Eigne Matrix Class Library
Dependents: MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more
src/LU/PartialPivLU.h@1:3b8049da21b8, 2019-09-24 (annotated)
- Committer:
- jsoh91
- Date:
- Tue Sep 24 00:18:23 2019 +0000
- Revision:
- 1:3b8049da21b8
- Parent:
- 0:13a5d365ba16
ignore and revise some of error parts
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
ykuroda | 0:13a5d365ba16 | 1 | // This file is part of Eigen, a lightweight C++ template library |
ykuroda | 0:13a5d365ba16 | 2 | // for linear algebra. |
ykuroda | 0:13a5d365ba16 | 3 | // |
ykuroda | 0:13a5d365ba16 | 4 | // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
ykuroda | 0:13a5d365ba16 | 5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
ykuroda | 0:13a5d365ba16 | 6 | // |
ykuroda | 0:13a5d365ba16 | 7 | // This Source Code Form is subject to the terms of the Mozilla |
ykuroda | 0:13a5d365ba16 | 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
ykuroda | 0:13a5d365ba16 | 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
ykuroda | 0:13a5d365ba16 | 10 | |
ykuroda | 0:13a5d365ba16 | 11 | #ifndef EIGEN_PARTIALLU_H |
ykuroda | 0:13a5d365ba16 | 12 | #define EIGEN_PARTIALLU_H |
ykuroda | 0:13a5d365ba16 | 13 | |
ykuroda | 0:13a5d365ba16 | 14 | namespace Eigen { |
ykuroda | 0:13a5d365ba16 | 15 | |
ykuroda | 0:13a5d365ba16 | 16 | /** \ingroup LU_Module |
ykuroda | 0:13a5d365ba16 | 17 | * |
ykuroda | 0:13a5d365ba16 | 18 | * \class PartialPivLU |
ykuroda | 0:13a5d365ba16 | 19 | * |
ykuroda | 0:13a5d365ba16 | 20 | * \brief LU decomposition of a matrix with partial pivoting, and related features |
ykuroda | 0:13a5d365ba16 | 21 | * |
ykuroda | 0:13a5d365ba16 | 22 | * \param MatrixType the type of the matrix of which we are computing the LU decomposition |
ykuroda | 0:13a5d365ba16 | 23 | * |
ykuroda | 0:13a5d365ba16 | 24 | * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A |
ykuroda | 0:13a5d365ba16 | 25 | * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P |
ykuroda | 0:13a5d365ba16 | 26 | * is a permutation matrix. |
ykuroda | 0:13a5d365ba16 | 27 | * |
ykuroda | 0:13a5d365ba16 | 28 | * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible |
ykuroda | 0:13a5d365ba16 | 29 | * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class |
ykuroda | 0:13a5d365ba16 | 30 | * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the |
ykuroda | 0:13a5d365ba16 | 31 | * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices. |
ykuroda | 0:13a5d365ba16 | 32 | * |
ykuroda | 0:13a5d365ba16 | 33 | * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided |
ykuroda | 0:13a5d365ba16 | 34 | * by class FullPivLU. |
ykuroda | 0:13a5d365ba16 | 35 | * |
ykuroda | 0:13a5d365ba16 | 36 | * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, |
ykuroda | 0:13a5d365ba16 | 37 | * such as rank computation. If you need these features, use class FullPivLU. |
ykuroda | 0:13a5d365ba16 | 38 | * |
ykuroda | 0:13a5d365ba16 | 39 | * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses |
ykuroda | 0:13a5d365ba16 | 40 | * in the general case. |
ykuroda | 0:13a5d365ba16 | 41 | * On the other hand, it is \b not suitable to determine whether a given matrix is invertible. |
ykuroda | 0:13a5d365ba16 | 42 | * |
ykuroda | 0:13a5d365ba16 | 43 | * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). |
ykuroda | 0:13a5d365ba16 | 44 | * |
ykuroda | 0:13a5d365ba16 | 45 | * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU |
ykuroda | 0:13a5d365ba16 | 46 | */ |
ykuroda | 0:13a5d365ba16 | 47 | template<typename _MatrixType> class PartialPivLU |
ykuroda | 0:13a5d365ba16 | 48 | { |
ykuroda | 0:13a5d365ba16 | 49 | public: |
ykuroda | 0:13a5d365ba16 | 50 | |
ykuroda | 0:13a5d365ba16 | 51 | typedef _MatrixType MatrixType; |
ykuroda | 0:13a5d365ba16 | 52 | enum { |
ykuroda | 0:13a5d365ba16 | 53 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 54 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 55 | Options = MatrixType::Options, |
ykuroda | 0:13a5d365ba16 | 56 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 57 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
ykuroda | 0:13a5d365ba16 | 58 | }; |
ykuroda | 0:13a5d365ba16 | 59 | typedef typename MatrixType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 60 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
ykuroda | 0:13a5d365ba16 | 61 | typedef typename internal::traits<MatrixType>::StorageKind StorageKind; |
ykuroda | 0:13a5d365ba16 | 62 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 63 | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; |
ykuroda | 0:13a5d365ba16 | 64 | typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; |
ykuroda | 0:13a5d365ba16 | 65 | |
ykuroda | 0:13a5d365ba16 | 66 | |
ykuroda | 0:13a5d365ba16 | 67 | /** |
ykuroda | 0:13a5d365ba16 | 68 | * \brief Default Constructor. |
ykuroda | 0:13a5d365ba16 | 69 | * |
ykuroda | 0:13a5d365ba16 | 70 | * The default constructor is useful in cases in which the user intends to |
ykuroda | 0:13a5d365ba16 | 71 | * perform decompositions via PartialPivLU::compute(const MatrixType&). |
ykuroda | 0:13a5d365ba16 | 72 | */ |
ykuroda | 0:13a5d365ba16 | 73 | PartialPivLU(); |
ykuroda | 0:13a5d365ba16 | 74 | |
ykuroda | 0:13a5d365ba16 | 75 | /** \brief Default Constructor with memory preallocation |
ykuroda | 0:13a5d365ba16 | 76 | * |
ykuroda | 0:13a5d365ba16 | 77 | * Like the default constructor but with preallocation of the internal data |
ykuroda | 0:13a5d365ba16 | 78 | * according to the specified problem \a size. |
ykuroda | 0:13a5d365ba16 | 79 | * \sa PartialPivLU() |
ykuroda | 0:13a5d365ba16 | 80 | */ |
ykuroda | 0:13a5d365ba16 | 81 | PartialPivLU(Index size); |
ykuroda | 0:13a5d365ba16 | 82 | |
ykuroda | 0:13a5d365ba16 | 83 | /** Constructor. |
ykuroda | 0:13a5d365ba16 | 84 | * |
ykuroda | 0:13a5d365ba16 | 85 | * \param matrix the matrix of which to compute the LU decomposition. |
ykuroda | 0:13a5d365ba16 | 86 | * |
ykuroda | 0:13a5d365ba16 | 87 | * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). |
ykuroda | 0:13a5d365ba16 | 88 | * If you need to deal with non-full rank, use class FullPivLU instead. |
ykuroda | 0:13a5d365ba16 | 89 | */ |
ykuroda | 0:13a5d365ba16 | 90 | PartialPivLU(const MatrixType& matrix); |
ykuroda | 0:13a5d365ba16 | 91 | |
ykuroda | 0:13a5d365ba16 | 92 | PartialPivLU& compute(const MatrixType& matrix); |
ykuroda | 0:13a5d365ba16 | 93 | |
ykuroda | 0:13a5d365ba16 | 94 | /** \returns the LU decomposition matrix: the upper-triangular part is U, the |
ykuroda | 0:13a5d365ba16 | 95 | * unit-lower-triangular part is L (at least for square matrices; in the non-square |
ykuroda | 0:13a5d365ba16 | 96 | * case, special care is needed, see the documentation of class FullPivLU). |
ykuroda | 0:13a5d365ba16 | 97 | * |
ykuroda | 0:13a5d365ba16 | 98 | * \sa matrixL(), matrixU() |
ykuroda | 0:13a5d365ba16 | 99 | */ |
ykuroda | 0:13a5d365ba16 | 100 | inline const MatrixType& matrixLU() const |
ykuroda | 0:13a5d365ba16 | 101 | { |
ykuroda | 0:13a5d365ba16 | 102 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
ykuroda | 0:13a5d365ba16 | 103 | return m_lu; |
ykuroda | 0:13a5d365ba16 | 104 | } |
ykuroda | 0:13a5d365ba16 | 105 | |
ykuroda | 0:13a5d365ba16 | 106 | /** \returns the permutation matrix P. |
ykuroda | 0:13a5d365ba16 | 107 | */ |
ykuroda | 0:13a5d365ba16 | 108 | inline const PermutationType& permutationP() const |
ykuroda | 0:13a5d365ba16 | 109 | { |
ykuroda | 0:13a5d365ba16 | 110 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
ykuroda | 0:13a5d365ba16 | 111 | return m_p; |
ykuroda | 0:13a5d365ba16 | 112 | } |
ykuroda | 0:13a5d365ba16 | 113 | |
ykuroda | 0:13a5d365ba16 | 114 | /** This method returns the solution x to the equation Ax=b, where A is the matrix of which |
ykuroda | 0:13a5d365ba16 | 115 | * *this is the LU decomposition. |
ykuroda | 0:13a5d365ba16 | 116 | * |
ykuroda | 0:13a5d365ba16 | 117 | * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, |
ykuroda | 0:13a5d365ba16 | 118 | * the only requirement in order for the equation to make sense is that |
ykuroda | 0:13a5d365ba16 | 119 | * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. |
ykuroda | 0:13a5d365ba16 | 120 | * |
ykuroda | 0:13a5d365ba16 | 121 | * \returns the solution. |
ykuroda | 0:13a5d365ba16 | 122 | * |
ykuroda | 0:13a5d365ba16 | 123 | * Example: \include PartialPivLU_solve.cpp |
ykuroda | 0:13a5d365ba16 | 124 | * Output: \verbinclude PartialPivLU_solve.out |
ykuroda | 0:13a5d365ba16 | 125 | * |
ykuroda | 0:13a5d365ba16 | 126 | * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution |
ykuroda | 0:13a5d365ba16 | 127 | * theoretically exists and is unique regardless of b. |
ykuroda | 0:13a5d365ba16 | 128 | * |
ykuroda | 0:13a5d365ba16 | 129 | * \sa TriangularView::solve(), inverse(), computeInverse() |
ykuroda | 0:13a5d365ba16 | 130 | */ |
ykuroda | 0:13a5d365ba16 | 131 | template<typename Rhs> |
ykuroda | 0:13a5d365ba16 | 132 | inline const internal::solve_retval<PartialPivLU, Rhs> |
ykuroda | 0:13a5d365ba16 | 133 | solve(const MatrixBase<Rhs>& b) const |
ykuroda | 0:13a5d365ba16 | 134 | { |
ykuroda | 0:13a5d365ba16 | 135 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
ykuroda | 0:13a5d365ba16 | 136 | return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived()); |
ykuroda | 0:13a5d365ba16 | 137 | } |
ykuroda | 0:13a5d365ba16 | 138 | |
ykuroda | 0:13a5d365ba16 | 139 | /** \returns the inverse of the matrix of which *this is the LU decomposition. |
ykuroda | 0:13a5d365ba16 | 140 | * |
ykuroda | 0:13a5d365ba16 | 141 | * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for |
ykuroda | 0:13a5d365ba16 | 142 | * invertibility, use class FullPivLU instead. |
ykuroda | 0:13a5d365ba16 | 143 | * |
ykuroda | 0:13a5d365ba16 | 144 | * \sa MatrixBase::inverse(), LU::inverse() |
ykuroda | 0:13a5d365ba16 | 145 | */ |
ykuroda | 0:13a5d365ba16 | 146 | inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const |
ykuroda | 0:13a5d365ba16 | 147 | { |
ykuroda | 0:13a5d365ba16 | 148 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
ykuroda | 0:13a5d365ba16 | 149 | return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> |
ykuroda | 0:13a5d365ba16 | 150 | (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols())); |
ykuroda | 0:13a5d365ba16 | 151 | } |
ykuroda | 0:13a5d365ba16 | 152 | |
ykuroda | 0:13a5d365ba16 | 153 | /** \returns the determinant of the matrix of which |
ykuroda | 0:13a5d365ba16 | 154 | * *this is the LU decomposition. It has only linear complexity |
ykuroda | 0:13a5d365ba16 | 155 | * (that is, O(n) where n is the dimension of the square matrix) |
ykuroda | 0:13a5d365ba16 | 156 | * as the LU decomposition has already been computed. |
ykuroda | 0:13a5d365ba16 | 157 | * |
ykuroda | 0:13a5d365ba16 | 158 | * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers |
ykuroda | 0:13a5d365ba16 | 159 | * optimized paths. |
ykuroda | 0:13a5d365ba16 | 160 | * |
ykuroda | 0:13a5d365ba16 | 161 | * \warning a determinant can be very big or small, so for matrices |
ykuroda | 0:13a5d365ba16 | 162 | * of large enough dimension, there is a risk of overflow/underflow. |
ykuroda | 0:13a5d365ba16 | 163 | * |
ykuroda | 0:13a5d365ba16 | 164 | * \sa MatrixBase::determinant() |
ykuroda | 0:13a5d365ba16 | 165 | */ |
ykuroda | 0:13a5d365ba16 | 166 | typename internal::traits<MatrixType>::Scalar determinant() const; |
ykuroda | 0:13a5d365ba16 | 167 | |
ykuroda | 0:13a5d365ba16 | 168 | MatrixType reconstructedMatrix() const; |
ykuroda | 0:13a5d365ba16 | 169 | |
ykuroda | 0:13a5d365ba16 | 170 | inline Index rows() const { return m_lu.rows(); } |
ykuroda | 0:13a5d365ba16 | 171 | inline Index cols() const { return m_lu.cols(); } |
ykuroda | 0:13a5d365ba16 | 172 | |
ykuroda | 0:13a5d365ba16 | 173 | protected: |
ykuroda | 0:13a5d365ba16 | 174 | |
ykuroda | 0:13a5d365ba16 | 175 | static void check_template_parameters() |
ykuroda | 0:13a5d365ba16 | 176 | { |
ykuroda | 0:13a5d365ba16 | 177 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
ykuroda | 0:13a5d365ba16 | 178 | } |
ykuroda | 0:13a5d365ba16 | 179 | |
ykuroda | 0:13a5d365ba16 | 180 | MatrixType m_lu; |
ykuroda | 0:13a5d365ba16 | 181 | PermutationType m_p; |
ykuroda | 0:13a5d365ba16 | 182 | TranspositionType m_rowsTranspositions; |
ykuroda | 0:13a5d365ba16 | 183 | Index m_det_p; |
ykuroda | 0:13a5d365ba16 | 184 | bool m_isInitialized; |
ykuroda | 0:13a5d365ba16 | 185 | }; |
ykuroda | 0:13a5d365ba16 | 186 | |
ykuroda | 0:13a5d365ba16 | 187 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 188 | PartialPivLU<MatrixType>::PartialPivLU() |
ykuroda | 0:13a5d365ba16 | 189 | : m_lu(), |
ykuroda | 0:13a5d365ba16 | 190 | m_p(), |
ykuroda | 0:13a5d365ba16 | 191 | m_rowsTranspositions(), |
ykuroda | 0:13a5d365ba16 | 192 | m_det_p(0), |
ykuroda | 0:13a5d365ba16 | 193 | m_isInitialized(false) |
ykuroda | 0:13a5d365ba16 | 194 | { |
ykuroda | 0:13a5d365ba16 | 195 | } |
ykuroda | 0:13a5d365ba16 | 196 | |
ykuroda | 0:13a5d365ba16 | 197 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 198 | PartialPivLU<MatrixType>::PartialPivLU(Index size) |
ykuroda | 0:13a5d365ba16 | 199 | : m_lu(size, size), |
ykuroda | 0:13a5d365ba16 | 200 | m_p(size), |
ykuroda | 0:13a5d365ba16 | 201 | m_rowsTranspositions(size), |
ykuroda | 0:13a5d365ba16 | 202 | m_det_p(0), |
ykuroda | 0:13a5d365ba16 | 203 | m_isInitialized(false) |
ykuroda | 0:13a5d365ba16 | 204 | { |
ykuroda | 0:13a5d365ba16 | 205 | } |
ykuroda | 0:13a5d365ba16 | 206 | |
ykuroda | 0:13a5d365ba16 | 207 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 208 | PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 209 | : m_lu(matrix.rows(), matrix.rows()), |
ykuroda | 0:13a5d365ba16 | 210 | m_p(matrix.rows()), |
ykuroda | 0:13a5d365ba16 | 211 | m_rowsTranspositions(matrix.rows()), |
ykuroda | 0:13a5d365ba16 | 212 | m_det_p(0), |
ykuroda | 0:13a5d365ba16 | 213 | m_isInitialized(false) |
ykuroda | 0:13a5d365ba16 | 214 | { |
ykuroda | 0:13a5d365ba16 | 215 | compute(matrix); |
ykuroda | 0:13a5d365ba16 | 216 | } |
ykuroda | 0:13a5d365ba16 | 217 | |
ykuroda | 0:13a5d365ba16 | 218 | namespace internal { |
ykuroda | 0:13a5d365ba16 | 219 | |
ykuroda | 0:13a5d365ba16 | 220 | /** \internal This is the blocked version of fullpivlu_unblocked() */ |
ykuroda | 0:13a5d365ba16 | 221 | template<typename Scalar, int StorageOrder, typename PivIndex> |
ykuroda | 0:13a5d365ba16 | 222 | struct partial_lu_impl |
ykuroda | 0:13a5d365ba16 | 223 | { |
ykuroda | 0:13a5d365ba16 | 224 | // FIXME add a stride to Map, so that the following mapping becomes easier, |
ykuroda | 0:13a5d365ba16 | 225 | // another option would be to create an expression being able to automatically |
ykuroda | 0:13a5d365ba16 | 226 | // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly |
ykuroda | 0:13a5d365ba16 | 227 | // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix, |
ykuroda | 0:13a5d365ba16 | 228 | // and Block. |
ykuroda | 0:13a5d365ba16 | 229 | typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU; |
ykuroda | 0:13a5d365ba16 | 230 | typedef Block<MapLU, Dynamic, Dynamic> MatrixType; |
ykuroda | 0:13a5d365ba16 | 231 | typedef Block<MatrixType,Dynamic,Dynamic> BlockType; |
ykuroda | 0:13a5d365ba16 | 232 | typedef typename MatrixType::RealScalar RealScalar; |
ykuroda | 0:13a5d365ba16 | 233 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 234 | |
ykuroda | 0:13a5d365ba16 | 235 | /** \internal performs the LU decomposition in-place of the matrix \a lu |
ykuroda | 0:13a5d365ba16 | 236 | * using an unblocked algorithm. |
ykuroda | 0:13a5d365ba16 | 237 | * |
ykuroda | 0:13a5d365ba16 | 238 | * In addition, this function returns the row transpositions in the |
ykuroda | 0:13a5d365ba16 | 239 | * vector \a row_transpositions which must have a size equal to the number |
ykuroda | 0:13a5d365ba16 | 240 | * of columns of the matrix \a lu, and an integer \a nb_transpositions |
ykuroda | 0:13a5d365ba16 | 241 | * which returns the actual number of transpositions. |
ykuroda | 0:13a5d365ba16 | 242 | * |
ykuroda | 0:13a5d365ba16 | 243 | * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. |
ykuroda | 0:13a5d365ba16 | 244 | */ |
ykuroda | 0:13a5d365ba16 | 245 | static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions) |
ykuroda | 0:13a5d365ba16 | 246 | { |
ykuroda | 0:13a5d365ba16 | 247 | const Index rows = lu.rows(); |
ykuroda | 0:13a5d365ba16 | 248 | const Index cols = lu.cols(); |
ykuroda | 0:13a5d365ba16 | 249 | const Index size = (std::min)(rows,cols); |
ykuroda | 0:13a5d365ba16 | 250 | nb_transpositions = 0; |
ykuroda | 0:13a5d365ba16 | 251 | Index first_zero_pivot = -1; |
ykuroda | 0:13a5d365ba16 | 252 | for(Index k = 0; k < size; ++k) |
ykuroda | 0:13a5d365ba16 | 253 | { |
ykuroda | 0:13a5d365ba16 | 254 | Index rrows = rows-k-1; |
ykuroda | 0:13a5d365ba16 | 255 | Index rcols = cols-k-1; |
ykuroda | 0:13a5d365ba16 | 256 | |
ykuroda | 0:13a5d365ba16 | 257 | Index row_of_biggest_in_col; |
ykuroda | 0:13a5d365ba16 | 258 | RealScalar biggest_in_corner |
ykuroda | 0:13a5d365ba16 | 259 | = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col); |
ykuroda | 0:13a5d365ba16 | 260 | row_of_biggest_in_col += k; |
ykuroda | 0:13a5d365ba16 | 261 | |
ykuroda | 0:13a5d365ba16 | 262 | row_transpositions[k] = PivIndex(row_of_biggest_in_col); |
ykuroda | 0:13a5d365ba16 | 263 | |
ykuroda | 0:13a5d365ba16 | 264 | if(biggest_in_corner != RealScalar(0)) |
ykuroda | 0:13a5d365ba16 | 265 | { |
ykuroda | 0:13a5d365ba16 | 266 | if(k != row_of_biggest_in_col) |
ykuroda | 0:13a5d365ba16 | 267 | { |
ykuroda | 0:13a5d365ba16 | 268 | lu.row(k).swap(lu.row(row_of_biggest_in_col)); |
ykuroda | 0:13a5d365ba16 | 269 | ++nb_transpositions; |
ykuroda | 0:13a5d365ba16 | 270 | } |
ykuroda | 0:13a5d365ba16 | 271 | |
ykuroda | 0:13a5d365ba16 | 272 | // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k) |
ykuroda | 0:13a5d365ba16 | 273 | // overflow but not the actual quotient? |
ykuroda | 0:13a5d365ba16 | 274 | lu.col(k).tail(rrows) /= lu.coeff(k,k); |
ykuroda | 0:13a5d365ba16 | 275 | } |
ykuroda | 0:13a5d365ba16 | 276 | else if(first_zero_pivot==-1) |
ykuroda | 0:13a5d365ba16 | 277 | { |
ykuroda | 0:13a5d365ba16 | 278 | // the pivot is exactly zero, we record the index of the first pivot which is exactly 0, |
ykuroda | 0:13a5d365ba16 | 279 | // and continue the factorization such we still have A = PLU |
ykuroda | 0:13a5d365ba16 | 280 | first_zero_pivot = k; |
ykuroda | 0:13a5d365ba16 | 281 | } |
ykuroda | 0:13a5d365ba16 | 282 | |
ykuroda | 0:13a5d365ba16 | 283 | if(k<rows-1) |
ykuroda | 0:13a5d365ba16 | 284 | lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols); |
ykuroda | 0:13a5d365ba16 | 285 | } |
ykuroda | 0:13a5d365ba16 | 286 | return first_zero_pivot; |
ykuroda | 0:13a5d365ba16 | 287 | } |
ykuroda | 0:13a5d365ba16 | 288 | |
ykuroda | 0:13a5d365ba16 | 289 | /** \internal performs the LU decomposition in-place of the matrix represented |
ykuroda | 0:13a5d365ba16 | 290 | * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a |
ykuroda | 0:13a5d365ba16 | 291 | * recursive, blocked algorithm. |
ykuroda | 0:13a5d365ba16 | 292 | * |
ykuroda | 0:13a5d365ba16 | 293 | * In addition, this function returns the row transpositions in the |
ykuroda | 0:13a5d365ba16 | 294 | * vector \a row_transpositions which must have a size equal to the number |
ykuroda | 0:13a5d365ba16 | 295 | * of columns of the matrix \a lu, and an integer \a nb_transpositions |
ykuroda | 0:13a5d365ba16 | 296 | * which returns the actual number of transpositions. |
ykuroda | 0:13a5d365ba16 | 297 | * |
ykuroda | 0:13a5d365ba16 | 298 | * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. |
ykuroda | 0:13a5d365ba16 | 299 | * |
ykuroda | 0:13a5d365ba16 | 300 | * \note This very low level interface using pointers, etc. is to: |
ykuroda | 0:13a5d365ba16 | 301 | * 1 - reduce the number of instanciations to the strict minimum |
ykuroda | 0:13a5d365ba16 | 302 | * 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > > |
ykuroda | 0:13a5d365ba16 | 303 | */ |
ykuroda | 0:13a5d365ba16 | 304 | static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256) |
ykuroda | 0:13a5d365ba16 | 305 | { |
ykuroda | 0:13a5d365ba16 | 306 | MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols); |
ykuroda | 0:13a5d365ba16 | 307 | MatrixType lu(lu1,0,0,rows,cols); |
ykuroda | 0:13a5d365ba16 | 308 | |
ykuroda | 0:13a5d365ba16 | 309 | const Index size = (std::min)(rows,cols); |
ykuroda | 0:13a5d365ba16 | 310 | |
ykuroda | 0:13a5d365ba16 | 311 | // if the matrix is too small, no blocking: |
ykuroda | 0:13a5d365ba16 | 312 | if(size<=16) |
ykuroda | 0:13a5d365ba16 | 313 | { |
ykuroda | 0:13a5d365ba16 | 314 | return unblocked_lu(lu, row_transpositions, nb_transpositions); |
ykuroda | 0:13a5d365ba16 | 315 | } |
ykuroda | 0:13a5d365ba16 | 316 | |
ykuroda | 0:13a5d365ba16 | 317 | // automatically adjust the number of subdivisions to the size |
ykuroda | 0:13a5d365ba16 | 318 | // of the matrix so that there is enough sub blocks: |
ykuroda | 0:13a5d365ba16 | 319 | Index blockSize; |
ykuroda | 0:13a5d365ba16 | 320 | { |
ykuroda | 0:13a5d365ba16 | 321 | blockSize = size/8; |
ykuroda | 0:13a5d365ba16 | 322 | blockSize = (blockSize/16)*16; |
ykuroda | 0:13a5d365ba16 | 323 | blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize); |
ykuroda | 0:13a5d365ba16 | 324 | } |
ykuroda | 0:13a5d365ba16 | 325 | |
ykuroda | 0:13a5d365ba16 | 326 | nb_transpositions = 0; |
ykuroda | 0:13a5d365ba16 | 327 | Index first_zero_pivot = -1; |
ykuroda | 0:13a5d365ba16 | 328 | for(Index k = 0; k < size; k+=blockSize) |
ykuroda | 0:13a5d365ba16 | 329 | { |
ykuroda | 0:13a5d365ba16 | 330 | Index bs = (std::min)(size-k,blockSize); // actual size of the block |
ykuroda | 0:13a5d365ba16 | 331 | Index trows = rows - k - bs; // trailing rows |
ykuroda | 0:13a5d365ba16 | 332 | Index tsize = size - k - bs; // trailing size |
ykuroda | 0:13a5d365ba16 | 333 | |
ykuroda | 0:13a5d365ba16 | 334 | // partition the matrix: |
ykuroda | 0:13a5d365ba16 | 335 | // A00 | A01 | A02 |
ykuroda | 0:13a5d365ba16 | 336 | // lu = A_0 | A_1 | A_2 = A10 | A11 | A12 |
ykuroda | 0:13a5d365ba16 | 337 | // A20 | A21 | A22 |
ykuroda | 0:13a5d365ba16 | 338 | BlockType A_0(lu,0,0,rows,k); |
ykuroda | 0:13a5d365ba16 | 339 | BlockType A_2(lu,0,k+bs,rows,tsize); |
ykuroda | 0:13a5d365ba16 | 340 | BlockType A11(lu,k,k,bs,bs); |
ykuroda | 0:13a5d365ba16 | 341 | BlockType A12(lu,k,k+bs,bs,tsize); |
ykuroda | 0:13a5d365ba16 | 342 | BlockType A21(lu,k+bs,k,trows,bs); |
ykuroda | 0:13a5d365ba16 | 343 | BlockType A22(lu,k+bs,k+bs,trows,tsize); |
ykuroda | 0:13a5d365ba16 | 344 | |
ykuroda | 0:13a5d365ba16 | 345 | PivIndex nb_transpositions_in_panel; |
ykuroda | 0:13a5d365ba16 | 346 | // recursively call the blocked LU algorithm on [A11^T A21^T]^T |
ykuroda | 0:13a5d365ba16 | 347 | // with a very small blocking size: |
ykuroda | 0:13a5d365ba16 | 348 | Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, |
ykuroda | 0:13a5d365ba16 | 349 | row_transpositions+k, nb_transpositions_in_panel, 16); |
ykuroda | 0:13a5d365ba16 | 350 | if(ret>=0 && first_zero_pivot==-1) |
ykuroda | 0:13a5d365ba16 | 351 | first_zero_pivot = k+ret; |
ykuroda | 0:13a5d365ba16 | 352 | |
ykuroda | 0:13a5d365ba16 | 353 | nb_transpositions += nb_transpositions_in_panel; |
ykuroda | 0:13a5d365ba16 | 354 | // update permutations and apply them to A_0 |
ykuroda | 0:13a5d365ba16 | 355 | for(Index i=k; i<k+bs; ++i) |
ykuroda | 0:13a5d365ba16 | 356 | { |
ykuroda | 0:13a5d365ba16 | 357 | Index piv = (row_transpositions[i] += k); |
ykuroda | 0:13a5d365ba16 | 358 | A_0.row(i).swap(A_0.row(piv)); |
ykuroda | 0:13a5d365ba16 | 359 | } |
ykuroda | 0:13a5d365ba16 | 360 | |
ykuroda | 0:13a5d365ba16 | 361 | if(trows) |
ykuroda | 0:13a5d365ba16 | 362 | { |
ykuroda | 0:13a5d365ba16 | 363 | // apply permutations to A_2 |
ykuroda | 0:13a5d365ba16 | 364 | for(Index i=k;i<k+bs; ++i) |
ykuroda | 0:13a5d365ba16 | 365 | A_2.row(i).swap(A_2.row(row_transpositions[i])); |
ykuroda | 0:13a5d365ba16 | 366 | |
ykuroda | 0:13a5d365ba16 | 367 | // A12 = A11^-1 A12 |
ykuroda | 0:13a5d365ba16 | 368 | A11.template triangularView<UnitLower>().solveInPlace(A12); |
ykuroda | 0:13a5d365ba16 | 369 | |
ykuroda | 0:13a5d365ba16 | 370 | A22.noalias() -= A21 * A12; |
ykuroda | 0:13a5d365ba16 | 371 | } |
ykuroda | 0:13a5d365ba16 | 372 | } |
ykuroda | 0:13a5d365ba16 | 373 | return first_zero_pivot; |
ykuroda | 0:13a5d365ba16 | 374 | } |
ykuroda | 0:13a5d365ba16 | 375 | }; |
ykuroda | 0:13a5d365ba16 | 376 | |
ykuroda | 0:13a5d365ba16 | 377 | /** \internal performs the LU decomposition with partial pivoting in-place. |
ykuroda | 0:13a5d365ba16 | 378 | */ |
ykuroda | 0:13a5d365ba16 | 379 | template<typename MatrixType, typename TranspositionType> |
ykuroda | 0:13a5d365ba16 | 380 | void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions) |
ykuroda | 0:13a5d365ba16 | 381 | { |
ykuroda | 0:13a5d365ba16 | 382 | eigen_assert(lu.cols() == row_transpositions.size()); |
ykuroda | 0:13a5d365ba16 | 383 | eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); |
ykuroda | 0:13a5d365ba16 | 384 | |
ykuroda | 0:13a5d365ba16 | 385 | partial_lu_impl |
ykuroda | 0:13a5d365ba16 | 386 | <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index> |
ykuroda | 0:13a5d365ba16 | 387 | ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); |
ykuroda | 0:13a5d365ba16 | 388 | } |
ykuroda | 0:13a5d365ba16 | 389 | |
ykuroda | 0:13a5d365ba16 | 390 | } // end namespace internal |
ykuroda | 0:13a5d365ba16 | 391 | |
ykuroda | 0:13a5d365ba16 | 392 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 393 | PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 394 | { |
ykuroda | 0:13a5d365ba16 | 395 | check_template_parameters(); |
ykuroda | 0:13a5d365ba16 | 396 | |
ykuroda | 0:13a5d365ba16 | 397 | // the row permutation is stored as int indices, so just to be sure: |
ykuroda | 0:13a5d365ba16 | 398 | eigen_assert(matrix.rows()<NumTraits<int>::highest()); |
ykuroda | 0:13a5d365ba16 | 399 | |
ykuroda | 0:13a5d365ba16 | 400 | m_lu = matrix; |
ykuroda | 0:13a5d365ba16 | 401 | |
ykuroda | 0:13a5d365ba16 | 402 | eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices"); |
ykuroda | 0:13a5d365ba16 | 403 | const Index size = matrix.rows(); |
ykuroda | 0:13a5d365ba16 | 404 | |
ykuroda | 0:13a5d365ba16 | 405 | m_rowsTranspositions.resize(size); |
ykuroda | 0:13a5d365ba16 | 406 | |
ykuroda | 0:13a5d365ba16 | 407 | typename TranspositionType::Index nb_transpositions; |
ykuroda | 0:13a5d365ba16 | 408 | internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); |
ykuroda | 0:13a5d365ba16 | 409 | m_det_p = (nb_transpositions%2) ? -1 : 1; |
ykuroda | 0:13a5d365ba16 | 410 | |
ykuroda | 0:13a5d365ba16 | 411 | m_p = m_rowsTranspositions; |
ykuroda | 0:13a5d365ba16 | 412 | |
ykuroda | 0:13a5d365ba16 | 413 | m_isInitialized = true; |
ykuroda | 0:13a5d365ba16 | 414 | return *this; |
ykuroda | 0:13a5d365ba16 | 415 | } |
ykuroda | 0:13a5d365ba16 | 416 | |
ykuroda | 0:13a5d365ba16 | 417 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 418 | typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const |
ykuroda | 0:13a5d365ba16 | 419 | { |
ykuroda | 0:13a5d365ba16 | 420 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
ykuroda | 0:13a5d365ba16 | 421 | return Scalar(m_det_p) * m_lu.diagonal().prod(); |
ykuroda | 0:13a5d365ba16 | 422 | } |
ykuroda | 0:13a5d365ba16 | 423 | |
ykuroda | 0:13a5d365ba16 | 424 | /** \returns the matrix represented by the decomposition, |
ykuroda | 0:13a5d365ba16 | 425 | * i.e., it returns the product: P^{-1} L U. |
ykuroda | 0:13a5d365ba16 | 426 | * This function is provided for debug purpose. */ |
ykuroda | 0:13a5d365ba16 | 427 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 428 | MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const |
ykuroda | 0:13a5d365ba16 | 429 | { |
ykuroda | 0:13a5d365ba16 | 430 | eigen_assert(m_isInitialized && "LU is not initialized."); |
ykuroda | 0:13a5d365ba16 | 431 | // LU |
ykuroda | 0:13a5d365ba16 | 432 | MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix() |
ykuroda | 0:13a5d365ba16 | 433 | * m_lu.template triangularView<Upper>(); |
ykuroda | 0:13a5d365ba16 | 434 | |
ykuroda | 0:13a5d365ba16 | 435 | // P^{-1}(LU) |
ykuroda | 0:13a5d365ba16 | 436 | res = m_p.inverse() * res; |
ykuroda | 0:13a5d365ba16 | 437 | |
ykuroda | 0:13a5d365ba16 | 438 | return res; |
ykuroda | 0:13a5d365ba16 | 439 | } |
ykuroda | 0:13a5d365ba16 | 440 | |
ykuroda | 0:13a5d365ba16 | 441 | /***** Implementation of solve() *****************************************************/ |
ykuroda | 0:13a5d365ba16 | 442 | |
ykuroda | 0:13a5d365ba16 | 443 | namespace internal { |
ykuroda | 0:13a5d365ba16 | 444 | |
ykuroda | 0:13a5d365ba16 | 445 | template<typename _MatrixType, typename Rhs> |
ykuroda | 0:13a5d365ba16 | 446 | struct solve_retval<PartialPivLU<_MatrixType>, Rhs> |
ykuroda | 0:13a5d365ba16 | 447 | : solve_retval_base<PartialPivLU<_MatrixType>, Rhs> |
ykuroda | 0:13a5d365ba16 | 448 | { |
ykuroda | 0:13a5d365ba16 | 449 | EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs) |
ykuroda | 0:13a5d365ba16 | 450 | |
ykuroda | 0:13a5d365ba16 | 451 | template<typename Dest> void evalTo(Dest& dst) const |
ykuroda | 0:13a5d365ba16 | 452 | { |
ykuroda | 0:13a5d365ba16 | 453 | /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. |
ykuroda | 0:13a5d365ba16 | 454 | * So we proceed as follows: |
ykuroda | 0:13a5d365ba16 | 455 | * Step 1: compute c = Pb. |
ykuroda | 0:13a5d365ba16 | 456 | * Step 2: replace c by the solution x to Lx = c. |
ykuroda | 0:13a5d365ba16 | 457 | * Step 3: replace c by the solution x to Ux = c. |
ykuroda | 0:13a5d365ba16 | 458 | */ |
ykuroda | 0:13a5d365ba16 | 459 | |
ykuroda | 0:13a5d365ba16 | 460 | eigen_assert(rhs().rows() == dec().matrixLU().rows()); |
ykuroda | 0:13a5d365ba16 | 461 | |
ykuroda | 0:13a5d365ba16 | 462 | // Step 1 |
ykuroda | 0:13a5d365ba16 | 463 | dst = dec().permutationP() * rhs(); |
ykuroda | 0:13a5d365ba16 | 464 | |
ykuroda | 0:13a5d365ba16 | 465 | // Step 2 |
ykuroda | 0:13a5d365ba16 | 466 | dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst); |
ykuroda | 0:13a5d365ba16 | 467 | |
ykuroda | 0:13a5d365ba16 | 468 | // Step 3 |
ykuroda | 0:13a5d365ba16 | 469 | dec().matrixLU().template triangularView<Upper>().solveInPlace(dst); |
ykuroda | 0:13a5d365ba16 | 470 | } |
ykuroda | 0:13a5d365ba16 | 471 | }; |
ykuroda | 0:13a5d365ba16 | 472 | |
ykuroda | 0:13a5d365ba16 | 473 | } // end namespace internal |
ykuroda | 0:13a5d365ba16 | 474 | |
ykuroda | 0:13a5d365ba16 | 475 | /******** MatrixBase methods *******/ |
ykuroda | 0:13a5d365ba16 | 476 | |
ykuroda | 0:13a5d365ba16 | 477 | /** \lu_module |
ykuroda | 0:13a5d365ba16 | 478 | * |
ykuroda | 0:13a5d365ba16 | 479 | * \return the partial-pivoting LU decomposition of \c *this. |
ykuroda | 0:13a5d365ba16 | 480 | * |
ykuroda | 0:13a5d365ba16 | 481 | * \sa class PartialPivLU |
ykuroda | 0:13a5d365ba16 | 482 | */ |
ykuroda | 0:13a5d365ba16 | 483 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 484 | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> |
ykuroda | 0:13a5d365ba16 | 485 | MatrixBase<Derived>::partialPivLu() const |
ykuroda | 0:13a5d365ba16 | 486 | { |
ykuroda | 0:13a5d365ba16 | 487 | return PartialPivLU<PlainObject>(eval()); |
ykuroda | 0:13a5d365ba16 | 488 | } |
ykuroda | 0:13a5d365ba16 | 489 | |
ykuroda | 0:13a5d365ba16 | 490 | #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS |
ykuroda | 0:13a5d365ba16 | 491 | /** \lu_module |
ykuroda | 0:13a5d365ba16 | 492 | * |
ykuroda | 0:13a5d365ba16 | 493 | * Synonym of partialPivLu(). |
ykuroda | 0:13a5d365ba16 | 494 | * |
ykuroda | 0:13a5d365ba16 | 495 | * \return the partial-pivoting LU decomposition of \c *this. |
ykuroda | 0:13a5d365ba16 | 496 | * |
ykuroda | 0:13a5d365ba16 | 497 | * \sa class PartialPivLU |
ykuroda | 0:13a5d365ba16 | 498 | */ |
ykuroda | 0:13a5d365ba16 | 499 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 500 | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> |
ykuroda | 0:13a5d365ba16 | 501 | MatrixBase<Derived>::lu() const |
ykuroda | 0:13a5d365ba16 | 502 | { |
ykuroda | 0:13a5d365ba16 | 503 | return PartialPivLU<PlainObject>(eval()); |
ykuroda | 0:13a5d365ba16 | 504 | } |
ykuroda | 0:13a5d365ba16 | 505 | #endif |
ykuroda | 0:13a5d365ba16 | 506 | |
ykuroda | 0:13a5d365ba16 | 507 | } // end namespace Eigen |
ykuroda | 0:13a5d365ba16 | 508 | |
ykuroda | 0:13a5d365ba16 | 509 | #endif // EIGEN_PARTIALLU_H |