CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

Committer:
mbed_official
Date:
Fri Nov 20 08:45:18 2015 +0000
Revision:
5:3762170b6d4d
Parent:
3:7a284390b0ce
Synchronized with git revision 2eb940b9a73af188d3004a2575fdfbb05febe62b

Full URL: https://github.com/mbedmicro/mbed/commit/2eb940b9a73af188d3004a2575fdfbb05febe62b/

Added option to build rpc library. closes #1426

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 1:fdd22bb7aa52 1 /* ----------------------------------------------------------------------
mbed_official 5:3762170b6d4d 2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
emilmont 1:fdd22bb7aa52 3 *
mbed_official 5:3762170b6d4d 4 * $Date: 19. March 2015
mbed_official 5:3762170b6d4d 5 * $Revision: V.1.4.5
emilmont 1:fdd22bb7aa52 6 *
emilmont 2:da51fb522205 7 * Project: CMSIS DSP Library
emilmont 2:da51fb522205 8 * Title: arm_conv_opt_q15.c
emilmont 1:fdd22bb7aa52 9 *
emilmont 2:da51fb522205 10 * Description: Convolution of Q15 sequences.
emilmont 1:fdd22bb7aa52 11 *
emilmont 1:fdd22bb7aa52 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emilmont 1:fdd22bb7aa52 13 *
mbed_official 3:7a284390b0ce 14 * Redistribution and use in source and binary forms, with or without
mbed_official 3:7a284390b0ce 15 * modification, are permitted provided that the following conditions
mbed_official 3:7a284390b0ce 16 * are met:
mbed_official 3:7a284390b0ce 17 * - Redistributions of source code must retain the above copyright
mbed_official 3:7a284390b0ce 18 * notice, this list of conditions and the following disclaimer.
mbed_official 3:7a284390b0ce 19 * - Redistributions in binary form must reproduce the above copyright
mbed_official 3:7a284390b0ce 20 * notice, this list of conditions and the following disclaimer in
mbed_official 3:7a284390b0ce 21 * the documentation and/or other materials provided with the
mbed_official 3:7a284390b0ce 22 * distribution.
mbed_official 3:7a284390b0ce 23 * - Neither the name of ARM LIMITED nor the names of its contributors
mbed_official 3:7a284390b0ce 24 * may be used to endorse or promote products derived from this
mbed_official 3:7a284390b0ce 25 * software without specific prior written permission.
mbed_official 3:7a284390b0ce 26 *
mbed_official 3:7a284390b0ce 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
mbed_official 3:7a284390b0ce 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
mbed_official 3:7a284390b0ce 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
mbed_official 3:7a284390b0ce 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
mbed_official 3:7a284390b0ce 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
mbed_official 3:7a284390b0ce 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
mbed_official 3:7a284390b0ce 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
mbed_official 3:7a284390b0ce 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
mbed_official 3:7a284390b0ce 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
mbed_official 3:7a284390b0ce 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
mbed_official 3:7a284390b0ce 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
mbed_official 3:7a284390b0ce 38 * POSSIBILITY OF SUCH DAMAGE.
emilmont 1:fdd22bb7aa52 39 * -------------------------------------------------------------------- */
emilmont 1:fdd22bb7aa52 40
emilmont 1:fdd22bb7aa52 41 #include "arm_math.h"
emilmont 1:fdd22bb7aa52 42
emilmont 1:fdd22bb7aa52 43 /**
emilmont 1:fdd22bb7aa52 44 * @ingroup groupFilters
emilmont 1:fdd22bb7aa52 45 */
emilmont 1:fdd22bb7aa52 46
emilmont 1:fdd22bb7aa52 47 /**
emilmont 1:fdd22bb7aa52 48 * @addtogroup Conv
emilmont 1:fdd22bb7aa52 49 * @{
emilmont 1:fdd22bb7aa52 50 */
emilmont 1:fdd22bb7aa52 51
emilmont 1:fdd22bb7aa52 52 /**
emilmont 1:fdd22bb7aa52 53 * @brief Convolution of Q15 sequences.
emilmont 1:fdd22bb7aa52 54 * @param[in] *pSrcA points to the first input sequence.
emilmont 1:fdd22bb7aa52 55 * @param[in] srcALen length of the first input sequence.
emilmont 1:fdd22bb7aa52 56 * @param[in] *pSrcB points to the second input sequence.
emilmont 1:fdd22bb7aa52 57 * @param[in] srcBLen length of the second input sequence.
emilmont 1:fdd22bb7aa52 58 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
emilmont 1:fdd22bb7aa52 59 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
emilmont 1:fdd22bb7aa52 60 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
emilmont 1:fdd22bb7aa52 61 * @return none.
emilmont 1:fdd22bb7aa52 62 *
emilmont 1:fdd22bb7aa52 63 * \par Restrictions
emilmont 1:fdd22bb7aa52 64 * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
emilmont 2:da51fb522205 65 * In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit
emilmont 1:fdd22bb7aa52 66 *
emilmont 1:fdd22bb7aa52 67 *
emilmont 1:fdd22bb7aa52 68 * @details
emilmont 1:fdd22bb7aa52 69 * <b>Scaling and Overflow Behavior:</b>
emilmont 1:fdd22bb7aa52 70 *
emilmont 1:fdd22bb7aa52 71 * \par
emilmont 1:fdd22bb7aa52 72 * The function is implemented using a 64-bit internal accumulator.
emilmont 1:fdd22bb7aa52 73 * Both inputs are in 1.15 format and multiplications yield a 2.30 result.
emilmont 1:fdd22bb7aa52 74 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
emilmont 1:fdd22bb7aa52 75 * This approach provides 33 guard bits and there is no risk of overflow.
emilmont 1:fdd22bb7aa52 76 * The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
emilmont 1:fdd22bb7aa52 77 *
emilmont 1:fdd22bb7aa52 78 *
emilmont 1:fdd22bb7aa52 79 * \par
emilmont 1:fdd22bb7aa52 80 * Refer to <code>arm_conv_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
emilmont 1:fdd22bb7aa52 81 *
emilmont 1:fdd22bb7aa52 82 *
emilmont 1:fdd22bb7aa52 83 */
emilmont 1:fdd22bb7aa52 84
emilmont 1:fdd22bb7aa52 85 void arm_conv_opt_q15(
emilmont 1:fdd22bb7aa52 86 q15_t * pSrcA,
emilmont 1:fdd22bb7aa52 87 uint32_t srcALen,
emilmont 1:fdd22bb7aa52 88 q15_t * pSrcB,
emilmont 1:fdd22bb7aa52 89 uint32_t srcBLen,
emilmont 1:fdd22bb7aa52 90 q15_t * pDst,
emilmont 1:fdd22bb7aa52 91 q15_t * pScratch1,
emilmont 1:fdd22bb7aa52 92 q15_t * pScratch2)
emilmont 1:fdd22bb7aa52 93 {
emilmont 1:fdd22bb7aa52 94 q63_t acc0, acc1, acc2, acc3; /* Accumulator */
emilmont 1:fdd22bb7aa52 95 q31_t x1, x2, x3; /* Temporary variables to hold state and coefficient values */
emilmont 1:fdd22bb7aa52 96 q31_t y1, y2; /* State variables */
emilmont 1:fdd22bb7aa52 97 q15_t *pOut = pDst; /* output pointer */
emilmont 1:fdd22bb7aa52 98 q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */
emilmont 1:fdd22bb7aa52 99 q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */
emilmont 1:fdd22bb7aa52 100 q15_t *pIn1; /* inputA pointer */
emilmont 1:fdd22bb7aa52 101 q15_t *pIn2; /* inputB pointer */
emilmont 1:fdd22bb7aa52 102 q15_t *px; /* Intermediate inputA pointer */
emilmont 1:fdd22bb7aa52 103 q15_t *py; /* Intermediate inputB pointer */
emilmont 1:fdd22bb7aa52 104 uint32_t j, k, blkCnt; /* loop counter */
emilmont 1:fdd22bb7aa52 105 uint32_t tapCnt; /* loop count */
emilmont 1:fdd22bb7aa52 106 #ifdef UNALIGNED_SUPPORT_DISABLE
emilmont 1:fdd22bb7aa52 107
emilmont 1:fdd22bb7aa52 108 q15_t a, b;
emilmont 1:fdd22bb7aa52 109
emilmont 2:da51fb522205 110 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
emilmont 1:fdd22bb7aa52 111
emilmont 1:fdd22bb7aa52 112 /* The algorithm implementation is based on the lengths of the inputs. */
emilmont 1:fdd22bb7aa52 113 /* srcB is always made to slide across srcA. */
emilmont 1:fdd22bb7aa52 114 /* So srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 115 if(srcALen >= srcBLen)
emilmont 1:fdd22bb7aa52 116 {
emilmont 1:fdd22bb7aa52 117 /* Initialization of inputA pointer */
emilmont 1:fdd22bb7aa52 118 pIn1 = pSrcA;
emilmont 1:fdd22bb7aa52 119
emilmont 1:fdd22bb7aa52 120 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 121 pIn2 = pSrcB;
emilmont 1:fdd22bb7aa52 122
emilmont 1:fdd22bb7aa52 123 }
emilmont 1:fdd22bb7aa52 124 else
emilmont 1:fdd22bb7aa52 125 {
emilmont 1:fdd22bb7aa52 126 /* Initialization of inputA pointer */
emilmont 1:fdd22bb7aa52 127 pIn1 = pSrcB;
emilmont 1:fdd22bb7aa52 128
emilmont 1:fdd22bb7aa52 129 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 130 pIn2 = pSrcA;
emilmont 1:fdd22bb7aa52 131
emilmont 1:fdd22bb7aa52 132 /* srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 133 j = srcBLen;
emilmont 1:fdd22bb7aa52 134 srcBLen = srcALen;
emilmont 1:fdd22bb7aa52 135 srcALen = j;
emilmont 1:fdd22bb7aa52 136 }
emilmont 1:fdd22bb7aa52 137
emilmont 1:fdd22bb7aa52 138 /* pointer to take end of scratch2 buffer */
emilmont 1:fdd22bb7aa52 139 pScr2 = pScratch2 + srcBLen - 1;
emilmont 1:fdd22bb7aa52 140
emilmont 1:fdd22bb7aa52 141 /* points to smaller length sequence */
emilmont 1:fdd22bb7aa52 142 px = pIn2;
emilmont 1:fdd22bb7aa52 143
emilmont 1:fdd22bb7aa52 144 /* Apply loop unrolling and do 4 Copies simultaneously. */
emilmont 1:fdd22bb7aa52 145 k = srcBLen >> 2u;
emilmont 1:fdd22bb7aa52 146
emilmont 1:fdd22bb7aa52 147 /* First part of the processing with loop unrolling copies 4 data points at a time.
emilmont 1:fdd22bb7aa52 148 ** a second loop below copies for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 149 /* Copy smaller length input sequence in reverse order into second scratch buffer */
emilmont 1:fdd22bb7aa52 150 while(k > 0u)
emilmont 1:fdd22bb7aa52 151 {
emilmont 1:fdd22bb7aa52 152 /* copy second buffer in reversal manner */
emilmont 1:fdd22bb7aa52 153 *pScr2-- = *px++;
emilmont 1:fdd22bb7aa52 154 *pScr2-- = *px++;
emilmont 1:fdd22bb7aa52 155 *pScr2-- = *px++;
emilmont 1:fdd22bb7aa52 156 *pScr2-- = *px++;
emilmont 1:fdd22bb7aa52 157
emilmont 1:fdd22bb7aa52 158 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 159 k--;
emilmont 1:fdd22bb7aa52 160 }
emilmont 1:fdd22bb7aa52 161
emilmont 1:fdd22bb7aa52 162 /* If the count is not a multiple of 4, copy remaining samples here.
emilmont 1:fdd22bb7aa52 163 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 164 k = srcBLen % 0x4u;
emilmont 1:fdd22bb7aa52 165
emilmont 1:fdd22bb7aa52 166 while(k > 0u)
emilmont 1:fdd22bb7aa52 167 {
emilmont 1:fdd22bb7aa52 168 /* copy second buffer in reversal manner for remaining samples */
emilmont 1:fdd22bb7aa52 169 *pScr2-- = *px++;
emilmont 1:fdd22bb7aa52 170
emilmont 1:fdd22bb7aa52 171 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 172 k--;
emilmont 1:fdd22bb7aa52 173 }
emilmont 1:fdd22bb7aa52 174
emilmont 1:fdd22bb7aa52 175 /* Initialze temporary scratch pointer */
emilmont 1:fdd22bb7aa52 176 pScr1 = pScratch1;
emilmont 1:fdd22bb7aa52 177
emilmont 1:fdd22bb7aa52 178 /* Assuming scratch1 buffer is aligned by 32-bit */
emilmont 1:fdd22bb7aa52 179 /* Fill (srcBLen - 1u) zeros in scratch buffer */
emilmont 1:fdd22bb7aa52 180 arm_fill_q15(0, pScr1, (srcBLen - 1u));
emilmont 1:fdd22bb7aa52 181
emilmont 1:fdd22bb7aa52 182 /* Update temporary scratch pointer */
emilmont 1:fdd22bb7aa52 183 pScr1 += (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 184
emilmont 1:fdd22bb7aa52 185 /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */
emilmont 1:fdd22bb7aa52 186
emilmont 1:fdd22bb7aa52 187 #ifndef UNALIGNED_SUPPORT_DISABLE
emilmont 1:fdd22bb7aa52 188
emilmont 1:fdd22bb7aa52 189 /* Copy (srcALen) samples in scratch buffer */
emilmont 1:fdd22bb7aa52 190 arm_copy_q15(pIn1, pScr1, srcALen);
emilmont 1:fdd22bb7aa52 191
emilmont 1:fdd22bb7aa52 192 /* Update pointers */
emilmont 1:fdd22bb7aa52 193 pScr1 += srcALen;
emilmont 1:fdd22bb7aa52 194
emilmont 1:fdd22bb7aa52 195 #else
emilmont 1:fdd22bb7aa52 196
emilmont 1:fdd22bb7aa52 197 /* Apply loop unrolling and do 4 Copies simultaneously. */
emilmont 1:fdd22bb7aa52 198 k = srcALen >> 2u;
emilmont 1:fdd22bb7aa52 199
emilmont 1:fdd22bb7aa52 200 /* First part of the processing with loop unrolling copies 4 data points at a time.
emilmont 1:fdd22bb7aa52 201 ** a second loop below copies for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 202 while(k > 0u)
emilmont 1:fdd22bb7aa52 203 {
emilmont 1:fdd22bb7aa52 204 /* copy second buffer in reversal manner */
emilmont 1:fdd22bb7aa52 205 *pScr1++ = *pIn1++;
emilmont 1:fdd22bb7aa52 206 *pScr1++ = *pIn1++;
emilmont 1:fdd22bb7aa52 207 *pScr1++ = *pIn1++;
emilmont 1:fdd22bb7aa52 208 *pScr1++ = *pIn1++;
emilmont 1:fdd22bb7aa52 209
emilmont 1:fdd22bb7aa52 210 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 211 k--;
emilmont 1:fdd22bb7aa52 212 }
emilmont 1:fdd22bb7aa52 213
emilmont 1:fdd22bb7aa52 214 /* If the count is not a multiple of 4, copy remaining samples here.
emilmont 1:fdd22bb7aa52 215 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 216 k = srcALen % 0x4u;
emilmont 1:fdd22bb7aa52 217
emilmont 1:fdd22bb7aa52 218 while(k > 0u)
emilmont 1:fdd22bb7aa52 219 {
emilmont 1:fdd22bb7aa52 220 /* copy second buffer in reversal manner for remaining samples */
emilmont 1:fdd22bb7aa52 221 *pScr1++ = *pIn1++;
emilmont 1:fdd22bb7aa52 222
emilmont 1:fdd22bb7aa52 223 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 224 k--;
emilmont 1:fdd22bb7aa52 225 }
emilmont 1:fdd22bb7aa52 226
emilmont 1:fdd22bb7aa52 227 #endif
emilmont 1:fdd22bb7aa52 228
emilmont 1:fdd22bb7aa52 229
emilmont 1:fdd22bb7aa52 230 #ifndef UNALIGNED_SUPPORT_DISABLE
emilmont 1:fdd22bb7aa52 231
emilmont 1:fdd22bb7aa52 232 /* Fill (srcBLen - 1u) zeros at end of scratch buffer */
emilmont 1:fdd22bb7aa52 233 arm_fill_q15(0, pScr1, (srcBLen - 1u));
emilmont 1:fdd22bb7aa52 234
emilmont 1:fdd22bb7aa52 235 /* Update pointer */
emilmont 1:fdd22bb7aa52 236 pScr1 += (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 237
emilmont 1:fdd22bb7aa52 238 #else
emilmont 1:fdd22bb7aa52 239
emilmont 1:fdd22bb7aa52 240 /* Apply loop unrolling and do 4 Copies simultaneously. */
emilmont 1:fdd22bb7aa52 241 k = (srcBLen - 1u) >> 2u;
emilmont 1:fdd22bb7aa52 242
emilmont 1:fdd22bb7aa52 243 /* First part of the processing with loop unrolling copies 4 data points at a time.
emilmont 1:fdd22bb7aa52 244 ** a second loop below copies for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 245 while(k > 0u)
emilmont 1:fdd22bb7aa52 246 {
emilmont 1:fdd22bb7aa52 247 /* copy second buffer in reversal manner */
emilmont 1:fdd22bb7aa52 248 *pScr1++ = 0;
emilmont 1:fdd22bb7aa52 249 *pScr1++ = 0;
emilmont 1:fdd22bb7aa52 250 *pScr1++ = 0;
emilmont 1:fdd22bb7aa52 251 *pScr1++ = 0;
emilmont 1:fdd22bb7aa52 252
emilmont 1:fdd22bb7aa52 253 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 254 k--;
emilmont 1:fdd22bb7aa52 255 }
emilmont 1:fdd22bb7aa52 256
emilmont 1:fdd22bb7aa52 257 /* If the count is not a multiple of 4, copy remaining samples here.
emilmont 1:fdd22bb7aa52 258 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 259 k = (srcBLen - 1u) % 0x4u;
emilmont 1:fdd22bb7aa52 260
emilmont 1:fdd22bb7aa52 261 while(k > 0u)
emilmont 1:fdd22bb7aa52 262 {
emilmont 1:fdd22bb7aa52 263 /* copy second buffer in reversal manner for remaining samples */
emilmont 1:fdd22bb7aa52 264 *pScr1++ = 0;
emilmont 1:fdd22bb7aa52 265
emilmont 1:fdd22bb7aa52 266 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 267 k--;
emilmont 1:fdd22bb7aa52 268 }
emilmont 1:fdd22bb7aa52 269
emilmont 1:fdd22bb7aa52 270 #endif
emilmont 1:fdd22bb7aa52 271
emilmont 1:fdd22bb7aa52 272 /* Temporary pointer for scratch2 */
emilmont 1:fdd22bb7aa52 273 py = pScratch2;
emilmont 1:fdd22bb7aa52 274
emilmont 1:fdd22bb7aa52 275
emilmont 1:fdd22bb7aa52 276 /* Initialization of pIn2 pointer */
emilmont 1:fdd22bb7aa52 277 pIn2 = py;
emilmont 1:fdd22bb7aa52 278
emilmont 1:fdd22bb7aa52 279 /* First part of the processing with loop unrolling process 4 data points at a time.
emilmont 1:fdd22bb7aa52 280 ** a second loop below process for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 281
emilmont 1:fdd22bb7aa52 282 /* Actual convolution process starts here */
emilmont 1:fdd22bb7aa52 283 blkCnt = (srcALen + srcBLen - 1u) >> 2;
emilmont 1:fdd22bb7aa52 284
emilmont 1:fdd22bb7aa52 285 while(blkCnt > 0)
emilmont 1:fdd22bb7aa52 286 {
emilmont 1:fdd22bb7aa52 287 /* Initialze temporary scratch pointer as scratch1 */
emilmont 1:fdd22bb7aa52 288 pScr1 = pScratch1;
emilmont 1:fdd22bb7aa52 289
emilmont 1:fdd22bb7aa52 290 /* Clear Accumlators */
emilmont 1:fdd22bb7aa52 291 acc0 = 0;
emilmont 1:fdd22bb7aa52 292 acc1 = 0;
emilmont 1:fdd22bb7aa52 293 acc2 = 0;
emilmont 1:fdd22bb7aa52 294 acc3 = 0;
emilmont 1:fdd22bb7aa52 295
emilmont 1:fdd22bb7aa52 296 /* Read two samples from scratch1 buffer */
emilmont 1:fdd22bb7aa52 297 x1 = *__SIMD32(pScr1)++;
emilmont 1:fdd22bb7aa52 298
emilmont 1:fdd22bb7aa52 299 /* Read next two samples from scratch1 buffer */
emilmont 1:fdd22bb7aa52 300 x2 = *__SIMD32(pScr1)++;
emilmont 1:fdd22bb7aa52 301
emilmont 1:fdd22bb7aa52 302 tapCnt = (srcBLen) >> 2u;
emilmont 1:fdd22bb7aa52 303
emilmont 1:fdd22bb7aa52 304 while(tapCnt > 0u)
emilmont 1:fdd22bb7aa52 305 {
emilmont 1:fdd22bb7aa52 306
emilmont 1:fdd22bb7aa52 307 #ifndef UNALIGNED_SUPPORT_DISABLE
emilmont 1:fdd22bb7aa52 308
emilmont 1:fdd22bb7aa52 309 /* Read four samples from smaller buffer */
emilmont 1:fdd22bb7aa52 310 y1 = _SIMD32_OFFSET(pIn2);
emilmont 1:fdd22bb7aa52 311 y2 = _SIMD32_OFFSET(pIn2 + 2u);
emilmont 1:fdd22bb7aa52 312
emilmont 1:fdd22bb7aa52 313 /* multiply and accumlate */
emilmont 1:fdd22bb7aa52 314 acc0 = __SMLALD(x1, y1, acc0);
emilmont 1:fdd22bb7aa52 315 acc2 = __SMLALD(x2, y1, acc2);
emilmont 1:fdd22bb7aa52 316
emilmont 1:fdd22bb7aa52 317 /* pack input data */
emilmont 1:fdd22bb7aa52 318 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 319 x3 = __PKHBT(x2, x1, 0);
emilmont 1:fdd22bb7aa52 320 #else
emilmont 1:fdd22bb7aa52 321 x3 = __PKHBT(x1, x2, 0);
emilmont 1:fdd22bb7aa52 322 #endif
emilmont 1:fdd22bb7aa52 323
emilmont 1:fdd22bb7aa52 324 /* multiply and accumlate */
emilmont 1:fdd22bb7aa52 325 acc1 = __SMLALDX(x3, y1, acc1);
emilmont 1:fdd22bb7aa52 326
emilmont 1:fdd22bb7aa52 327 /* Read next two samples from scratch1 buffer */
emilmont 1:fdd22bb7aa52 328 x1 = _SIMD32_OFFSET(pScr1);
emilmont 1:fdd22bb7aa52 329
emilmont 1:fdd22bb7aa52 330 /* multiply and accumlate */
emilmont 1:fdd22bb7aa52 331 acc0 = __SMLALD(x2, y2, acc0);
emilmont 1:fdd22bb7aa52 332 acc2 = __SMLALD(x1, y2, acc2);
emilmont 1:fdd22bb7aa52 333
emilmont 1:fdd22bb7aa52 334 /* pack input data */
emilmont 1:fdd22bb7aa52 335 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 336 x3 = __PKHBT(x1, x2, 0);
emilmont 1:fdd22bb7aa52 337 #else
emilmont 1:fdd22bb7aa52 338 x3 = __PKHBT(x2, x1, 0);
emilmont 1:fdd22bb7aa52 339 #endif
emilmont 1:fdd22bb7aa52 340
emilmont 1:fdd22bb7aa52 341 acc3 = __SMLALDX(x3, y1, acc3);
emilmont 1:fdd22bb7aa52 342 acc1 = __SMLALDX(x3, y2, acc1);
emilmont 1:fdd22bb7aa52 343
emilmont 1:fdd22bb7aa52 344 x2 = _SIMD32_OFFSET(pScr1 + 2u);
emilmont 1:fdd22bb7aa52 345
emilmont 1:fdd22bb7aa52 346 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 347 x3 = __PKHBT(x2, x1, 0);
emilmont 1:fdd22bb7aa52 348 #else
emilmont 1:fdd22bb7aa52 349 x3 = __PKHBT(x1, x2, 0);
emilmont 1:fdd22bb7aa52 350 #endif
emilmont 1:fdd22bb7aa52 351
emilmont 1:fdd22bb7aa52 352 acc3 = __SMLALDX(x3, y2, acc3);
emilmont 1:fdd22bb7aa52 353
emilmont 2:da51fb522205 354 #else
emilmont 1:fdd22bb7aa52 355
emilmont 1:fdd22bb7aa52 356 /* Read four samples from smaller buffer */
emilmont 2:da51fb522205 357 a = *pIn2;
emilmont 2:da51fb522205 358 b = *(pIn2 + 1);
emilmont 1:fdd22bb7aa52 359
emilmont 1:fdd22bb7aa52 360 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 361 y1 = __PKHBT(a, b, 16);
emilmont 1:fdd22bb7aa52 362 #else
emilmont 1:fdd22bb7aa52 363 y1 = __PKHBT(b, a, 16);
emilmont 1:fdd22bb7aa52 364 #endif
emilmont 2:da51fb522205 365
emilmont 2:da51fb522205 366 a = *(pIn2 + 2);
emilmont 2:da51fb522205 367 b = *(pIn2 + 3);
emilmont 1:fdd22bb7aa52 368 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 369 y2 = __PKHBT(a, b, 16);
emilmont 1:fdd22bb7aa52 370 #else
emilmont 1:fdd22bb7aa52 371 y2 = __PKHBT(b, a, 16);
emilmont 2:da51fb522205 372 #endif
emilmont 1:fdd22bb7aa52 373
emilmont 1:fdd22bb7aa52 374 acc0 = __SMLALD(x1, y1, acc0);
emilmont 1:fdd22bb7aa52 375
emilmont 1:fdd22bb7aa52 376 acc2 = __SMLALD(x2, y1, acc2);
emilmont 1:fdd22bb7aa52 377
emilmont 1:fdd22bb7aa52 378 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 379 x3 = __PKHBT(x2, x1, 0);
emilmont 1:fdd22bb7aa52 380 #else
emilmont 1:fdd22bb7aa52 381 x3 = __PKHBT(x1, x2, 0);
emilmont 1:fdd22bb7aa52 382 #endif
emilmont 1:fdd22bb7aa52 383
emilmont 1:fdd22bb7aa52 384 acc1 = __SMLALDX(x3, y1, acc1);
emilmont 1:fdd22bb7aa52 385
emilmont 2:da51fb522205 386 a = *pScr1;
emilmont 2:da51fb522205 387 b = *(pScr1 + 1);
emilmont 1:fdd22bb7aa52 388
emilmont 1:fdd22bb7aa52 389 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 390 x1 = __PKHBT(a, b, 16);
emilmont 1:fdd22bb7aa52 391 #else
emilmont 1:fdd22bb7aa52 392 x1 = __PKHBT(b, a, 16);
emilmont 1:fdd22bb7aa52 393 #endif
emilmont 1:fdd22bb7aa52 394
emilmont 1:fdd22bb7aa52 395 acc0 = __SMLALD(x2, y2, acc0);
emilmont 1:fdd22bb7aa52 396
emilmont 1:fdd22bb7aa52 397 acc2 = __SMLALD(x1, y2, acc2);
emilmont 1:fdd22bb7aa52 398
emilmont 1:fdd22bb7aa52 399 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 400 x3 = __PKHBT(x1, x2, 0);
emilmont 1:fdd22bb7aa52 401 #else
emilmont 1:fdd22bb7aa52 402 x3 = __PKHBT(x2, x1, 0);
emilmont 1:fdd22bb7aa52 403 #endif
emilmont 1:fdd22bb7aa52 404
emilmont 1:fdd22bb7aa52 405 acc3 = __SMLALDX(x3, y1, acc3);
emilmont 1:fdd22bb7aa52 406
emilmont 1:fdd22bb7aa52 407 acc1 = __SMLALDX(x3, y2, acc1);
emilmont 1:fdd22bb7aa52 408
emilmont 2:da51fb522205 409 a = *(pScr1 + 2);
emilmont 2:da51fb522205 410 b = *(pScr1 + 3);
emilmont 1:fdd22bb7aa52 411
emilmont 1:fdd22bb7aa52 412 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 413 x2 = __PKHBT(a, b, 16);
emilmont 1:fdd22bb7aa52 414 #else
emilmont 1:fdd22bb7aa52 415 x2 = __PKHBT(b, a, 16);
emilmont 1:fdd22bb7aa52 416 #endif
emilmont 1:fdd22bb7aa52 417
emilmont 1:fdd22bb7aa52 418 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 419 x3 = __PKHBT(x2, x1, 0);
emilmont 1:fdd22bb7aa52 420 #else
emilmont 1:fdd22bb7aa52 421 x3 = __PKHBT(x1, x2, 0);
emilmont 1:fdd22bb7aa52 422 #endif
emilmont 1:fdd22bb7aa52 423
emilmont 1:fdd22bb7aa52 424 acc3 = __SMLALDX(x3, y2, acc3);
emilmont 1:fdd22bb7aa52 425
emilmont 2:da51fb522205 426 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
emilmont 1:fdd22bb7aa52 427
emilmont 1:fdd22bb7aa52 428 pIn2 += 4u;
emilmont 1:fdd22bb7aa52 429 pScr1 += 4u;
emilmont 1:fdd22bb7aa52 430
emilmont 1:fdd22bb7aa52 431
emilmont 1:fdd22bb7aa52 432 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 433 tapCnt--;
emilmont 1:fdd22bb7aa52 434 }
emilmont 1:fdd22bb7aa52 435
emilmont 1:fdd22bb7aa52 436 /* Update scratch pointer for remaining samples of smaller length sequence */
emilmont 1:fdd22bb7aa52 437 pScr1 -= 4u;
emilmont 1:fdd22bb7aa52 438
emilmont 1:fdd22bb7aa52 439 /* apply same above for remaining samples of smaller length sequence */
emilmont 1:fdd22bb7aa52 440 tapCnt = (srcBLen) & 3u;
emilmont 1:fdd22bb7aa52 441
emilmont 1:fdd22bb7aa52 442 while(tapCnt > 0u)
emilmont 1:fdd22bb7aa52 443 {
emilmont 1:fdd22bb7aa52 444
emilmont 1:fdd22bb7aa52 445 /* accumlate the results */
emilmont 1:fdd22bb7aa52 446 acc0 += (*pScr1++ * *pIn2);
emilmont 1:fdd22bb7aa52 447 acc1 += (*pScr1++ * *pIn2);
emilmont 1:fdd22bb7aa52 448 acc2 += (*pScr1++ * *pIn2);
emilmont 1:fdd22bb7aa52 449 acc3 += (*pScr1++ * *pIn2++);
emilmont 1:fdd22bb7aa52 450
emilmont 1:fdd22bb7aa52 451 pScr1 -= 3u;
emilmont 1:fdd22bb7aa52 452
emilmont 1:fdd22bb7aa52 453 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 454 tapCnt--;
emilmont 1:fdd22bb7aa52 455 }
emilmont 1:fdd22bb7aa52 456
emilmont 1:fdd22bb7aa52 457 blkCnt--;
emilmont 1:fdd22bb7aa52 458
emilmont 1:fdd22bb7aa52 459
emilmont 1:fdd22bb7aa52 460 /* Store the results in the accumulators in the destination buffer. */
emilmont 1:fdd22bb7aa52 461
emilmont 1:fdd22bb7aa52 462 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 463
emilmont 1:fdd22bb7aa52 464 *__SIMD32(pOut)++ =
emilmont 1:fdd22bb7aa52 465 __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
emilmont 1:fdd22bb7aa52 466
emilmont 1:fdd22bb7aa52 467 *__SIMD32(pOut)++ =
emilmont 1:fdd22bb7aa52 468 __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
emilmont 1:fdd22bb7aa52 469
emilmont 1:fdd22bb7aa52 470 #else
emilmont 1:fdd22bb7aa52 471
emilmont 1:fdd22bb7aa52 472 *__SIMD32(pOut)++ =
emilmont 1:fdd22bb7aa52 473 __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
emilmont 1:fdd22bb7aa52 474
emilmont 1:fdd22bb7aa52 475 *__SIMD32(pOut)++ =
emilmont 1:fdd22bb7aa52 476 __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
emilmont 1:fdd22bb7aa52 477
emilmont 1:fdd22bb7aa52 478
emilmont 1:fdd22bb7aa52 479 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 480
emilmont 1:fdd22bb7aa52 481 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 482 pIn2 = py;
emilmont 1:fdd22bb7aa52 483
emilmont 1:fdd22bb7aa52 484 pScratch1 += 4u;
emilmont 1:fdd22bb7aa52 485
emilmont 1:fdd22bb7aa52 486 }
emilmont 1:fdd22bb7aa52 487
emilmont 1:fdd22bb7aa52 488
emilmont 1:fdd22bb7aa52 489 blkCnt = (srcALen + srcBLen - 1u) & 0x3;
emilmont 1:fdd22bb7aa52 490
emilmont 1:fdd22bb7aa52 491 /* Calculate convolution for remaining samples of Bigger length sequence */
emilmont 1:fdd22bb7aa52 492 while(blkCnt > 0)
emilmont 1:fdd22bb7aa52 493 {
emilmont 1:fdd22bb7aa52 494 /* Initialze temporary scratch pointer as scratch1 */
emilmont 1:fdd22bb7aa52 495 pScr1 = pScratch1;
emilmont 1:fdd22bb7aa52 496
emilmont 1:fdd22bb7aa52 497 /* Clear Accumlators */
emilmont 1:fdd22bb7aa52 498 acc0 = 0;
emilmont 1:fdd22bb7aa52 499
emilmont 1:fdd22bb7aa52 500 tapCnt = (srcBLen) >> 1u;
emilmont 1:fdd22bb7aa52 501
emilmont 1:fdd22bb7aa52 502 while(tapCnt > 0u)
emilmont 1:fdd22bb7aa52 503 {
emilmont 1:fdd22bb7aa52 504
emilmont 1:fdd22bb7aa52 505 /* Read next two samples from scratch1 buffer */
emilmont 1:fdd22bb7aa52 506 acc0 += (*pScr1++ * *pIn2++);
emilmont 1:fdd22bb7aa52 507 acc0 += (*pScr1++ * *pIn2++);
emilmont 1:fdd22bb7aa52 508
emilmont 1:fdd22bb7aa52 509 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 510 tapCnt--;
emilmont 1:fdd22bb7aa52 511 }
emilmont 1:fdd22bb7aa52 512
emilmont 1:fdd22bb7aa52 513 tapCnt = (srcBLen) & 1u;
emilmont 1:fdd22bb7aa52 514
emilmont 1:fdd22bb7aa52 515 /* apply same above for remaining samples of smaller length sequence */
emilmont 1:fdd22bb7aa52 516 while(tapCnt > 0u)
emilmont 1:fdd22bb7aa52 517 {
emilmont 1:fdd22bb7aa52 518
emilmont 1:fdd22bb7aa52 519 /* accumlate the results */
emilmont 1:fdd22bb7aa52 520 acc0 += (*pScr1++ * *pIn2++);
emilmont 1:fdd22bb7aa52 521
emilmont 1:fdd22bb7aa52 522 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 523 tapCnt--;
emilmont 1:fdd22bb7aa52 524 }
emilmont 1:fdd22bb7aa52 525
emilmont 1:fdd22bb7aa52 526 blkCnt--;
emilmont 1:fdd22bb7aa52 527
emilmont 1:fdd22bb7aa52 528 /* The result is in 2.30 format. Convert to 1.15 with saturation.
emilmont 1:fdd22bb7aa52 529 ** Then store the output in the destination buffer. */
emilmont 1:fdd22bb7aa52 530 *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));
emilmont 1:fdd22bb7aa52 531
emilmont 1:fdd22bb7aa52 532
emilmont 1:fdd22bb7aa52 533 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 534 pIn2 = py;
emilmont 1:fdd22bb7aa52 535
emilmont 1:fdd22bb7aa52 536 pScratch1 += 1u;
emilmont 1:fdd22bb7aa52 537
emilmont 1:fdd22bb7aa52 538 }
emilmont 1:fdd22bb7aa52 539
emilmont 1:fdd22bb7aa52 540 }
emilmont 1:fdd22bb7aa52 541
emilmont 1:fdd22bb7aa52 542
emilmont 1:fdd22bb7aa52 543 /**
emilmont 1:fdd22bb7aa52 544 * @} end of Conv group
emilmont 1:fdd22bb7aa52 545 */