CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

cmsis_dsp/FilteringFunctions/arm_conv_opt_q15.c

Committer:
mbed_official
Date:
2015-11-20
Revision:
5:3762170b6d4d
Parent:
3:7a284390b0ce

File content as of revision 5:3762170b6d4d:

/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015
* $Revision: 	V.1.4.5
*    
* Project: 	    CMSIS DSP Library    
* Title:		arm_conv_opt_q15.c    
*    
* Description:	Convolution of Q15 sequences.      
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.   
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupFilters    
 */

/**    
 * @addtogroup Conv    
 * @{    
 */

/**    
 * @brief Convolution of Q15 sequences.    
 * @param[in] *pSrcA points to the first input sequence.    
 * @param[in] srcALen length of the first input sequence.    
 * @param[in] *pSrcB points to the second input sequence.    
 * @param[in] srcBLen length of the second input sequence.    
 * @param[out] *pDst points to the location where the output result is written.  Length srcALen+srcBLen-1.    
 * @param[in]  *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.    
 * @param[in]  *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).    
 * @return none.    
 *    
 * \par Restrictions    
 *  If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE    
 *	In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit    
 *    
 *       
 * @details    
 * <b>Scaling and Overflow Behavior:</b>    
 *    
 * \par    
 * The function is implemented using a 64-bit internal accumulator.    
 * Both inputs are in 1.15 format and multiplications yield a 2.30 result.    
 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.    
 * This approach provides 33 guard bits and there is no risk of overflow.    
 * The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.    
 *  
 *   
 * \par    
 * Refer to <code>arm_conv_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.     
 * 
 *  
 */

void arm_conv_opt_q15(
  q15_t * pSrcA,
  uint32_t srcALen,
  q15_t * pSrcB,
  uint32_t srcBLen,
  q15_t * pDst,
  q15_t * pScratch1,
  q15_t * pScratch2)
{
  q63_t acc0, acc1, acc2, acc3;                  /* Accumulator */
  q31_t x1, x2, x3;                              /* Temporary variables to hold state and coefficient values */
  q31_t y1, y2;                                  /* State variables */
  q15_t *pOut = pDst;                            /* output pointer */
  q15_t *pScr1 = pScratch1;                      /* Temporary pointer for scratch1 */
  q15_t *pScr2 = pScratch2;                      /* Temporary pointer for scratch1 */
  q15_t *pIn1;                                   /* inputA pointer */
  q15_t *pIn2;                                   /* inputB pointer */
  q15_t *px;                                     /* Intermediate inputA pointer  */
  q15_t *py;                                     /* Intermediate inputB pointer  */
  uint32_t j, k, blkCnt;                         /* loop counter */
  uint32_t tapCnt;                               /* loop count */
#ifdef UNALIGNED_SUPPORT_DISABLE

  q15_t a, b;

#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/

  /* The algorithm implementation is based on the lengths of the inputs. */
  /* srcB is always made to slide across srcA. */
  /* So srcBLen is always considered as shorter or equal to srcALen */
  if(srcALen >= srcBLen)
  {
    /* Initialization of inputA pointer */
    pIn1 = pSrcA;

    /* Initialization of inputB pointer */
    pIn2 = pSrcB;

  }
  else
  {
    /* Initialization of inputA pointer */
    pIn1 = pSrcB;

    /* Initialization of inputB pointer */
    pIn2 = pSrcA;

    /* srcBLen is always considered as shorter or equal to srcALen */
    j = srcBLen;
    srcBLen = srcALen;
    srcALen = j;
  }

  /* pointer to take end of scratch2 buffer */
  pScr2 = pScratch2 + srcBLen - 1;

  /* points to smaller length sequence */
  px = pIn2;

  /* Apply loop unrolling and do 4 Copies simultaneously. */
  k = srcBLen >> 2u;

  /* First part of the processing with loop unrolling copies 4 data points at a time.       
   ** a second loop below copies for the remaining 1 to 3 samples. */
  /* Copy smaller length input sequence in reverse order into second scratch buffer */
  while(k > 0u)
  {
    /* copy second buffer in reversal manner */
    *pScr2-- = *px++;
    *pScr2-- = *px++;
    *pScr2-- = *px++;
    *pScr2-- = *px++;

    /* Decrement the loop counter */
    k--;
  }

  /* If the count is not a multiple of 4, copy remaining samples here.       
   ** No loop unrolling is used. */
  k = srcBLen % 0x4u;

  while(k > 0u)
  {
    /* copy second buffer in reversal manner for remaining samples */
    *pScr2-- = *px++;

    /* Decrement the loop counter */
    k--;
  }

  /* Initialze temporary scratch pointer */
  pScr1 = pScratch1;

  /* Assuming scratch1 buffer is aligned by 32-bit */
  /* Fill (srcBLen - 1u) zeros in scratch buffer */
  arm_fill_q15(0, pScr1, (srcBLen - 1u));

  /* Update temporary scratch pointer */
  pScr1 += (srcBLen - 1u);

  /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */

#ifndef UNALIGNED_SUPPORT_DISABLE

  /* Copy (srcALen) samples in scratch buffer */
  arm_copy_q15(pIn1, pScr1, srcALen);

  /* Update pointers */
  pScr1 += srcALen;

#else

  /* Apply loop unrolling and do 4 Copies simultaneously. */
  k = srcALen >> 2u;

  /* First part of the processing with loop unrolling copies 4 data points at a time.       
   ** a second loop below copies for the remaining 1 to 3 samples. */
  while(k > 0u)
  {
    /* copy second buffer in reversal manner */
    *pScr1++ = *pIn1++;
    *pScr1++ = *pIn1++;
    *pScr1++ = *pIn1++;
    *pScr1++ = *pIn1++;

    /* Decrement the loop counter */
    k--;
  }

  /* If the count is not a multiple of 4, copy remaining samples here.       
   ** No loop unrolling is used. */
  k = srcALen % 0x4u;

  while(k > 0u)
  {
    /* copy second buffer in reversal manner for remaining samples */
    *pScr1++ = *pIn1++;

    /* Decrement the loop counter */
    k--;
  }

#endif


#ifndef UNALIGNED_SUPPORT_DISABLE

  /* Fill (srcBLen - 1u) zeros at end of scratch buffer */
  arm_fill_q15(0, pScr1, (srcBLen - 1u));

  /* Update pointer */
  pScr1 += (srcBLen - 1u);

#else

  /* Apply loop unrolling and do 4 Copies simultaneously. */
  k = (srcBLen - 1u) >> 2u;

  /* First part of the processing with loop unrolling copies 4 data points at a time.       
   ** a second loop below copies for the remaining 1 to 3 samples. */
  while(k > 0u)
  {
    /* copy second buffer in reversal manner */
    *pScr1++ = 0;
    *pScr1++ = 0;
    *pScr1++ = 0;
    *pScr1++ = 0;

    /* Decrement the loop counter */
    k--;
  }

  /* If the count is not a multiple of 4, copy remaining samples here.       
   ** No loop unrolling is used. */
  k = (srcBLen - 1u) % 0x4u;

  while(k > 0u)
  {
    /* copy second buffer in reversal manner for remaining samples */
    *pScr1++ = 0;

    /* Decrement the loop counter */
    k--;
  }

#endif

  /* Temporary pointer for scratch2 */
  py = pScratch2;


  /* Initialization of pIn2 pointer */
  pIn2 = py;

  /* First part of the processing with loop unrolling process 4 data points at a time.       
   ** a second loop below process for the remaining 1 to 3 samples. */

  /* Actual convolution process starts here */
  blkCnt = (srcALen + srcBLen - 1u) >> 2;

  while(blkCnt > 0)
  {
    /* Initialze temporary scratch pointer as scratch1 */
    pScr1 = pScratch1;

    /* Clear Accumlators */
    acc0 = 0;
    acc1 = 0;
    acc2 = 0;
    acc3 = 0;

    /* Read two samples from scratch1 buffer */
    x1 = *__SIMD32(pScr1)++;

    /* Read next two samples from scratch1 buffer */
    x2 = *__SIMD32(pScr1)++;

    tapCnt = (srcBLen) >> 2u;

    while(tapCnt > 0u)
    {

#ifndef UNALIGNED_SUPPORT_DISABLE

      /* Read four samples from smaller buffer */
      y1 = _SIMD32_OFFSET(pIn2);
      y2 = _SIMD32_OFFSET(pIn2 + 2u);

      /* multiply and accumlate */
      acc0 = __SMLALD(x1, y1, acc0);
      acc2 = __SMLALD(x2, y1, acc2);

      /* pack input data */
#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x2, x1, 0);
#else
      x3 = __PKHBT(x1, x2, 0);
#endif

      /* multiply and accumlate */
      acc1 = __SMLALDX(x3, y1, acc1);

      /* Read next two samples from scratch1 buffer */
      x1 = _SIMD32_OFFSET(pScr1);

      /* multiply and accumlate */
      acc0 = __SMLALD(x2, y2, acc0);
      acc2 = __SMLALD(x1, y2, acc2);

      /* pack input data */
#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x1, x2, 0);
#else
      x3 = __PKHBT(x2, x1, 0);
#endif

      acc3 = __SMLALDX(x3, y1, acc3);
      acc1 = __SMLALDX(x3, y2, acc1);

      x2 = _SIMD32_OFFSET(pScr1 + 2u);

#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x2, x1, 0);
#else
      x3 = __PKHBT(x1, x2, 0);
#endif

      acc3 = __SMLALDX(x3, y2, acc3);

#else	 

      /* Read four samples from smaller buffer */
	  a = *pIn2;
	  b = *(pIn2 + 1);

#ifndef ARM_MATH_BIG_ENDIAN
      y1 = __PKHBT(a, b, 16);
#else
      y1 = __PKHBT(b, a, 16);
#endif
	  
	  a = *(pIn2 + 2);
	  b = *(pIn2 + 3);
#ifndef ARM_MATH_BIG_ENDIAN
      y2 = __PKHBT(a, b, 16);
#else
      y2 = __PKHBT(b, a, 16);
#endif				

      acc0 = __SMLALD(x1, y1, acc0);

      acc2 = __SMLALD(x2, y1, acc2);

#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x2, x1, 0);
#else
      x3 = __PKHBT(x1, x2, 0);
#endif

      acc1 = __SMLALDX(x3, y1, acc1);

	  a = *pScr1;
	  b = *(pScr1 + 1);

#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(a, b, 16);
#else
      x1 = __PKHBT(b, a, 16);
#endif

      acc0 = __SMLALD(x2, y2, acc0);

      acc2 = __SMLALD(x1, y2, acc2);

#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x1, x2, 0);
#else
      x3 = __PKHBT(x2, x1, 0);
#endif

      acc3 = __SMLALDX(x3, y1, acc3);

      acc1 = __SMLALDX(x3, y2, acc1);

	  a = *(pScr1 + 2);
	  b = *(pScr1 + 3);

#ifndef ARM_MATH_BIG_ENDIAN
      x2 = __PKHBT(a, b, 16);
#else
      x2 = __PKHBT(b, a, 16);
#endif

#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x2, x1, 0);
#else
      x3 = __PKHBT(x1, x2, 0);
#endif

      acc3 = __SMLALDX(x3, y2, acc3);

#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/

      pIn2 += 4u;
      pScr1 += 4u;


      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Update scratch pointer for remaining samples of smaller length sequence */
    pScr1 -= 4u;

    /* apply same above for remaining samples of smaller length sequence */
    tapCnt = (srcBLen) & 3u;

    while(tapCnt > 0u)
    {

      /* accumlate the results */
      acc0 += (*pScr1++ * *pIn2);
      acc1 += (*pScr1++ * *pIn2);
      acc2 += (*pScr1++ * *pIn2);
      acc3 += (*pScr1++ * *pIn2++);

      pScr1 -= 3u;

      /* Decrement the loop counter */
      tapCnt--;
    }

    blkCnt--;


    /* Store the results in the accumulators in the destination buffer. */

#ifndef ARM_MATH_BIG_ENDIAN

    *__SIMD32(pOut)++ =
      __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);

    *__SIMD32(pOut)++ =
      __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);

#else

    *__SIMD32(pOut)++ =
      __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);

    *__SIMD32(pOut)++ =
      __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);


#endif /*      #ifndef ARM_MATH_BIG_ENDIAN       */

    /* Initialization of inputB pointer */
    pIn2 = py;

    pScratch1 += 4u;

  }


  blkCnt = (srcALen + srcBLen - 1u) & 0x3;

  /* Calculate convolution for remaining samples of Bigger length sequence */
  while(blkCnt > 0)
  {
    /* Initialze temporary scratch pointer as scratch1 */
    pScr1 = pScratch1;

    /* Clear Accumlators */
    acc0 = 0;

    tapCnt = (srcBLen) >> 1u;

    while(tapCnt > 0u)
    {

      /* Read next two samples from scratch1 buffer */
      acc0 += (*pScr1++ * *pIn2++);
      acc0 += (*pScr1++ * *pIn2++);

      /* Decrement the loop counter */
      tapCnt--;
    }

    tapCnt = (srcBLen) & 1u;

    /* apply same above for remaining samples of smaller length sequence */
    while(tapCnt > 0u)
    {

      /* accumlate the results */
      acc0 += (*pScr1++ * *pIn2++);

      /* Decrement the loop counter */
      tapCnt--;
    }

    blkCnt--;

    /* The result is in 2.30 format.  Convert to 1.15 with saturation.       
     ** Then store the output in the destination buffer. */
    *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));


    /* Initialization of inputB pointer */
    pIn2 = py;

    pScratch1 += 1u;

  }

}


/**    
 * @} end of Conv group    
 */