
mjr 35:e959ffba78fd 123 // are set up as unit #1, since that's the default for anyone who doesn't ask
mjr 35:e959ffba78fd 124 // for a different setting. It seems rare for anyone to use more than one unit
mjr 35:e959ffba78fd 125 // in a pin cab, but for the few who do, the others will probably be numbered
mjr 35:e959ffba78fd 126 // sequentially as #2, #3, etc. It seems safe to assume that no one out there
mjr 35:e959ffba78fd 127 // has a unit #8, so we'll use that as our default starting number. This can
mjr 35:e959ffba78fd 128 // be changed from the config tool, but for the sake of convenience we want the
mjr 35:e959ffba78fd 129 // default to be a value that most people won't have to change.
mjr 35:e959ffba78fd 130 usbVendorID = 0xFAFA; // LedWiz vendor code
mjr 38:091e511ce8a0 131 usbProductID = 0x00F0; // LedWiz product code for unit #1
mjr 35:e959ffba78fd 132 psUnitNo = 8;
mjr 35:e959ffba78fd 133
mjr 35:e959ffba78fd 134 // enable joystick reports
mjr 35:e959ffba78fd 135 joystickEnabled = true;
mjr 35:e959ffba78fd 136
mjr 35:e959ffba78fd 137 // assume standard orientation, with USB ports toward front of cabinet
mjr 35:e959ffba78fd 138 orientation = OrientationFront;
mjr 25:e22b88bd783a 139
mjr 35:e959ffba78fd 140 // assume no plunger is attached
mjr 35:e959ffba78fd 141 plunger.enabled = false;
mjr 35:e959ffba78fd 142 plunger.sensorType = PlungerType_None;
mjr 35:e959ffba78fd 143
mjr 43:7a6364d82a41 144 #if 1 // $$$
mjr 43:7a6364d82a41 145 plunger.enabled = true;
mjr 43:7a6364d82a41 146 plunger.sensorType = PlungerType_TSL1410RS;
mjr 43:7a6364d82a41 147 plunger.sensorPin[0] = PTE20; // SI
mjr 43:7a6364d82a41 148 plunger.sensorPin[1] = PTE21; // SCLK
mjr 43:7a6364d82a41 149 plunger.sensorPin[2] = PTB0; // AO1 = PTB0 = ADC0_SE8
mjr 43:7a6364d82a41 150 plunger.sensorPin[3] = PTE22; // AO2 (parallel mode) = PTE22 = ADC0_SE3
mjr 43:7a6364d82a41 151 #endif
mjr 43:7a6364d82a41 152
mjr 35:e959ffba78fd 153 // assume that there's no calibration button
mjr 35:e959ffba78fd 154 plunger.cal.btn = NC;
mjr 35:e959ffba78fd 155 plunger.cal.led = NC;
mjr 35:e959ffba78fd 156
mjr 44:b5ac89b9cd5d 157 // set the default plunger calibration
mjr 44:b5ac89b9cd5d 158 plunger.cal.setDefaults();
mjr 35:e959ffba78fd 159
mjr 35:e959ffba78fd 160 // disable the ZB Launch Ball by default
mjr 35:e959ffba78fd 161 plunger.zbLaunchBall.port = 0;
mjr 35:e959ffba78fd 162 plunger.zbLaunchBall.btn = 0;
mjr 35:e959ffba78fd 163
mjr 35:e959ffba78fd 164 // assume no TV ON switch
mjr 43:7a6364d82a41 165 TVON.statusPin = NC;
mjr 43:7a6364d82a41 166 TVON.latchPin = NC;
mjr 43:7a6364d82a41 167 TVON.relayPin = NC;
mjr 43:7a6364d82a41 168 TVON.delayTime = 7;
mjr 43:7a6364d82a41 169 #if 0//$$$
mjr 38:091e511ce8a0 170 TVON.statusPin = PTD2;
mjr 38:091e511ce8a0 171 TVON.latchPin = PTE0;
mjr 38:091e511ce8a0 172 TVON.relayPin = PTD3;
mjr 38:091e511ce8a0 173 TVON.delayTime = 7;
mjr 38:091e511ce8a0 174 #endif
mjr 35:e959ffba78fd 175
mjr 35:e959ffba78fd 176 // assume no TLC5940 chips
mjr 35:e959ffba78fd 177 tlc5940.nchips = 0;
mjr 43:7a6364d82a41 178 #if 0 // $$$
mjr 43:7a6364d82a41 179 //tlc5940.nchips = 4;
mjr 38:091e511ce8a0 180 #endif
mjr 38:091e511ce8a0 181
mjr 38:091e511ce8a0 182 // default TLC5940 pin assignments
mjr 38:091e511ce8a0 183 tlc5940.sin = PTC6;
mjr 38:091e511ce8a0 184 tlc5940.sclk = PTC5;
mjr 38:091e511ce8a0 185 tlc5940.xlat = PTC10;
mjr 38:091e511ce8a0 186 tlc5940.blank = PTC7;
mjr 38:091e511ce8a0 187 tlc5940.gsclk = PTA1;
mjr 35:e959ffba78fd 188
mjr 35:e959ffba78fd 189 // assume no 74HC595 chips
mjr 35:e959ffba78fd 190 hc595.nchips = 0;
mjr 43:7a6364d82a41 191 #if 0 // $$$
mjr 43:7a6364d82a41 192 //hc595.nchips = 1;
mjr 40:cc0d9814522b 193 #endif
mjr 40:cc0d9814522b 194
mjr 38:091e511ce8a0 195 // default 74HC595 pin assignments
mjr 38:091e511ce8a0 196 hc595.sin = PTA5;
mjr 38:091e511ce8a0 197 hc595.sclk = PTA4;
mjr 38:091e511ce8a0 198 hc595.latch = PTA12;
mjr 38:091e511ce8a0 199 hc595.ena = PTD4;
mjr 38:091e511ce8a0 200
mjr 35:e959ffba78fd 201 // initially configure with no LedWiz output ports
mjr 35:e959ffba78fd 202 outPort[0].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 203 for (int i = 0 ; i < sizeof(specialPort)/sizeof(specialPort[0]) ; ++i)
mjr 38:091e511ce8a0 204 specialPort[i].typ = PortTypeDisabled;
mjr 35:e959ffba78fd 205
mjr 35:e959ffba78fd 206 // initially configure with no input buttons
mjr 35:e959ffba78fd 207 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 35:e959ffba78fd 208 button[i].pin = 0; // 0 == index of NC in USB-to-PinName mapping
mjr 38:091e511ce8a0 209
mjr 38:091e511ce8a0 210 #if 1
mjr 38:091e511ce8a0 211 for (int i = 0 ; i < 24 ; ++i) {
mjr 38:091e511ce8a0 212 static int bp[] = {
mjr 38:091e511ce8a0 213 21, // 1 = PTC2
mjr 38:091e511ce8a0 214 12, // 2 = PTB3
mjr 38:091e511ce8a0 215 11, // 3 = PTB2
mjr 38:091e511ce8a0 216 10, // 4 = PTB1
mjr 38:091e511ce8a0 217 54, // 5 = PTE30
mjr 38:091e511ce8a0 218 30, // 6 = PTC11
mjr 38:091e511ce8a0 219 48, // 7 = PTE5
mjr 38:091e511ce8a0 220 47, // 8 = PTE4
mjr 38:091e511ce8a0 221 46, // 9 = PTE3
mjr 38:091e511ce8a0 222 45, // 10 = PTE2
mjr 38:091e511ce8a0 223 16, // 11 = PTB11
mjr 38:091e511ce8a0 224 15, // 12 = PTB10
mjr 38:091e511ce8a0 225 14, // 13 = PTB9
mjr 38:091e511ce8a0 226 13, // 14 = PTB8
mjr 38:091e511ce8a0 227 31, // 15 = PTC12
mjr 38:091e511ce8a0 228 32, // 16 = PTC13
mjr 38:091e511ce8a0 229 33, // 17 = PTC16
mjr 38:091e511ce8a0 230 34, // 18 = PTC17
mjr 38:091e511ce8a0 231 7, // 19 = PTA16
mjr 38:091e511ce8a0 232 8, // 20 = PTA17
mjr 38:091e511ce8a0 233 55, // 21 = PTE31
mjr 38:091e511ce8a0 234 41, // 22 = PTD6
mjr 38:091e511ce8a0 235 42, // 23 = PTD7
mjr 38:091e511ce8a0 236 44 // 24 = PTE1
mjr 40:cc0d9814522b 237 };
mjr 40:cc0d9814522b 238 button[i].set(bp[i], BtnTypeKey, i+4); // A, B, C...
mjr 38:091e511ce8a0 239 }
mjr 38:091e511ce8a0 240 #endif
mjr 38:091e511ce8a0 241
mjr 38:091e511ce8a0 242 #if 0
mjr 38:091e511ce8a0 243 button[23].typ = BtnTypeJoystick;
mjr 38:091e511ce8a0 244 button[23].val = 5; // B
mjr 38:091e511ce8a0 245 button[23].flags = 0x01; // pulse button
mjr 38:091e511ce8a0 246
mjr 38:091e511ce8a0 247 button[22].typ = BtnTypeModKey;
mjr 38:091e511ce8a0 248 button[22].val = 0x02; // left shift
mjr 38:091e511ce8a0 249
mjr 38:091e511ce8a0 250 button[21].typ = BtnTypeMedia;
mjr 38:091e511ce8a0 251 button[21].val = 0x02; // vol down
mjr 38:091e511ce8a0 252
mjr 38:091e511ce8a0 253 button[20].typ = BtnTypeMedia;
mjr 38:091e511ce8a0 254 button[20].val = 0x01; // vol up
mjr 39:b3815a1c3802 255
mjr 38:091e511ce8a0 256 #endif
mjr 38:091e511ce8a0 257
mjr 43:7a6364d82a41 258
mjr 43:7a6364d82a41 259 #if 0 // $$$
mjr 40:cc0d9814522b 260 // CONFIGURE EXPANSION BOARD PORTS
mjr 40:cc0d9814522b 261 //
mjr 40:cc0d9814522b 262 // We have the following hardware attached:
mjr 40:cc0d9814522b 263 //
mjr 40:cc0d9814522b 264 // Main board
mjr 40:cc0d9814522b 265 // TLC ports 0-15 -> flashers
mjr 40:cc0d9814522b 266 // TLC ports 16 -> strobe
mjr 40:cc0d9814522b 267 // TLC ports 17-31 -> flippers
mjr 40:cc0d9814522b 268 // Dig GPIO PTC8 -> knocker (timer-protected outputs)
mjr 40:cc0d9814522b 269 //
mjr 40:cc0d9814522b 270 // Power board:
mjr 40:cc0d9814522b 271 // TLC ports 32-63 -> general purpose outputs
mjr 40:cc0d9814522b 272 //
mjr 40:cc0d9814522b 273 // Chime board:
mjr 40:cc0d9814522b 274 // HC595 ports 0-7 -> timer-protected outputs
mjr 40:cc0d9814522b 275 //
mjr 38:091e511ce8a0 276 {
mjr 38:091e511ce8a0 277 int n = 0;
mjr 40:cc0d9814522b 278
mjr 40:cc0d9814522b 279 // 1-15 = flashers (TLC ports 0-15)
mjr 40:cc0d9814522b 280 // 16 = strobe (TLC port 15)
mjr 40:cc0d9814522b 281 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 282 outPort[n++].set(PortTypeTLC5940, i, PortFlagGamma);
mjr 40:cc0d9814522b 283
mjr 40:cc0d9814522b 284 // 17 = knocker
mjr 40:cc0d9814522b 285 outPort[n++].set(PortTypeGPIODig, 27);
mjr 35:e959ffba78fd 286
mjr 40:cc0d9814522b 287 // 18-49 = power board outputs 1-32 (TLC ports 32-63)
mjr 40:cc0d9814522b 288 for (int i = 0 ; i < 32 ; ++i)
mjr 40:cc0d9814522b 289 outPort[n++].set(PortTypeTLC5940, i+32);
mjr 40:cc0d9814522b 290
mjr 40:cc0d9814522b 291 // 50-65 = flipper RGB (TLC ports 16-31)
mjr 40:cc0d9814522b 292 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 293 outPort[n++].set(PortTypeTLC5940, i+16, PortFlagGamma);
mjr 40:cc0d9814522b 294
mjr 40:cc0d9814522b 295 // 66-73 = chime board ports 1-8 (74HC595 ports 0-7)
mjr 40:cc0d9814522b 296 for (int i = 0 ; i < 8 ; ++i)
mjr 40:cc0d9814522b 297 outPort[n++].set(PortType74HC595, i);
mjr 40:cc0d9814522b 298
mjr 40:cc0d9814522b 299 // set Disabled to signify end of configured outputs
mjr 38:091e511ce8a0 300 outPort[n].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 301 }
mjr 38:091e511ce8a0 302 #endif
mjr 38:091e511ce8a0 303 #if 0
mjr 40:cc0d9814522b 304 // configure the on-board RGB LED as outputs 1,2,3
mjr 40:cc0d9814522b 305 outPort[0].set(PortTypeGPIOPWM, 17, PortFlagActiveLow); // PTB18 = LED1 = Red LED
mjr 40:cc0d9814522b 306 outPort[1].set(PortTypeGPIOPWM, 18, PortFlagActiveLow); // PTB19 = LED2 = Green LED
mjr 40:cc0d9814522b 307 outPort[2].set(PortTypeGPIOPWM, 36, PortFlagActiveLow); // PTD1 = LED3 = Blue LED
mjr 38:091e511ce8a0 308 outPort[3].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 309 #endif
mjr 35:e959ffba78fd 310 }
mjr 35:e959ffba78fd 311
mjr 35:e959ffba78fd 312 // --- USB DEVICE CONFIGURATION ---
mjr 35:e959ffba78fd 313
mjr 35:e959ffba78fd 314 // USB device identification - vendor ID and product ID. For LedLWiz
mjr 35:e959ffba78fd 315 // emulation, use vendor ID 0xFAFA and product ID 0x00EF + unit#, where
mjr 35:e959ffba78fd 316 // unit# is the nominal LedWiz unit number from 1 to 16. Alternatively,
mjr 35:e959ffba78fd 317 // if LedWiz emulation isn't desired or causes any driver conflicts on
mjr 35:e959ffba78fd 318 // the host, we have a private Pinscape assignment as vendor ID 0x1209
mjr 35:e959ffba78fd 319 // and product ID 0xEAEA (registered with http://pid.codes, a registry
mjr 35:e959ffba78fd 320 // for open-source USB projects).
mjr 35:e959ffba78fd 321 uint16_t usbVendorID;
mjr 35:e959ffba78fd 322 uint16_t usbProductID;
mjr 35:e959ffba78fd 323
mjr 35:e959ffba78fd 324 // Pinscape Controller unit number. This is the nominal unit number,
mjr 35:e959ffba78fd 325 // from 1 to 16. We report this in the status query; DOF uses it to
mjr 35:e959ffba78fd 326 // distinguish multiple Pinscape units. Note that this doesn't affect
mjr 35:e959ffba78fd 327 // the LedWiz unit numbering, which is implied by the USB Product ID.
mjr 35:e959ffba78fd 328 uint8_t psUnitNo;
mjr 35:e959ffba78fd 329
mjr 35:e959ffba78fd 330 // Are joystick reports enabled? Joystick reports can be turned off, to
mjr 35:e959ffba78fd 331 // use the device as purely an output controller.
mjr 35:e959ffba78fd 332 char joystickEnabled;
mjr 35:e959ffba78fd 333
mjr 35:e959ffba78fd 334
mjr 35:e959ffba78fd 335 // --- ACCELEROMETER ---
mjr 35:e959ffba78fd 336
mjr 35:e959ffba78fd 337 // accelerometer orientation (ORIENTATION_xxx value)
mjr 35:e959ffba78fd 338 char orientation;
mjr 35:e959ffba78fd 339
mjr 35:e959ffba78fd 340
mjr 35:e959ffba78fd 341 // --- PLUNGER CONFIGURATION ---
mjr 35:e959ffba78fd 342 struct
mjr 35:e959ffba78fd 343 {
mjr 35:e959ffba78fd 344 // plunger enabled/disabled
mjr 35:e959ffba78fd 345 char enabled;
mjr 33:d832bcab089e 346
mjr 35:e959ffba78fd 347 // plunger sensor type
mjr 35:e959ffba78fd 348 char sensorType;
mjr 35:e959ffba78fd 349
mjr 35:e959ffba78fd 350 // Plunger sensor pins. To accommodate a wide range of sensor types,
mjr 35:e959ffba78fd 351 // we keep a generic list of 4 pin assignments. The use of each pin
mjr 35:e959ffba78fd 352 // varies by sensor. The lists below are in order of the generic
mjr 35:e959ffba78fd 353 // pins; NC means that the pin isn't used by the sensor. Each pin's
mjr 35:e959ffba78fd 354 // GPIO usage is also listed. Certain usages limit which physical
mjr 35:e959ffba78fd 355 // pins can be assigned (e.g., AnalogIn or PwmOut).
mjr 35:e959ffba78fd 356 //
mjr 35:e959ffba78fd 357 // TSL1410R/1412R, serial: SI (DigitalOut), CLK (DigitalOut), AO (AnalogIn), NC
mjr 35:e959ffba78fd 358 // TSL1410R/1412R, parallel: SI (DigitalOut), CLK (DigitalOut), AO1 (AnalogIn), AO2 (AnalogIn)
mjr 35:e959ffba78fd 359 // Potentiometer: AO (AnalogIn), NC, NC, NC
mjr 35:e959ffba78fd 360 // AEDR8300: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 361 // AS5304: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 362 PinName sensorPin[4];
mjr 35:e959ffba78fd 363
mjr 35:e959ffba78fd 364 // Pseudo LAUNCH BALL button.
mjr 35:e959ffba78fd 365 //
mjr 35:e959ffba78fd 366 // This configures the "ZB Launch Ball" feature in DOF, based on Zeb's (of
mjr 35:e959ffba78fd 367 // zebsboards.com) scheme for using a mechanical plunger as a Launch button.
mjr 35:e959ffba78fd 368 // Set the port to 0 to disable the feature.
mjr 35:e959ffba78fd 369 //
mjr 35:e959ffba78fd 370 // The port number is an LedWiz port number that we monitor for activation.
mjr 35:e959ffba78fd 371 // This port isn't connected to a physical device; rather, the host turns it
mjr 35:e959ffba78fd 372 // on to indicate that the pseudo Launch button mode is in effect.
mjr 35:e959ffba78fd 373 //
mjr 35:e959ffba78fd 374 // The button number gives the button that we "press" when a launch occurs.
mjr 35:e959ffba78fd 375 // This can be connected to the physical Launch button, or can simply be
mjr 35:e959ffba78fd 376 // an otherwise unused button.
mjr 35:e959ffba78fd 377 //
mjr 40:cc0d9814522b 378 // The "push distance" is the distance, in 1/1000 inch units, for registering a
mjr 40:cc0d9814522b 379 // push on the plunger as a button push. If the player pushes the plunger
mjr 40:cc0d9814522b 380 // forward of the rest position by this amount, we'll treat it as pushing the
mjr 40:cc0d9814522b 381 // button, even if the player didn't pull back the plunger first. This lets
mjr 40:cc0d9814522b 382 // the player treat the plunger knob as a button for games where it's meaningful
mjr 35:e959ffba78fd 383 // to hold down the Launch button for specific intervals (e.g., "Championship
mjr 35:e959ffba78fd 384 // Pub").
mjr 35:e959ffba78fd 385 struct
mjr 35:e959ffba78fd 386 {
mjr 35:e959ffba78fd 387 int port;
mjr 35:e959ffba78fd 388 int btn;
mjr 40:cc0d9814522b 389 int pushDistance;
mjr 35:e959ffba78fd 390
mjr 35:e959ffba78fd 391 } zbLaunchBall;
mjr 35:e959ffba78fd 392
mjr 35:e959ffba78fd 393 // --- PLUNGER CALIBRATION ---
mjr 35:e959ffba78fd 394 struct
mjr 35:e959ffba78fd 395 {
mjr 35:e959ffba78fd 396 // has the plunger been calibrated?
mjr 35:e959ffba78fd 397 int calibrated;
mjr 35:e959ffba78fd 398
mjr 35:e959ffba78fd 399 // calibration button switch pin
mjr 35:e959ffba78fd 400 PinName btn;
mjr 35:e959ffba78fd 401
mjr 35:e959ffba78fd 402 // calibration button indicator light pin
mjr 35:e959ffba78fd 403 PinName led;
mjr 35:e959ffba78fd 404
mjr 35:e959ffba78fd 405 // Plunger calibration min, zero, and max. The zero point is the
mjr 35:e959ffba78fd 406 // rest position (aka park position), where it's in equilibrium between
mjr 35:e959ffba78fd 407 // the main spring and the barrel spring. It can travel a small distance
mjr 35:e959ffba78fd 408 // forward of the rest position, because the barrel spring can be
mjr 35:e959ffba78fd 409 // compressed by the user pushing on the plunger or by the momentum
mjr 35:e959ffba78fd 410 // of a release motion. The minimum is the maximum forward point where
mjr 35:e959ffba78fd 411 // the barrel spring can't be compressed any further.
mjr 44:b5ac89b9cd5d 412 float min;
mjr 44:b5ac89b9cd5d 413 float zero;
mjr 44:b5ac89b9cd5d 414 float max;
mjr 35:e959ffba78fd 415
mjr 44:b5ac89b9cd5d 416 // Reset the plunger calibration
mjr 44:b5ac89b9cd5d 417 void setDefaults()
mjr 35:e959ffba78fd 418 {
mjr 44:b5ac89b9cd5d 419 calibrated = false; // not calibrated
mjr 44:b5ac89b9cd5d 420 min = 0.0f; // assume we can go all the way forward...
mjr 44:b5ac89b9cd5d 421 max = 1.0f; // ...and all the way back
mjr 44:b5ac89b9cd5d 422 zero = 1.0/6.0f; // the rest position is usually around 1/2" back = 1/6 of total travel
mjr 44:b5ac89b9cd5d 423 }
mjr 44:b5ac89b9cd5d 424
mjr 44:b5ac89b9cd5d 425 // Begin calibration. This sets each limit to the worst
mjr 44:b5ac89b9cd5d 426 // case point - for example, we set the retracted position
mjr 44:b5ac89b9cd5d 427 // to all the way forward. Each actual reading that comes
mjr 44:b5ac89b9cd5d 428 // in is then checked against the current limit, and if it's
mjr 44:b5ac89b9cd5d 429 // outside of the limit, we reset the limit to the new reading.
mjr 44:b5ac89b9cd5d 430 void begin()
mjr 44:b5ac89b9cd5d 431 {
mjr 44:b5ac89b9cd5d 432 min = 0.0f; // we don't calibrate the maximum forward position, so keep this at zero
mjr 44:b5ac89b9cd5d 433 zero = 1.0f; // set the zero position all the way back
mjr 44:b5ac89b9cd5d 434 max = 0.0f; // set the retracted position all the way forward
mjr 35:e959ffba78fd 435 }
mjr 17:ab3cec0c8bf4 436
mjr 35:e959ffba78fd 437 } cal;
mjr 18:5e890ebd0023 438
mjr 35:e959ffba78fd 439 } plunger;
mjr 29:582472d0bc57 440
mjr 35:e959ffba78fd 441
mjr 35:e959ffba78fd 442 // --- TV ON SWITCH ---
mjr 35:e959ffba78fd 443 //
mjr 35:e959ffba78fd 444 // To use the TV ON switch feature, the special power sensing circuitry
mjr 35:e959ffba78fd 445 // implemented on the Expansion Board must be attached (or an equivalent
mjr 35:e959ffba78fd 446 // circuit, as described in the Build Guide). The circuitry lets us
mjr 35:e959ffba78fd 447 // detect power state changes on the secondary power supply.
mjr 35:e959ffba78fd 448 struct
mjr 35:e959ffba78fd 449 {
mjr 35:e959ffba78fd 450 // PSU2 power status sense (DigitalIn pin). This pin goes LOW when the
mjr 35:e959ffba78fd 451 // secondary power supply is turned off, and remains LOW until the LATCH
mjr 35:e959ffba78fd 452 // pin is raised high AND the secondary PSU is turned on. Once HIGH,
mjr 35:e959ffba78fd 453 // it remains HIGH as long as the secondary PSU is on.
mjr 35:e959ffba78fd 454 PinName statusPin;
mjr 35:e959ffba78fd 455
mjr 35:e959ffba78fd 456 // PSU2 power status latch (DigitalOut pin)
mjr 35:e959ffba78fd 457 PinName latchPin;
mjr 35:e959ffba78fd 458
mjr 35:e959ffba78fd 459 // TV ON relay pin (DigitalOut pin). This pin controls the TV switch
mjr 35:e959ffba78fd 460 // relay. Raising the pin HIGH turns the relay ON (energizes the coil).
mjr 35:e959ffba78fd 461 PinName relayPin;
mjr 35:e959ffba78fd 462
mjr 40:cc0d9814522b 463 // TV ON delay time, in 1/100 second units. This is the interval between
mjr 40:cc0d9814522b 464 // sensing that the secondary power supply has turned on and pulsing the
mjr 40:cc0d9814522b 465 // TV ON switch relay.
mjr 40:cc0d9814522b 466 int delayTime;
mjr 35:e959ffba78fd 467
mjr 35:e959ffba78fd 468 } TVON;
mjr 35:e959ffba78fd 469
mjr 29:582472d0bc57 470
mjr 35:e959ffba78fd 471 // --- TLC5940NT PWM Controller Chip Setup ---
mjr 35:e959ffba78fd 472 struct
mjr 35:e959ffba78fd 473 {
mjr 35:e959ffba78fd 474 // number of TLC5940NT chips connected in daisy chain
mjr 35:e959ffba78fd 475 int nchips;
mjr 35:e959ffba78fd 476
mjr 35:e959ffba78fd 477 // pin connections
mjr 35:e959ffba78fd 478 PinName sin; // Serial data - must connect to SPIO MOSI -> PTC6 or PTD2
mjr 35:e959ffba78fd 479 PinName sclk; // Serial clock - must connect to SPIO SCLK -> PTC5 or PTD1
mjr 35:e959ffba78fd 480 // (but don't use PTD1, since it's hard-wired to the on-board blue LED)
mjr 35:e959ffba78fd 481 PinName xlat; // XLAT (latch) signal - connect to any GPIO pin
mjr 35:e959ffba78fd 482 PinName blank; // BLANK signal - connect to any GPIO pin
mjr 35:e959ffba78fd 483 PinName gsclk; // Grayscale clock - must connect to a PWM-out capable pin
mjr 29:582472d0bc57 484
mjr 35:e959ffba78fd 485 } tlc5940;
mjr 35:e959ffba78fd 486
mjr 35:e959ffba78fd 487
mjr 35:e959ffba78fd 488 // --- 74HC595 Shift Register Setup ---
mjr 35:e959ffba78fd 489 struct
mjr 35:e959ffba78fd 490 {
mjr 35:e959ffba78fd 491 // number of 74HC595 chips attached in daisy chain
mjr 35:e959ffba78fd 492 int nchips;
mjr 35:e959ffba78fd 493
mjr 35:e959ffba78fd 494 // pin connections
mjr 35:e959ffba78fd 495 PinName sin; // Serial data - use any GPIO pin
mjr 35:e959ffba78fd 496 PinName sclk; // Serial clock - use any GPIO pin
mjr 35:e959ffba78fd 497 PinName latch; // Latch - use any GPIO pin
mjr 35:e959ffba78fd 498 PinName ena; // Enable signal - use any GPIO pin
mjr 35:e959ffba78fd 499
mjr 35:e959ffba78fd 500 } hc595;
mjr 34:6b981a2afab7 501
mjr 25:e22b88bd783a 502
mjr 35:e959ffba78fd 503 // --- Button Input Setup ---
mjr 40:cc0d9814522b 504 ButtonCfg button[MAX_BUTTONS] __attribute__((packed));
mjr 17:ab3cec0c8bf4 505
mjr 35:e959ffba78fd 506 // --- LedWiz Output Port Setup ---
mjr 38:091e511ce8a0 507 LedWizPortCfg outPort[MAX_OUT_PORTS] __attribute__((packed)); // LedWiz & extended output ports
mjr 38:091e511ce8a0 508 LedWizPortCfg specialPort[1]; // special ports (Night Mode indicator, etc)
mjr 17:ab3cec0c8bf4 509 };
mjr 17:ab3cec0c8bf4 510
mjr 35:e959ffba78fd 511 #endif