CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Embed: (wiki syntax)

« Back to documentation index

Complex Dot Product

Complex Dot Product
[Complex Math Functions]

Computes the dot product of two complex vectors. More...

Functions

void arm_cmplx_dot_prod_f32 (float32_t *pSrcA, float32_t *pSrcB, uint32_t numSamples, float32_t *realResult, float32_t *imagResult)
 Floating-point complex dot product.
void arm_cmplx_dot_prod_q15 (q15_t *pSrcA, q15_t *pSrcB, uint32_t numSamples, q31_t *realResult, q31_t *imagResult)
 Q15 complex dot product.
void arm_cmplx_dot_prod_q31 (q31_t *pSrcA, q31_t *pSrcB, uint32_t numSamples, q63_t *realResult, q63_t *imagResult)
 Q31 complex dot product.

Detailed Description

Computes the dot product of two complex vectors.

The vectors are multiplied element-by-element and then summed.

The pSrcA points to the first complex input vector and pSrcB points to the second complex input vector. numSamples specifies the number of complex samples and the data in each array is stored in an interleaved fashion (real, imag, real, imag, ...). Each array has a total of 2*numSamples values.

The underlying algorithm is used:

    
 realResult=0;    
 imagResult=0;    
 for(n=0; n<numSamples; n++) {    
     realResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+0] - pSrcA[(2*n)+1]*pSrcB[(2*n)+1];    
     imagResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+1] + pSrcA[(2*n)+1]*pSrcB[(2*n)+0];    
 }    
 

There are separate functions for floating-point, Q15, and Q31 data types.


Function Documentation

void arm_cmplx_dot_prod_f32 ( float32_t *  pSrcA,
float32_t *  pSrcB,
uint32_t  numSamples,
float32_t *  realResult,
float32_t *  imagResult 
)

Floating-point complex dot product.

Parameters:
*pSrcApoints to the first input vector
*pSrcBpoints to the second input vector
numSamplesnumber of complex samples in each vector
*realResultreal part of the result returned here
*imagResultimaginary part of the result returned here
Returns:
none.

Definition at line 88 of file arm_cmplx_dot_prod_f32.c.

void arm_cmplx_dot_prod_q15 ( q15_t *  pSrcA,
q15_t *  pSrcB,
uint32_t  numSamples,
q31_t *  realResult,
q31_t *  imagResult 
)

Q15 complex dot product.

Parameters:
*pSrcApoints to the first input vector
*pSrcBpoints to the second input vector
numSamplesnumber of complex samples in each vector
*realResultreal part of the result returned here
*imagResultimaginary part of the result returned here
Returns:
none.

Scaling and Overflow Behavior:

The function is implemented using an internal 64-bit accumulator. The intermediate 1.15 by 1.15 multiplications are performed with full precision and yield a 2.30 result. These are accumulated in a 64-bit accumulator with 34.30 precision. As a final step, the accumulators are converted to 8.24 format. The return results realResult and imagResult are in 8.24 format.

Definition at line 70 of file arm_cmplx_dot_prod_q15.c.

void arm_cmplx_dot_prod_q31 ( q31_t *  pSrcA,
q31_t *  pSrcB,
uint32_t  numSamples,
q63_t *  realResult,
q63_t *  imagResult 
)

Q31 complex dot product.

Parameters:
*pSrcApoints to the first input vector
*pSrcBpoints to the second input vector
numSamplesnumber of complex samples in each vector
*realResultreal part of the result returned here
*imagResultimaginary part of the result returned here
Returns:
none.

Scaling and Overflow Behavior:

The function is implemented using an internal 64-bit accumulator. The intermediate 1.31 by 1.31 multiplications are performed with 64-bit precision and then shifted to 16.48 format. The internal real and imaginary accumulators are in 16.48 format and provide 15 guard bits. Additions are nonsaturating and no overflow will occur as long as numSamples is less than 32768. The return results realResult and imagResult are in 16.48 format. Input down scaling is not required.

Definition at line 71 of file arm_cmplx_dot_prod_q31.c.